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Abstract

We give a simpler proof of the a priori estimates obtained in [DST1, DST2] for solutions of
elliptic problems in weighted Sobolev norms when the weights belong to the Muckenhoupt class
Ap. The argument is a generalization to bounded domains of the one used in Rn to prove the
continuity of singular integral operators in weighted norms.

In the case of singular integral operators it is known that the Ap condition is also necessary
for the continuity. We do not know whether this is also true for the a priori estimates in bounded
domains but we are able to prove a weaker result when the operator is the Laplacian or a power
of it. We prove that a necessary condition is that the weight belongs to the local Ap class.
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1 Introduction

The goal of this paper is to prove weighted a priori estimates for solutions of linear elliptic problems
with Dirichlet boundary conditions. More precisely, for a bounded smooth domain Ω ⊂ Rn we
consider {

Lu = f in Ω

Bju = 0 on ∂Ω , 1 ≤ j ≤ m− 1

where L is an elliptic operator of order 2m and Bj differential operators of order mj satisfying the
properties introduced in the classic paper [ADN].

For 1 < p < ∞, the a priori estimate

∥u∥W 2m,p(Ω) ≤ C∥f∥Lp(Ω). (1.1)

is well-known. This result is usually referred as Agmon-Douglis-Nirenberg estimate because it is
essentially contained in [ADN] although it is not explicitly written in this way in that paper. For
completeness we give more details on this point in the next section.

The estimate (1.1) has been extended to weighted norms when L is the laplacian or a power of
it in [DST1, DST2].

1Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and
CONICET. Address: Calle 50 y 115, 1900 La Plata, Buenos Aires, Argentina (mec.eugenia@gmail.com).
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By a weight function we mean a locally integrable function w defined in Rn and for 1 ≤ p < ∞,
we define the Banach space Lp

w(Ω) with norm given by

∥f∥Lp
w(Ω) =

(∫
Ω
|f(x)|pw(x) dx

)1/p

.

and W 2m,p
w (Ω) the Sobolev space of functions in Lp

w(Ω) with derivatives up to order 2m in Lp
w(Ω)

with the usual norm. For Ω = Rn we write simply Lp
w instead of Lp

w(Rn). With C we will denote
a generic constant which can change its value even in the same line.

For 1 < p < ∞, a weight is in the Muckenhoupt class Ap if(
1

|Q|

∫
Q
w

)(
1

|Q|

∫
Q
w

− 1
p−1

)p−1

≤ C (1.2)

for all cubes Q. It is well known that the Hardy-Littlewood maximal operator is bounded in Lp
w if

and only if w ∈ Ap (see for example [D]).
For L = (−∆)m it was proved in [DST2] (extending the results for m = 1 given in [DST1])

that, if w is in Ap, then
∥u∥

W 2m,p
w (Ω)

≤ C∥f∥Lp
w(Ω), (1.3)

In this paper we give a different proof of (1.3) generalizing to a bounded domain the classic
arguments used to obtain the continuity of singular integral operators in Lp

w. The advantage of
this proof is that it is simpler and it does not require estimates of derivatives of the Green function
involving the distance to the boundary. On the other hand, our arguments are very general and
apply to the class of operators considered in [ADN, K].

We do not know whether the Ap condition is also necessary to have (1.3) but we prove a weaker
result for the case of L = (−∆)m, indeed, in order to have the a priori estimate (1.3) it is necessary
that w ∈ Aloc

p (Ω) (see below for the definition of this class).

2 Weighted a priori estimates

For a bounded domain Ω ⊂ Rn we consider the problem

Lu(x) :=
∑

0≤|α|≤2m

aα(x)D
αu(x) = f(x) in Ω

Bju(x) :=
∑

0≤|α|≤mj

bjα(x)D
αu(x) = 0 on ∂Ω 1 ≤ j ≤ m− 1

(2.1)

where L is uniformly elliptic and Bj satisfy the complementing conditions in the sense of [ADN].
Our arguments are based on the estimates for the Green function of (2.1) proved in [K], and

therefore, we assume the hypotheses of that paper. Namely, mj ≤ 2m−1 and, for ℓ0 := maxj(2m−
mj), let ℓ1 be an integer such that

ℓ1 ≥
3

2
ℓ0, for n ≥ 3

ℓ1 ≥ 2(ℓ0 + 1), for n = 2.
(2.2)
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Then,
aα ∈ Cℓ1+1(Ω) bjα ∈ Cℓ1+1(∂Ω) (2.3)

and
∂Ω ∈ Cℓ1+2m+1 (2.4)

Under these assumptions, the existence of the Green function as well as estimates for it and its
derivatives were proved in [K]. We state in the next theorem the estimates that we are going to
use in our arguments.

Theorem 2.1. Under the hypotheses (2.2), (2.3) and (2.4) there exists the Green function G of
(2.1), namely, the solution u is given by

u(x) =

∫
Ω
G(x, y)f(y) dy. (2.5)

Moreover, for 0 < α < 1, there exists a constant C depending on L, Bj , Ω and n such that

|γ| ≤ 2m , 2m− n− |γ| ̸= 0 =⇒ |Dγ
xG(x, y)| ≤ C

{
|x− y|2m−n−|γ| + 1

}
(2.6)

2m− n− |γ| = 0 =⇒ |Dγ
xG(x, y)| ≤ C {| log |x− y||+ 1} (2.7)

|γ| = 2m =⇒ |Dγ
xG(y, z)−Dγ

xG(x, z)| ≤ C |y − x|α
(
|y − z|−n−α + |x− z|−n−α) . (2.8)

Proof. See Theorem 3.3 and its Corollary in [K, Page 965]. �

Our proof of the weighted a priori estimates makes use of the classic un-weighted results. As we
mentioned in the introduction, the a priori estimate (1.1) is essentially contained in [ADN] although
not written explicitly there. Indeed, in the particular case of homogeneous boundary conditions
that we are considering, Theorem 15.2 in page 704 of [ADN] says that

∥u∥W 2m,p(Ω) ≤ C
{
∥f∥Lp(Ω) + ∥u∥Lp(Ω)

}
.

But, in view of the representation (2.5) and the bound for G given in (2.6), a standard appli-
cation of the Young inequality yields ∥u∥Lp(Ω) ≤ C∥f∥Lp(Ω), and therefore, (1.1) follows.

Let us remark that in the above mentioned Theorem 15.2 of [ADN] the authors assume that the
norm on the left hand side of the estimate is finite, but this follows from their previous Theorem
7.3 (see also Remark 1 after that theorem) [ADN, Page 668] provided f is regular enough and
using again the representation (2.5) to bound the norm of u appearing in the right hand side of
that theorem. Then, in the general case one can proceed by a standard density argument.

Let us now recall the argument used in the case of singular integral operators that we are going
to generalize. We will make use of the Hardy-Littlewood maximal operator

Mf(x) = sup
Q∋x

1

|Q|

∫
Q
|f(y)| dy
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and of the sharp maximal operator

M#f(x) = sup
Q∋x

1

|Q|

∫
Q
|f(y)− fQ| dy,

where the supremums are taken over all cubes containing x and fQ := 1
|Q|

∫
Q f .

If

Tf(x) = lim
ε→0

∫
|x−y|>ε

K(x, y)f(y)dy

is a singular integral operator which is continuous in Lp, for 1 < p < ∞, and K(x, y) satisfies

|K(x, z)−K(y, z)| ≤ C|x− y|α

|x− z|n+α
, for |x− z| ≥ 2|x− y|

with 0 < α < 1, then we have, for any s > 1,

M#Tf(x) ≤ C(M|f |s(x))1/s. (2.9)

This estimate is well-known and its proof can be found in several books, although the hypotheses
on the operator are not stated usually as we are doing here. Indeed, the proof given in [D, Lemma
7.9] only uses the hypotheses given above.

In the next lemma we prove a version of (2.9) in a bounded domain. With this goal we introduce
the local sharp maximal operator

M#
Ωf(x) = sup

Ω⊃Q∋x

1

|Q|

∫
Q
|f(y)− fQ| dy.

Lemma 2.2. Let u be the solution of (2.1) and assume that the hypotheses of Theorem 2.1 are
satisfied. If |γ| = 2m we have, for any s > 1 and any x ∈ Ω,

M#
Ω (D

γu)(x) ≤ C(M|f |s)1/s(x).

Proof. We extend f by zero outside of Ω. Let Q ⊂ Ω be a cube such that x ∈ Q and Q∗ an
expanded cube of Q by a factor 2. We decompose f = f1 + f2 with f1 = fχQ∗ and call u1 and u2
the solutions of (2.1) with f1 and f2 as right hand sides respectively.

It is known that we can replace fQ by any constant. We choose a = Dγu2(x). Then,

1

|Q|

∫
Q
|Dγu(y)− a| dy ≤ 1

|Q|

∫
Q
|Dγu1(y)| dy +

1

|Q|

∫
Q
|Dγu2(y)−Dγu2(x)| dy = (i) + (ii).

Now, given s > 1, using the Hölder inequality and (1.1), we have

(i) ≤
(

1

|Q|

∫
Q
|Dγu1(y)|s dy

)1/s

≤ C

(
1

|Q|

∫
Ω
|f1(y)|s dy

)1/s

= C

(
1

|Q|

∫
Q∗

|f(y)|s dy

)1/s

≤ C(M|f |s)1/s(x).

On the other hand, if x /∈ supp f2 we can take the derivative inside the integral in the expression
for u2 given by (2.5). Then, since supp f2 ⊂ (Q∗)c, for x ∈ Q we have

(ii) ≤ 1

|Q|

∫
Q

∫
(Q∗)c

|Dγ
xG(y, z)−Dγ

xG(x, z)| |f2(z)| dz dy.
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Therefore, using (2.8) and that |y − z| ∼ |x− z| and |x− z| ≥ ℓ(Q)
2 we obtain

(ii) ≤ C
l(Q)α

|Q|

∫
Q

∫
(Q∗)c

|f(z)|
|x− z|n+α

dz dy ≤ Cl(Q)α
∫
(Q∗)c

|f(z)|
|x− z|n+α

dz

≤ Cl(Q)α
∞∑
k=0

∫
2k−1l(Q)<|z−x|≤2kl(Q)

|f(z)|
|x− z|n+α

dz ≤ CMf(x)

where the last inequality follows by a standard argument (see [D, Lemma 7.9] for details). �

The following Lemma is a slightly modified version of [DRS, Theorem 5.23] because we are
using a different definition of the sharp maximal operator. The reader can easily check that the
proof given in that paper applies to our case.

Lemma 2.3. For f ∈ L1
loc(Ω) and w ∈ Ap, if fΩ = 1

|Ω|
∫
Ω |f |, then

∥f − fΩ∥Lp
w(Ω) ≤ C∥M#

Ωf∥Lp
w(Ω). (2.10)

Now we can state and prove the main result of this section.

Theorem 2.4. Let u be the solution of (2.1) and assume that the hypotheses of Theorem 2.1 are
satisfied. Then, for 1 < p < ∞, w ∈ Ap and f ∈ Lp

w(Ω), there exists a constant C depending on L,
Bj , Ω, n and w such that

∥u∥
W 2m,p

w (Ω)
≤ C ∥f∥Lp

w(Ω) .

Proof. If 2m− n < |γ| < 2m, using (2.5) and (2.6) we obtain

|Dγu(x)| =
∣∣∣∣∫

Ω
Dγ

xG(x, y)f(y) dy

∣∣∣∣ ≤ C

∫
Ω

|f(y)|
|x− y||γ|+n−2m

dy

≤ C

∞∑
k=0

∫
2−(k+1)d<|x−y|≤2−kd

|f(y)|
|x− y||γ|+n−2m

dy ≤ CMf(x)

where d denotes the diameter of Ω. For |γ| ≤ 2m− n we obtain the same estimate using now that,
in view(2.6) and (2.7), for any ε > 0, |G(x, y)| ≤ C|x− y|−ε.

Consequently, it follows from the boundedness of the maximal operator for Ap weights that

∥u∥
W 2m−1,p

w (Ω)
≤ C ∥f∥Lp

w(Ω) .

It rests to estimate Dγu for |γ| = 2m which is the most difficult part. From Lemmas 2.3 and 2.2
we have ∫

Ω
|Dγu(x)− (Dγu)Ω|pw(x) dx ≤ C

∫
Ω

∣∣∣M#
Ω (D

γu)(x)
∣∣∣pw(x) dx

≤ C

∫
Ω
(M|f |s (x))p/sw(x) dx.

(2.11)

But it is known that there exists s depending only on w such that 1 < s < p and w ∈ Ap/s (see for

example [D]), and using the boundedness of M in L
p/s
w we obtain from (2.11),∫

Ω
|Dγu(x)− (Dγu)Ω|pw(x) dx ≤ C

∫
Ω
|f(x)|pw(x) dx.
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Then, ∫
Ω
|Dγu(x)|pw(x) dx ≤ C

(∫
Ω
|f(x)|pw(x) dx+

∫
Ω
|(Dγu)Ω|pw(x) dx

)
and so it only remains to estimate the last term. But, since w is integrable in Ω, it is enough to
show that

|(Dγu)Ω| ≤ C ∥f∥Lp
w(Ω) . (2.12)

Taking 1 < s < p and using the a priori estimate (1.1) for s we have

|(Dγu)Ω| ≤
(

1

|Ω|

∫
Ω
|(Dγu)Ω|s dx

) 1
s

≤ C

(
1

|Ω|

∫
Ω
|f(x)|s dx

) 1
s

≤ C

(
1

|Ω|

∫
Ω
|f(x)|pw(x) dx

) 1
p
(

1

|Ω|

∫
Ω
w(x)

− s
p−s dx

) p−s
sp

where we have used the Hölder inequality first with s and then with p/s. Then, choosing s such
that w ∈ Ap/s the last term on the right hand side is finite, and therefore, (2.12) is proved. �

3 Necessary condition

It is known that the Ap condition is also necessary for the continuity of singular integral operators
[S]. Then, it is natural to ask whether the same is true for the weighted a priori estimates. We do
not know the answer but we prove in this section a weaker result, namely, a necessary condition to
have the weighted a priori estimates for L = (−∆)m is that the weight belong to the Aloc

p (Ω) class
introduced in [HSV].

In this section it is more convenient to work with balls instead of cubes. To recall the definition
of the Aloc

p class, first we consider 0 < β < 1 and define the Aβ
p (Ω) class as follows. A weight w

belongs to this class if (
1

|B|

∫
B
w

)(
1

|B|

∫
B
w

− 1
p−1

)p−1

≤ C

for all balls B ⊂ Ω such that diam(B) < βdist(B, ∂Ω). It was proved in [HSV] that the classes

Aβ
p (Ω) are independent of β, namely, if 0 < β < 1 and 0 < γ < 1, we have that w ∈ Aβ

p (Ω) if and

only if w ∈ Aγ
p(Ω). In view of this fact, we say that w ∈ Aloc

p (Ω) if w ∈ Aβ
p (Ω) for some 0 < β < 1.

We will call a ball satisfying this condition for some β, admissible. To simplify notation, we will
use the usual notation w(S) =

∫
S w(x) dx.

Proposition 3.1. Let w be a weight. Then, w ∈ Aloc
p (Ω) if and only if

(fB)
p ≤ C

w(B)

∫
B
fpw dx (3.1)

for all f nonnegative and for all admissible ball B.

Proof. The proof follows as in the case of the Ap weights given in [S, Chapter V, Section 1.4] and
[D, Theorem 7.1] using the results in [HSV] and considering admissible balls. �
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Let f ∈ Lp
w(Ω) and consider the homogeneous boundary value problem

(−∆)mu = f in Ω(
∂

∂ν

)j

u = 0 on ∂Ω , 1 ≤ j ≤ m− 1
(3.2)

then

u(x) =

∫
Ω
Gm(x, y)f(y) dy (3.3)

where Gm(x, y) is the Green function of the operator (−∆)m in Ω. It is well known that

Gm(x, y) = Γ(x− y) + h(x, y)

where Γ is the fundamental solution given by{
cm,n|x|2m−n n odd, or n even and n > 2m

cm,n|x|2m−n log |x| n even and n ≤ 2m

and, for each y ∈ Ω, h(x, y) satisfies
(−∆x)

mh(x, y) = 0 x ∈ Ω

(
∂

∂ν

)j

h(x, y) = −
(

∂

∂ν

)j

Γ(x− y) x ∈ ∂Ω , 0 ≤ j ≤ m− 1.

Let us recall that, for |γ| = 2m, a standard argument yields

Dγ
x

∫
Ω
Γ(x− y)f(y) dy = lim

ε→0

∫
|x−y|>ϵ

DγΓ(x− y)f(y) dy + c(x)f(x) (3.4)

where c is a bounded function.
We will use the ideas given in [S, Chapter V, Section 4.6].

Lemma 3.2. For |γ| = 2m we have

1. There exists u0 ∈ Rn with |u0| = 1 and a constant C0 such that, for all positive numbers t,

|DγΓ(tu0)| ≥ C0t
−n.

2. There exists t0 such that if u = t0u0 and |v| ≤ 2 then for all 0 ̸= r ∈ R,

|DγΓ(r(u+ v))−DγΓ(ru)| ≤ 1

2
|DγΓ(ru)|.

Proof. One can check that DγΓ is homogeneous of degree −n and not identically zero. Then, there
exists u0 ∈ Rn with |u0| = 1 such that |DγΓ(u0)| =: C0 > 0, and therefore, (1) follows from the
homogeneity.

To prove (2) we observe first that, by homogeneity, it is enough to show that the statement
holds for r = 1.
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Take v ∈ Rn satisfying |v| ≤ k|u| with k ≤ 1
2 to be chosen below. Then, for some ξ in the

segment joining u and u+ v,

|DγΓ(u+ v)−DγΓ(u)| ≤ |∇DγΓ(ξ)||v| ≤ C|ξ|−n−1|v|

and using |u| ≤ 2|ξ|, |v| ≤ k|u| and (1) we obtain,

|DγΓ(u+ v)−DγΓ(u)| ≤ C1k|u|−n ≤ C1k

C0
|DγΓ(u)|.

Consequently it is enough to choose k such that C1
C0

k ≤ 1
2 . Now, since |v| ≤ 2, if we choose t0 = 2

k
our hypothesis |v| ≤ k|u| is verified and the proof is concluded. �

The following result is proved in ([DST2, Proposition 3.3]).

Lemma 3.3. There exists a constant C such that, for |x− y| ≤ d(x),

|Dγ
xh(x, y)| ≤ Cd(x)−n.

Now, using the representation (3.3) and (3.4), we have

Dγu(x) = Tγf(x) + c(x)u(x) (3.5)

where Tγ is defined by

Tγf(x) = lim
ε→0

∫
|x−y|>ϵ

DγΓ(x− y)f(y) dy +

∫
Ω
Dγ

xh(x, y)f(y) dy.

We can now prove the main result of this section.

Theorem 3.4. Let u be the solution of (3.2). If w is a weight such that the following a priori
estimate

∥u∥
W 2m,p

w (Ω)
≤ C∥f∥Lp

w(Ω)

holds, then w ∈ Aloc
p (Ω).

Proof. In view of (3.5), since c is a bounded function, it is enough to prove that, if for any γ such
that |γ| = 2m,

∥Tγf∥Lp
w(Ω) ≤ C∥f∥Lp

w(Ω)

then w ∈ Aloc
p (Ω).

We write Tγ = T1 + T2 where

T1f(x) = lim
ε→0

∫
|x−y|>ϵ

DγΓ(x− y)f(y) dy

and

T2f(x) =

∫
Ω
Dγ

xh(x, y)f(y) dy.
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Consider an admissible ball B = B(x̄, r) , i.e., 2r < βdist(B, ∂Ω), with β to be determined later
and B′ := B(x̄ + ru, r), with u = t0u0 as in Lemma 3.2. We will see that β can be taken so that
B′ is also admissible. Let x ∈ B′ and z ∈ ∂Ω then x = x̄+ ru+ rx′ with |x′| ≤ 1,

|x− z| ≥ |x̄− z| − r|u+ x′|
≥ dist(B, ∂Ω)− r|u+ x′|

≥ 2r

β
− r|u+ x′|

≥ 2r

(
1

β
− t0 + 1

2

)
,

so, taking β satisfying 1
β −

(t0+1)
2 > 1, i.e. β < 2

t0+3 and 1
α = 1

β −
(t0+1)

2 , we have 2r < αdist(B′, ∂Ω).

Now, we will show that for x ∈ B′ and y ∈ B, DγΓ(x − y) has constant sign. Indeed, writing
x = x̄+ ru+ rx′ and y = x̄+ ry′ with |x′|, |y′| ≤ 1, we have x− y = ru+ rv with |v| = |x′− y′| ≤ 2.
Then, by (2) from Lemma 3.2 we obtain, for DγΓ(ru) > 0,

1

2
DγΓ(ru) ≤ DγΓ(x− y) ≤ 3

2
DγΓ(ru), (3.6)

while for DγΓ(ru) < 0
3

2
DγΓ(ru) ≤ DγΓ(x− y) ≤ 1

2
DγΓ(ru). (3.7)

Consequently, taking f ∈ C∞
0 (B) positive, we have

|T1f(x)| =
∫
B
|DγΓ(x− y)|f(y) dy.

and moreover, using (3.6), (3.7) and property (1) of Lemma 3.2,

|T1f(x)| ≥
1

2

∫
B
|DγΓ(ru)|f(y) dy ≥ C0(rt0)

−n

∫
B
f(y) dy = C1fB.

with a constant C1 depending only on t0, C0 and n.
On the other hand, in order to bound |T2f(x)| we use Lemma 3.3. We require |x − y| ≤ d(x),

but,

|x− y| = |ru+ r(x′ − y′)| ≤ r(|u|+ |x′ − y′|) ≤ r(t0 + 2) <
α

2
d(x)(t0 + 2)

and then, we need α
2 (t0 + 2) < 1 or equivalently β < 2

2t0+3 . Now, we have that

|T2f(x)| ≤
∫
B
|Dγ

xh(x, y)|f(y) dy ≤ C

∫
B
d(x)−nf(y) dy ≤ C(2r)−nαn

∫
B
f(y) dy

= C2α
nfB.

where C is the constant appearing in Lemma 3.3 and C2 depends on n and C.
Summing up we have

|Tγf(x)| ≥ (C1 − C2α
n)fB.

In order to have C1 − C2α
n > 0 it is enough that β < 1

t0+1
2

+(
C2
C1

)
1
n
.
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Taking into account the other conditions for β we choose β < min

{
2

2t0+3 ,
1

t0+1
2

+(
C2
C1

)
1
n

}
, and

then, we obtain fB ≤ C|Tγf(x)|, for any x ∈ B′. Therefore,∫
B′

fp
Bw(x) dx ≤ C

∫
B′

|Tγf(x)|pw(x) dx ≤ C

∫
Ω
|Tγf(x)|pw(x) dx

and consequently, applying the continuity of Tγ in Lp
w, we obtain

(fB)
pw(B′) ≤ C

∫
B
f(x)pw(x) dx. (3.8)

Analogously, changing roles of B and B′ and taking f with support in B′, it follows that

(fB′)pw(B) ≤ C

∫
B′

f(x)pw(x) dx. (3.9)

provided that C1 − C2β
n > 0. But this inequality holds for our previous election of β because

β < α.
By a passage to the limit, the inequalities (3.8) and (3.9) extend to any non-negative function

f supported in B or B′ respectively. If we consider f = χB′ in (3.9) we obtain

w(B) ≤ Cw(B′).

Using this in (3.8) we get

(fB)
pw(B) ≤ C

∫
B
f(x)pw(x) dx

but, by Proposition 3.1, this means that w ∈ Aloc
p (Ω). �
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