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Abstract. We obtain improved fractional Poincaré and Sobolev Poincaré inequali-
ties including powers of the distance to the boundary in John, s-John domains and
Hölder-α domains, and discuss their optimality.

1. Introduction

Poincaré and Sobolev-Poincaré inequalities in non-Lipschitz domains have been the
object of extensive study. They can be seen as special cases of the following larger
family of so-called improved Poincaré inequalities :

(1.1) inf
c∈R

∥f(x)− c∥Lq(Ω) ≤ C∥∇f(x) d(x)b∥Lp(Ω)

where d(x) denotes the distance to the boundary of Ω, b ∈ [0, 1], and p and q satisfy
appropriate restrictions. The usual assumption for these inequalities to hold is that
the domain Ω ⊂ Rn belongs to the class of John or s-John domains (they will be called
β-John in this paper, since s is reserved for the fractional derivative), see Section 2
for a precise definition. In the case of John domains, a partial converse is also true in
the following sense: if Ω has finite measure and satisfies a separation property, then
the validity of the Sobolev-Poincaré inequality implies the John condition (see [6]).
A possibly incomplete list of references on improved Poincaré inequalities and their
generalizations to weighted settings and measure spaces includes [7, 8, 9, 10, 14, 15,
16, 17, 20, 21].

More recently, some authors have turned their attention to fractional generalizations
of Poincaré and Sobolev-Poincaré inequalities, where a fractional seminorm appears
instead of the norm in W 1,p(Ω). Indeed, in [13, 18] the following inequalities were
introduced for John domains:

(1.2) inf
c∈R

∥f(y)− c∥Lq(Ω) ≤ C

{∫
Ω

∫
Ω∩Bn(x,τdist(x,∂Ω))

|f(z)− f(x)|p

|z − x|n+sp
dzdx

}1/p

with 1 ≤ p ≤ q ≤ np
n−sp

and s, τ ∈ (0, 1).

The seminorm appearing on the RHS of (1.2) can be seen to be equivalent on Lips-
chitz domains to the usual seminorm in W s,p(Ω), that is, integrating over Ω × Ω (see
[12, equation (13)]), but it can be strictly smaller than the usual seminorm for general
John domains (see [13, Proposition 3.4]). Moreover, it is easy to see that, unlike the
classical Poincaré inequality, the inequality

(1.3) inf
c∈R

∥f(y)− c∥Lp(Ω) ≤ C

{∫
Ω

∫
Ω

|f(z)− f(x)|p

|z − x|n+sp
dy dx

}1/p
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holds for any bounded domain Ω and s ∈ (0, 1) (see Section 2), while the stronger
inequality

(1.4) inf
c∈R

∥f(y)− c∥Lp(Ω) ≤ C

{∫
Ω

∫
Ω∩Bn(x,τdist(x,∂Ω))

|f(z)− f(x)|p

|z − x|n+sp
dy dx

}1/p

may fail for general domains, for instance, for certain β-John domains if β is sufficiently
large (see Theorem 4.3).

Regarding the Sobolev-Poincaré inequality, it was proved in [23, Theorem 1.2] that

(1.5) inf
c∈R

∥f(y)− c∥
L

np
n−sp (Ω)

≤ C

{∫
Ω

∫
Ω

|f(z)− f(x)|p

|z − x|n+sp
dy dx

}1/p

holds for the class of Ahlfors n-regular domains, which is larger than that of the John
domains, but if we turn to the inequality with the stronger seminorm, there are Ahlfors
n-regular domains for which the inequality fails (see [13, Theorem 3.1]). On John
domains, as mentioned before, the Sobolev-Poincaré inequality holds with the stronger
seminorm and, moreover, it was proved in [13, Theorem 6.1] that a partial converse also
holds: if a fractional Sobolev-Poincaré inequality with the stronger seminorm holds on
a domain Ω with finite measure which satisfies the separation property, then Ω must
satisfy the John condition.

In this paper, we study generalizations of (1.2) which include -on both sides- weights
that are a power of the distance to the boundary. More precisely, we obtain improved
inequalities of the form

(1.6) inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

{∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

}1/p

where d(x) := dist(x, ∂Ω), δ(x, z) := min{d(x), d(z)}, Ω ⊂ Rn is a John or β-John
domain and the parameters satisfy appropriate restrictions. The reader will remark
that the domain of integration on the left corresponds to the choice τ = 1

2
in the

notation of (1.2); this is to simplify notation, we could have chosen any τ ∈ (0, 1) as
it will be clear from the proof. We also remark that the term “improved” used in [13]
refers to the use of the stronger seminorm as in (1.4), while in this paper we use it to
emphasize the presence of powers of the distance to the boundary as weights, as it is
customary in the integer case.

Our technique consists in extending the arguments used in our work [10] to the
fractional case. The key starting point in that paper was the estimate

|f(y)− f̄ | ≤ C

∫
|x−y|≤C1d(x)

|∇f(x)|
|x− y|n−1

dx

where Ω is a John domain, f ∈ C∞(Ω) and f̄ is an appropriate average of f . The idea
of recovering f from its gradient to prove Sobolev-Poincaré inequalities is present in
several authors, for instance, [21, 14, 16], but it is essential for our argument in [10] that
the fractional integral of the gradient be restricted to the region |x−y| < C1d(x), a fact
that we believe is not exploited in other proofs. In this paper we give a generalization of
this representation to the fractional case in the case of John and β-John domains, that
can also be of independent interest. We also consider separately the case of Hölder-α
domains, which belong to the class of β-John domains with β = 1/α but are known to
have better embedding properties, see e.g. [4, 20].
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To the best of our knowledge, the fractional inequalities for β-John domains are new
even in the unweighted case, and the weighted inequalities are new even in the case
of Lipschitz domains. Indeed, although the generalization to weighted norms on both
sides of the inequality is quite natural and along the lines of the results for improved
Poincaré inequalities involving the gradient found in [8, 9, 15, 20], we believe that the
only antecedent of these weighted fractional inequalities is found in [1, Proposition
4.7], where (1.6) is obtained in a star-shaped domain in the case p = q = 2, a = 0
and b < 2s (their proof remains unchanged for John domains but does not cover the
case b = 2s where the inequality also holds, see [1, Remark 4.8] and Theorem 3.1
below). Moreover, the results we obtain are sharp in the case of John domains and
Hölder-α domains, and almost sharp (except at the endpoint) for β-John domains, and
we provide counterexamples to support this statement.

The rest of the paper is as follows: in Section 2 we recall some necessary definitions
and preliminaries; in Section 3 we obtain the fractional representation in John domains
and use it to obtain the improved inequalities; in Section 4 we obtain the fractional
representation in β-John domains and use it to obtain the improved inequalities, and
we discuss their optimality; finally, in Section 5 we consider the special case of Hölder-α
domains, also discussing the optimality of our result.

2. Notation and preliminaries

Throughout the paper, Ω ⊂ Rn (n ≥ 2) will be a bounded domain and d(x) will
denote the distance of a point x ∈ Ω to the boundary of Ω. We will assume, without
loss of generality, that 0 ∈ Ω.

As it is customary, C will denote a positive constant that may change even within
a single string of inequalities, and functions f defined in Ω will be extended by zero
outside Ω whenever needed.

For completeness, we include the following elementary result mentioned in the intro-
duction:

Proposition 2.1. The fractional Poincaré inequality

inf
c∈R

∥f − c∥Lp(Ω) ≤
{
diam(Ω)n+sp

|Ω|

∫
Ω

∫
Ω

|f(y)− f(x)|p

|y − x|n+sp
dy dx

}1/p

holds for any bounded domain Ω ⊂ Rn.

Proof. Let fΩ = 1
|Ω|

∫
Ω
f(x) dx. Then, by Minkowski’s integral inequality,

∥f − fΩ∥Lp(Ω) =

∥∥∥∥ 1

|Ω|

∫
Ω

(f(y)− f(x)) dx

∥∥∥∥
Lp

≤ 1

|Ω|

∫
Ω

(∫
Ω

|f(y)− f(x)|p dy
) 1

p
dx

Hence, by Hölder’s inequality,

∥f − fΩ∥pLp(Ω) ≤
1

|Ω|

∫
Ω

∫
Ω

|f(y)− f(x)|p dy dx

≤ diam(Ω)n+sp

|Ω|

∫
Ω

∫
Ω

|f(y)− f(x)|p

|y − x|n+sp
dy dx

�
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We remark that the constant in the previous inequality is far from being sharp, see
for instance [5, Theorem 1] for the best constant when Ω is a cube.

We will use the following definition of β-John domains:

Definition 2.1. A bounded domain Ω ⊂ Rn is a β-John domain (β ≥ 1) if there exists
a family of rectifiable curves given by γ(t, y), 0 ≤ t ≤ 1, y ∈ Ω, and positive constants
λ, K and C such that,

(1) γ(0, y) = y, γ(1, y) = 0

(2) d(γ(t, y)) ≥ λtβ

(3) |γ̇(t, y))| ≤ K

(4) for all x, y ∈ Ω and r ≤ 1
2
d(x), there holds l(γ(y) ∩ B(x, r)) ≤ Cr, where γ(y)

denotes the curve joining 0 with y, and l the length.

When β = 1, we will simply refer to John domains, instead of 1-John domains.

Remark 2.1. The above definition is not the usual one, which includes only properties
(1), (2) and (3). However, it can be seen that the curves can be chosen to make property
(4) hold (see [11, Section 2]).

3. The case of John domains

In this section we obtain a representation that allows us to estimate f in terms of its
fractional derivative, and use it to obtain the inequalities in John domains. These are
split in two theorems, since the case p = 1 requires a “weak implies strong” argument
that we develop separately. The inequalities are sharp (as will be seen in Theorem 4.3)
and, to the best of our knowledge, they are new even in the case of Lipschitz domains.

Proposition 3.1. Given s ∈ (0, 1), 1 ≤ p <∞, and f ∈ C∞(Ω) we have

|f(y)− f̄ | ≤ C

∫
|y−x|≤C1d(x)

h(x)

|x− y|n−s
dx

where f̄ is a constant and

h(x) :=

(∫
|x−w|≤d(x)/2

|f(w)− f(x)|p

|w − x|n+sp
dw

) 1
p

for y ∈ Ω, h ≡ 0 outside Ω, and C and C1 are positive constants depending only on n
and Ω.

Proof. Take φ ∈ C1
0(B(0, λ/2)) such that

∫
φ = 1 and define

u(x, t) = (f ∗ φt)(x)

and
η(t) = u(γ(t, y) + tz, t).

Observe that the curve γ(t, y) + tz is contained in Ω whenever z ∈ B(0, λ/2). Indeed,
in this case |γ(t, y) + tz − γ(t, y)| ≤ tλ/2 < d(γ(t, y)).

Then,

f(y)− (f ∗ φ)(z) = u(y, 0)− u(z, 1) = η(0)− η(1) = −
∫ 1

0

η′(t) dt

= −
∫ 1

0

∇u(γ(t, y) + tz, t) · (γ̇(t, z) + z) + ut(γ(t, y) + tz, t) dt
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Multiplying by φ(z), integrating in z and defining f̄ =
∫
(f ∗ φ)(z)φ(z)dz we have

f(y)− f̄ =

∫
Rn

(f(y)− (f ∗ φ)(z))φ(z) dz

= −
∫
Rn

∫ 1

0

∇u(γ(t, y) + tz, t) · (γ̇(t, y) + z)φ(z) dtdz

−
∫
Rn

∫ 1

0

∂u

∂t
(γ(t, y) + tz, t)φ(z) dtdz

= −(I + II)

Making the change of variables γ(t, y) + tz = x and using that

∇u = f ∗ ∇(φt)

and

∇(φt)(x) =
1

tn+1
∇φ
(x
t

)
we obtain

I =

∫ 1

0

∫
Rn

∫
Rn

f(w)

tn+1
∇φ
(x− w

t

)
dw ·

(
γ̇(t, y) +

x− γ(t, y)

t

)
φ
(x− γ(t, y)

t

)
dx
dt

tn

Observe that, since the support of φ is contained in B(0, λ/2), the integrand vanishes
unless |x− γ(t, y)| ≤ λt/2 which implies

(3.7) |x− y| ≤ |x− γ(t, y)|+ |γ(t, y)− y| ≤ λt

2
+
√
nKt.

Then we can restrict the integral to t > c|x− y| with a constant c depending only on
K, λ and n.

On the other hand, using that∫
1

tn+1
∇φ
(x− w

t

)
dw = 0

we can subtract f(x) in the integral with respect to w. Then, changing the order of
integration between t and x and using that∣∣∣∣γ̇(t, y) + x− γ(t, y)

t

∣∣∣∣ ≤ K +
λ

2
,

we obtain

I ≤ C

∫
Rn

∫ 1

c|x−y|

∫
|x−w|≤λt/2

|f(w)− f(x)|
tn+1

∣∣∣∣∇φ(x− w

t

)∣∣∣∣ ∣∣∣∣φ(x− γ(t, y)

t

)∣∣∣∣ dw dt

tn
dx

with a constant C depending only on K and λ.
Now observe that

d(γ(t, y)) ≤ |γ(t, y)− x|+ d(x) ≤ λt

2
+ d(x) ≤ d(γ(t, y))

2
+ d(x)

and so

|x− w| ≤ λt

2
≤ d(γ(t, y))

2
≤ d(x)

2
.
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In particular λt/2 ≤ d(x)/2 which combined with (3.7) gives

|x− y| ≤ C1d(x)

with a constant C1 depending only on K, λ and ∥φ∥∞. Consequently,

I ≤ C

∫
|x−y|≤C1d(x)

∫ 1

c|x−y|

∫
|x−w|≤d(x)/2

|f(w)− f(x)|
|w − x|

n
p
+s

1

t
n+ n

p′+1−s

∣∣∣∣∇φ(x− w

t

)∣∣∣∣ dw dt dx
≤ C

∫
|x−y|≤C1d(x)

∫ 1

c|x−y|

(∫
|x−w|≤d(x)/2

|f(w)− f(x)|p

|w − x|n+sp
dw

) 1
p

(∫
Rn

∣∣∣∣∇φ(x− w

t

)∣∣∣∣p′ dw
) 1

p′

· 1

t
n+ n

p′+1−s
dt dx

where we have used |x− w| ≤ λt/2 to bound the integrand.
Therefore, since (∫

Rn

∣∣∣∣∇φ(x− w

t

)∣∣∣∣p′ dw
) 1

p′

= ∥∇φ∥p′t
n
p′

we conclude that

I ≤ C

∫
|x−y|≤C1d(x)

∫ 1

c|x−y|
h(x)

1

tn+1−s
dt dx ≤ C

∫
|x−y|≤C1d(x)

h(x)

|x− y|n−s
dx

where the new constant depends also on ∥∇φ∥p′ .
To estimate II we proceed in a similar way. Indeed, since

∫
φt(x)dx = 1 for all t,

we have
∫

∂φt

∂t
(x)dx = 0. Moreover, a straightforward computation shows that

∂φt

∂t
(x) =

1

tn+1
ψ
(x
t

)
where ψ := −nφ− x · ∇φ. Therefore, repeating the arguments that we used to bound
I we obtain,

II ≤ C

∫
|x−y|≤C1d(x)

∫ 1

c|x−y|

∫
|x−w|≤d(x)/2

|f(w)− f(x)|
tn+1

∣∣∣∣ψ(x− w

t

)∣∣∣∣ dw dt

tn
dx

and consequently

II ≤ C

∫
|x−y|≤C1d(x)

h(x)

|x− y|n−s
dx

�

In the proof of the next Theorem we will make use of the following well known result
(see, e.g., [24, Lemma 2.8.3]).

Lemma 3.1. LetMg be the Hardy-Littlewood maximal function of g. Given 0 < σ < n
there exists a positive constant C, depending only on n and σ, such that, for any ε > 0,∫

|y−x|≤ε

|g(y)|
|x− y|n−σ

dy ≤ CεσMg(x)
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Theorem 3.1. Let Ω ⊂ Rn be a John domain, 1 < p ≤ q < ∞, a ≥ 0, b ≤ (n+a)p
q

+

sp− n and, additionally, q ≤ np
n−sp

when p < n
s
. Then, given s ∈ (0, 1) and f ∈ C∞(Ω)

we have

inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

[∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

]1/p
where δ(x, z) := min{d(x), d(z)}.

Proof. We proceed by duality. Let g ∈ Lq′(Ω, da) such that ∥g∥Lq′ (Ω,da) = ∥gd
a
q′ ∥Lq′ (Ω) =

1. Interchanging the order of integration and using Proposition 3.1 we have

(3.8)

∫
Ω

|f(y)− f̄ |g(y)d(y)ady ≤ C

∫
Ω

∫
|y−x|≤C1d(x)

|g(y)|
|x− y|n−s

d(y)
a
q
+ a

q′ dy h(x)dx

≤ C

∫
Ω

∫
|y−x|≤C1d(x)

|g(y)|
|x− y|n−s

d(y)
a
q′ dy h(x)d(x)

a
q dx

where we have used that d(y) ≤ |x−y|+d(x) ≤ (C1+1)d(x) in the region of integration.
Now we consider separately the cases p = q and p < q.
If p = q, it is clear that it suffices to prove the statement for b = a + sp. Using

Lemma 3.1 we have that∫
Ω

|f(y)− f̄ |g(y)d(y)ady ≤ C

∫
Ω

d(x)s+
a
pM(gd

a
p′ )(x)h(x)dx

≤ C∥ds+
a
ph∥Lp(Ω)∥M(gd

a
p′ )∥Lp′ (Ω)(3.9)

But,

h(x)p =

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
dz

and then,

∥ds+
a
ph∥pLp(Ω) =

∫
Ω

d(x)sp+a

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
dzdx

but in the domain of integration d(x) ≤ 2d(z) and, therefore,

∥ds+
a
ph∥pLp(Ω) ≤ C

∫
Ω

∫
|x−z|≤d(x)/2

δ(x, z)sp+a |f(z)− f(x)|p

|z − x|n+sp
dzdx.

Replacing this estimate in (3.9) we conclude the proof using the boundedness of the
maximal operator in Lp′ and the choice of g.

If p < q, assume first that (n+a)p
n+b−sp

≤ np
n−sp

. Then, for fixed p, a, b it suffices to prove

the theorem for q = (n+a)p
n+b−sp

. If we define η = b
p
− a

q
it follows from our assumptions

that 0 ≤ η < s (the first inequality using that (n+a)p
n+b−sp

≤ np
n−sp

and the second one using

that p < (n+a)p
n+b−sp

). Therefore, by (3.8) and using that |x− y| ≤ C1d(x) we have∫
Ω

|f(y)− f̄ |g(y)d(y)ady ≤ C

∫
Ω

d(x)
b
p Is−η(gd

a
q′ )(x)h(x)dx

≤ C∥d
b
ph∥Lp(Ω)∥Is−η(gd

a
q′ )∥Lp′ (Ω)(3.10)
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where Iγg(x) =
∫ g(y)

|x−y|n−γ dy is the fractional integral (or Riesz potential) of order γ of

g, provided 0 < γ < n. Observe that, indeed, 0 < s − η < n holds because 0 ≤ η < s
and s ∈ (0, 1).

As before,

∥dη+
a
q h∥pLp(Ω) ≤ C

∫
Ω

∫
|x−z|≤d(x)/2

δ(x, z)ηp+
ap
q
|f(z)− f(x)|p

|z − x|n+sp
dzdx

= C

∫
Ω

∫
|x−z|≤d(x)/2

δ(x, z)b
|f(z)− f(x)|p

|z − x|n+sp
dzdx.

Using this estimate in (3.10) we conclude the proof using the boundedness of the
fractional integral Is−η : L

q′ → Lp′ for 1
q
= 1

p
− s−η

n
and the choice of g.

It remains to consider the case p < q, (n+a)p
n+b−sp

> np
n−sp

. In this case, for fixed p, a, b it

suffices to consider q = np
n−sp

. Then, we may bound∫
Ω

|f(y)− f̄ |g(y)d(y)ady ≤ C

∫
Ω

Is(gd
a
q′ )(x)h(x)d(x)

a
q dx

≤ C∥d
a
q h∥Lp(Ω)∥Is(gd

a
q′ )∥Lp′ (Ω)

and conclude by using the boundedness of Is : Lq′ → Lp′ for 1
q
= 1

p
− s

n
and the fact

that ∥d
a
q h∥Lp(Ω) ≤ C∥d

b
ph∥Lp(Ω) because, under our assumptions, b

p
≤ a

q
. �

For the case p = 1 we will make use of the following “weak implies strong” result. It
is proved in [13, Theorem 4.1] in the case µ = ν, but the reader can easily check that
the same proof holds for two different measures.

Lemma 3.2. Let µ and ν be positive Borel measures on an open set Ω ⊂ Rn, such
that µ(Ω) < ∞, ν(Ω) < ∞, let 0 < s < 1 and 1 ≤ p ≤ q < ∞. Then the following
conditions are equivalent:

(1) There is a constant C1 > 0 such that the inequality

inf
c∈R

sup
t>0

µ({x ∈ Ω : |f(x)− c| > t})tq ≤ C1

(∫
Ω

∫
|x−y|<d(x)/2

|f(y)− f(z)|p

|y − z|n+sp
dν(z)dν(y)

) q
p

for any f ∈ C∞(Ω).
(2) There is a constant C2 > 0 such that the inequality

inf
c∈R

∫
Ω

|f(x)− c|q dµ(x) ≤ C2

(∫
Ω

∫
|x−y|<d(x)/2

|f(y)− f(z)|p

|y − z|n+sp
dν(z)dν(y)

) q
p

holds, for every f ∈ C∞(Ω).

Theorem 3.2. Let Ω ⊂ Rn be a John domain, 1 ≤ q ≤ n
n−s

, a ≥ 0, and b ≤
(n+a)

q
− n+ s. Then, given s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|
|z − x|n+s

δ(x, z)bdzdx

where δ(x, z) := min{d(x), d(z)}.
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Proof. If q = 1 the result follows as in the previous proof.

If q > 1, it is clear that it suffices to prove our statement for b = (n+a)
q

− n + s.

For this purpose, we will prove a weak inequality first. Hence, we let E = {y ∈ Ω :
|f(y)− f̄ | > t} and consider the measure µ such that dµ(x) = d(x)a dx.

Then,

µ(E) ≤ C

∫
E

∫
|x−y|<C1d(x)

h(x)

t|x− y|n−s
dx d(y)a dy

≤ C

∫
Ω

h(x)

t

∫
E∩B(x,C1d(x))

d(y)a

|x− y|n−s
dy dx

= I1 + I2

where I1 corresponds to the region where |x− y| < d(x)
2

and I2 to its complement.

Observe that when |x− y| < d(x)
2
, we have that d(x)

2
≤ d(y) ≤ 3

2
d(x), so that

I1 ≤ C

∫
|x−y|<d(x)/2

h(x)

t

∫
E∩B(x,C1d(x))

1

|x− y|n−s
dy d(x)a dx

≤ C

∫
|x−y|<d(x)/2

h(x)

t
|E ∩B(x,C1d(x))|

s
n d(x)a dx

≤ C

∫
|x−y|<d(x)/2

h(x)

t

(∫
E∩B(x,C1d(x))

χ(y)d(y)a dy
) s

n
d(x)a(1−

s
n
) dx

= C

∫
|x−y|<d(x)/2

h(x)

t
µ(E ∩B(x,C1d(x)))

s
n d(x)a(1−

s
n
) dx

≤ C

∫
|x−y|<d(x)/2

h(x)

t
µ(E)

θs
n µ(B(x,C1d(x)))

(1−θ)s
n d(x)a(1−

s
n
) dx

for any 0 ≤ θ ≤ 1, where in the second step we have used a well-known result (see,
e.g., [19, formula (7.2.6)]).

Now, if we set θ = n
sq′

and use that µ(B(x,C1d(x))) ≤ d(x)n+a we have

I1 ≤ Cµ(E)
1
q′

∫
Ω

h(x)

t
d(x)b dx.

So we only need to check that 0 ≤ n
sq′

≤ 1, that holds because 1 ≤ q ≤ n
n−s

.

We proceed now to I2. Using that |x− y| ≥ d(x)
2

we have

I2 ≤ C

∫
Ω

h(x)

t

∫
E∩B(x,C1d(x))

d(y)a

d(x)n−s
dy dx

= C

∫
Ω

h(x)d(x)s−n

t
µ(E ∩B(x,C1d(x))) dx

≤ C

∫
Ω

h(x)d(x)s−n

t
µ(E)θµ(B(x,C1d(x)))

(1−θ) dx

≤ Cµ(E)
1
q′

∫
Ω

h(x)

t
d(x)b dx

where this time we have chosen θ = 1
q′
, that clearly satisfies 0 ≤ θ ≤ 1.
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Finally, we arrive at

µ(E)
1
q t ≤ C

∫
Ω

h(x)d(x)b dx

and this in turn implies, by Lemma 3.2 with dν = d(x)
b
2dx, the strong inequality

inf
c∈R

∥f − c∥Lq(Ω,da) ≤ C

∫
Ω

∫
|x−y|≤d(x)/2

|f(y)− f(x)|
|y − x|n+s

δ(x, y)b dx dy

where we have used that d(x)
2

≤ d(y) ≤ 3
2
d(x) to replace each of these distances by

Cδ(x, y). �

4. The case of β-John domains

In this section we obtain a representation analogous to that of Proposition 3.1 in the
case of β-John domains, for β > 1. Observe that, although the estimate also holds for
β = 1, it is not only more complicated but also slightly worse than that of Proposition

3.1 in the case p > 1, since it includes the restriction b < sp− p+1− n+ p−1
β

+ p(n+a)
qβ

.

For this reason the weighted inequalities inherit this restriction, although we believe
they should hold also in the case of equality. An example at the end of the Section
shows that our results are sharp except at this endpoint.

To simplify calculations, throughout this section we assume, as we may by dilating
Ω, that d(0) = 15.

Proposition 4.1. Given s ∈ (0, 1), a ≥ 0 and f ∈ C∞(Ω) we have

|f(y)− f̄ | ≤ C

∫
|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

(∫
|x−y|<C2d(x)

1
β

h(x)p d(x)b−
(n+a)p

βq dx
) 1

p

where b < sp− p+ 1− n+ p−1
β

+ p(n+a)
qβ

if p > 1, and b = s− n+ (n+a)
βq

if p = 1, f̄ is a

constant and

h(x) :=

(∫
|x−w|≤d(x)/2

|f(w)− f(x)|p

|w − x|n+sp
dw

) 1
p

for y ∈ Ω, h ≡ 0 outside Ω, and C, C1 and C2 are positive constants depending only
on n and Ω.

Proof. It suffices to prove the result for b close enough to the endpoint value. We
consider, as before, φ ∈ C1

0(B(0, λ/2)) such that
∫
φ = 1, and set

u(x, t) = (f ∗ φt)(x)

Then, following [11], we define

τ(y) = inf{t : γ(t, y) ∩B(y, d(y)/2) = ∅}

and

ρ(t, y) =

{
ξ|y − γ(t, y)| if t ≤ τ(y)
1
15
d(γ(t, y)) if t > τ(y)

where ξ is chosen so that ρ(·, y) is a continuous function, that is,

ξ =
2

15

d(γ(τ(y), y))

d(y)
.
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Notice that 1
15

≤ ξ ≤ 1
5
since

d(γ(τ(y), y)) ≤ |γ(τ(y), y)− y|+ d(y) =
d(y)

2
+ d(y) =

3

2
d(y)

and
d(y) ≤ |y − γ(τ(y), y)|+ d(γ(τ(y), y)) ⇒ d(y) ≤ 2d(γ(τ(y), y)).

Also, remark that ρ(0, y) = 0 and ρ(1, y) = 1 and that γ(t, y) + ρ(t, y)z ∈ Ω for every
t ∈ [0, 1] and z ∈ B(0, λ/2) (see [11] for details). Hence, if we define

η(t) = u(γ(t, y) + ρ(t, y)z, ρ(t, y))

we have that

f(y)− (f ∗ φ)(z) = u(y, 0)− u(z, 1) = η(0)− η(1) = −
∫ 1

0

η′(t) dt

= −
∫ 1

0

∇u(γ(t, y) + ρ(t, y)z, ρ(t, y)) · (γ̇(t, y) + ρ̇(t, y)z)

− ∂u

∂t
(γ(t, y) + ρ(t, y)z, ρ(t, y)) · ρ̇(t, y) dt

Then, if f̄ =
∫
(f ∗ φ)(z)φ(z) dz, we have

f(y)− f̄ = −
∫
Rn

∫ 1

0

∇u(γ + ρz, ρ) · (γ̇ + ρ̇z)φ(z) dt dz

−
∫
Rn

∫ 1

0

∂u

∂t
(γ + ρz, ρ)ρ̇φ(z) dt dz

= −(I + II)

To estimate I, we make the change of variables

γ(t, y) + ρ(t, y)z = x , dz =
dx

ρn(t, y)

and use the definition of u and the support of φ to arrive at

I =

∫
Rn

∫ 1

0

∫
|x−w|<λρ/2

f(w)
1

ρn+1
∇φ
(x− w

ρ

)
dw
(
γ̇ +

(x− γ

ρ

)
ρ̇
)
φ
(x− γ

ρ

) dt
ρn
dx

Now we use that
∫

1
ρn+1∇φ

(
x−w
ρ

)
dw = 0 (to subtract f(x) in the integral with

respect to w), that the integrand vanishes unless |x−w| < λ
2
ρ(t, y), that |x−γ(t, y)| ≤

λ
2
ρ(t, y) (both because of the support of φ) and that ρ̇(t, y) = ∇d(γ(t, y)) · γ̇(t, y)

(whence, |ρ̇| ≤ |γ̇|), to write

I ≤
∫
Rn

∫ 1

0

∫
|x−w|<λρ/2

(f(w)− f(x))
1

ρn+1
∇φ
(x− w

ρ

)
dw
(
γ̇ +

(x− γ

ρ

)
ρ̇
)
φ
(x− γ

ρ

) dt
ρn
dx

≤ C

∫
Rn

∫ 1

0

∫
|x−w|<λρ/2

|f(w)− f(x)|
|x− w|

n
p
+s

1

ρ
n
p′

∣∣∣∇φ(x− w

ρ

)∣∣∣ dw|γ̇|∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx
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Now, we claim that λρ(t, y) < d(x). Indeed, when t ∈ [0, τ(y)], we have that

ρ(t, y) = ξ|y − γ(t, y)| ≤ ξ

2
d(y)

because γ is inside B(y, d(y)/2). But,

d(y) ≤ |x− y|+ d(x)(4.11)

≤ |x− γ(t, y)|+ |γ(t, y)− y|+ d(x)

≤ λ

2
ρ(t, y) +

1

ξ
ρ(t, y) + d(x)

=
(λ
2
+

1

ξ

)
ρ(t, y) + d(x).

So,

λρ(t, y) ≤ λ

2− ξλ
d(x) < d(x).

On the other hand, if t ∈ [τ(y), 1], we have that

ρ(t, y) =
1

15
d(γ(t, y)) ≤ 1

15
|x− γ(t, y)|+ 1

15
d(x) ≤ λ

30
ρ(t, y) +

1

15
d(x)

so that

(4.12) λρ(t, y) ≤ 2λ

30− λ
d(x) < d(x).

Hence, using these bounds and Hölder’s inequality (with the usual modification if
p = 1) we obtain

I ≤ C

∫
Rn

∫ 1

0

(∫
|x−w|<d(x)/2

|f(w)− f(x)|p

|x− w|n+sp
dw
) 1

p

·
(∫

Rn

∣∣∣∇φ(x− w

ρ

)∣∣∣p′ 1
ρn
dw
) 1

p′ |γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx

≤ C

∫
Rn

(∫
|x−w|<d(x)/2

|f(w)− f(x)|p

|x− w|n+sp
dw
) 1

p

∫ 1

0

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx

= C

∫
Rn

h(x)

∫ 1

0

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx

= C
(∫

Rn

h(x)

∫ τ(y)

0

. . . dtdx+

∫
Rn

h(x)

∫ 1

τ(y)

. . . dtdx
)

= C(Ia + Ib)

For Ia, notice that proceeding as in (4.11) we have that

|x− y| ≤
(λ
2
+

1

ξ

)
ρ(t, y) <

(1
2
+

1

λξ

)
d(x) < C1d(x).

Thus, we can write

Ia ≤ C

∫
|x−y|<C1d(x)

h(x)

∫ τ(y)

0

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

|x− y|n+1−s
dx
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Now, the integral vanishes unless

|x− γ(t, y)| ≤ ρ(t, y)
λ

2
≤ ρ(t, y) = ξ|y − γ(t, y)| ≤ ξ|x− γ(t, y)|+ ξ|x− y|

which implies

|x− γ(t, y)| ≤ ξ

1− ξ
|x− y| ≤ 1

4
|x− y|,

so we can bound

Ia ≤ C

∫
|x−y|<C1d(x)

h(x)

∫ τ(y)

0

χ|x−γ(t,y)|≤ 1
4
|x−y||γ̇(t, y)|

dt

|x− y|n+1−s
dx

≤ C

∫
|x−y|<C1d(x)

h(x) ℓ(γ(y) ∩B(x, |x− y|/4)) 1

|x− y|n+1−s
dx

≤ C

∫
|x−y|<C1d(x)

h(x)

|x− y|n−s
dx

where in the last step we have used property (4) of β-John domains.
To bound Ib, observe that for t ∈ [τ(y), 1] we have

(4.13) d(x) ≤ d(γ(t, y)) + |x− γ(t, y)| ≤ 15ρ(t, y) +
λ

2
ρ(t, y),

and, because we are in a β-John domain, and by (4.12) we have that

(4.14) |x− y| ≤ |x− γ(t, y)|+ |γ(t, y)− y| < λ

2
ρ(t, y) + C|γ̇(t, y)|t < C2d(x)

1
β

so that, if p = 1,

Ib =

∫
Rn

h(x)

∫ 1

τ(y)

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx

≤ C

∫
Rn

h(x)

∫ 1

τ(y)

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

d(x)n+1−s
dx

≤ C

∫
|x−y|<C2d(x)

1
β

h(x)

∫ 1

τ(y)

χ|x−γ(t,y)|≤ d(x)
2

|γ̇| dt

d(x)n+1−s
dx

≤ C

∫
|x−y|<C2d(x)

1
β

h(x) ℓ(γ(y) ∩B(x, d(x)/2))d(x)s−n−1dx

≤ C

∫
|x−y|<C2d(x)

1
β

h(x) d(x)s−ndx

where we have used (4.12) and property (4).
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If p > 1, to bound Ib, by Hölder’s inequality and property (4) we have

Ib =

∫
Rn

h(x)

∫ 1

τ(y)

|γ̇|
∣∣∣φ(x− γ

ρ

)∣∣∣ dt

ρn+1−s
dx

≤ C

∫
|x−y|<C2d(x)

1
β

h(x)
(∫ 1

τ(y)

χ|x−γ|< d(x)
2

|γ̇| dt
) 1

p
(∫ 1

τ(y)

∣∣∣φ(x− γ

ρ

)∣∣∣p′ 1

ρ(n+1−s)p′
|γ̇| dt

) 1
p′
dx

≤ C

∫
|x−y|<C2d(x)

1
β

h(x)d(x)
1
p

(∫ 1

τ(y)

∣∣∣φ(x− γ

ρ

)∣∣∣p′ 1

ρ(n+1−s)p′
|γ̇| dt

) 1
p′
dx

Therefore, since ρ ∼ d(x) by (4.12) and (4.13), using Hölder’s inequality again we
arrive at

Ib ≤ C

∫
|x−y|<C2d(x)

1
β

h(x)d(x)(b−
(n+a)p

βq
) 1
p

(∫ 1

τ(y)

∣∣∣φ(x− γ

ρ

)∣∣∣p′ 1

ρ(n+1−s)p′+(b− (n+a)p
βq

−1) p
′
p

dt
) 1

p′
dx

≤ C
(∫

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p

·
(∫ 1

τ(y)

∫
Rn

∣∣∣φ(x− γ

ρ

)∣∣∣p′ 1
ρn
dx

1

ρ−n+(n+1−s)p′+(b− (n+a)p
βq

−1) p
′
p

dt
) 1

p′

and finally, by property (2),

Ib ≤ C
(∫

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p
(∫ 1

0

1

tβ[−n+(n+1−s)p′+(b− (n+a)p
βq

−1) p
′
p
]
dt
) 1

p′

≤ C
(∫

|x−y|<C2d(x)
1
β

h(x)pd(x)b−
(n+a)p

βq dx
) 1

p

provided 0 ≤ β[−n + (n + 1 − s)p′ + (b − (n+a)p
βq

− 1)p
′

p
] < 1 which holds for b <

ps− p+ 1− n+ p−1
β

+ (n+a)p
βq

and sufficiently close to that number.

To estimate II we proceed in a similar way. Indeed, since
∫
φt(x)dx = 1 for all t,

we have
∫

∂φt

∂t
(x)dx = 0. Moreover, recalling that

∂φt

∂t
(x) =

1

tn+1
ψ
(x
t

)
with ψ := −nφ − x · ∇φ. Therefore, repeating the arguments that we used to bound
I we obtain,

II =

∫
Rn

∫ 1

0

∫
|x−w|<λρ/2

(f(w)− f(x))
1

ρn+1
ψ
(x− w

ρ

)
dwρ̇φ

(x− γ

ρ

) dt
ρn
dx

which can be bounded analogously. This completes the proof. �

Using the above representation we obtain the improved inequalities in the case of
β-John domains:



15

Theorem 4.1. Let Ω ⊂ Rn be a β-John domain, 1 < p ≤ q < ∞, a ≥ 0, b <
(n+a)p

qβ
+ p−1

β
+ sp− p+ 1− n and, additionally, q ≤ n−p

n−sp
when p < n

s
. Given s ∈ (0, 1)

and f ∈ C∞(Ω) we have

inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

{∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

}1/p

where δ(x, z) := min{d(x), d(z)}.

Proof. By Proposition 4.1 we have

|f(y)− f̄ | ≤ C

∫
|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

(∫
|x−y|<C2d(x)

1
β

h(x)p d(x)b−
(n+a)p

βq dx
) 1

p

= A+B

Observe that ∥A∥Lq(Ω,da) can be bounded as in Theorem 3.1, so it suffices to re-
strict ourselves to ∥B∥pLq(Ω,da) = ∥Bp∥

L
q
p (Ω,da)

. We have, using Minkowski’s integral

inequality,

∥Bp∥
L

q
p (Ω,da)

= C

[∫
Ω

(∫
|x−y|<C2d(x)

1
β

h(x)pd(x)b−
(n+a)p

βq dx
) q

p
d(y)a dy

] p
q

≤ C

∫
Ω

h(x)pd(x)b−
(n+a)p

βq

(∫
|x−y|<C2d(x)

1
β

d(y)a dy
) p

q
dx

≤ C

∫
Ω

h(x)pd(x)b−
(n+a)p

βq

(
d(x)

a
β

∫
|x−y|<C2d(x)

1
β

dy
) p

q
dx

= C

∫
Ω

h(x)pd(x)b dx

where again we have used that d(y) ≤ |x − y| + d(x) ≤ Cd(x)
1
β and that a ≥ 0.

Therefore,

∥B∥Lq(Ω,da) ≤ C
(∫

Ω

h(x)pd(x)b dx
) 1

p
.

This concludes the proof. �
As discussed before, in the case p = 1 we recover the endpoint value for b and can

prove the following:

Theorem 4.2. Let Ω ⊂ Rn be a β-John domain, 1 ≤ q ≤ n−1
n−s

, a ≥ 0 and b ≤
(n+a)
qβ

+ s− n. Given s ∈ (0, 1) and f ∈ C∞(Ω) we have

inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|
|z − x|n+s

δ(x, z)bdzdx

where δ(x, z) := min{d(x), d(z)}.

Proof. Clearly, it suffices to prove the result for b = n+a
qβ

+ s − n. By Proposition 4.1,

we have

|f(y)− f̄ | ≤ C

∫
|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

∫
|x−y|<C2d(x)

1
β

h(x) d(x)s−ndx

= A+B
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Observe that ∥A∥L1(Ω,da) and ∥A∥Lq,∞(Ω,da) (for q > 1) can be bounded as in Theorem
3.2. So we must consider ∥B∥Lq(Ω,da) (q ≥ 1). By Minkowski’s integral inequality, we
have

∥B∥Lq(Ω,da) ≤ C

∫
Ω

h(x) d(x)s−n
(∫

|x−y|<C2d(x)
1
β

d(y)a dy
) 1

q
dx

≤ C

∫
Ω

h(x) d(x)s−n
(
d(x)

a
β

∫
|x−y|<C2d(x)

1
β

dy
) 1

q
dx

= C

∫
Ω

h(x) d(x)s−n+a+n
qβ dx

where in the second line we have used that d(y) ≤ |x − y| + d(x) ≤ Cd(x)
1
β and that

a ≥ 0.
The result then follows immediately for q = 1 and using the “weak implies strong”

technique as in Theorem 3.2 for q > 1. �
To analyze the optimality of our estimates (in terms of the upper bound on q)

we consider the following “rooms and corridors” domain introduced in [15] (see the
discussion after Corollary 5).Therefore, we will be somewhat sketchy.

Theorem 4.3. Let s ∈ (0, 1), a ≥ 0 and 1 ≤ p ≤ q <∞. There exist a β-John domain
Ω ⊂ Rn and f ∈ C∞(Ω) such that

inf
c∈R

∥f(y)− c∥Lq(Ω,da) ≤ C

{∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

}1/p

cannot hold unless q ≤ (n+a)p
1−p+β(b+n−1+p−sp)

.

Proof. Assume, for simplicity, that a = b = 0.
Following [15], we define a ‘mushroom’ F of size r as the union of a cylinder of height

r and radius rβ (called the ‘stem’ and denoted by P) with a ball of radius r (called
the ‘cap’ and denoted by C), so that they create a mushroom-like shape. The domain
Ω considered consists of a cube Q and an infinite sequence of disjoint mushrooms
F1, F2, . . . on one side of the cube (called the ‘top’). The stems of F1, F2, . . . are
perpendicular to the top and of decreasing size ri → 0. This domain Ω can easily be
seen to be a β-John domain.

Now, we let fi be the piecewise linear function on Ω such that fi = 0 outside Fi,
fi = 1 on the cap and fi is linear on the stem. We may also assume that f̄i = 0 for

every i. Hence, ∥fi − f̄i∥Lq(Ω) ≥ cnr
n
q

i .

To bound (
∫
Ω

∫
|x−z|<d(x)/2

|fi(x)−fi(z)|p
|x−z|n+sp dzdx)1/p observe that:

• if x ∈ Ci, z ∈ Q, then the integral vanishes, since d(x) ≤ ri and |x− z| > ri
• if x, z ∈ Q or x, z ∈ Ci, then |fi(x)− fi(z)| = 0
• in all remaining cases, |fi(x)−fi(z)|p ∼ r−p

i |xn−zn|p and 1
2
d(x) ≤ d(z) ≤ 3

2
d(x),

so d(x) ∼ d(z) ≤ rβi
Then, ∫

Ω

∫
|x−z|<d(x)/2

|fi(x)− fi(z)|p

|x− z|n+sp
dzdx =

∫
Q

· · · dx+
∫
Pi

· · · dx+
∫
Ci
· · · dx

= I1 + I2 + I3
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We have

I1 ≤
∫
Q

∫
|x−z|<d(x)/2

1

rpi

|xn − zn|p

|x− z|n+sp
dz dx

≤ C

∫
∪w∈Pi

B(w,rβi )∩Q

1

rpi
d(x)−sp+p dx

≤ C| ∪w∈Pi
B(w, rβi ) ∩Q| r

−p+β(−sp+p)
i

≤ Cr
−p+β(n−sp+p)
i

I2 ≤
∫
Pi

∫
|x−z|<d(x)/2

1

rpi

|xn − zn|p

|x− z|n+sp
dz dx

≤ C

∫
Pi

1

rpi
d(x)−sp+p dx

≤ C|Pi|r−p+β(−sp+p)
i

= Cr
1−p+β(−sp+p+n−1)
i

I3 ≤
∫
Ci

∫
|x−z|<d(x)/2

1

rpi

|xn − zn|p

|x− z|n+sp
dz dx

≤ C

∫
∪w∈Pi

B(w,rβi )∩Ci

1

rpi
d(x)−sp+p dx

≤ C| ∪w∈Pi
B(w, rβi ) ∩ Ci|r−p+β(−sp+p)

i

≤ Cr
−p+β(n−sp+p)
i

Then, there must hold r
n
q

i ≤ C(r
1−p+β(−sp+p+n−1)
i )

1
p which, for sufficiently small ri,

can only hold if q ≤ np
1−p+β(n−1+p−sp)

, as we wanted to prove.

It is easy to see that the same example can be used to prove the optimality in the
general case (with a, b not necessarily 0). �

5. The case of Hölder-α domains

Roughly speaking, a Hölder-α domain is given locally by the hypograph, in an appro-
priate orthogonal system, of a Hölder-α function (a typical example being a cuspidal
domain). For a precise definition we refer to [11, Section 5.2].

These domains are a particular case of β-John domains with β = 1/α. However, they
are known to have better embedding properties, as they cannot contains “rooms and
corridors” like general β-John domains (see, e.g. [4] and [20, Example 2.4]). Therefore,
it is natural that our result of Theorem 4.1 can be improved in this case.

We obtain the following result, which is an improvement of Theorem 4.1 when Ω
is Hölder-α, a = 0, and p > 1, and we prove its optimality. We believe that these
restrictions are only technical.
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Theorem 5.1. Let Ω ⊂ Rn be a Hölder-α domain, 1 < p ≤ q < ∞, b ≤ p(s − n) +
p(n− 1 + α)(1 + 1

q
− 1

p
), and, additionally, q ≤ n−p

n−sp
when p < n

s
. Given s ∈ (0, 1) and

f ∈ C∞(Ω) we have

inf
c∈R

∥f(y)− f̄∥Lq(Ω) ≤ C

{∫
Ω

∫
|x−z|≤d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

}1/p

where δ(x, z) := min{d(x), d(z)}.

Proof. Clearly, given p and q, it suffices to prove the claim for b = p(s−n)+ p(n− 1+
α)(1 + 1

q
− 1

p
).

Recall that by Proposition 4.1 we could use

(5.15) |f(y)− f̄ | ≤ C

∫
|x−y|<C1d(x)

h(x)

|x− y|n−s
dx+ C

∫
|x−y|<C2d(x)α

h(x) d(x)s−ndx.

The key point is to improve this estimate, observing that (4.14) can be improved
if Ω is Hölder-α. According to the definition given in [11], Ω = ∪N

j=0Oj with Ō0 ⊂ Ω
and each Ω ∩ Oj (1 ≤ j ≤ N) given by the hypograph of a Hölder-α function in
an appropriate coordinate system. It is clear that it is enough to obtain the desired
estimate for each Oj with fixed j ≥ 1. To simplify notation, assume that in a given Oj

the appropriate coordinate system is the usual one, x = (x′, xn), x
′ ∈ Rn−1, xn ∈ R.

Now, by (4.12), |x − γ(t, y)| ≤ d(x)/2. But, it was proved in [11, Section 5.2] that
this inequality implies that

|x′ − y′| ≤ Cd(x) , |xn − yn| ≤ Cd(x)α

and then we can replace the second integral in (5.15) by∫
|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α

h(x)d(x)s−n dx

Consequently, proceeding by duality, for ∥g∥Lq′ (Ω) = 1, we have∫
Oj

|f(y)− f̄ |g(y)dy ≤ A+B

where A is as in (3.8) (with a = 0), and can be bounded similarly. To estimate B we
consider separately the cases p = q and p < q.

If p = q we write

B ≤ C

∫
Ω

1

d(x)n−1+α

∫
|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α

|g(y)| dyh(x)d(x)s−1+α dx

≤ C

∫
Ω

MS g(x)h(x)d(x)s−1+α dx

≤ C∥MS g∥Lp′ (Ω)∥h ds−1+α∥Lp(Ω)

where MS is the strong maximal function, i.e., the maximal function over the basis
of rectangles with sides parallel to the axes, which is known to be bounded in Lp for
1 < p ≤ ∞. Then, the proof concludes as that of Theorem 4.1 and adding over j.
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If p < q, taking η = n
p
− n

q
(notice that 0 < η < n) we have,

B ≤ C

∫
Ω

1

d(x)(n−1+α)(1− η
n
)

∫
|x′−y′|≤Cd(x),|xn−yn|≤Cd(x)α

|g(y)| dyh(x)d(x)s−n+(n−1+α)(1− η
n
) dx

≤ C

∫
Ω

MS
η g(x)h(x)d(x)

s−n+(n−1+α)(1− η
n
) dx

≤ C∥MS
η g∥Lp′ (Ω)∥h d

b
p∥Lp(Ω)

≤ C∥g∥Lq′ (Ω)∥h d
b
p∥Lp(Ω)

where we have used that MS
η g(x) := supR∋x

1

|R|1−
η
n

∫
R
|f(y)| dy, 0 < η < n, where R

belongs to the family of rectangles with sides parallel to the axes, and thatMS
η : Lq′ →

Lp′ for 1
q
= 1

p
− η

n
and 1 < p < n

η
(see, e.g., [22, Theorem 3.1]). As before, the proof

concludes as in Theorem 4.1 and adding over j.
�

In the next Theorem we prove that the previous result is optimal with respect to the
exponent b. We generalize an argument given in [2] for the case s = 1.

Theorem 5.2. Let 1 < p ≤ q < ∞. There exist a Hölder-α domain Ω ⊂ Rn and
f ∈ C∞(Ω) such that

(5.16) inf
c∈R

∥f − c∥Lq(Ω) ≤ C

{∫
Ω

∫
|x−z|<d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdzdx

}1/p

cannot hold unless b ≤ p(s− 1 + α) + p(n− 1 + α)(1
q
− 1

p
).

Proof. Assume that b > p(s− 1 + α) + p(n− 1 + α)(1
q
− 1

p
). Using the same notation

as in the previous section we write x = (x′, xn). Given 0 < α ≤ 1 define the Hölder-α
domain

Ω = {x ∈ Rn : 0 < xn < 1 , |x′| < x1/αn }
and f(x) = x−ν

n , with ν > 0 to be chosen.

It is not difficult to check that d(x) ∼ x
1/α
n − |x′|. Then, in the subdomain Ω̃ ⊂ Ω

defined by

Ω̃ = {x ∈ Rn : 0 < xn < 1 , |x′| < x1/αn /2}
we clearly have d(x) ∼ x

1/α
n . Then,

(5.17) inf
c∈R

∥f − c∥Lq(Ω̃) ≤ ∥f∥q
Lq(Ω̃)

∼
∫ 1

0

∫
|x′|<x

1/α
n /2

x−νq
n dx′ dxn ∼

∫ 1

0

x
−νq+n−1

α
n dxn

On the other hand, if |x − z| < d(x)/2 we have |xn − zn| < xn/2 and so xn ∼ zn.
Consequently,

|f(z)− f(x)| = |z−ν
n − x−ν

n | ≤ Cx−ν−1
n |zn − xn|

and therefore,∫
|x−z|<d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)bdz ≤ Cx−(ν+1)p

n d(x)b
∫
|x−z|<d(x)/2

|z − x|p−n−spdz

≤ Cx−(ν+1)p
n d(x)b+(1−s)p ≤ Cx

−(ν+1)p+
b+(1−s)p

α
n
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where in the last inequality we have used that d(x) ≤ x
1/α
n and b+(1− s)p ≥ 0 (which

follows from our assumptions on b, p and q). Then,

(5.18)

∫
Ω

∫
|x−z|<d(x)/2

|f(z)− f(x)|p

|z − x|n+sp
δ(x, z)b dz dx ≤ C

∫
Ω

x
−(ν+1)p+

b+(1−s)p
α

n dx

≤ C

∫ 1

0

x
−(ν+1)p+

b+(1−s)p+n−1
α

n dx

Therefore, (5.16) does not hold if there exists ν such that its LHS is infinite and its
RHS is finite, that is, if

−νq + n− 1

α
≤ −1 < −(ν + 1)p+

b+ (1− s)p+ n− 1

α
and then, the existence of such a ν is equivalent to

b > p(s− 1 + α) + p(n− 1 + α)
(1
q
− 1

p

)
as we wanted to see. �
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[20] Kilpeläinen, T.; Malý, J. Sobolev inequalities on sets with irregular boundaries. Z. Anal. Anwen-
dungen 19 (2000), no. 2, 369–380.

[21] Martio, O. John domains, bi-Lipschitz balls and Poincaré inequality. Rev. Roumaine Math. Pures
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