SOLUTIONS OF THE DIVERGENCE OPERATOR ON JOHN DOMAINS
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ABSTRACT. If @ C R™ is a bounded domain, the existence of solutions u € Wy*(2) of
divu = f for f € L?(Q) with vanishing mean value and 1 < p < oo, is a basic result in the
analysis of the Stokes equations. It is known that the result holds when €2 is a Lipschitz
domain and that it is not valid for domains with external cusps.

In this paper we prove that the result holds for John domains. Our proof is constructive:
the solution u is given by an explicit integral operator acting on f. To prove that u €
WO1 "P(Q2) we make use of the Calderén-Zygmund singular integral operator theory and the
Hardy-Littlewood maximal function.

For domains satisfying the separation property introduced in [2], and 1 < p < n, we also
prove a converse result, thus characterizing in this case the domains for which a continuous
right inverse of the divergence exists. In particular, our result applies to simply connected
planar domains because they satisfy the separation property.

1. INTRODUCTION

Given a bounded domain 2 C R™, a basic result for the theoretical and numerical analysis
of the Stokes equations in  is the existence of a solution u € Hg(Q)" of

diva = f (1.1)
such that

[allzr @) < Cllfllr2) (1.2)
for any f € L3(9), where C is a constant depending only on €, and L3({2) denotes the space
of functions in L?(Q)) with vanishing mean value in Q. By duality, an equivalent way of
stating this result is to say that

122 < CUIVAlla-1(0)n (1.3)

for any f € L3(€).

This result is of interest also because of its connection with the Korn inequality which is
fundamental in the analysis of the elasticity equations. Indeed, the Korn inequality can be
deduced from (1.1) and (1.2).

Several arguments have been given to prove the existence of u € H}(Q)" satisfying (1.1)
and (1.2) (see for example [5] and the references therein). In particular, it is known that the
result is true for Lipschitz domains.

On the other hand, it is known that the result does not hold if the domain has an external
cusp. In fact, this can be deduced from a counterexample given by Friedrichs [6] for a related
inequality. Let us recall here this counterexample which seems to be not very well known.
Other counterexamples have been given in much more recent papers (see [7] and also [13]
where counterexamples for the Korn inequality are given).

Suppose that €2 is a two dimensional domain and that

n
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w(z) = f(z,y) +ig(z,y)
is an analytic function of the variable z = = + iy in Q with f and g real functions and
fQ fdx = 0. Under suitable assumptions on €2, Friedrichs proved in [6] that there exists a
constant I', depending only on 2, such that

1 £l z2) < Tllgllz2)- (1.4)
He also proved that the existence of the constant I' is equivalent to the existence of a
constant 6 < 1 such that

/w2dmdy‘ < 0/ lw|?dzdy (1.5)
Q Q

whenever [, wdzdy = 0.
Now, in order to show that the inequality does not hold for a domain with an external
cusp, he defined, using polar coordinates (r,d),

Q={(r9) :0<r<R , Vi(r) <9 <var)}, (1.6)
with
V1(r) = —kr + O(r?) , 9o(r) = kr + O(r?)
where k is a constant. Then, for @ > 0 he introduced the functions w, = (2@)%za_% and
showed by an elementary computation (see [6, page 343] for details) that,
2dxd
‘wia £ y‘ -1 (17)
fQ |we |2dxdy

when o — 0. And, since fQ wedxdy — 0, one can subtract to w, its average to obtain
functions with vanishing mean value and satisfying (1.7). Therefore (1.5) does not hold, and
consequently (1.4) does not hold either.

But, on the other hand, observe that (1.4) follows easily from (1.3) together with the fact
that f and g satisfy the Cauchy-Riemann equations. Consequently, we conclude that (1.3),
and its equivalent form (1.1) and (1.2), are not valid for the domain defined in (1.6).

An interesting problem is to determine which conditions on the domain €2 are sufficient in
order to have the existence of u satisfying (1.1) and (1.2). In view of the results mentioned
above it is clear that we have to consider a class of domains which excludes domains with
external cusps. On the other hand, the Lipschitz condition is not necessary. In fact, it is
known that if the result holds for two domains then it also holds for the union of them (see
for example the argument given in [1]), and consequently, domains having internal cusps are
allowed although they are not Lipschitz.

Taking into account all the comments made above, it seems that a natural class of domains
to be considered for our problem is that of the John domains. For instance, it is known that
a two dimensional domain with a piecewise smooth boundary is a John domain if and only
if it does not have external cusps.

These domains where first considered by F. John in his work on elasticity [8] and where
named after him by Martio and Sarvas [10]. Further, John domains were used in the study of
several problems in Analysis. For example they were used by G. David and S. Semmes [4] in
the analysis of quasiminimal surfaces of codimension one and by S. Buckley and P. Koskela
[2] for the study of different kind of inequalities. On the other hand, the John domains are
closely related with the extension domains of P. Jones [9]. Indeed the (g, 00) domains, also
called uniform domains, are John domains (but the converse is not true: a John domain can
have an internal cusp while a uniform domain can not).
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We will recall in Section 2 the definition of John domains but, roughly speaking, €2 is a
John domain with respect to a point zg € 2 if each point y € 2 can be reached by a Lipschitz
curve beginning at xy and contained in {2 in such a way that, for every point x in the curve,
the distance from x to y is proportional to the distance from x to the boundary of Q (in
particular, external cusps are not allowed).

This class contains the Lipschitz domains but it is much larger. In fact, the boundary of
a John domain can be very bad: a typical example is the so called snowflake domain which
has a fractal boundary.

In this paper we prove the existence of solutions of (1.1) satisfying (1.2) and vanishing at
the boundary when €2 is a John domain. More generally, we prove the analogous result in
LP, for 1 < p < oo, namely, if f € LE(2) then our solution of (1.1) satisfies

lallwre@n < Cllfllrr o) (1.8)

and u € WO1 PQ)" = C3°(2) . Moreover, our proof is constructive: we give an explicit
solution of (1.1) defined by an integral operator (actually, a family of solutions because our
operator depends on an arbitrary weight function).

For the class of domains satisfying the separation property introduced in [2] we prove a
converse result, namely, if for some 1 < p < n and any f € L5(£2) there exists a solution
u € Wol’p(Q)” of (1.1) satisfying (1.8), then Q is a John domain. This result applies in
particular to simply connected planar domains since, as was proved in [2], these domains
satisfy the separation property. To prove this converse result we prove that the existence of
solutions u € VVO1 P(Q)™ of (1.1) satisfying (1.8) for 1 < p < n implies the Sobolev-Poincaré
inequality for any 1 < p < n.

Our construction generalizes the one given in [1] (and analyzed also in [5]) for a domain
which is star-shaped with respect to a ball. The arguments are rather technical and so, to help
the reader, we explain here some of the ideas. Given a function ¢ let us call ¢ = fQ ¢w, where
w is an arbitrary smooth weight such that fQ w = 1. Now, a key point in our construction is
to recover ¢ — ¢ from its gradient. Suppose that € is star-shaped with respect to a ball B
centered at zp and that suppw C B. If for any y € Q we call v(s,y) the function defining
the segment joining y with zo, namely, v(s,y) = y + s(zo — y), then, for any z € B, the
segment joining y with z is parametrized by (s, y) + s(z — zg). Therefore, integrating over
the segments [y, z|, we have

1
o(y) — (2) = —/O (¥(s,9) + (2 = 20)) - VO(v(s5,9) + s(2 — z0))ds, (1.9)

and so, multiplying by w(z) and integrating on z, we obtain

o 1
(6—B)(y) = — /Q /0 (3(,9) + (2 — 20)) - Vo(r(s.9) + 5(z — zo))w(e)dsdz.  (1.10)

Then, we have obtained an expression for (¢ — ¢)(y) in terms of an integral involving V¢
evaluated at points in the cone formed by all the segments with end points at y and z € B
which is contained in €2 (see Figure 1).
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Figure 1

Suppose now that € is not star-shaped but it is a John domain with respect to xg, with xg
being as above the center of a ball B which contains the support of w. We can then generalize
formulas (1.9) and (1.10) replacing the segment joining y and xg by an appropriate curve
given by ~(s,y), such that v(0,y) =y, v(1,y) = zo and with the property that the “twisted
cone” formed by the curves parametrized by (s, y) + s(z — x) is contained in €. In this way
we obtain a generalization of (1.10) where now V¢ is evaluated at points in that “twisted
cone” (see Figure 2).

Figure 2

The paper is organized as follows: In Section 2 we recall the definition of John domains
and prove some of their properties. In particular we construct the curves that will be used
to obtain formula (1.10) and, as a byproduct, our solution of (1.1). The arguments of the
rest of the paper depend only on the properties of these curves stated and proved in Lemma
2.1 and not on our particular construction. In Section 3 we construct our explicit solution
of divu = f. This solution is given by an integral operator acting on f. In Section 4, we
prove that our solution satisfies the estimate (1.8). In order to do that, we first show that the
derivatives of u can be expressed in terms of a singular integral operator acting on f and then
we show that this operator can be decomposed in two parts: the first one is a singular integral
operator with a kernel that satisfies the conditions of the classic Calderén-Zygmund theory
while the second one can be controlled by the Hardy-Littlewood maximal operator. We end
Section 4 with an important corollary of our main result: the Korn inequality. Finally, in
Section 5 we prove a converse result for the case of planar simply connected domains.



2. PROPERTIES OF JOHN DOMAINS

In this section we recall the definition of John domains and prove some of their properties
which will be useful in our construction. We will denote with d(x) the distance of x € Q to
the boundary.

Definition 2.1. (John Domains) Let Q@ C R™ be an open bounded set, and xzo € 2. We say
that 2 is a John domain with respect to xo and with constant L if for any y € Q there exists
a Lipschitz mapping p : [0,|y — xo|] — Q, with Lipschitz constant L, such that p(0) = vy,
plly — zol) = o and d(p(t)) = % for t € [0, |y — wo]].

Clearly, if  is a John domain, for each y € € there are many curves joining y and xg
satisfying the properties required in Definition 2.1. To construct our solution of the divergence
we will choose a family of curves verifying some extra conditions, in particular, we will require
that the first part of each curve (i.e., the part closer to y) be a segment, this fact will be
important in our analysis. Moreover, we need to have some control of the variability of the
curves as functions of y. Indeed, measurability will be enough for our purposes. Also, for
convenience we rescale the curves in order to have the parameter in [0, 1].

In the next lemma we state the properties that we will need on the curves and prove the
existence of a family of curves satisfying them. We will make use of the Whitney decomposi-
tion of an open set which we recall in the next definition (see for example [11] for a proof of
its existence). In what follows, d(Q, 0f2) denotes the distance of a cube @ to the boundary
of Q and diam(2) the diameter of Q.

Definition 2.2. Given an open bounded set 0 C R"™, a Whitney decomposition of ()
is a family W of closed dyadic cubes with pairwise disjoint interiors satisfying the following
properties:

1) Q= UQer
2) diam(Q) < d(Q,99) < 4diam(Q) VYQ e W
3) %diam(@) < diam(Q) < 4diam(Q) VQ, QeW suchthat QNQ #0

Given QQ € W, let z¢ be its center and Q* the cube with the same center but expanded by
a factor 9/8, namely, Q* = %(Q — ) + xg. We will make use of the following facts which

follow easily from the properties given in Definition 2.2.

d(Q",09) ~ diam(Q%) ~d(y)  Vye Q" (2.1)
where A ~ B means that there are constants ¢ and C, which may depend on the dimension
n but on nothing else, such that cA < B < CA.

Lemma 2.1. Let Q2 C R™ be a John domain with respect to g and with constant L. Then,

there exists a function «y : [0,1] x Q@ — Q and constants K, § and Cy depending only on L,
diam(Q), d(xo) and n, such that

(
2) d(v(s,y)) = ds
3) v(s,y) is Lipschitz in the variable s with constant K
4) v(s,y) is a segment for 0<s<Cid(y) <1
5) v(s,y) and y(s,y) == %(s,y) are measurable functions.

Proof. Let W be a Whitney decomposition of 2 and Q9 € W be a cube containing xy. Given
y € Q, let @ € W be such that y € Q. We remark that if y belongs to the boundary of some
@ € W then it belongs to more than one cube. We choose one of them arbitrarily (in any
case this is of no importance because the set of those points has measure zero).
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Suppose first that zo € Q*. In this case, we can take the curve to be a segment, namely,
v(s,y) = szg + (1 — s)y. In fact, in view of (2.1), it is easy to see that ~(s,y) satisfies 2)
and 3) with K and ¢ proportional to d(z¢). Also 4) is trivially satisfied for any C such that
C1d(y) < 1, we can take for example Cy = 1/diam(Q).

Now, if zg ¢ Q*, let xg be the center of () and take a parametrization p(t) of a curve
joining xg and xq satisfying the conditions given in the definition of John domains. First we
reparametrize p and define

(s) = p(slzo — q)).

Then, p is Lipschitz with constant K = Ldiam (2) and satisfies d(u(s)) > ds with 6 ~
|zg — zg|/L. But, since g ¢ Q*, then Q # Qo, we obtain from properties 2) and 3) of
Definition 2.2 that |zg — zg| > cd(xg) with ¢ depending only on n. Therefore, 2) holds for p
with § ~ d(z¢)/L.

To define 7(s,y) we modify this curve in the following way. Let s; be the first s € [0, 1]
such that p(s) € 0Q*. Then we define

B [(5) if se& [075 ]
(s, y) —{ p(s) if se [51,1]

where

see Figure 3.

Figure 3

Now, |0(s)| = (u(s1) —y)/s1. But, since p is Lipschitz with constant L diam (), u(s;) €
0Q* and 1(0) = zq, it is easy to check that s; > cdiam(Q*)/L diam () with ¢ depending
only on n. Therefore, ¢ is Lipschitz with constant K ~ L diam (2).

So, v(s,y) satisfies 2) on the interval [0, s;] with K ~ Ldiam (2). On the other hand, for
s €[0,s1), both p(s) and v(s,y) belong to Q* and so d(v(s,y)) ~ d(u(s)) which proves that
2) holds on this interval. Since, v(s,y) = u(s) on s € [s1,1], 2) and 3) hold on the whole
interval [0, 1].

Using again that s; > cdiam(Q*)/L diam (£2), 4) follows from (2.1).

Finally, observe that 5) holds because (s, y) and (s, y) are continuous for y in the interior
of each @ € W and so they are continuous up to a set of measure zero. Therefore, the proof
is complete. O



3. CONSTRUCTION OF THE EXPLICIT SOLUTIONS OF THE DIVERGENCE

In this section we construct the explicit solution of the divergence. For any y € Q let
v(s,y) be the curve given in Lemma 2.1. We define a new family of curves in the following
way.

For y € Q and z € B(xo,d), where ¢§ is the constant given in Lemma 2.1, define

5/(37 Y, Z) = ’7(87 y) + S(Z - xO) s € [07 1] (31)
Let us note the following facts, which follow immediately from 1) and 2) of Lemma 2.1,

7(0,y,2) =y, J(1,y,2) =2z and J(s,y,2) € Q for any s € [0,1]. (3.2)
In order to simplify the notation, we will assume without loss of generality, that o = 0.
Let w € C§° such that [,w = 1 and suppw C B(0,6/2). Observe that from the proof of
Lemma 2.1 it follows that § < d(xp) and so B(0,46/2) C Q.
Let us now introduce the function

G= (G, ,Gp) : AxQ—R"
which will be the kernel of the right inverse of the divergence. For z € © and y € Q we define

Gla,y) = /01 {7(8, )+ 2D } w <x 1 y>> s, (3.3)

s sn
Observe that, from 5) of Lemma 2.1, we know that G(x,y) is a measurable function.
In the rest of the paper it will be important to use that the integral defining G(z,y) can

be restricted to s > Cy|z — y| for some positive constant Cy. Indeed, for Co = 1/(6 + K), we
have:

if s<Cslz—y| then w (:c—v(ay)) =0. (3.4)

S

In fact, if s is such that (x —7(s,y))/s € suppw, then, |z —~(s,y)| < ds. Therefore, recalling
that y = (0, y) and that ~y is Lipschitz with constant K in the variable s, we have

[z —yl <[z —7(s,y)| + |7(s,9) =7(0,y)| < ds + Ks.
and so (3.4) holds.
An important consequence of (3.4) is the bound for G(z,y) given in the following lemma.

Lemma 3.1. There ezists a constant C' = C(n, 6, K) such that

[loo

|z — gyl

|G(z,y)| < C (3.5)

Proof. In view of (3.4) we have

G(x’y):/l {,y(syy)ﬁ—v(s,y)}w<fv—7(s,y)> 1

n
Calz—y| 5 5 5

But,

y—(s59)
S

U

z‘_
=]
S

'ﬁ(s, y) +

and from property 3) of Lemma 2.1, and recalling that y = v(0,y), we know that the first
and last term of the right hand side are bounded by K, and therefore estimate (3.5) follows
easily. O
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We will call ¢ the weighted average of a function ¢, namely, ¢ = Jo ¢w. The next lemma

shows how ¢ — ¢ can be recovered from its gradient by means of the kernel G. As a corollary
of this result we obtain our constructive solution of the divergence.

Lemma 3.2. For ¢ € C1(Q) and for any y € Q,

(6—)y) = - /Q Glzy) - Vo(z)dx

Proof. Since wi = 1, we have, in view of (3.2), that for any y € Q,

1
(6 - B)y) = /Q (6(y) — H(=))w(z)dz = — /Q /0 A8, 1, 2) - V(5. , 2))w(z)dsdz.

But, (s, y, z) = #(s,y) + z (recall that we have assumed xq = 0). Then, making the change
of variables z = ¥(s,y, z), we have z = (z — v(s,y))/s and dz = dx/s". Hence

w-a) = [ [ {at+ T (22200 Loy v

which in view of the definition (3.3) concludes the proof. O

Corollary 3.1. For f € L'(Q) such that [, f =0 define

= /QG(:B,y)f(y)dy- (3.6)

Then, u satisfies

diva = f.
Proof. For any ¢ € C5°(£2) we have,

/Q f)ow)dy = / FW)(6—3)(y / e (/ y)-W(az)daz)dy
- -/ ( i G(x,wf(y)dy) Vo()ds = [ (o) Vo(e)ds

where the change in the order of integration can be easily justified by using the bound (3.5).
O

In order to show that the solution defined in (3.6) vanishes on the boundary we will make
use of the following lemma.

Lemma 3.3. If z € 09, G(x,y) = 0 for all y € Q. Moreover, for any xz,y €  and any
0 < a <1, there exists a constant C = C(n,d, K,w) such that

d(z)”

<(—m"F——.
Gl < O s

(3.7)

Proof. Observe first that

w(gj_l(s’y)) =0 for x€0Q ,y€eQ and se€|0,1]. (3:8)

Indeed, in this case we know from property 2) of Lemma 2.1 that

os < d(y(s,y)) < |[v(s,y) — .



Hence,
(s, y) — =
s
and therefore, (3.8) follows immediately since suppw C B(0,d/2). Then, from the definition
of G, it follows that G(z,y) =0 for all x € 9Q and all y € Q.
Now, given x € Q, let T € 99 be such that d(z) = |x — Z|. Since w((T — y(s,y))/s) = 0,
we can write

= [ {2} (220)  (2=20)) 1

but, since w and its first derivatives are bounded, w is a Holder « function for 0 < a < 1.
Also, as was shown in the proof of Lemma 3.1, 4(s,y) + (x — v(s,y))/s is bounded by a
constant which depends only on § and K. Therefore, there exists a constant C' = C(0, K, w)
such that

>0

1 = a
Gz,y)| < C ('x f”') LN

Colz—y|
and integrating we conclude the proof of (3.7). O

4. ESTIMATE OF THE DERIVATIVES

The object of this section is to give an estimate of the derivatives of the solution of the
divergence defined in (3.6) in terms of the right hand side. First, we show that the derivatives
of u can be written in terms of a singular integral operator applied to the right hand side f.
With this goal we introduce

Tir.f(x) = lim G

e—0 lz—y|>e aCCZ

(z,9)f(y)dy (4.1)

and

Tigw) =tm [ 2% (e yg(ada (12)
=0 lay|e O

for functions f and g with support in 2.
In the proof of the next lemma we will use that the operator 77}, is the adjoint of Tj. This
is a consequence of the existence in LP norm of the limit in (4.1) and of the boundedness of
Tir. in LP for 1 < p < oco. These results will be proved in the last part of the paper. We prefer

to present the results in this order for the sake of clarity.

Lemma 4.1. For u = (u1,...,u,) defined as in (3.6), we have

6uk
8$i

=T f +wif in Q

where

wir(y) = / R (4(0,y) + 2) d

n |2|?
in particular, wi, € L>(Q).

Proof. For ¢ € C§°(£2) we have

8uk

o D1, (z)p(z)dx = —/QUk(:c)gZ (z)dx = —/Q (/Q Gk(x,y)f(y)dy> gz (2)dx
— /Q </Q Gk(SU,y)gji(I)dx) f(y)dEI:/QI(y)f(y)dy (4.3)
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with

I(y) ::/S)Gk(x,y)gz(a:)dx,

where again, the change in the order of integration can be done because of (3.5). Also from
(3.5) we know that I(y) is finite.
We can write

I(y) = lim Gr(z,y) 5

(z)dx
0 S o—y|>e O

and integrating by parts we obtain

Iy) = tim {— [ e [ Guwe) (é__z),"dc}. (1.4

Now, the surface integral can be written as

[ Geneo =1+, (4.5
[¢—y|=¢ |C - y|
where
(C—y)
I, = Gr(C, d
0 /M:E TS
and (¢ )
I, = Gy(C, - —Yige,
/|<y|:e HEDIOLO) — 6(w) T
But, it is easy to see that
lim IT. = 0 (4.6)
uniformly in y. Indeed, using again the bound (3.5), we have
1 IVl
I, <C Volloo—=d¢ =C d¢ = O(e).
<0 [ IVl = O [ dc=06)
Let us now treat I.. We have
(C—y)
I. = Gr(¢, d
o(y) /.cy:s (o) = tac
and so, from the definition of G (see (3.3)), we have
Ie = ¢(y)(ac + be) (4.7)
with
e —yk> (C—v(s,y)> (C—y)il
c = —dsd
= [ () () S e
and

boly) = /<y|:s/ol <%(57y) LU 'Lk(s,y)) y <C —7(&.@)) C=9il e

s ¢ =yl s"
We claim that
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lae(y)| < C

and lim a.(y) = E (—9(0,y) + 2) dz (4.8)
e—0 |Z|2
where C'= C(n, K, 0,w) and that
|be(y)| < C and hn%b (y)=0 (4.9)
E—>
where, also here, C' = C(n, K, 0,w)
To prove (4.8) we introduce the change of variables r = £ to obtain
(G — yk) r € (C—yir!
as(y) = — Jw( ==y drdg
0= [ [ () etm) (=
then, a further change of variables o = =¥ yields

/ / ORoiw y 'y( ))+TU> "~ tdrdo.
|o|=1

Hence, taking z = ro, we obtain

aa<y)=/|z|>5 T’;; (|Z|(y ’Y(‘ E y))+z> dz.

Now, (|z|/e)(y —v(e/|z|,y)) + 2z € supp w implies

2] €
iy — ~(— <4
— (v 7(|Z|,y))+z <
but,
2| 5 |z €
< |2l — A (== Pl — ~ (=
o< B -G +4+ Bl -a(G)
and so,
Y0,9) = v Y)
2] <8+ M(‘Z' <6+ K
Therefore, we have shown that

o) = | i

||
o (Bl a5 +2) e
<lel<sri |22 ||
which in particular implies that

lac(y)| < C(n, K, b)||w||
On the other hand, since

Nk €

= lim

z
(the existence of this limit follows from 4) of Lemma 2.1), the dominated convergence theorem
allows us to conclude the proof of (4.8)

To prove (4.9), we make again the change of variables

C—y
r=- o=
to obtain

8 z=r0
. g
be(y) = —/||> <vk<‘z|,y>+<yk—%<

o) Z o (B oG +2) e
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But now,

. € € H
’yk(m,y)Jr (yk—%(m,y))? <2K

and, as in the case of a., taking into account that suppw C B(0, ) we can restrict the integral
defining b, to € < |z| < § + K and obtain that

b (y)| < C(n, K, 0)||w]|oo-

Now, observe that

. E € |2|
1 = — o~ flad]
E%'V(\zyy) +(y V(M,y)) .
im A () (v(0,9) = (5> 9)
Y T €

|2]
=7(0,y) =¥(0,y) =0
and applying the dominated convergence theorem again we conclude the proof of (4.9).
Now, from (4.7), (4.8) and (4.9) we conclude that

L) < lo()|(las(y)] + [be(y)]) < C(n, K, 6,w)|¢(y)] (4.10)
and

lim I (y) = ¢(y)win(y). (4.11)
Finally, from (4.3), (4.4) and (4.5), we have

Guk

@)z = [ 1im { [ (ch(w)dl‘ﬂs(y)+H€(y)}f(y)dy

Q (9:% qe—0 6.%'1

but, in view of (4.10) we can apply the dominated convergence theorem to obtain from (4.6)
and (4.11) that

Ouy,

(@)ola)do = |

Q |0 8561

Q ox;

{Iim / M¢<x>dx} Fly)dy + / win(y) £ (1)) dy
lo—y|>e Q

or, in view of (4.2),

ouy,

[k @sis = [ Tio) Wy + [ ) fw)ot)dy

and, since ¢ is arbitrary, the lemma is proved. O
Our final goal is to prove the estimate

[ullwir@) < Cllfllize)
for 1 < p < 0.
In view of Lemma 4.1, our problem reduces to show that T}, is a bounded operator in LP
for 1 < p < co. To simplify notation we drop the subscripts ¢, k and introduce the functions

B _ O(zpw)
n= ox; and ¥= ox;

then, we have to prove the continuity of an operator of the form
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Tf(x) = lim T2 f () (4.12)

where, for € > 0, T, is given by

nw = [ AL (e () o (F0)) B sy s

with n and ¢ bounded and with support contained in that of w. Moreover, since both are
derivatives of functions with compact support, they satisfy

/n_o and /w_o. (4.14)

Lemma 4.2. There exists a constant Cs = C3(K,0) such that, if w (W) # 0, then

We will use the following

|z —y| < Csd(z).

Proof. Recalling that suppw C B(0,d/2) and using 2) of Lemma 2.1 we know that

o~ (s )] < % < 2d(r(s.1) (415)

and so, recalling that v(0,y) = y and that  is Lipschitz with constant K in the variable s,
we obtain

08
2 —yl < |z =75, y)[+1(s,9) =7(0,9) < 5 + K.
Therefore, using 2) of Lemma 2.1 again, it follows that

o-ul < (5+7% ) dotew) (4.16)

But, the function d is Lipschitz with constant 1 and then, it follows from (4.15) that

d((5,9)) — d() < 1 (s,9) — 2l < 3d(1(5,9))

and therefore,

d(v(s,y)) < 2d(x)

which together with (4.16) concludes the proof. O

In order to prove the continuity of the operator defined in (4.12) and (4.13), in the next
lemma we decompose it in two parts. Afterwards, we will show that the first part is a singular
integral operator with a kernel satisfying the conditions of the classic theory of Calderén and
Zygmund while the second part can be bounded by the Hardy-Littlewood maximal operator.
In all our integrals the domain of integration is contained in 2 and so, to simplify notation,
we extend the function f by zero outside of ).

Lemma 4.3. The operator T, defined in (4.13) can be written as
T. =T +To,
with
7o) = [ K1 (e,9) £ (9)dy
e<|z—y|<Csd(x)
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where
Ki(z,y) = H(y,z — y)
d
" 0. z z . ds
H(y,z) = /O {w(O,y)n (; - ’Y(Q?/)) +1 (g = (0, y))} sy
and with
T = [ Ka(,9) (4)dy
<|z—y|<Csd(x)
where

0 . T — . T — . ds
Ko(z,y) = —/ {w(O,y)n (y - W(O,y)> + 1 (y - V(O,y)> } —T
max{C1d(y),C2|z—y|} S S S
1 . x — (s, x — (s, ds
+/ {vk(s,y)n (7( y)> + 1 < il y)>} —
max{C1d(y),C2|z—yl} § § §

Proof. From the previous sections (see 4) of Lemma 2.1 and (3.4)) and recalling that the
supports of n and 1) are contained in supp w, we know that there exist constants C1 = C1(K, )
and Cy = Cy(K, §) such that

v(s,y) =7(0,y) +4(0,y)s =y +%(0,y)s for, 0<s<Crd(y) (4.17)
and

S

Colz —y| <s whenever 7 <:”_'L(>> £0 or ¢ (M) £0. (4.18)

Therefore, using Lemma 4.2 we can write

1 ([ ften(0) o () 2

Let us call
! : z—7(s,9) z—7(s,y)\\ ds
I= /C’2x_y| {%(579)77 ( s > +¢ ( S )} gntl’

In view of (4.17) we can decompose this integral as

max{C1d(y),C2|z—y|} — d
S () o )

Calz—y|

1 . T — S, €T — S, ds
+/ {*yk(s,y)n (M) + 9 ( il y)>} ]
max{C1d(y),C2|z—y|} S S S

and so, using (4.18),
1= [0 (T —s0m) +o (2 wm)}sffil
o A (S s0) e (S 50

1 . x — (s, x — (s, ds
+/ {'Vk(s,y)n (M> + 9 < il y)>} =]
max{C1d(y),C2|z—y|} s § s

and the lemma is proved. DO
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Next, we show that the kernel of the operator 77 . satisfies the conditons of the classical
Calder6n-Zygmund theory (see [3]).

Lemma 4.4. The kernel H(y, z) is homogeneous of degree —n in the variable z, and has
vanishing mean value and is uniformly bounded iny on S = {|z| = 1}.

Proof. Given X\ > 0, making the change of variable ¢t = s/\, we have

9 = [ {30 (2 =50.0) +o (F - 50m)

e /OOO L. (2 = 30.0)) + 0 (2 —4(0.9)) } oy = N " H . 2)

On the other hand, to see that H(y, z) is bounded on {|z| = 1} uniformly in y, observe
that for |z| =1, H(y, z) can be written as

1.2 = [ Oo L, (= 50.9) +4 (2 —50.0) } 2

with C4 = min{1/4,1/2K}. Indeed, since the supports of ¢ and n are contained in B(0,0/2)
it is easy to see that the integrand vanishes for s < Cy. Therefore, the boundedness of H(y, )
follows from the fact that 1,7 € L* and also (0, y) is a bounded function of y.

Now, making the change of variable » = 1/s in the integral defining H (y, z), we obtain

Hp2) = [0z =300 + 02 = 50,00}

and therefore,
/ H(y, 0)do = / / (30, 91 (ro — 3(0,9)) + & (ro — 3(0, )} " dr do
S S JO

= [ G0 (= 50.9) + ¥ (= =30}z = 0
where the last equality follows from the fact that [z, ¢ = [z.n=0. O

Although the kernel defining the operator T3 satisfies the Calderén-Zygmund conditions,
this operator is not exactly of their type because the domain of integration in the definition
of Th. is € < |x — y| < Csd(z) instead of ¢ < |z — y|. However, we show in the next lemma
that the continuity of 77 follows from the general theory of Calderén and Zygmund.

We will make use of the Hardy-Littlewood maximal function which we denote M f. Also, we
will use again a Whitney decomposition of Q (see Section 2 for its definition and properties).
To simplify notation we call dg the diameter of a cube Q.

Lemma 4.5. The operator

Tlf = lim TI’E*f
e—0
with
1) = [ Ki(2,9)f(4)dy
e<|z—y|<Csd(z)

defines a bounded operator in LP(QY) for all 1 < p < 0o, and the convergence holds in the LP
norm.

Proof. Let ﬁ be the operator defined by

T. = Ky (z, dy.
/ley 1(z,y) f(y)dy
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Recall that Ki(z,y) = H(y,z — y) and then, the adjoint operator of 7. is given by

@v@w=/ |H@w—ym@mx
e<|lz—y

Now, Lemma 4.4 shows that the kernel of this operator satisfies the conditions of Theorem 2
of [3] and therefore,
T*g = lim f: g
e—0
with convergence in LP, and T* is bounded in LP, for 1 < p < oco. Moreover, the norms of
i* as operators in LP are bounded uniformly in £. As mentioned in [3, page 291], the same

results follow by duality for the operators 7.
Consequently, if for a constant § > 0 we define

Tiosf@ = [ Ko fw)dy, (4.19)
e<|z—y|<d
we obtain
1T es5fllze) < Cllfllzro) (4.20)
with a constant C' independent of € and §, and
hn(l) T17€75f = Tl,(;f S Lp(Q) (421)
e—

with convergence in the LP norm. Indeed, this follows immediately from the results given
above by writing

Tesf(2) = Tof = T5f.
Let W be a Whitney decomposition of 2 and choose a constant ¢ small enough such that:
1) For any @ € W and any z € Q, cdg < Czd(x)
2) If v € Q and |z — y| < cdg then y € Q*.
Now, given a cube Q € W, suppose that ¢ < cdg. Then for z € ), we can write

Ty f(x) = / o K / Ky (2,9) £ (4)dy
e<|z—y|<cdg

cdg<|r—y|<Csd(x)
and therefore, in view of 2) and using the notation given in (4.19) we have, for x € @,

Ty f(2) = T g (X0 ) () + /d oy EalE Sy (4.22)
cdg<|z—y|<Csd(z

where X~ is the characteristic funcion of Q*. But, recalling that K;(z,y) < C/|z —y|™ and
that, for z € Q, dg ~ d(x), it is easy to see that

< COM f(x)

/ K (2, ) f(y)dy
cdg<|z—y|<C3d(x)

for any x € Q. In particular, if f € LP(Q), the second term in the right hand side of (4.22)
is a function of LP(Q). Therefore, it follows from (4.21) that 77 .f converges in the LP(Q)
norm to a function T3 f. Moreover, using (4.20), we obtain from (4.22) that

[ mer@ra<c{ [ irpas [ priwpas. (1.23)
Q Q* Q
On the other hand, if € > cdg, the same argument shows that, for z € @,

Ticf(z)| < CMf(z)
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and so, (4.23) is true for all . Therefore, summing over all @@ € W, using the boundedness in
L? of the Hardy-Littlewood maximal operator, and recalling that »q xq+(2) < C for some
C' depending only on the dimension, we obtain

1Ty fllr ) < Cllfllre)

with a constant C' independent of &.

To finish the proof, it only remains to prove that Tj.f converges to 71 f in LP(). If
for j € IN we call W; the subset of W of all the cubes of side length less than 277, we
have that the measure of Ugew, Q" tends to zero when j tends to co. Therefore, in view of
(4.23) and the fact that |11 ¢ flzr(@) — IT1f |l zr(@) in LP(Q) for every @ € W, we can make
HTLEfHLp(UQer) and HTlf”Lp(UQewj) (and consequently HTlf—TLsf”LP(uQer)) smaller than
any given positive number by taking j large enough. Then, the proof concludes by observing
that the cubes in W \ W; are a finite number and using that, for those cubes, T .f — 11 f
in LP(Q). O

Finally, we have to prove the continuity of the operator corresponding to K5. Moreover,
the next lemma shows in particular that the integral

/&@Mﬂww

is absolutely convergent for almost every x when f € LP and so, we can work directly with
the operator Tb f = lim. o T5 .

Lemma 4.6. There ezists a constant C = C(K,d,n, 1)) such that

Taf (x)] < OM f(x).
Proof. From the definition of K it is easy to see that

1 1
Ko(x, < C'min ,
(@) hxde@J

where C depends only on n and the L* norm of ). Now, we can write
niw = [, Kol [, Koley)f)dy. (420
lo—y| <45 ) <Ja—y|<Csd(a)

To bound the first part, observe that if |z — y| < d(x)/2, then d(x)/2 < d(y) and therefore
using that

Kol )| < O

we obtain,

‘/pc y\<d(z) (z.9)f(y)dy| < (d(z)/2)" )/2) /x < )| (y)|dy < CM f(x).

Now, the other term of (4.24) can be bounded in an analogous way using that

Ksy(z,y)| < C
|Ka(z,y)| FRE

and therefore the lemma is proved. O
Summing up all our results we obtain our main theorem:
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Theorem 4.1. Let Q C R™ be a bounded John domain with respect to xg and with constant
L. Given f € LP(Q), 1 < p < 00, such that [, f =0, the vector function

u(z) = /Q Glx.y)f (w)dy

with G = (G1,-++ ,Gp) : A x Q — R" defined as in (3.3), verifies that u € Wol’p(ﬂ)” and
divu=f m Q.
Moreover, there exists a constant C = C(L,d(x¢), diam(Q),n,w,p) such that

[allwrr@n < Clfllze)- (4.25)

Proof. First, using the bound for G given in (3.5) we obtain, by an application of the Young
inequality, that u € LP(Q2)" and

lallLey < Cllfllzro) (4.26)

with C' = C(6, K, n,w, diam(QQ)).

(From Lemma 3.6 we already know that divu = f. Now, the estimate (4.25) follows from
Lemmas 4.1, 4.3, 4.6 and 4.5 and (4.26), recalling that, from Lemma 2.1, we know that the
constants K and ¢ depend on L, d(zy) and diam (£2).

It only remains to show that u € WO1 P(Q)". But, the bound (3.7) gives that for any
0<a<l,

f(y)
|LI(-T)| < Cd(x)a/9|x—y|”1+ady (427)
Now, suppose first that p > n and let ¢ be the dual exponent of p. If we take o < 1 — % then
g(n — 14 a) < n and then, using the Holder inequality in (5.3) we obtain

()] < Cd(@)*|[ £l e

with C' = C(4, K,n,w, diam(2),p). In particular, u is continuous at the boundary. But, in
[12] it is proved that for an arbitrary open set , if a function is continuous, vanishes on 952
and belongs to W1P(Q), then it belongs to VVO1 P(Q). Therefore, we conclude the proof in the
case p > n.

Finally, for any 1 < p < oo, take a sequence f,, € L>(Q2) such that f,, — f in LP(Q2) and
let

(1) = /Q G, y) fon )y

Then, from (4.25) applied to f — fp, it follows that w,, — u in W1P(Q)". But we already
know that u,, € Y/VO1 P(Q)™ and therefore, u € VVO1 P(Q)™ and the theorem is proved. O

An important consequence of our result is the validity of the Korn inequality on bounded
John domains. Although the argument used to prove this fact is well known, we recall it in
the next theorem for the sake of completeness.

We will use the following standard notation. For v.€ WHP()" Dv denotes the matrix of
first derivatives of v and £(v) its symmetric part (i.e., the strain tensor), namely,

o 1 avi 81}]'
e (V) = 2(8:z:j + 8a:i>'

Theorem 4.2. (Korn inequality) Let Q@ C R" be a bounded John domain. Then, there
exists a constant C' depending only on 2 such that

1DV lwrp@ynxn < C{I[VILr@)n + [l€(V)llLo(@)men }- (4.28)
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Proof. It is not difficult to see that the following inequality is a consequence of the result
proved in Theorem 4.1

[ fllzr) < C{UIfllw-1p0) + IV Fllw—1p0)n }
with a constant depending only on €. Therefore (4.28) follows by using this inequality and
the well known identity
vy Oeip(v) n deij(v)  Oej(v)
OxjOxy, ox; oxy, ox;

5. THE CONVERSE FOR DOMAINS SATISFYING THE SEPARATION PROPERTY

A natural question is whether the condition of being a John domain is also necessary for
the existence of continuous right inverses of the divergence. In this section we prove that a
bounded domain € C R"™ which satisfies the separation property introduced in [2] is a John
domain if and only if the divergence operator acting on T/VO1 P(Q)™ admits a continuous right
inverse for some p such that 1 < p < n. In particular, the result applies to planar simply
connected domains, indeed, it was proved in [2] that these domains satisfy the separation

property.

Given p, we denote with p’ its dual exponent and, if p is such that 1 < p < n, we call p*
the “critical exponent”, namely, p* = pn/(n — p).

It is easy to check that, if 1 < p < n, then (p*)’ < n and

()] =9 (5.1)

Lemma 5.1. Let 1 < p < n. If Q admits a continuous right inverse of div : Wol’q(Q)" —
LY(Q) for q := (p*)', then the Sobolev-Poincaré inequality for p holds in Q, namely, there
exists a constant C' such that

11l @) < CIV fllzr ) (5.2)
for all f € WP(Q) N LE(Q).
Proof. Given f € WHP(Q) N LE(Q), let g € L(2). From our hypothesis we know that there
exists u € Wol’q(Q)" such that

diva =g —gq in Q
and

[ullwra@n < Cllgllrao) (5.3)
where gq denotes the average of g over 2. We have

[ g9= [ #a=9) = [ faiva=— [ Tf w9l lull o
Q Q Q Q
Now, since u € W,4(€2)", we know that

[all o= @) < Cllullwraoyn-

Indeed, since the extension by zero of u belongs to W4(R"), this inequality follows by a
standard imbedding theorem. But, from (5.1) we know that p’ = ¢* and so, using (5.3) we
obtain

| 79 <198l lullwraoy: < CIV Sl lolzno
for any g € L1(02), and therefore the proof concludes recalling that ¢ = (p*)’. O

Now, our result is a consequence of Lemma 5.1 and the following theorem which was proved
in [2] (we refer to this paper for the separation property).
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Theorem 5.1. Let Q) C R™ be a bounded domain satisfying the separation property. The
Sobolev-Poincaré inequality (5.2) holds in 0 for some p such that 1 < p < n if and only if Q
s a John domain.

Then, we have

Theorem 5.2. Let Q) C R" be a bounded domain satisfying the separation property. Then, €
admits a continuous right inverse of div : Wol’q(Q)” — L{(Q) for some q such that 1 < g <n
if and only if Q s a John domain.

Proof. In view of Theorem 4.1, it only remains to show that if {2 admits a continuous right
inverse of div : W, 9()" — LL(Q) for some ¢ such that 1 < ¢ < n, then it is a John domain.

But this follows immediately from Lemma 5.1 and Theorem 5.1 observing that if 1 < ¢ < n,
then ¢ = (p*)’ for p = (¢*)'. O

In particular, for the case of planar domains we obtain the following result.

Theorem 5.3. Let Q C R? be a bounded simply connected domain. Then, Q0 admits a
continuous right inverse of div : I/Vol’q(Q)2 — L3(Q) for some q such that 1 < ¢ < 2 if and
only if Q is a John domain.

Proof. The result is a consequence of the fact that a simply connected planar domain satisfies
the separation property (see [2]). O
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