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Abstract

The improved Poincaré inequality

∥φ− φΩ∥Lp(Ω) ≤ C∥d∇φ∥Lp(Ω)

where Ω ⊂ Rn is a bounded domain and d(x) is the distance from x to the boundary of Ω,
has many applications. In particular, it can be used to obtain a decomposition of functions
with vanishing integral into a sum of locally supported functions with the same property. Con-
sequently, it can be used to go from local to global results, i. e., to extend to very general
bounded domains results which are known for cubes. For example, this methodology can be
used to prove the existence of solutions of the divergence in Sobolev spaces.

The goal of this paper is to analyze the generalization of these results to the case of weighted
norms. When the weight is in Ap the arguments used in the un-weighted case can be extended
without great difficulty. However, we will show that the improved Poincaré inequality, as well
as its above mentioned applications, can be extended to a more general class of weights.
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1 Introduction

Estimates in weighted norms for classic operators such as the Hardy-Littlewood maximal function,
singular integrals of Calderón-Zygmund type and Riesz fractional integrals have been the object of
many papers in the last fifty years. Pioneering papers are [S3, SW], for weights of type |x|α, and
[M, MW] for more general weights. In particular, in [M], Muckenhoupt characterized the weights
for which the one dimensional Hardy-Littlewood maximal operator is continuous, for 1 < p < ∞,
introducing the now well known class Ap. In [CF], Coifman and Fefferman generalized this result
to n dimensions. Later, it was proved that the Ap condition is necessary and sufficient also for the
continuity of the Hilbert and Riesz transforms (see for example [S1]).
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In many applications, particularly in the analysis of partial differential equations, estimates
in weighted norms arise naturally (see for example the pioneering paper [FKS]). Many of these
results are proved for weights in Ap, the reason being that the proofs involve the use of the Hardy-
Littlewood maximal operator or the Calderón- Zygmund singular integral operators theory. In
particular, these classic tools have been used in different proofs of the results that we are going
to consider in this paper, namely, the so-called improved Poincaré inequality and the existence of
solutions of the divergence in Sobolev spaces.

To be more precise let us first introduce some notation. In this paper we consider . By a
weight function we mean a nonnegative measurable function w defined in some domain Ω ⊂ Rn

with n ≥ 2, and, for 1 ≤ p < ∞, we define

∥f∥Lp
w(Ω) =

(∫
Ω
|f(x)|pw(x) dx

)1/p

.

Given any measurable S ⊂ Rn, a weight w and a function φ, we write w(S) =
∫
S w(x) dx, φS,w =

1
w(S)

∫
S φ(x)w(x) dx and φΩ = 1

|Ω|
∫
Ω φ(x) dx, whenever these integrals make sense.

If w is such that Lp
w(Ω) ⊂ L1(Ω), which is the case when w′ := w−1/p−1 ∈ L1(Ω), we denote

with Lp
w,0(Ω) the subspace of functions in Lp

w(Ω) with vanishing mean value. In the un-weighted
case, for a bounded Ω, we write Lp

0(Ω) for the corresponding subspace of Lp(Ω).
We say that w is a doubling weight if it is locally integrable and there is a constant M > 0 such

that w(2Q) ≤ Mw(Q) for all cubes Q, where 2Q is the cube with the same center as Q and twice
the side of Q.

We will make use of a Whitney decomposition of an open set Ω ⊆ Rn (see [S2]). That is, there
exists a family of cubes W = {Q}, with disjoint interiors, and a constant N > 0 such that,

• Ω =
∪

Q =
∪

Q∗

• diam(Q) ≤ dist(Q, ∂Ω) ≤ 4diam(Q)

•
∑

χQ∗ ≤ NχΩ

where Q∗ is certain expanded cube of Q. We will say that a cube Q ⊂ Ω is of Whitney type if

diam(Q) ≈ dist(Q, ∂Ω).

Here and in what follows we use the notation A ≈ B which means that there exist positive constants
C1 and C2 such that C1A ≤ B ≤ C2A. Let us recall that the Q∗ can be selected as Whitney type
cubes. Finally, by C we will denote a generic constant which can change its value even in the same
line.

Given a bounded domain Ω we denote with d(x) the distance from x to the boundary. Then,
the improved Poincaré inequality in the un-weighted case reads as follows. For 1 ≤ p < ∞, there
exists a constant C such that,

∥φ− φΩ∥Lp(Ω) ≤ C∥d∇φ∥Lp(Ω). (1.1)

Many proofs of this result have been given under different assumptions on the domain Ω. For
example, in [BS], using compactness arguments, the authors proved (1.1) for Lipschitz domains.
Later, in [H1], using a more constructive approach based on Whitney decompositions, the result
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was generalized to John domains. This class of domains was first considered by John, in his work
on elasticity [J], and was named after him by Martio and Sarvas in [MS]. A different argument was
given, also for John domains, in [DD], where the proof makes use of the Hardy-Littlewood maximal
operator.

By classical functional analysis arguments one can show that inequality (1.1) has the following
dual version (this is a particular case of results given in [DMRT]). For 1 ≤ p < ∞, if p′ is the

conjugate exponent of p then, there exists a constant C such that, given g ∈ Lp′

0 (Ω), there exists u
satisfying

div u = g in Ω∥∥∥u
d

∥∥∥
Lp′ (Ω)

≤ C∥g∥Lp′ (Ω).
(1.2)

On the other hand, in [DMRT] it was shown that, for 1 < p < ∞, (1.2) is equivalent to the existence
of a decomposition of a function with vanishing integral as a sum of locally supported functions
with the same property, namely, numerating the Whitney expanded cubes introduced above, for

any g ∈ Lp′

0 (Ω) there exist gj ∈ Lp′

0 (Ω) such that supp gj ⊂ Q∗
j ,

g =
∑
j

gj and ∥g∥p
′

Lp′ (Ω)
≈
∑
j

∥gj∥pLp′ (Q∗
j )
. (1.3)

This decomposition has interesting applications, for example, it can be used to prove the following

classic result. Denoting with Du the differential matrix of a vector field u, given g ∈ Lp′

0 (Ω), there

exists u ∈ W 1,p′

0 (Ω) such that,
div u = g in Ω

u = 0 on ∂Ω

∥Du∥Lp′ (Ω) ≤ C∥g∥Lp′ (Ω).

(1.4)

This result has many applications, in particular, it is fundamental in the analysis of the Stokes
equations. Let us mention that (1.3) was also proved in [DRS] using a different argument. In that
paper the authors extended the decomposition, and consequently (1.4), to weighted norms. Since
there arguments are based on the Hardy-Littlewood maximal operator, their results require that
the weights be in Ap.

A natural question that we address in this paper is whether it is possible to generalize the above
results for a class of weights more general than Ap. With this goal we first consider, for 1 ≤ p < ∞,
the weighted improved Poincaré inequality which generalizes (1.1), namely,

∥φ− φΩ,w∥Lp
w(Ω) ≤ C∥d∇φ∥Lp

w(Ω). (1.5)

It is known that this inequality is valid for bounded John domains if w ∈ Ap (see [DD]). As we
will see, this result can be extended for more general weights. For example, for a class of weights
introduced in [FKS] where the authors consider the classic Poincaré inequality in weighted norms,

∥φ− φΩ,w∥Lp
w(Ω) ≤ C∥∇φ∥Lp

w(Ω) (1.6)

as well as some weighted Sobolev-Poincaré type inequalities.
Apart from proving (1.6) for Ap weights, in [FKS] the authors consider, for p = 2, a class of

weights which are not in A2. Their technique is based on quasi-conformal mappings, indeed, the
authors proved (1.6) when Ω is a ball, n ≥ 3, p = 2, and w(x) = Jf(x)1−

2
n , where Jf is the
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jacobian of a quasi-conformal mapping f . As a particular interesting case of their results they
obtained (1.6) for w(x) = |x|α with any α > 0. Let us recall that this weight is not in A2 if α ≥ n.
We will show that (1.5) (and consequently (1.6)) is also valid for the weights considered in [FKS]
and, more generally, for Ω a bounded John domain and w(x) = Jf(x)1−

p
n when 1 ≤ p < n. In

particular, the result is valid for w(x) = |x|α for any α > 0.
Moreover, as an application of our results, we prove (1.5) for positive power weights without

using quasi-conformal mappings and for 1 ≤ p < ∞, obtaining consequently a different proof of
(1.6) and removing the restriction in p.

It is now well known that Poincaré type estimates are valid for very general bounded domains
whenever they hold in balls or cubes. Indeed, this was proved in [C, H2] with arguments based on
[IN]. For example, inequality (1.6) was proved in [C] for weights in Ap where Ω satisfies the Boman
chain condition. As it is known, for bounded domains, this condition is equivalent to being a John
domain (see [BKL]). In [H2] (1.6) is extended to a more general class of weights. On the other
hand, the proof of the improved Poincaré inequality (1.1) in [H1] mentioned above, uses similar
arguments to those in [C, H2].

Roughly speaking, our first theorem says that the weighted improved Poincaré inequality (1.5)
is valid in John domains whenever the weighted classic Poincaré inequality holds for Whitney type
cubes and w is doubling. The argument of our proof is essentially contained in [C, H2, IN] but, as
far as we know, the result has not been written in the way we are doing here, and this is why we
include details.

Once we have the generalization of the improved Poincaré inequality we analyze its relation
with a decomposition like (1.3) but for the case of weighted norms. It turns out that this relation is
valid for a very general class of weights. Finally we apply this decomposition to obtain a weighted
version of (1.4) for some weights which are not necessarily in Ap.

The rest of the paper is organized as follows. In Section 2 we prove the weighted improved
Poincaré inequality (1.5) for John domains. Next, in Section 3 we give examples of weights w /∈ Ap

for which the inequality (1.5) holds. In particular, we generalize for 1 ≤ p < n the arguments given
in [FKS]. In Section 4, we analyze the relation between the improved Poincaré inequality and the
decomposition of functions in the weighted case. Finally, in Section 5 we apply that decomposition
to prove the existence of solutions of the divergence in weighted Sobolev spaces for power type
weights which are not necessarily in A∞.

2 Weighted Improved Poincaré Inequality

The main goal of this section is to prove (1.5) for a wide class of weights.
If Ω is a John domain one can choose a Whitney decomposition satisfying also the following

property (see [H1, DRS]). There exist an open cube Q∗
0 (called central cube) that can be connected

with every cube Q∗ by a finite chain of cubes, Q∗
0, Q

∗
1, ..., Q

∗
s = Q∗, such that for every j =

0, 1, ..., s− 1
Q∗ ⊆ NQ∗

j

and there exists a cube Rj such that

Rj ⊂ Q∗
j ∩Q∗

j+1 and Q∗
j ∪Q∗

j+1 ⊂ NRj .

Our argument makes use of the following known result.
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Lemma 2.1. Let V = {Q} be an arbitrary family of cubes in Rn. If w is a doubling weight,
1 ≤ p < ∞, N ≥ 1 and AQ are nonnegative real numbers, then∥∥∥∥∥∥

∑
Q∈V

AQχNQ(x)

∥∥∥∥∥∥
Lp
w

≤ C

∥∥∥∥∥∥
∑
Q∈V

AQχQ(x)

∥∥∥∥∥∥
Lp
w

(2.1)

where the constant C depends only on n, N , p and w.

Proof. See Lemma 2.3 in [StW, Page 299]. �

The proof of the next theorem follows the arguments given in [H1, Theorem1.3].

Theorem 2.2. Let Ω be a bounded John domain and w ∈ L1(Ω) be a doubling weight satisfying

∥φ− φQ,w∥Lp
w(Q) ≤ Cdiam(Q)∥∇φ∥Lp

w(Q) (2.2)

for all φ ∈ C1(Q̄) and all Whitney type cube Q ⊂ Ω, where C is a constant that does not depend
on the cube. Then, for 1 ≤ p < ∞ and all φ ∈ C1(Ω),

∥φ− φΩ,w∥Lp
w(Ω) ≤ C∥d∇φ∥Lp

w(Ω)

Proof. LetW = {Q} be aWhitney decomposition satisfying the properties described in the previous
section. Let us observe that,

max
{
w(Q∗

j ), w(Q
∗
j+1)

}
≤ Cw(Q∗

j ∩Q∗
j+1) (2.3)

j = 0, 1, ..., s− 1 cubes from the chain associated with Q∗. Since w ∈ L1(Ω) it is enough to prove

∥φ− φQ∗
0,w

∥Lp
w(Ω) ≤ C∥d∇φ∥Lp

w(Ω)

where Q∗
0 is the central cube. We have∫

Ω
|φ(x)−φQ∗

0,w
|pw(x) dx

≤ 2p
∑
Q∈W

∫
Q∗

|φ(x)− φQ∗,w|pw(x) dx+ 2p
∑
Q∈W

∫
Q∗

|φQ∗
0,w

− φQ∗,w|pw(x) dx.

To estimate the first sum we use (2.2) and that the cubes Q∗ are of Whitney type,∑
Q∈W

∫
Q∗

|φ(x)− φQ∗,w|pw(x) dx ≤
∑
Q∈W

C diam(Q∗)p
∫
Q∗

|∇φ(x)|pw(x) dx

≤ C
∑
Q∈W

∫
Q∗

|∇φ(x)|pd(x)pw(x) dx

= C

∫
Ω
|∇φ(x)|pd(x)pw(x) dx

where for the last inequality we have used that
∑

χQ∗ ≤ NχΩ.
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Now, we estimate the second sum. We have

|φQ∗
0,w

− φQ∗,w| ≤
s−1∑
j=0

|φQ∗
j ,w

− φQ∗
j+1,w

| (2.4)

using again
∑

χQ∗ ≤ NχΩ, the triangle inequality, (2.2) and that the cubes Q∗
j are of Whitney

type, we obtain

|φQ∗
j ,w

− φQ∗
j+1,w

|p = 1

w(Q∗
j ∩Q∗

j+1)

∫
Q∗

j∩Q∗
j+1

|φQ∗
j ,w

− φQ∗
j+1,w

|pw(y) dy

≤ 2pC

j+1∑
α=j

1

w(Q∗
α)

∫
Q∗

α

|∇φ(y)|pd(y)pw(y) dy.

Since Q∗ ⊆ NQ∗
α for 0 ≤ α ≤ s we have

|φQ∗
j ,w

− φQ∗
j+1,w

|pχQ∗(x) ≤ C

j+1∑
α=j

χNQ∗
α
(x)

w(Q∗
α)

∫
Q∗

α

|∇φ(y)|pd(y)pw(y) dy

and therefore,

|φQ∗
0,w

− φQ∗,w|χQ∗(x) ≤ C
s−1∑
j=0

j+1∑
α=j

χNQ∗
α
(x)

w(Q∗
α)

∫
Q∗

α

|∇φ(y)|pd(y)pw(y) dy

1/p

≤ C
∑
R∈W

χNR∗(x)

(
1

w(R∗)

∫
R∗

|∇φ(y)|pd(y)pw(y) dy
)1/p

(2.5)

then, ∑
Q∈W

∫
Q∗

|φQ∗
0,w

− φQ∗,w|pw(x) dx ≤
∑
Q∈W

∫
Q∗

|φQ∗
0,w

− φQ∗,w|pχQ∗(x)w(x) dx

≤ C
∑
Q∈W

∫
Q∗

∣∣∣∣∣∑
R∈W

(
1

w(R∗)

∫
R∗

|∇φ(y)|pd(y)pw(y) dy
)1/p

χNR∗(x)

∣∣∣∣∣
p

w(x) dx

≤ C

∫
Rn

∣∣∣∣∣∑
R∈W

(
1

w(R∗)

∫
R∗

|∇φ(y)|pd(y)pw(y) dy
)1/p

χNR∗(x)

∣∣∣∣∣
p

w(x) dx
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and using now (2.1) and
∑

R∈W χR∗(x) ≤ NχΩ(x) we obtain∑
Q∈W

∫
Q∗

|φQ∗
0,w

− φQ∗,w|pw(x) dx

≤ C

∫
Rn

∣∣∣∣∣∑
R∈W

(
1

w(R∗)

∫
R∗

|∇φ(y)|pd(y)pw(y) dy
)1/p

χR∗(x)

∣∣∣∣∣
p

w(x) dx

≤ C

∫
Rn

∑
R∈W

(
1

w(R∗)

∫
R∗

|∇φ(y)|pd(y)pw(y) dy
)

χR∗(x)w(x) dx

= C
∑
R∈W

∫
Rn

1

w(R∗)
χR∗(x)w(x) dx

∫
R∗

|∇φ(y)|pd(y)pw(y) dy

= C
∑
R∈W

∫
R∗

|∇φ(y)|pd(y)pw(y) dy ≤ C

∫
Ω
|∇φ(y)|pd(y)pw(y) dy

concluding the proof. �

Remark 2.3. It is known that (2.2) holds for Ap weights (this is proved in [FKS]). Moreover, in
([C],Theorem 2.14) Chua gives a more general sufficient condition. Indeed, he proves that (2.2)
holds for any doubling weight w which satisfies the following condition: there exists r > 1 such
that for all cube Q0 ⊂ Rn,

sup
Q⊂Q0

|Q|1/n
(

1

|Q|

∫
Q
wr

)1/pr ( 1

|Q|

∫
Q
w−r/(p−1)

)1/p′r

< ∞.

Actually, Chua does not give an explicit expression for the constant in (2.2) but it can be
obtained using a standard scaling argument.

3 Examples

The goal of this section is to give some examples which show that the class of weights satisfying
the conditions of Theorem 2.2 is larger than Ap.

Example 3.1. Consider the weights

w(x) = (1 + |x|)δ
m∏
i=1

[
|x− ai|

1 + |x− ai|

]γi
v(x) (3.1)

where δ ≥ 0, γi ≥ 0, {ai}mi=1 are points in Rn, ai ̸= aj if i ̸= j, and v ∈ Ap. These weights belong to
A∞ (see [StW]) but, in general, they do not belong to Ap. It was proved in [CW] that they satisfy
the inequality (2.2).

Example 3.2. Let Γ be a closed subset of ∂Ω and dΓ(x) be the distance from x to Γ. Define
w(x) = dΓ(x)

α, for α > 0. It is easy to show that (2.2) follows from the classic un-weighted
Poincaré inequality. Indeed, if Q is a Whitney type cube we have, for x, y ∈ Q,

dΓ(y) ≤ |x− y|+ dΓ(x) ≤ diam(Q) + dΓ(x) ≈ d(x) + dΓ(x) ≤ 2dΓ(x),
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and therefore, w behaves like a constant in Q.
An interesting application is obtained considering a bounded John domain Ω such that 0 ∈ Ω.

Considering Ω̃ := Ω \ {0} and w as above with Γ = {0}, we have dΓ(x) = |x|. Then, w is in L1(Ω̃)
and is doubling. Therefore, applying Theorem 2.2 in Ω̃ we obtain, for 1 ≤ p < ∞,∫

Ω̃
|φ(x)− φΩ̃,|x|α |

p|x|α dx ≤ C

∫
Ω̃
|∇φ(x)|p|x|αdist(x, ∂Ω̃)p dx

but we can obviously replace Ω̃ by Ω in the integrals, and using that dist(x, ∂Ω̃) ≤ d(x), we obtain

∥φ− φΩ,|x|α∥Lp
|x|α (Ω) ≤ C∥d∇φ∥Lp

|x|α (Ω). (3.2)

Below we will use this estimate for α > −n (the case −n < α ≤ 0 is known because for those values
of α the weight |x|α is in Ap).

Example 3.3. The weighted Poincaré inequality (3.2) in balls was proved for p = 2 and n ≥ 3,
with a totally different argument, by Fabes, Kenig and Serapioni in [FKS]. Indeed, they showed in
that paper that w(x) = |x|α, for α > 0, is a particular case of a general class of weights introduced
there, for which the weighted Poincaré inequality in balls holds (although, as this example shows,
their weights are not necessarily in Ap). One can trivially change balls by cubes in their arguments
and consequently Theorem 2.2 applies for this class of weights.

Here we extend their results for any n ≥ 2 and p < n. This extension is straightforward but we
include details for completeness. Actually, our argument is simpler because we are interested only
in Poincaré inequality while in [FKS] the authors proved Sobolev-Poincaré inequalities.

Let f : Rn → Rn be a quasi-conformal mapping, that is, f is a homeomorphism, the components
fi of f have distributional derivatives in Ln(Ω), and there is a constant M > 0 such that, almost
everywhere,

|Df(x)| :=

∑
i,j

(
∂fi
∂xj

(x)

)2
1/2

≤ MJf(x)1/n (3.3)

where Jf is the absolute value of the determinant of Df .

Lemma 3.4. Given p such that 1 ≤ p < n, define w(x) = Jf(x)1−p/n. There exists a constant C
such that for all cube Q and all φ ∈ C1(Q̄)

∥φ− φQ,w∥Lp
w(Q) ≤ Cdiam(Q)∥∇φ∥Lp

w(Q) (3.4)

Proof. Since w ∈ L1(Ω) it is enough to prove the inequality (3.4) replacing φQ,w by a constant cQ.
The main idea of the proof is to reduce the weighted inequality to an unweighted one by making
the change of variables y = f(x).

Observe that

diam(Q) = C|Q|1/n = C

(∫
Q
dx

)1/n

= C

(∫
f(Q)

Jf−1(y) dy

)1/n

.
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Then, using the Hölder inequality with exponents n/(n− p) and its dual n/p we have,∫
Q
|φ(x)− cQ|pw(x) dx =

∫
f(Q)

|(φ ◦ f−1)(y)− cQ|pJf−1(y)p/n dy

≤

(∫
f(Q)

|(φ ◦ f−1)(y)− cQ|p∗ dy

)p/p∗(∫
f(Q)

Jf−1(y) dy

)p/n

≤ Cdiam(Q)p

(∫
f(Q)

|(φ ◦ f−1)(y)− cQ|p∗ dy

)p/p∗

where we have used the standard notation for the Sobolev-Poincaré exponent p∗ = pn/(n− p).
Now, it follows from the condition (3.3) for f−1, that∫

f(Q)
|∇(φ ◦ f−1)(y)|p dy ≤ C

∫
Q
|∇φ(x)|pw(x) dx

and therefore, it is enough to prove(∫
f(Q)

|(φ ◦ f−1)(y)− cQ|p∗ dy

)1/p∗

≤ C

(∫
f(Q)

|∇(φ ◦ f−1)(y)|p
)1/p

(3.5)

But, f(Q) is a John domain, and the Sobolev-Poincaré inequality (3.5) for this kind of domains
was proved in [B]. Moreover, the constant C in (3.5) depends only on n and the John constant
of f(Q) (this is proved, for example, in [DD]) which, according to Lemma 2.3 in [HK, Page 539],
depends only on n and the A∞ constant of Jf . Finally, it was proved in [G] that the A∞ constant
of Jf depends only on M and n (for the last observation recall that we are assuming that f is
quasi-conformal in Rn). �

Consequently we obtain the following result.

Theorem 3.5. Let Ω be a bounded John domain and w(x) = Jf(x)1−p/n, 1 ≤ p < n, with
f : Rn → Rn a quasi-conformal mapping. Then the following inequality holds

∥φ− φΩ,w∥Lp
w(Ω) ≤ C∥d∇φ∥Lp

w(Ω).

Proof. It is known from the results in [G] that w ∈ A∞, and so, it is doubling. Therefore, in view
of (3.4), the result follows from Theorem 2.2. �

Remark 3.6. Following [FKS], given α > 0, we can take f(x) = |x|βx with β = α
n−p to obtain

(3.2) for 1 ≤ p < n (see [FKS] for details).

4 Decomposition of functions of vanishing integral

The improved Poincaré inequality (1.5) has many applications. In particular, it was shown in
[DMRT], that it is related with a useful decomposition for functions of vanishing integral in Ω as
a sum of locally supported functions with the same property. An interesting application of this
decomposition is the solvability of the divergence in Sobolev spaces (see [DMRT, DRS]).
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The goal of this section is to extend the arguments given in [DMRT] and to show that solutions
of the divergence in weighted Sobolev spaces can be obtained for some weights which are not in
Ap. We start with the following lemma which generalizes a result of [DMRT].

Recall that w′ := w−1/(p−1) and that, if w′ ∈ L1(Ω) then Lp
w ⊂ L1(Ω) and therefore the space

Lp
w,0(Ω) =

{
f ∈ Lp

w(Ω) :

∫
Ω
f = 0

}
is well defined.

Lemma 4.1. Let Ω ⊂ Rn be a bounded domain, and 1 < p < ∞, {Qj} a Whitney decomposition

of Ω and
{
Q∗

j

}
expanded cubes of Qj as in Section 1 and let {ϕj} be the usual partition of unity

associated with the decomposition (see for example [S2]). Given a weight w such that w′ ∈ L1(Ω),
we consider the following properties,

(1)
∥∥h− hΩ,w′

∥∥
Lp′
w′ (Ω)

≤ C ∥d∇h∥
Lp′
w′ (Ω)

∀h ∈ Lp′

w′(Ω) ∩ C1(Ω) such that ∇h ∈ Lp′

dp
′
w′(Ω)

n.

(2) If g ∈ Lp
w,0(Ω) there exists u ∈ Lp

d−pw
(Ω)n such that∫

Ω
u · ∇h =

∫
Ω
gh ∀h ∈ Lp′

w′(Ω) ∩ C1(Ω) such that ∇h ∈ Lp′

dp
′
w′(Ω)

n (4.1)

and ∥∥∥u
d

∥∥∥
Lp
w(Ω)

≤ C ∥g∥Lp
w(Ω) . (4.2)

(3) If g ∈ Lp
w,0(Ω) there exists a decomposition

g =
∑
j

gj

with gj ∈ Lp
w,0(Ω), supp gj ⊂ Q∗

j , and

∥g∥p
Lp
w(Ω)

≈
∑
j

∥gj∥pLp
w(Q∗

j )
.

Then,
(1) ⇔ (2) ⇒ (3)

Proof. (1) ⇒ (2): Let S ⊂ Lp′

dp
′
w′(Ω)

n be the subspace given by

S =
{
v ∈ Lp′

dp′w′(Ω)
n : v = ∇h with h ∈ Lp′

w′(Ω) ∩ C1(Ω)
}
,

and set L(∇h) =
∫
Ω gh. Since

∫
Ω g = 0, L defines a linear form on S. Moreover, it follows from (1)

that

|L(∇h)| =
∣∣∣∣∫

Ω
g(h− hΩ,w′)

∣∣∣∣ ≤ C ∥g∥Lp
w(Ω)

∥∥h− hΩ,w′
∥∥
Lp′
w′ (Ω)

≤ C ∥g∥Lp
w(Ω) ∥d∇h∥

Lp′
w′ (Ω)

.
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By the Hahn-Banach theorem L can be extended as a linear continuous functional defined on

Lp′

dp′w′(Ω)
n, and therefore, by duality there exists u ∈ Lp

d−pw
(Ω)n such that

L(v) =
∫
Ω
u · v and

∥∥∥u
d

∥∥∥
Lp
w(Ω)

≤ C ∥g∥Lp
w(Ω)

in particular, taking v = ∇h ∈ S, we obtain (2).

(2)⇒(1): Let h ∈ Lp′

w′(Ω) ∩ C1(Ω) be such that ∇h ∈ Lp′

dp′w′(Ω)
n. Then,

∥h− hΩ,w′∥
Lp′
w′ (Ω)

= sup
∥g∥

L
p
w′ (Ω)=1

∫
Ω
(h− hΩ,w′)gw′ = sup

∥g∥
L
p
w′ (Ω)=1

∫
Ω
h(g − gΩ,w′)w′ (4.3)

but, since (g − gΩ,w′)w′ ∈ Lp
w,0(Ω) with

∥(g − gΩ,w′)w′∥Lp
w(Ω) = ∥g − gΩ,w′∥Lp

w′ (Ω) ≤ C∥g∥Lp

w′ (Ω),

we know from (2) that there exists u ∈ Lp
d−pw

(Ω)n such that∫
Ω
u · ∇h =

∫
Ω
h(g − gΩ,w′)w′

satisfying ∥∥∥u
d

∥∥∥
Lp
w(Ω)

≤ C
∥∥(g − gΩ,w′)w′∥∥

Lp
w(Ω)

≤ C∥g∥Lp

w′ (Ω).

Therefore,∫
Ω
h(g − gΩ,w′)w′ =

∫
Ω
u · ∇h ≤ ∥d∇h∥

Lp′
w′ (Ω)

∥∥∥u
d

∥∥∥
Lp
w(Ω)

≤ C∥d∇h∥
Lp′
w′ (Ω)

∥g∥Lp

w′ (Ω)

and replacing in (4.3) we obtain (1).

(2) ⇒ (3) Given g ∈ Lp
w,0(Ω) let u ∈ Lp

d−pw
(Ω)n as in (2). Observe that, in particular, we can

take h ∈ C∞
0 (Ω) in (4.1), and therefore, div u = g in Ω. Then, we define

gj = div(ϕju)

and so, we have

g = div u = div
(
u
∑
j

ϕj

)
=
∑
j

div(ϕju) =
∑
j

gj .

Since supp ϕj ⊆ Q∗
j we have supp gj ⊆ Q∗

j and
∫
gj = 0. Moreover, each point in Ω is contained in

at most N of the cubes Q∗
j , consequently

|g(x)|p ≤ C
∑
j

|gj(x)|p

and then
∥g∥p

Lp
w(Ω)

≤ C
∑
j

∥gj∥pLp
w(Q∗

j )
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where the constant C depends only on p and n.
To prove the other inequality we use that ∥ϕj∥L∞ ≤ 1 and ∥∇ϕj∥L∞ ≤ C/dj , where dj is the

distance of Qj to ∂Ω. Then, we have

∥gj∥pLp
w(Q∗

j )
=

∫
Q∗

j

|gj |pw =

∫
Q∗

j

|div(ϕju)|pw

=

∫
Q∗

j

|∇ϕj · u+ ϕj div u|pw

≤ C

(∫
Q∗

j

|∇ϕj |p|u|pw +

∫
Q∗

j

|ϕj(x)|p|div u|pw

)

≤ C

(∥∥∥u
d

∥∥∥p
Lp
w(Q∗

j )
+ ∥g∥p

Lp
w(Q∗

j )

)
and therefore, using that

∑
j χQ∗

j
≤ NχΩ, it follows from (4.2) that∑

j

∥gj∥pLp
w(Q∗

j )
≤ C ∥g∥p

Lp
w(Ω)

.

�

5 Solvability of the divergence in weighted Sobolev spaces

As a consequence of the results given in the previous section we obtain a result which generalizes the
arguments given in [DMRT, DRS] to show the existence of solutions of the divergence in weighted
Sobolev spaces for weights which are not necessarily in Ap. Roughly speaking, the divergence can
be solved in weighted Sobolev spaces in John domains whenever it can be solved in cubes.

Given a domain Ω and weights w0 and w1, such that Lp
w0(Ω) ⊂ L1

loc(Ω), we define

W 1,p
w0,w1

(Ω) =
{
v : Ω → Rn : v ∈ Lp

w0
(Ω) , |Dv| ∈ Lp

w1
(Ω)
}
,

with its natural norm, and

W 1,p
0,w0,w1

(Ω) = C∞
0 (Ω) ∩W 1,p

w0,w1(Ω).

Theorem 5.1. Given Ω ⊂ Rn and 1 < p < ∞. Let w0 and w1 be weights with w′
0, w

′
1 ∈ L1(Ω)

and such that the inequality ∥∥∥h− hΩ,w′
1

∥∥∥
Lp′
w′
1
(Ω)

≤ C ∥d∇h∥
Lp′
w′
1
(Ω)

holds for all h ∈ Lp′

w′
1
(Ω) ∩ C1(Ω). Assume that, for any g ∈ Lp

w1,0
(Q) and any Whitney type cube

Q ⊂ Ω, there exists u ∈ W 1,p
0,w0,w1

(Q) satisfying

div u = g in Q

and
∥u∥Lp

w0
(Q) + ∥Du∥Lp

w1
(Q) ≤ C∥g∥Lp

w1
(Q)
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where the constant C is independent of the cube Q. Then, for any g ∈ Lp
w1,0

(Ω) there exists

u ∈ W 1,p
0,w0,w1

(Ω) such that
div u = g in Ω

and
∥u∥Lp

w0
(Ω) + ∥Du∥Lp

w1
(Ω) ≤ C∥g∥Lp

w1
(Ω).

Proof. First of all observe that w′
0 ∈ L1(Ω) implies that Lp

w0(Ω) ⊂ L1(Ω), and therefore, derivatives
of functions in Lp

w0(Ω) exist in the distributional sense and so the space W 1,p
w0,w1(Ω) is well defined.

Now, since w′
1 ∈ L1(Ω), we can apply Lemma 4.1, and so, given g ∈ Lp

w1,0
(Ω) we decompose

g =
∑

gj as in (3) of that lemma. By our hypothesis, for each j, there exists uj ∈ W 1,p
0,w0,w1

(Q∗
j )

satisfying
div uj = gj in Q∗

j

and
∥uj∥Lp

w0
(Q∗

j )
+ ∥Duj∥Lp

w1
(Q∗

j )
≤ C∥gj∥Lp

w1
(Q∗

j )
.

Then, defining u =
∑

j uj , we have div u = g. Moreover,

∥u∥p
Lp
w0

(Ω)
+ ∥Du∥p

Lp
w1

(Ω)
=

∫
Ω

∣∣∣∑
j

uj

∣∣∣pw0(x) dx+

∫
Ω

∣∣∣∑
j

Duj

∣∣∣pw1(x) dx

≤ C
∑
j

∫
Q∗

j

{
|uj(x)|pw0(x) + |Duj(x)|pw1(x)

}
dx

≤ C
∑
j

∫
Q∗

j

|gj(x)|pw1(x) dx ≤ C||g||p
Lp
w1

(Ω)
.

�

As an example we show that Theorem 5.1 can be applied to solve the divergence equation in
power weighted spaces.

Theorem 5.2. Let Ω ⊂ Rn be a bounded John domain such that 0 ∈ Ω, 1 < p < ∞, and
−∞ < γ < n(p− 1). Given g ∈ Lp

|x|γ ,0(Ω) there exists u ∈ W 1,p
0,|x|γ ,|x|γ (Ω) such that

div u = g in Ω

and
∥u∥Lp

|x|γ (Ω) + ∥Du∥Lp
|x|γ (Ω) ≤ C∥g∥Lp

|x|γ (Ω). (5.1)

Proof. First of all observe that, if w(x) = |x|γ , then w′ = |x|−
γ

p−1 ∈ L1(Ω), indeed, from our
hypotheses, − γ

p−1 > −n. In particular Lp
|x|γ (Ω) ⊂ L1(Ω) and so Lp

|x|γ ,0(Ω) and W 1,p
0,|x|γ ,|x|γ (Ω) are

well defined.
Now, if −n < γ < n(p − 1), the weight |x|γ is in Ap, and therefore, the result was proved in

[DRS, Page 103]. Although the authors of that paper only state the bound for the second term
on the left hand side of (5.1), the estimate for the other term follows immediately by the weighted
Poincaré inequality (which is known to be valid for Ap weights).
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On the other hand, for the case γ ≤ −n, we proceed as in Example 3.2 and introduce Ω̃ = Ω\{0}.
It is easy to see that, if ϕ ∈ C∞

0 (Ω) ∩ Lp
|x|γ (Ω), then ϕ(0) = 0, and therefore,

W 1,p
0,|x|γ ,|x|γ (Ω̃) = W 1,p

0,|x|γ ,|x|γ (Ω).

Then, we conclude the proof applying Theorem 5.1 in Ω̃. Indeed, the hypotheses of that theorem,
concerning the existence of solutions in Whitney type cubes, are easily verified because the weight
restricted to those cubes behaves like a constant (see details in Example 3.2). �

In what follows we are going to show that, for 1 < p < n, Theorem 5.2 can be improved
replacing the term ∥u∥Lp

|x|γ (Ω) in (5.1) by the stronger one ∥u∥Lp

|x|γ−p (Ω).

To do this we use the technique based in quasi-conformal mappings. Let us remark that this
improvement does not follow from the bound obtained for the derivatives of u because there is no
constant C such that the inequality

∥ϕ∥Lp

|x|γ−p (Ω) ≤ C∥∇ϕ∥Lp
|x|γ (Ω),

holds for a general ϕ ∈ C∞
0 (Ω). Indeed, if −n < γ ≤ −n+p and ϕ is equal to one in a neighborhood

of 0, the right hand side is finite while the left one is not.
For −∞ < γ ≤ −n the result in the following theorem can be proved by the same argument used

in Theorem 5.1, and therefore, the interesting case in the following proof is when −n < γ < n(p−1).
However, since the argument is independent of the value of γ, we write the proof in the general
case.

Theorem 5.3. Let Ω ⊂ Rn be a bounded John domain such that 0 ∈ Ω, 1 < p < n, and
−∞ < γ < n(p− 1). Given g ∈ Lp

|x|γ ,0(Ω) there exists u ∈ W 1,p
0,|x|γ−p,|x|γ (Ω) such that

div u = g in Ω

and
∥u∥Lp

|x|γ−p (Ω) + ∥Du∥Lp
|x|γ (Ω) ≤ C∥g∥Lp

|x|γ (Ω).

Proof. We start as in the proof of Theorem 5.2 observing that Lp
|x|γ ,0(Ω) and W 1,p

0,|x|γ−p,|x|γ (Ω) are

well defined.
Defining w1(x) = |x|γ we have w′

1(x) = |x|α with α = − γ
p−1 > −n and so, in view of Example

3.2, the weighted improved Poincaré inequality∥∥∥h− hΩ,w′
1

∥∥∥
Lp′
w′
1
(Ω)

≤ C ∥d∇h∥
Lp′
w′
1
(Ω)

,

holds. Therefore, the result will be a consequence of Theorem 5.1, if we show the solvability of the
divergence in cubes. This will be done in the following lemma. �

Lemma 5.4. Let Q be a cube, 1 < p < n, and −∞ < γ < n(p − 1). Given g ∈ Lp
|x|γ ,0(Q) there

exists u ∈ W 1,p
0,|x|γ−p,|x|γ (Q) such that

div u = g in Q

and
∥u∥Lp

|x|γ−p (Q) + ∥Du∥Lp
|x|γ (Q) ≤ C∥g∥Lp

|x|γ (Q).
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Proof. Given γ we take β such that γ = βn(1− p) < n(p− 1). Since γ < n(p− 1) we have β > −1,
and therefore, f(x) = |x|βx is a quasi-conformal mapping.

Using the change of variables y = f(x) we define h(y) = g(x)Jf−1(f(x)). Then, h ∈ Lp
0(f(Q)),

and therefore, since f(Q) is a John domain (actually, for the particular f considered here it is a
Lipschitz domain), we know that there exists v ∈ W 1,p

0 (f(Q)) such that

div v = h in f(Q) (5.2)

and ∫
f(Q)

|y|−p|v(y)|p dy +
∫
f(Q)

|Dv(y)|p dy ≤ C

∫
f(Q)

|h(y)|p dy, (5.3)

see, for example, [ADM] or [Ga] for the existence of v satisfying (5.2) and ∥Dv∥Lp(f(Q)) ≤ C∥h∥Lp(f(Q)).
The estimate for the first term on the right hand side of (5.3) is a consequence of∫

f(Q)
|y|−p|v(y)|p dy ≤ C

∫
f(Q)

|Dv(y)|p dy

which can be obtained from the results for fractional integrals given in [SW] (and it is also a
particular case of the so-called Caffarelli-Kohn-Nirenberg inequalities [CKN]).

Now, using the so-called Piola transform, we define

u(x) = Jf(x)Df−1(f(x))v(f(x)). (5.4)

Then, we have
div u = g

and, since Jf(x) ≈ |x|nβ(1−p) = |x|γ , we have to prove that∫
Q
|Du(x)|pJf(x)1−p dx ≤ C

∫
Q
|g(x)|pJf(x)1−p dx

and ∫
Q
|u(x)|p|x|−pJf(x)1−p ≤ C

∫
Q
|g(x)|pJf(x)1−p dx.

Changing variables we have ∫
f(Q)

|h(y)|p dy =

∫
Q
|g(x)|pJf(x)1−p dx,

and therefore, it is enough to show that∫
Q
|Du(x)|pJf(x)1−p dx ≤ C

∫
f(Q)

|h(y)|p dy. (5.5)

and ∫
Q
|u(x)|p|x|−pJf(x)1−p dx ≤ C

∫
f(Q)

|h(y)|p dy. (5.6)

But, we have

Du(x) = D
[
Jf(x)Df−1(f(x))

]
v(f(x)) + Jf(x)Df−1(f(x))Dv(f(x))Df(x)
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and therefore, ∫
Q
|Du(x)|pJf(x)1−p dx ≤ I + II

with

I :=

∫
Q

∣∣D [Jf(x)Df−1(f(x))
]∣∣p |v(f(x))|p Jf(x)1−p dx

and

II :=

∫
Q

∣∣Df−1(f(x))
∣∣p |Df(x)|p |Dv(f(x))|p Jf(x) dx.

But, using that f and f−1 are quasi-conformal mappings, and (5.3), we obtain

II ≤ C

∫
Q
|Dv(f(x))|p Jf(x) dx = C

∫
f(Q)

|Dv(y)|p dy ≤ C

∫
f(Q)

|h(y)|p dy.

On the other hand we have,

I ≤ C
{∫

Q
|DJf(x)|p

∣∣Df−1(f(x))
∣∣p |v(f(x))|p Jf(x)1−p dx

+

∫
Q

∣∣D2f−1(f(x))
∣∣p |Df(x)|p |v(f(x))|p Jf(x) dx

}
.

(5.7)

Now, recalling that y = f(x), it is easy to check that

|DJf(x)| ≤ C|x|βn−1 = |y|
βn−1
β+1 ,

and, using also that f−1 is quasi-conformal and that

Jf−1(y) ≤ C|y|−
βn
β+1 and Jf(x) = Jf(f−1(y)) ≤ C|y|

βn
β+1 (5.8)

we obtain that the first term on the right hand side of (5.7) is less than or equal to

C

∫
f(Q)

|y|
p(βn−1)

β+1 |y|−
pβ
β+1 |y|

βn(1−p)
β+1 |y|−

βn
β+1 |v(y)|p dy = C

∫
f(Q)

|y|−p|v(y)|p dy,

Now, for the second term on the right hand side of (5.7), changing variables and using that

|D2f−1(y)| ≤ C|y|−
2β+1
β+1 and |Df(f−1(y))| ≤ C|y|

β
β+1 ,

we obtain∫
Q

∣∣D2f−1(f(x))
∣∣p |Df(x)|p |v(f(x))|p Jf(x) dx

=

∫
f(Q)

∣∣D2f−1(y)
∣∣p ∣∣Df(f−1(y))

∣∣p |v(y)|p dy ≤ C

∫
f(Q)

|y|−p|v(y)|p dy.

Collecting these estimates and using (5.3) we obtain

I ≤ C

∫
f(Q)

|y|−p|v(y)|p dy ≤ C

∫
f(Q)

|h(y)|p dy,
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and therefore (5.5) is proved.
Finally, from the definition of u given in (5.4) and changing variables, we have∫

Q
|u(x)|p|x|−pJf(x)1−p dx =

∫
f(Q)

∣∣Df−1(y))
∣∣p |y|− p

β+1 |v(y)|p dy

and using that f−1 is quasi-conformal, the first estimate in (5.8), and (5.3), we obtain (5.6). �
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