
Galerkin Approximations and Finite Element

Methods

Ricardo G. Durán1
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Chapter 1

Galerkin Approximations

1.1 A simple example

In this section we introduce the idea of Galerkin approximations by consid-
ering a simple 1-d boundary value problem. Let u be the solution of

{
−u′′ + u = f in (0, 1)

u(0) = u(1) = 0
(1.1)

and suppose that we want to find a computable approximation to u (of
course, it is not very interesting to solve this problem approximately but
the ideas we are going to introduce are quite general and can be applied in
many situations as we are going to see later on).

Multiplying equation (1.1) by a test function and integrating by parts
we obtain the weak formulation of (1.1)

∫ 1

0
(u′v′ + uv) dx =

∫ 1

0
fv dx ∀v ∈ H1

0 (0, 1) (1.2)

where H1
0 (0, 1) is the Sobolev space

H1
0 (0, 1) = {v ∈ L2(0, 1) : v′ ∈ L2(0, 1) and, v(0) = v(1) = 0}

If u is regular (for example with two continuous derivatives) then prob-
lems (1.1) and (1.2) are equivalent. We can use (1.2) in order to define an
approximation to u. We are going to construct polygonal approximations
to u. With this purpose let us introduce a uniform partition of the domain
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(0, 1) into N + 1 subintervals (xj , xj+1) with

xj =
j

N + 1
for j = 0, . . . , N + 1

and consider the space VN of polygonal functions vanishing at the boundary
of (0, 1), i.e.,

VN = {v ∈ C0 : v|(xj ,xj+1) is linear and v(0) = v(1) = 0}

where C0 denotes the space of continuous functions.
Observe that, ∀N , VN is a subspace of H1

0 (0, 1) and that VN has finite
dimension. Indeed, a polygonal function v ∈ VN is uniquely determined by
its values at the finite number of points x1, . . . , xN .

We define the Galerkin approximation uN ∈ VN to u by imposing (1.2)
but only for functions v ∈ VN , i.e., uN ∈ VN is such that:

∫ 1

0
(u′Nv′ + uNv) dx =

∫ 1

0
fv dx ∀v ∈ VN (1.3)

We are going to see that there is a unique uN satisfying (1.3) and more-
over, since VN is finite dimensional, that it can be computed by solving a
linear system of equations. Indeed, given a basis φj of VN , for example, the
usual Lagrange basis defined by φj(xi) = δij for i, j = 1, . . . , N , uN can be
written as,

uN =
N∑

j=1

Ujφj , Uj ∈ IR (1.4)

Note that with this choice of basis we have Uj = uN (xj). Now, since any
v ∈ VN is a linear combination of the φj it is easy to see that (1.3) is
equivalent to

∫ 1

0
(u′Nφ′k + uNφk) dx =

∫ 1

0
fφk dx for k = 1, . . . , N (1.5)

and using (1.4) we have

N∑

j=1

Uj

∫ 1

0
(φ′jφ

′
k + φjφk) dx =

∫ 1

0
fφk dx for k = 1, . . . , N

Therefore, we can find U = (Uj) ∈ IRN (and then uN ) by solving the
linear system of equations
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AU = F

where A = (akj) ∈ IRN×N with akj =
∫ 1
0 (φ′jφ

′
k +φjφk) dx and F ∈ IRN with

Fk =
∫ 1
0 fφk dx.

An easy computation shows that A is the tridiagonal symmetric matrix
such that

ajj =
2
h

+
2
3
h and ajj−1 = ajj+1 = −1

h
+

h

6
Therefore, the system of equations to be solved is

−Uj−1 + 2Uj − Uj+1

h
+

h

6
Uj−1 +

2h

3
Uj +

h

6
Uj+1 = Fj for j = 1, . . . , N

where we define U0 = UN+1 = 0.
In particular the matrix A is invertible and moreover, it is positive def-

inite (a property that is inherited from the coercivity of the bilinear form
associated with the differential equation). Consequently, there is a unique
solution U and therefore the Galerkin approximation uN is well defined.

Note that dividing by h we obtain a finite difference scheme for problem
(1.1), i.e.,

−Uj−1 + 2Uj − Uj+1

h2
+

1
6
Uj−1 +

2
3
Uj +

1
6
Uj+1 =

1
h

Fj for j = 1, . . . , N

where u′′(xj) is approximated by a standard centered difference scheme and,
u(xj) and f(xj) are replaced by averages. Therefore, in this particular
case, the Galerkin approximation is related with a known finite difference
approximation.

For any N we have defined the Galerkin approximation uN ∈ VN to u
and one would expect that uN will converge to u when N →∞ because any
continuous function can be approximated by polygonals with an increasing
number of nodes. In other words, one would expect that the Galerkin ap-
proximations converge to u whenever the family of spaces VN approximates
u in the following sense:

d(u, VN ) = inf
v∈VN

d(u, v) → 0 when N →∞

where d(u, v) = ‖u−v‖ is the distance measured in some appropriate norm.
In the next section we are going to see that this is true in a general context.
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1.2 The general case

In this section we define and analyze the convergence of Galerkin approx-
imations of a general problem given by a bilinear form in a Hilbert space.
Let V be a Hilbert space and let a( . , . ) and L be continuous bilinear and
linear forms respectively defined on V . We want to find a computable ap-
proximation to the solution u ∈ V of the problem

a(u, v) = 〈L, v〉 ∀v ∈ V (1.6)

where 〈 . , . 〉 denotes the duality product between V ′ and V . Below we will
recall general conditions on the form a which ensure the existence of a unique
solution u, which in particular, applies to the very important class of the
coercive forms.

Definition 1.2.1 We say that a is coercive on V if there exists a constant
α > 0 such that

a(u, u) ≥ α‖u‖2
V ∀u ∈ V (1.7)

Examples of problems like (1.6) are given by the variational formulation
of differential equations.

Example 1.2.1 Scalar linear elliptic equations of second order.
{
−∑n

i,j=1
∂

∂xi
(aij

∂u
∂xj

) = f in Ω ⊂ IRn

u = 0 on ∂Ω

where the coefficients aij = aij(x) are bounded functions and there exist
γ > 0 such that

γ|ξ|2 ≤
n∑

i,j=1

aijξiξj ∀x ∈ Ω ∀ξ ∈ IRn (1.8)

This problem can be written as (1.6) with

V = H1
0 (Ω) = {v ∈ L2(Ω) :

∂v

∂xj
∈ L2(Ω) for j = 1, . . . , n and , v = 0 on ∂Ω}

which is a Hilbert space with the norm

‖v‖H1 = ‖v‖L2 + ‖∇v‖L2 ,
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and a and L defined by

a(u, v) =
n∑

i,j=1

∫

Ω
ai,j

∂u

∂xi

∂v

∂xj
dx

and
〈L, v〉 =

∫

Ω
fv dx

By using the ellipticity condition (1.8), the boundedness of the coeffi-
cients and the Poincaré inequality (see for example [8]) it can be seen that
the form a is coercive and continuous. The linear form L is continuous if
we assume, for example, that f ∈ L2.

Example 1.2.2 The linear elasticity equations.
If we consider, for simplicity, homogeneous Dirichlet conditions, the

equations are
{
−µ∆u− (λ + µ)∇divu = f in Ω ⊂ IR3

u = 0 on ∂Ω

where µ and λ are positive constants (the Lamé elasticity parameters). Now
the unknown u and the right hand side f are vector functions. The weak
formulation of this problem can be written as (1.6) with V = H1

0 (Ω)3 and,

a(u,v) =
∫

Ω
{2µεi,j(u)εi,j(v) + λdivudivv} dx

where
εi,j(v) =

1
2
(
∂vi

∂xj
+

∂vj

∂xi
)

In this case, it can be seen that the bilinear form a is coercive by using
the Korn’s inequality (see for example [15])

The continuity and coercivity of the form imply the existence of a unique
solution of (1.6) (this result is known as Lax-Milgram theorem, see [8,
34]). As we are going to see, these conditions also imply the convergence
of Galerkin approximations (of course, provided that they are defined on
“good” approximation spaces). However, there are important examples
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(such as the Stokes equations) in which the associated bilinear form is not
coercive but it satisfies a weaker condition known as “the inf-sup condition”.
This condition also ensures the existence of a unique solution of (1.6), and
in fact it is also necessary (actually, if the form is not symmetric it has
to satisfy two inf-sup conditions). We will recall this fundamental theorem
below and in the next section we will analyze the convergence of Galerkin
approximations for this kind of bilinear forms.

Definition 1.2.2 We say that the bilinear form a satisfies the inf-sup con-
ditions on V if there exists α > 0 such that

sup
v∈V

a(u, v)
‖v‖V

≥ α‖u‖V ∀u ∈ V (1.9)

and
sup
u∈V

a(u, v)
‖u‖V

≥ α‖v‖V ∀v ∈ V (1.10)

Remark 1.2.1 Clearly, if a is symmetric both conditions are the same.

Remark 1.2.2 Note that condition (1.9) (and analogously (1.10)) can be
written as

inf
u∈V

sup
v∈V

a(u, v)
‖u‖V ‖v‖V

> 0

which justifies the usual terminology.

Remark 1.2.3 If a is coercive it satisfies the inf-sup conditions. In fact,

sup
v∈V

a(u, v)
‖v‖V

≥ a(u, u)
‖u‖V

≥ α‖u‖V
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Remark 1.2.4 The inf-sup condition can be written in terms of the linear
operators A and its adjoint A∗ associated with a,

A : V → V ′ and A∗ : V → V ′

defined by

〈Au, v〉V ′×V = a(u, v) and 〈u,A∗v〉V×V ′ = a(u, v)

In fact, (1.9) and (1.10) are equivalent to

‖Au‖V ′ ≥ α‖u‖V ∀u ∈ V (1.11)

and
‖A∗v‖V ′ ≥ α‖v‖V ∀v ∈ V (1.12)

Remark 1.2.5 For example, when V = IRn the coercivity of a means that
the associated matrix A is positive definite while the inf-sup condition means
that A is invertible.

In the next theorem we will use the following well known result of functional
analysis (see [8, 34]). For W ⊂ V we define W 0 ⊂ V ′ by

W 0 = {L ∈ V ′ : 〈L , v〉 = 0, ∀v ∈ W}

then,
(KerA)0 = ImA∗ (1.13)

and
(KerA∗)0 = ImA (1.14)

Theorem 1.2.1 The continuous bilinear form a satisfies the inf-sup condi-
tions (1.9) and (1.10) if and only if the operator A is bijective (i.e., problem
(1.6) has a unique solution for any L and therefore, A has a continuous
inverse,i.e., ‖u‖V ≤ C‖L‖V ′).

Proof. Assume first that a satisfies the inf-sup conditions. It follows from
(1.11) that A is injective and from (1.12) that A∗ is injective. So, in view
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of (1.14) the proof concludes if we show that ImA is closed. Suppose that
Aun → w then, it follows from (1.11) that

‖A(un − um)‖V ′ ≥ α‖un − um‖V

and therefore {un} is a Cauchy sequence and so convergent to some u ∈ V
and, by continuity of A, w = Au ∈ ImA.

Conversely, if A is bijective, then A∗ is bijective too and therefore both
have a continuous inverse (see [8, 34]) and so (1.9) and (1.10) hold.

Now we introduce the Galerkin approximations to the solution of prob-
lem (1.6). Assume that we have a family VN of finite dimensional subspaces
of V . Then, the Galerkin approximation uN ∈ VN is defined by

a(uN , v) = 〈L, v〉 ∀ v ∈ VN (1.15)

In order to have uN well defined we need to ask some condition on the
form a. From the Theorem above we know that uN satisfying (1.15) exists
and is unique if and only if a satisfies the inf-sup conditions on VN . In
particular, the Galerkin approximations are well defined for coercive forms.
At this point, it is important to remark a fundamental difference between
coercive forms on V and forms which satisfy the inf-sup on V but are not
coercive:

If a is coercive on V , then, it is also coercive on any subspace, and in partic-
ular on VN and the Galerkin approximation uN is well defined. Instead, the
inf-sup condition on V is not inherited by subspaces, and so, when the form
is not coercive, the inf-sup (or something equivalent!) has to be verified on
VN in order to have uN well defined. We will come back to this point when
we analyze the convergence of Galerkin approximations.

1.3 Convergence for the case of coercive forms

Assume now that the form a is continuous and coercive. We will call M the
continuity constant, i.e.,

a(u, v) ≤ M‖u‖V ‖v‖V ∀u, v ∈ V (1.16)

A natural question is whether limN→∞ uN = u provided the spaces VN

are chosen in an appropriate way. Clearly, if the Galerkin approximations
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converge to u we have that

d(u, VN ) = inf
v∈VN

‖u− v‖V → 0 when N →∞ (1.17)

therefore, (1.17) is a natural property to ask on the subspaces (it means
that they approximate u), and we would like to know if it is also a sufficient
condition for convergence. The answer is yes and it follows from the following
Lemma (known as Cea’s lemma).

Lemma 1.3.1 If a is continuous and coercive then,

‖u− uN‖V ≤ M

α
inf

v∈VN

‖u− v‖V

Proof. Subtracting (1.15) from (1.6) we have the error equation

a(u− uN , v) = 0 ∀v ∈ VN (1.18)

Now, using (1.18), (1.16) and (1.7) we have that for any v ∈ VN

α‖u−uN‖2 ≤ a(u−uN , u−uN ) = a(u−uN , u−v) ≤ M‖u−uN‖V ‖u−v‖V

and therefore
‖u− uN‖ ≤ M

α
‖u− v‖V ∀v ∈ VN

and the lemma is proved.

The lemma says that the Galerkin approximation uN is like the best
approximation in VN to u up to a constant depending only on the form a
(i.e., independent of the subspaces). In particular we have the following
convergence result.

Theorem 1.3.2 If a is continuous and coercive and the spaces VN are such
that (1.17) holds then limN→∞ uN = u

Remark 1.3.1 In the particular case in which the form a is symmetric,
it defines a scalar product on the space V which is equivalent to the orig-
inal one and, (1.18) shows that the Galerkin approximation uN is exactly
the orthogonal projection of u onto VN with the scalar product given by a.
Therefore, it is the best approximation in the norm corresponding to that
scalar product. In particular, it is easy to see that in this case, the constant
M
α in the estimate of Lemma 1.3.1 can be replaced by

√
M
α

9



1.4 Convergence for forms satisfying the inf-sup
condition

Suppose now that the form a is not coercive but it satisfies the inf-sup
conditions (1.9) and (1.10) on V . Then, we know that problem (1.6) has a
unique solution u ∈ V and, as before, we are interested in the convergence
of its Galerkin approximations. As we mentioned in Section 1.2, the inf-sup
condition is not inherited by subspaces (note that the sup will be taken in a
smaller set). Therefore, in order to have the Galerkin approximations well
defined we have to assume (and in concrete cases it has to be proved!) that
a satisfies the inf-sup condition also on VN , i.e., that there exists β > 0 such
that

sup
v∈VN

a(u, v)
‖v‖V

≥ β‖u‖V ∀u ∈ VN (1.19)

Note that, since VN is finite dimensional the second inf-sup condition follows
from this one.

In order to prove convergence, we will also ask that the constant β be
independent of N . Under this assumption we have the following generaliza-
tion of Cea’s lemma due to Babuska [2] and, as a consequence, a convergence
result which generalizes Theorem 1.3.2 for this case.

Lemma 1.4.1 If the form a is continuous and satisfies the inf-sup condition
(1.19) then,

‖u− uN‖V ≤ (1 +
M

β
) inf

v∈VN

‖u− v‖V

in particular, if β is independent of N , the constant in this error estimate
is independent of N .

Proof. Take v ∈ VN . From (1.19) and the error equation (1.18) we have,

β‖v − uN‖V ≤ sup
w∈VN

a(v − uN , w)
‖w‖V

= sup
w∈VN

a(v − u,w)
‖w‖V

≤ M‖v − u‖V

and the proof concludes by using the triangle inequality.
As an immediate consequence we have the following convergence result,

Theorem 1.4.2 If a is continuous and satisfies the inf-sup condition (1.19)
with β independent of N , and the spaces VN are such that (1.17) holds then,

lim
N→∞

uN = u
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Remark 1.4.1 Condition (1.19) is a “stability condition”, indeed, it says
that the solution is bounded by the right hand side, i.e., ‖uN‖V ≤ 1

β‖L‖V ′

and this estimate is valid uniformly in N if β is independent of N . There-
fore, the Theorem above can be thought of as the finite element version of
the classical Lax Theorem for Finite Differences which states that stability
plus consistency implies convergence. In the case we are considering here
the consistency follows from the fact that VN is a subspace of V . It is possi-
ble to construct approximations on spaces VN which are not contained in V
and in that case, the consistency has to be verified. In the Finite Element
context this kind of methods are called “non conforming” (we will not treat
them here, we refer for example to [14]).
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Chapter 2

Finite element spaces,
interpolation and error
estimates

In this chapter we apply the results obtained above to the numerical solu-
tion of elliptic boundary value problems. Among the most important and
widely used Galerkin approximations are those based on spaces of piecewise
polynomial functions. Let Ω ∈ IRn (with n = 2 or 3) be a polygonal (or
polyhedral) domain and u be the solution of the elliptic equation of Example
1.2.1 of Section 1.2. As we have seen in that section, u is the solution of
a problem like (1.6) with a coercive form a (Indeed, all what we are going
to say applies to Example (1.2.2) (the elasticity equations)). Therefore, the
convergence result of Theorem 1.3.2 applies to this problem and the question
is how to construct good approximation subspaces (i.e., such that they sat-
isfy (1.17)) VN of V = H1

0 (Ω) (the space where the exact solution belongs).
The Finite Element Method provides a systematic way of constructing this
kind of subspaces. The domain Ω is divided into a finite number of subsets
(or elements) in an appropriate way to be specified below and the approx-
imation to u is such that restricted to each element it is a polynomial of a
certain class. A simple example is the one given for 1-d problems in the first
section. We are going to see some classical examples of finite element spaces
in 2 dimensions (for extensions to 3-d we refer to [14]).
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2.1 Triangular elements of order k

Assume that we have a triangulation T = {T} of Ω ∈ IR2, i.e., Ω = ∪T∈T T .
The triangulation is admissible if the intersection of two triangles is either
empty, or a vertex, or a common side, and from now on, all the triangulations
considered are assumed to be admissible. Given a natural number k we
associate with T the space V k(T ) of continuous piecewise polynomials of
degree k, i.e.,

V k(T ) = {v ∈ C0(Ω) : v|T ∈ Pk , ∀T ∈ T }
where Pk denotes the space of polynomials of degree k (i.e., p ∈ Pk ⇔
p(x1, x2) =

∑
0≤i+j≤k aijx

i
1x

j
2).

It is not difficult to see that V k(T ) is a subspace of H1(Ω). Therefore,
the subset V k

0 (T ) ⊂ V k(T ) of functions vanishing at the boundary ∂Ω is
a subspace of H1

0 (Ω). Therefore, we can define the finite element approxi-
mation uT ∈ V k

0 (T ) to the exact solution u as its Galerkin approximation,
i.e.,

a(uT , v) = 〈L, v〉 ∀v ∈ V k
0 (T )

where a and L are the forms associated with the differential equation (see
Example 1.2.1). Since a is continuous and coercive we can apply Lemma
1.3.1 to obtain that there exists a constant C > 0, depending only on the
differential equation and the domain Ω (indeed, it will depend on the bounds
for the coefficients, on the ellipticity constant and on the domain via the
constant in the Poincaré inequality), such that

‖u− uT ‖H1 ≤ C inf
v∈V k

0 (T )
‖u− v‖H1 (2.1)

In order to have convergence we need a family of spaces satisfying (1.17).
There are two natural ways of defining finite element spaces with this prop-
erty: changing the triangulation making the size of the elements go to zero
or increasing the degree k of the polynomials. Here, we restrict our analysis
to the first strategy, known as the “h version”of the Finite Element Method.
For the other method, known as “p version” (where p is what here we call
k) we refer to [4].

As is standard in the finite element literature we introduce the parameter
h, which measures the size of the triangulation. Assume that for h → 0 we
have a family of triangulations Th of Ω such that, if we denote by hT the
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diameter of T then, h = maxT∈Th
hT . Let ρT be the inner diameter of T

(i.e., the diameter of the largest ball contained in T ). We say that the family
of triangulations {Th} is regular if there exists a constant σ > 0 such that

hT

ρT
≤ σ ∀T ∈ Th, ∀h (2.2)

Associated with Th we have the FE space V k
0 (Th) that, to simplify nota-

tion, we will denote by Vh (we drop the k since it is fixed). Analogously we
set uh = uTh

for the FE approximation to u.
With these notations, estimate (2.1) reads as follows,

‖u− uh‖H1 ≤ C inf
v∈Vh

‖u− v‖H1 (2.3)

So, in order to prove convergence of uh to u we need to verify property
(1.17) (of course with N →∞ replaced by h → 0). It is enough to show that
there are good approximations to u from Vh. A usual and natural way of
doing this is by means of Lagrange interpolation. On each triangle, a set of
nodes P1, . . . , Pm (with m = dimPk) for which the Lagrange interpolation
is well defined can be given. In other words, these interpolation nodes are
such that for any continuous function u there is a unique uI ∈ Pk such that
u(Pi) = uI(Pi) for i = 1, . . . ,m. Moreover, these interpolation nodes can be
chosen such that the global interpolation Πhu, defined to agree with uI in
each triangle, is continuous (note that it is enough to have k + 1 nodes on
each side of the triangle). Figure 2.1 below shows the usual interpolation
nodes for k = 1, 2 and 3 on a reference triangle (for a general one the nodes
are obtained by an affine transformation of this triangle). It is not difficult
to see what may be the nodes for any k (see [14]).

The following error estimates for Lagrange interpolation are known (see
[14, 7]).

Theorem 2.1.1 There exists a constant C > 0 depending on the degree k
and the constant σ in (2.2) but independent of u and hT such that

‖u−Πhu‖L2(T ) ≤ Chk+1
T ‖Dk+1u‖L2(T )

‖u−Πhu‖H1(T ) ≤ Chk
T ‖Dk+1u‖H1(T )

for any triangle T and any u ∈ Hk+1(T ), where Dk+1u denotes the tensor
of all derivatives of order k + 1 of u.
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Figure 2.1: Interpolation points for degrees k = 1, 2 and 3

Adding the estimates of the theorem over all the triangles of a partition
{Th} we obtain the following global error estimates for the interpolation
error.

Corollary 2.1.2 If the family of triangulations {Th} is regular then, there
exists a constant C > 0 independent of h and u such that

‖u−Πhu‖L2(Ω) ≤ Chk+1‖Dk+1u‖L2(Ω)

‖u−Πhu‖H1(Ω) ≤ Chk‖Dk+1u‖L2(Ω)

for any u ∈ Hk+1(Ω).

Remark 2.1.1 The regularity assumption (2.2) can be relaxed. For exam-
ple, in 2-d it can be replaced by a maximum angle condition (see for example
[5, 25] and also [18, 26, 31] where results for the 3-d case are obtained).

2.2 Error estimates for the finite element approx-
imation

Corollary 2.1.2 together with (2.3) yields the following error estimate for the
finite element approximation of degree k to u.
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Theorem 2.2.1 If the solution u ∈ Hk+1(Ω) and the family of triangula-
tions {Th} is regular, then there exists a constant C > 0 independent of h
and u such that

‖u− uh‖H1(Ω) ≤ Chk‖Dk+1u‖L2(Ω)

Theorem 2.2.1 gives an error estimate provided the exact solution is in
the Sobolev space Hk+1(Ω) (i.e., the solution is regular enough). Unfortu-
nately, this is not true in general. Let us consider k = 1 (linear elements), in
this case the theorem says that the error in H1-norm is of order h whenever
the solution is in H2(Ω). For example, for the Laplace equation

{
−∆u = f in Ω

u = 0 on ∂Ω
(2.4)

this can be proved if the polygonal domain is convex and, moreover, in this
case, the following a priori estimate holds (see [24]),

‖u‖H2(Ω) ≤ C‖f‖L2(Ω) (2.5)

and consequently we have an error estimate depending only on the right
hand side f , i.e., there exists a constant C > 0 such that

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω)

(note that we use the letter C as a generic constant, not necessarily the same
at each ocurrence, but always independent of h and the functions involved).

When the polygonal domain is not convex the solution is not in general
in H2(Ω) due to the presence of corner singularities (see [24]) and the error
is not of order h. By using more general estimates for the interpolation
error and a priori estimates for u in fractional order Sobolev spaces it can
be shown that the error is bounded by a constant times hη where 0 < η < 1
depends on the maximum interior angle of the domain. On the other hand,
when the solution has singularities one has to work in practice with locally
refined meshes and so, the local mesh size hT will be very different from one
region to another. Therefore, it is reasonable to look at the error in terms
of a parameter different than h, for example the number N of nodes in the
mesh (see [24] for some results in this direction).
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On the other hand, for k > 1 and polygonal domain Ω the solution is
not in general in Hk+1(Ω) (even if Ω is convex!) and therefore the order of
convergence is less than k. The estimate given by Theorem 2.2.1 for k > 1
is of interest for the case of a domain with a smooth boundary (where, of
course, the triangulation would not cover exactly the domain and so we
would have to analyze the error introduced by this fact (see for example
[32]). In this case, the a priori estimate (2.5) can be generalized (see [1, 22])
for any k (provided ∂Ω is C∞) and an estimate in terms of f can be obtained
for the error, showing in particular that the optimal order k is obtained in
the H1-norm, whenever f is in Hk−1.

Theorem 2.2.1 gives in particular an error estimate for the L2-norm.
However, in view of Corollary 2.1.2 a natural question is whether the error
for the finite element approximation is also of order k+1 for regular solutions.
The following theorem shows that the answer is positive provided Ω is a
convex polygon (or has a smooth boundary). The proof is based on a duality
argument due to Aubin and Nitsche (see [14]) and the a priori estimate (2.5),
and is in fact very general and has been applied to many situations although,
for the sake of simplicity, we consider here the model problem (2.4).

Theorem 2.2.2 If Ω is a convex polygon, the solution u ∈ Hk+1(Ω) and the
family of triangulations {Th} is regular, then there exists a constant C > 0
independent of h and u such that

‖u− uh‖L2(Ω) ≤ Chk+1‖Dk+1u‖L2(Ω)

Proof. Set e = u− uh and let φ be the solution of the problem
{
−∆φ = e in Ω

φ = 0 on ∂Ω
(2.6)

Then, using the error equation (1.18) and the estimate for the interpolation
error in H1 given by Theorem 2.1.2 we have

‖e‖2
L2(Ω) =

∫

Ω
e(−∆φ) =

∫

Ω
∇e∇φ =

∫

Ω
∇e∇(φ−Πhφ)

≤ ‖∇e‖L2(Ω)‖∇(φ−Πhφ)‖L2(Ω) ≤ Ch‖φ‖H2(Ω)‖∇e‖L2(Ω)

and using the a priori estimate (2.5) we obtain

17



‖e‖L2(Ω) ≤ Ch‖∇e‖L2(Ω)

which, together with Theorem 2.2.1 concludes the proof.

2.3 Quadrilateral elements

The results obtained in the previous section apply to other finite element
spaces. We consider here the case of piecewise polynomials on partitions
made of quadrilaterals. First, assume that the elements are rectangles. For
a given k the natural space of polynomials on a rectangular element is that
of polynomials of degree k in each variable.

For example, consider the case k = 1. In order to have continuity be-
tween neighboring rectangles the value at a vertex has to be the same for
any element sharing that vertex. Therefore, we need a space of, at least,
dimension 4 (note that dimP1 = 3 and so it is not an adequate space for
rectangles). The appropriate space is that of bilinear functions, i.e., poly-
nomials of the form

p(x1, x2) = a + bx1 + cx2 + dx1x2

For a general value of k we define

Qk = {p ∈ C0 : p(x1, x2) =
∑

0≤i,j≤k

aijx
i
1x

j
2}

Note that Qk is the tensor product of the spaces of polynomials of degree k
in each variable (a property that is useful for computational purposes).

Observe that dimQk = (k + 1)2 and so, in order to define the Lagrange
interpolation nodes for Qk we can take (k + 1)2 equidistributed points in
the rectangle. Figure 2.2 shows the interpolation nodes for k = 1 and 2.
Since, on each side there are k +1 nodes, the Lagrange interpolation will be
continuous from one element to another.

The error estimates for the Lagrange interpolation given for triangular
elements are valid in this case. Indeed, a general proof of Theorem 2.1.2
can be given which is based on the fact that the interpolation is exact for
polynomials in Pk, plus approximation properties of Pk, namely, the so
called Bramble-Hilbert lemma (see [14]). So, the important point here is
that Pk ⊂ Qk.

Consequently, all the convergence results obtained for triangular ele-
ments (Theorems 2.2.1 and 2.2.2) hold for rectangular partitions also.
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Figure 2.2: Interpolation points for k = 1 and 2
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Figure 2.3: Interpolation points for Serendipity elements of order k = 2

The space Qk can be reduced to a subspace Qred
k preserving the same

convergence properties provided Pk ⊂ Qred
k and that there are enough nodes

left on the boundary in order to ensure continuity. To give an example, we
consider k = 2. In this case, one can eliminate the term corresponding
to x2

1x
2
2 and the interior node. So, dimQred

k = 8 and the interpolation
nodes can be taken as those in Figure 2.3. This kind of spaces are called
Serendipity elements (see [14] for the general case). Observe that in this
way, we reduce the size of the algebraic problem and so the computational
cost, still providing the same order of convergence (in fact Theorems 2.2.1
and 2.2.2 hold also in this case).

More generally, we can consider partitions including non rectangular
quadrilaterals. Let us analyze the case k = 1. A general quadrilateral
can be obtained by a bilinear transformation of a reference rectangle K̂
with vertices P̂j , j = 1, . . . , 4, i.e., given a quadrilateral K with vertices
Pj , j = 1, . . . , 4 we can find a transformation F = (F1, F2) such that
Fj ∈ Q1 , j = 1, 2, F(P̂j) = Pj , j = 1, . . . , 4 and F(K̂) = K.
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Using F we can define the space on K by transformingQ1 in the following
way:

Q̃1 = {p ∈ C0 : p ◦ F ∈ Q1}
Note that Q̃1 is not a space of polynomials. However, for computational

purposes one can work on the reference element via the transformation F .
The convergence results are also valid in this case.

The space Q̃1 is an example of the so called isoparametric finite elements
(note that the transformation F has the same form as the interpolation func-
tions on the reference element). Higher order isoparametric finite elements
would produce curved boundaries. For example, if we transform a triangle
using a quadratic F we will obtain a “curved side” triangle. So, this kind
of elements are useful to approximate curved boundaries (see [14] for more
examples and a general analysis).
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Chapter 3

Mixed finite elements

Finite element methods in which two spaces are used to approximate two dif-
ferent variables receive the general denomination of mixed methods. In some
cases, the second variable is introduced in the formulation of the problem
because of its physical interest and it is usually related with some derivatives
of the original variable. This is the case, for example, in the elasticity equa-
tions, where the stress can be introduced to be approximated at the same
time as the displacement. In other cases there are two natural independent
variables and so, the mixed formulation is the natural one. This is the case
of the Stokes equations, where the two variables are the velocity and the
pressure.

The mathematical analysis and applications of mixed finite element meth-
ods have been widely developed since the seventies. A general analysis for
this kind of methods was first developed by Brezzi [9]. We also have to
mention the papers by Babuska [3] and by Crouzeix and Raviart [16] which,
although for particular problems, introduced some of the fundamental ideas
for the analysis of mixed methods. We also refer the reader to [21, 20], where
general results were obtained, and to the books [13, 30, 23].

In this chapter we analyze first the mixed approximation of second order
elliptic problems and afterwards we introduce the general abstract setting for
mixed formulations and prove general existence and approximation results.
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3.1 Mixed approximation of second order elliptic
problems

In this section we analyze the mixed approximation of the scalar second
order elliptic problem

{
−div(a∇p) = f in Ω

p = 0 on ∂Ω
(3.1)

where Ω ⊂ IRn n = 2, 3 is a polygonal (or polyhedral) domain and a = a(x)
is a function bounded by above and below by positive constants (we take
this problem to simplify notation but all what we are going to see applies
to the case in which a is a matrix like in Example 1.2.1).

In many applications the variable of interest is

u = −a∇p

and then, it could be desirable to use a mixed finite element method which
approximates u and p simultaneously. With this purpose the problem (3.1)
is decomposed into a first order system as follows:





u + a∇p = 0 in Ω
divu = f in Ω

p = 0 on ∂Ω
(3.2)

Writing µ = 1
a(x) the first equation in (3.2) reads

µu +∇p = 0 in Ω

therefore, multiplying by test functions and integrating by parts we obtain
the following weak formulation of problem (3.2) appropriate for mixed finite
element methods,

{ ∫
Ω µuv dx− ∫

Ω p div v dx = 0 ∀v ∈ H(div,Ω)∫
Ω q div u dx =

∫
Ω fq dx ∀q ∈ L2(Ω)

(3.3)

where
H(div,Ω) = {v ∈ L2(Ω)n : div v ∈ L2(Ω)}

is the Hilbert space with the norm

‖v‖H(div,Ω) = ‖v‖L2(Ω) + ‖div v‖L2(Ω)
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Observe that the weak formulation (3.3) involves the divergence of the
solution and test functions but not arbitrary first derivatives. This fact
allows us to work on the space H(div, Ω) instead of the smaller H1(Ω)n

and this will be important for the finite element approximation because
piecewise polynomials vector functions do not need to have both components
continuous to be in H(div,Ω), but only their normal component.

Problem (3.3) can be written as problem (1.6) on the space H(div,Ω)×
L2(Ω) with the symmetric bilinear form

c((u, p), (v, q)) =
∫

Ω
µuv dx−

∫

Ω
p div v dx−

∫

Ω
q div u dx

and the linear form
L((v, q)) = −

∫

Ω
fq dx

Indeed, (u, p) ∈ H(div, Ω)× L2(Ω) is the solution of (3.3) if and only if

c((u, p), (v, q)) = L((v, q)) ∀(v, q) ∈ H(div,Ω)× L2(Ω)

(taking (v, 0) and (0, q) we recover the two equations (3.3)).
Therefore, we can define Galerkin approximations to (u, p) using the

general method described in Chapter 1. The bilinear form c is not coercive
but it can be shown that it satisfies the inf-sup condition (1.9) (and so (1.10)
since it is symmetric) and therefore we can apply the results of Chapter 1.
Problem (3.3) corresponds to the optimality conditions of a saddle point
problem. In the next section we will analyze this kind of problems in an
abstract setting to find sufficient conditions for the form c to satisfy the
inf-sup condition (both continuous and discrete).

However, the problem considered in this section has some particular
properties which allow to simplify the analysis and to obtain better results
than those provided by the general theory. We will follow the analysis of [17]
(see also [19] where a similar analysis is applied to obtain error estimates in
other norms).

In order to define finite element approximations to the solution (u, p)
of (3.3) we need to have finite element subspaces of H(div,Ω) and L2(Ω).
Using the notation of Chapter 2 we assume that we have a family Th of Ω and
so we have to construct piecewise polynomials spaces Vh and Qh associated
with Th such that

Vh ⊂ H(div, Ω) and Qh ⊂ L2(Ω)
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The general theory will show us, in particular, that in order to have
stability (and so convergence) Vh and Qh can not be chosen arbitrarily but
they have to be related. For the problem considered here several choices of
spaces have been introduced for 2 and 3 dimensional problems and we will
recall some of them in the next sections.

Now, we give an error analysis assuming some properties on the spaces
that, as we will see, are verified in many cases.

The mixed finite element approximation (uh, ph) ∈ Vh × Qh is defined
by

{ ∫
Ω µuhv dx− ∫

Ω ph div v dx = 0 ∀v ∈ Vh∫
Ω q div uh dx =

∫
Ω fq dx ∀q ∈ Qh

(3.4)

We assume that the finite element spaces satisfy the following properties:

div Vh = Qh (3.5)

and that there exists an operator Πh : H1(Ω)n → Vh such that
∫

Ω
div(u−Πhu)q = 0 ∀u ∈ H1(Ω)n , ∀q ∈ Qh (3.6)

Introducing the L2-projection Ph : L2(Ω) → Qh, properties (3.5) and
(3.6) can be sumarized in the following commutative diagram,

H1(Ω)n div−→ L2(Ω)
Πh

y
yPh

Vh
div−→ Qh −→ 0

Before starting with the error analysis let us see that under these con-
ditions on the spaces, the discrete solution exists and is unique. Since this
is a finite dimensional problem it is enough to show uniqueness. So, assume
that

{ ∫
Ω µuhv dx− ∫

Ω ph div v dx = 0 ∀v ∈ Vh∫
Ω q div uh dx = 0 ∀q ∈ Qh

then, since div Vh ⊂ Qh, we can take q = div uh in the second equation to
conclude that div uh = 0 and taking v = uh in the first equation we obtain
uh = 0. Therefore,

∫
Ω ph div v dx = 0 ∀v ∈ Vh. But div Vh ⊃ Qh and so,

taking v ∈ Vh such that div v = ph we obtain that ph = 0.
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The following theorem gives an estimate that will provide convergence
with optimal order error estimates in the concrete examples.

Theorem 3.1.1 If the spaces Vh and Qh are such that properties (3.5) and
(3.6) hold, then there exists a constant C > 0 depending only on the bounds
of the coefficient a of the differential equation such that

‖u− uh‖L2(Ω) ≤ C‖u−Πhu‖L2(Ω)

Proof. Subtracting (3.4) from (3.3) we obtain the error equations
∫

Ω
µ(u− uh)v dx−

∫

Ω
(p− ph) div v dx = 0 ∀v ∈ Vh (3.7)

and, ∫

Ω
q div (u− uh) dx = 0 ∀q ∈ Qh (3.8)

Using (3.6) and (3.8) we obtain
∫

Ω
q div (Πhu− uh) dx = 0 ∀q ∈ Qh

and, since (3.5) holds we can take q = div (Πhu− uh) to conclude that

div (Πhu− uh) = 0

therefore, taking v = Πhu− uh in (3.7) we obtain
∫

Ω
µ(u− uh)(Πhu− uh) dx = 0

and so,

‖(Πhu− uh)‖2
L2(Ω) ≤ ‖a‖∞

∫

Ω
µ(Πhu− u)(Πhu− uh) dx

≤ ‖a‖∞‖µ‖∞‖(Πhu− u)‖L2(Ω)‖(Πhu− uh)‖L2(Ω)

and the proof concludes by using the triangle inequality.
In the next theorem we obtain error estimates for the scalar variable p.

For the case in which Ω is convex and the coefficient a is smooth enough to
have the a priori estimate
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‖p‖H2(Ω) ≤ C‖f‖L2(Ω) (3.9)

we also obtain a higher order error estimate for ‖Php− ph‖L2(Ω) by using a
duality argument. For the proof of this result we will also assume that the
following estimates hold,

‖q − Phq‖L2(Ω) ≤ Ch2‖q‖H2(Ω) ∀q ∈ H2(Ω) (3.10)

and,
‖v −Πhv‖L2(Ω) ≤ Ch‖v‖H1(Ω) ∀v ∈ H1(Ω) (3.11)

In particular,
‖Πhv‖L2(Ω) ≤ C‖v‖H1(Ω) (3.12)

The first estimate will be true if the space of polynomials defining Qh on each
element contains P1. Therefore, this hypothesis excludes only the lowest
order cases. The estimate for Πh holds in all the examples as we are going
to see.

The estimate for ‖Php − ph‖L2(Ω) given by this theorem is important
because it can be used to construct superconvergent approximations (i.e.,
approximations which converge at a higher order than ph) of p (see for
example [6]).

Theorem 3.1.2 If the spaces Vh and Qh satisfy (3.5), (3.6) and Πh satisfies
(3.12) then, there exists a constant C such that

‖p− ph‖L2(Ω) ≤ C{‖p− Php‖L2(Ω) + ‖u−Πhu‖L2(Ω)} (3.13)

If moreover, the equation (3.1) satisfies the a priori estimate (3.9), and
(3.11) and (3.10) hold, then, there exists a constant C > 0 such that

‖Php− ph‖L2(Ω) ≤ C{h‖u− uh‖L2(Ω) + h2‖div(u− uh)‖L2(Ω)} (3.14)

Proof. First we observe that (3.6) together with (3.12) imply that for
any q ∈ Qh there exists vh ∈ Vh such that div vh = q and, ‖vh‖L2(Ω) ≤
C‖q‖L2(Ω). Indeed, take v ∈ H1(Ω) such that div v = q. Such a v can be
obtained by solving the equation

{
∆φ = q in B

φ = 0 on ∂B
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where B is a ball containing Ω and taking v = ∇φ. Then, from the a priori
estimate (2.5) on B we know that ‖v‖H1(Ω) ≤ C‖q‖L2(Ω). Now, we take
vh = Πhv and it follows from (3.6) and (3.12) that it satisfies the required
conditions.

Now, from the error equation (3.7) and (3.5) we have
∫

Ω
(Php− ph) div v dx =

∫

Ω
(u− uh)v dx

and so, taking v ∈ Vh such that div v = (Php− ph) and

‖v‖L2(Ω) ≤ C‖(Php− ph)‖L2(Ω)

we obtain

‖(Php− ph)‖2
L2(Ω) ≤ C‖u− uh‖L2(Ω)‖(Php− ph)‖L2(Ω)

which combined with Theorem 3.1.1 and the triangular inequality yields
(3.13).

In order to prove (3.14) we use a duality argument. Let φ be the solution
of {

div (a∇φ) = Php− ph in Ω
φ = 0 on ∂Ω

Using (3.6), (3.5), (3.7), (3.8), (3.10) and (3.11) we have,

‖Php−ph‖2
L2(Ω) =

∫

Ω
(Php−ph)div (a∇φ) dx =

∫

Ω
(Php−ph) div Πh(a∇φ) dx

=
∫

Ω
(p− ph) div Πh(a∇φ) dx =

∫

Ω
µ(u− uh)(Πh(a∇φ)− a∇φ) dx

+
∫

Ω
(u−uh)∇φ dx =

∫

Ω
µ(u−uh)(Πh(a∇φ)−a∇φ) dx−

∫

Ω
div (u−uh)(φ−Phφ) dx

≤ C‖u− uh‖L2(Ω)h‖φ‖H2(Ω) + C‖div (u− uh)‖L2(Ω)h
2‖φ‖H2(Ω)

where for the last inequality we have used that a is smooth (for example
C1). The proof concludes by using the a priori estimate (3.9).
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3.2 Examples of mixed finite element spaces

There are several possible choices of spaces satisfying the conditions required
for the convergence results proved above. The main question is how to
construct Vh, which has to be a subspace of H(div, Ω), and the associated
operator Πh. In this section we recall some of the known spaces Vh with the
corresponding Qh. We refer the reader to the book [13] for a more complete
review of this kind of spaces as well as for other interesting applications of
them.

We consider the 2-d case and our first example are the Raviart-Thomas
spaces introduced in [29]. Consider first the case of triangular elements.
With the notation of Chapter 2 we assume that we have a regular family of
triangulations {Th} of Ω. Given an integer number k ≥ 0 we define

RTk(T ) = P2
k + (x1, x2)Pk (3.15)

and

Vh = {v ∈ H(div,Ω) : v|T ∈ RTk(T ) ∀T ∈ Th} (3.16)

In the following lemma we give some elementary but very useful prop-
erties of the spaces RTk(T ). We denote with `i i = 1, 2, 3, the sides of a
triangle T and with ni its corresponding exterior normal.

Lemma 3.2.1 a) dim RTk(T ) = (k + 1)(k + 3)

b) If v ∈ RTk(T ) then, v · ni ∈ Pk(`i) for i = 1, 2, 3

c) If v ∈ RTk(T ) is such that div v = 0 then, v ∈ P2
k

Proof. Any v ∈ RTk(T ) can be written as

v = w + (
∑

i+j=k

aijx
i+1
1 xj

2,
∑

i+j=k

aijx
i
1x

j+1
2 ) (3.17)

with w ∈ P2
k . Then, a) follows from the fact that dimP2

k = (k + 2)(k + 1)
and that there are k + 1 coefficients aij in the definition of v above.

Now, if a side is on a line of equation rx1 + sx2 = t, its normal direction
is given by n = (r, s) and, if v = (w1 +x1w +w2 +x2w) with w1, w2, w ∈ Pk

we have
v · n = rw1 + sw2 + tw ∈ Pk
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Figure 3.1: Degrees of freedom for RT0 and RT1

Finally, if div v = 0 we take the divergence in the expression (3.17) and
conclude easily that aij = 0 for all i, j and therefore c) holds.

The approximation space for the scalar variable p is chosen as

Qh = {q ∈ L2(Ω) : q|T ∈ Pk : ∀T ∈ Th} (3.18)

Note that we do not require any continuity for q ∈ Qh, since this only
needs to be a subspace of L2(Ω). With these definitions we see immediately
that div Vh ⊂ Qh. The other inclusion, and thus (3.5), will be a consequence
of the existence of the operator Πh satisfying (3.6) as was shown in the proof
of Theorem 3.1.2.

In order to construct the operator Πh we proceed as follows. First we
observe that a piecewise polynomial vector function will be in H(div,Ω)
if and only if it has continuous normal component (this can be verified
by applying the divergence theorem). Therefore, we can take the normal
components at (k + 1) points on each side as degrees of freedom in order to
ensure continuity. Figure 3.1 shows the degrees of freedom for k = 0 and
k = 1. The arrows indicate normal components values and the filled circle,
values of v (and so it corresponds to two degrees of freedom).

To define the operator Πh : H1(Ω)2 → Vh, the degrees of freedom are
taken as averages instead of point values, in order to satisfy condition (3.6).
This operator is defined locally in the following lemma.

Lemma 3.2.2 Given a triangle T and v ∈ H1(T )2 there exists a unique
ΠTv ∈ RTk(T ) such that
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∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3 (3.19)

and ∫

T
ΠTv · pk−1 dx =

∫

T
v · pk−1 dx ∀pk−1 ∈ P2

k−1 (3.20)

Proof. The number of conditions defining ΠTv, (k + 1)(k + 3), equals the
dimension of RTk(T ). Therefore, it is enough to verify uniqueness. So, take
v ∈ RTk(T ) such that

∫

`i

v · nipk d` = 0 ∀pk ∈ Pk(`i) , i = 1, 2, 3 (3.21)

and ∫

T
v · pk−1 dx = 0 ∀pk−1 ∈ P2

k−1 (3.22)

From b) of Lemma 3.2.1 and (3.21) it follows that v · ni = 0. On the
other hand, using (3.21) and (3.22) we have

∫

T
(div v)2 dx = −

∫

T
v · ∇(div v) dx +

∫

∂T
v · n div v d` = 0

because ∇(div v) ∈ P2
k−1 and div v|`i ∈ Pk(`i). Consequently div v = 0

which together with c) of Lemma 3.2.1 implies that there exists ψ ∈ Pk+1

such that v = curl ψ = (− ∂ψ
∂x2

, ∂ψ
∂x1

). But, since v · ni = 0, the tangential
derivatives of ψ vanish on the three sides. Therefore ψ is constant on ∂T
and, since it is defined up to a constant, we can take ψ = 0 on ∂T and then,
ψ = bT pk−2 where bT is a bubble function on T (i.e., a polynomial of degree
3 vanishing on ∂T ) and pk−2 ∈ Pk−2.

Now, using again (3.22) we have that, for any p = (p1, p2) ∈ P2
k−1

0 =
∫

T
curl ψ · p dx =

∫

T
ψ(

∂p1

∂x2
− ∂p2

∂x1
) dx =

∫

T
bT pk−2(

∂p1

∂x2
− ∂p2

∂x1
) dx

and taking p such that ( ∂p1

∂x2
− ∂p2

∂x1
) = pk−2 we conclude that pk−2 = 0 and

then v = 0 as we wanted to see.
In view of Lemma 3.2.2 we can define the operator Πh : H1(Ω)2 → Vh

by Πhv|T = ΠTv. Observe that Πhv ∈ Vh because the degrees of freedom
defining ΠT enforce the continuity of the normal component between two
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neigbour elements. On the other hand it is easy to see that Πh satisfies
the fundamental property (3.6). Indeed, by using (3.19) and(3.20) it follows
that for any v ∈ H1(T )2 and any q ∈ Pk∫

T
div (v −ΠTv)q dx = −

∫

T
(v −ΠTv) · ∇q dx +

∫

∂T
(v −ΠTv) · nq = 0

In order to prove convergence by using the general results obtained in
Section 3.1, we need to analyze the approximation properties of the oper-
ator Πh. The following lemma gives error estimates for v − ΠTv on each
T . We omit the proof, which uses general standard arguments for polyno-
mial preserving operators (see [14]). The main difference with the proof for
Lagrange interpolation is that here we have to use an appropriate transfor-
mation which preserves the degrees of freedom defining ΠTv. It is known
as the Piola transform and is defined in the following way. Given the affine
map F which transform T̂ into T we define for v̂ ∈ L2(T̂ )2

v(x) =
1

J(x̂)
DF (x̂)v̂(x̂)

where x = F (x̂), DF is the Jacobian matrix of F and, J = |detDF |. We
refer to [29, 33] for details.

Lemma 3.2.3 There exists a constant C > 0 depending on the constant σ
in (2.2) such that for any v ∈ Hm(T )2 and 1 ≤ m ≤ k + 1

‖v −ΠTv‖L2(T ) ≤ Chm
T ‖v‖Hm(T ) (3.23)

Now we can apply the results of Section 3.1 together with (3.23) to obtain
the following error estimates for the mixed finite element approximation of
problem (3.1) obtained with the Raviart-Thomas space of order k.

Theorem 3.2.4 If the family of triangulations {Th} is regular and u ∈
Hk+1(Ω) and p ∈ Hk+1(Ω), then the mixed finite element approximation
(uh, ph) ∈ Vh ×Qh satisfies

‖u− uh‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω) (3.24)

and
‖p− ph‖L2(Ω) ≤ Chk+1{‖u‖Hk+1(Ω) + ‖p‖Hk+1(Ω)} (3.25)

and when Ω is convex, k ≥ 1 and p ∈ Hk+2(Ω)

‖Php− ph‖L2(Ω) ≤ Chk+2{‖u‖Hk+1(Ω) + ‖p‖Hk+2(Ω)} (3.26)
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Proof. The result follows immediately from Theorems 3.1.1 and 3.1.2, (3.23)
and standard error estimates for the L2 projection.

The Raviart-Thomas spaces defined above were the first introduced for
the mixed approximation of second order elliptic problems. They were con-
structed in order to approximate both vector and scalar variables with the
same order. However, if one is most interested in the approximation of the
vector variable u one can try to use different order approximations for each
variable in order to reduce the degrees of freedom (thus, reducing the com-
putational cost) while preserving the same order of convergence for u as
the one provided by the RTk spaces. This is the main idea to define the
following spaces which were introduced by Brezzi, Douglas and Marini [12].
Although with this choice the order of convergence for p is reduced, estimate
(3.26) allows to improve it by a post processing of the computed solution
[12]. As for all the examples below, we will define the local spaces for each
variable. Clearly, the global spaces Vh and Qh are defined as in (3.16) and
(3.18) replacing RTk and Pk by the corresponding local spaces.

For k ≥ 1 and T a triangle, the BDMk(T ) is defined in the following
way:

BDMk(T ) = P2
k (3.27)

and the corresponding space for the scalar variable is Pk−1.
Observe that dimBDMk(T ) = (k+1)(k+2). For example, dimBDM1(T ) =

6 and dim BDM2(T ) = 12. Figure 3.2 shows the degrees of freedom for these
two spaces. The arrows correspond to normal component degrees of freedom
while the circles indicate the internal degrees of freedom corresponding to
the second and third conditions in the definition of ΠT below.

The operator ΠT for this case is defined by the following degrees of
freedom:

∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3

∫

T
ΠTv · ∇pk−1 dx =

∫

T
v · ∇pk−1 dx ∀pk−1 ∈ Pk−1

and, when k ≥ 2
∫

T
ΠTv · curl bT pk−2 dx =

∫

T
v · curl bT pk−2 dx ∀pk−2 ∈ Pk−2
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Figure 3.2: Degrees of freedom for BDM1 and BDM2

The reader can check that all the conditions for convergence are satisfied
in this case. Property (3.6) follows from the definition of ΠT and the proof
of its existence is similar to that of Lemma 3.2.2. Consequently, the general
analysis provides the same error estimate for u as that in Theorem 3.2.4
while for p the order of convergence is reduced in one with respect to the
estimate in that theorem, i.e.,

‖p− ph‖L2(Ω) ≤ Chk{‖u‖Hk(Ω) + ‖p‖Hk(Ω)}

and the estimate for ‖Php − ph‖L2(Ω) is the same as that in Theorem 3.2.4
with the restriction k ≥ 2.

Several rectangular elements have been introduced for mixed approxi-
mations also. We recall some of them (and again refer to [13] for a more
complete review).

First we define the spaces introduced by Raviart and Thomas [29]. For
nonnegative integers j, k we call

Qk,m = {q ∈ C0 : q(x1, x2) =
k∑

i=0

m∑

j=0

aijx
i
1x

j
2}

then, the RTk(R) space on a rectangle R is given by

RTk(R) = Qk+1,k ×Qk,k+1

and the space for the scalar variable isQk. It can be checked that dim RTk(R) =
2(k+1)(k+2). Figure 3.3 shows the degrees of freedom for k = 0 and k = 1.
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Figure 3.3: Degrees of freedom for RT0 and RT1

Denoting with `i, i = 1, 2, 3, 4 the four sides of R, the degrees of freedom
defining the operator ΠT for this case are

∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3, 4

and (for k ≥ 1)
∫

R
ΠTv · φk dx =

∫

R
v · φk dx ∀φk ∈ Qk−1,k ×Qk,k−1

Our last example in the 2-d case are the spaces introduced by Brezzi,
Douglas and Marini on rectangular elements. They are defined for k ≥ 1 as

BDMk(R) = P2
k + 〈curl (xk+1y)〉+ 〈curl (xyk+1)〉

and the associated scalar space is Pk−1. It is easy to see that dimBDMk(R) =
(k + 1)(k + 2) + 2. The degrees of freedom for k = 1 and k = 2 are shown
in Figure 3.4.

The operator ΠT is defined by

∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3, 4

and (for k ≥ 2)
∫

R
ΠTv · pk−2 dx =

∫

R
v · pk−2 dx ∀pk−2 ∈ P2

k−2
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Figure 3.4: Degrees of freedom for BDM1 and BDM2

The RTk as well as the BDMk spaces on rectangles have analogous
properties to those on triangles. Therefore the same error estimates obtained
for triangular elements are valid in both cases.

3-d extensions of the spaces defined above have been introduced by Ned-
elec [27, 28] and by Brezzi, Douglas, Durán and Fortin [10]. For tetrahedral
elements the spaces are defined in an analogous way, although the construc-
tion of the operator ΠT requires a different analysis (we refer to [27] for the
extension of the RTk spaces and to [28, 10] for the extension of the BDMk

spaces). In the case of 3-d rectangular elements, the extensions of RTk are
again defined in an analogous way [27] and the extensions of BDMk [10] can
be defined for a 3-d rectangle R by

BDDFk(R) = P3
k + 〈{curl (0, 0, xyi+1zk−i), i = 0, . . . , k}〉

+〈{curl (0, xk−iyzi+1, 0), i = 0, . . . , k}〉
+〈{curl (xi+1yk−iz, 0, 0), i = 0, . . . , k}〉

All the convergence results obtain in 2-d can be extended for the 3-d spaces
mentioned here. Other families of spaces, in both 2 and 3 dimensions which
are intermediate between the RT and the BDM spaces were introduced and
analized by Brezzi, Douglas, Fortin and Marini [11].

3.3 The general abstract setting

The problem considered in the previous section is a particular case of a
general class of problems that we are going to analize in this section. Let V
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and Q be two Hilbert spaces and suppose that a( , ) and b( , ) are continuous
bilinear forms on V × V and V ×Q respectively, i.e.,

|a(u, v)| ≤ ‖a‖‖u‖V ‖v‖V ∀u ∈ V, ∀v ∈ V

and
|b(v, q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀v ∈ V, ∀q ∈ Q

We can introduce the continuous operators A : V → V ′, B : V → Q′

and its adjoint B∗ : Q → V ′ defined by,

〈Au, v〉V ′×V = a(u, v)

and
〈Bv, q〉Q′×Q = b(v, q) = 〈v, B∗q〉V×V ′

Consider the following problem: given f ∈ V ′ and g ∈ Q′ find (u, p) ∈
V ×Q solution of

{
a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ V

b(u, q) = 〈g, q〉 ∀q ∈ Q
(3.28)

which can also be written as
{

Au + B∗p = f in V ′

Bu = g in Q′ (3.29)

This is a particular (but very important!) case of the general problem
(1.6) analyzed in Chapter 1. Indeed, equations (3.28) can be written as

c((u, p), (v, q)) = 〈f, v〉+ 〈g, q〉 ∀(v, q) ∈ V ×Q (3.30)

where c is the continuous bilinear form on V ×Q defined by

c((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q)

The form c is not coercive and so, in order to apply the theory one would
have to show that it satisfies the inf-sup conditions (1.9) and (1.10). We will
give sufficient conditions (indeed they are also necessary although we are
not going to prove it here, we refer to [13, 23]) on the forms a and b for
the existence and uniqueness of a solution of problem (3.28). Below, we
will also show that their discrete version ensures the stability condition (i.e.,
the inf-sup condition (1.9) for the bilinear form c) and therefore, optimal
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order error estimates for the Galerkin approximations. These results were
obtained by Brezzi [9] (see also [13] where more general results are proven).

Let us introduce W = KerB ⊂ V and for g ∈ Q′, W (g) = {v ∈ V :
Bv = g}. Now, if (u, p) ∈ V × Q is a solution of (3.28) then, it is easy to
see that u ∈ W (g) is a solution of the following problem,

a(u, v) = 〈f, v〉 ∀v ∈ W (3.31)

We will find conditions under which problems (3.28) and (3.31) are equiv-
alent, in the sense that given a solution u ∈ W (g) of (3.31), there exists a
unique p ∈ Q such that (u, p) is a solution of (3.28).

Lemma 3.3.1 The following properties are equivalent:

a) There exists β > 0 such that

sup
v∈V

b(v, q)
‖v‖V

≥ β‖q‖Q ∀q ∈ Q (3.32)

b) B∗ is an isomorphism from Q onto W 0 and,

‖B∗q‖V ′ ≥ β‖q‖Q ∀q ∈ Q (3.33)

c) B is an isomorphism from W⊥ onto Q′ and,

‖Bv‖Q′ ≥ β‖v‖V ∀v ∈ W⊥ (3.34)

Proof. Assume that a) holds. Then, (3.33) is satisfied and so B∗ is
injective and ImB∗ is a closed subspace of V ′ (this follows easily from (3.33)
as was shown in the proof of Theorem 1.2.1). Consequently, using (1.13) we
obtain that ImB∗ = W 0 and therefore b) holds.

Now, we observe that W 0 can be isometrically identified with (W⊥)′.
Indeed, denoting with P⊥ : V → W⊥ the orthogonal projection, for any
g ∈ (W⊥)′ we define g̃ ∈ W 0 by g̃ = g ◦ P⊥ and it is easy to check that
g → g̃ is an isometric bijection from (W⊥)′ onto W 0 and then, we can
identify these two spaces. Therefore b) and c) are equivalent.

Corollary 3.3.2 If the form b satisfies (3.32) then, problems (3.28) and
(3.31) are equivalent, that is, there exists a unique solution of (3.28) if and
only if there exists a unique solution of (3.31).
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Proof. If (u, p) is a solution of (3.28) we know that u ∈ W (g) and that it
is a solution of (3.31). It rests only to check that for a solution u ∈ W (g) of
(3.31) there exists a unique p ∈ Q such that B∗p = f −Au, but this follows
from b) of the previous lemma since, as it is easy to check, f −Au ∈ W 0.

Now we can prove the fundamental existence and uniqueness theorem
for problem (3.28).

Theorem 3.3.3 If b satisfies the inf-sup condition (3.32) and there exists
α > 0 such that a satisfies

sup
v∈W

a(u, v)
‖v‖V

≥ α‖u‖V ∀u ∈ W (3.35)

sup
u∈W

a(u, v)
‖u‖V

≥ α‖v‖V ∀v ∈ W (3.36)

then there exists a unique solution (u, p) ∈ V × Q of problem (3.28) and
moreover,

‖u‖V ≤ 1
α
‖f‖V ′ +

1
β

(1 +
‖a‖
α

)‖g‖Q′ (3.37)

and
‖p‖Q ≤ 1

β
(1 +

‖a‖
α

)‖f‖V ′ +
‖a‖
β2

(1 +
‖a‖
α

)‖g‖Q′ (3.38)

Proof. First we show that there exists a solution u ∈ W (g) of problem
(3.31). Since (3.32) holds, we know from Lemma 3.3.1 that there exists a
unique u0 ∈ W⊥ such that Bu0 = g and

‖u0‖V ≤ 1
β
‖g‖Q′ (3.39)

then, the existence of a solution u ∈ W (g) of (3.31) is equivalent to the
existence of w = u− u0 ∈ W such that

a(w, v) = 〈f, v〉 − a(u0, v) ∀v ∈ W

but, from (3.35), (3.36) and Theorem 1.2.1, it follows that such a w exists
and moreover,

‖w‖V ≤ 1
α
{‖f‖V ′ + ‖a‖‖u0‖V } ≤ 1

α
{‖f‖V ′ +

‖a‖
β
‖g‖Q′}
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where we have used (3.39).
Therefore, u = w + u0 is a solution of (3.31) and satisfies (3.37).
Now, from Corollary (3.3.2) it follows that there exists a unique p ∈ Q

such that (u, p) is a solution of (3.28). On the other hand, from Lemma
3.3.1 it follows that (3.33) holds and by using it, it is easy to check that

‖p‖Q ≤ 1
β
{‖f‖V ′ + ‖a‖‖u‖V }

which combined with (3.37) yields (3.38). Finally, the uniqueness of the
solution follows from (3.37) and (3.38).

Assume now that we have two families of subspaces Vh ⊂ V and Qh ⊂ Q.
We can define the Galerkin approximation (uh, ph) ∈ Vh × Qh to be the
solution (u, p) ∈ V ×Q of problem (3.28), i.e., (uh, ph) satisfies,

{
a(uh, v) + b(v, ph) = 〈f, v〉 ∀v ∈ Vh

b(uh, q) = 〈g, q〉 ∀q ∈ Qh
(3.40)

For the error analysis it is convenient to introduce the associated operator
Bh : Vh → Q′

h defined by

〈Bhv, q〉Q′
h
×Qh

= b(v, q)

and the subsets of Vh, Wh = Ker Bh and

Wh(g) = {v ∈ Vh : Bhv = g in Q′
h}

where g is restricted to Qh.
In order to have a well-defined Galerkin approximation we need to know

that there exists a unique solution (uh, ph) ∈ Vh ×Qh of problem (3.40). In
view of Theorem 3.3.3, this will be true if there exist α∗ > 0 and β∗ > 0
such that

sup
v∈Wh

a(u, v)
‖v‖V

≥ α∗‖u‖V ∀u ∈ Wh (3.41)

sup
u∈Wh

a(u, v)
‖u‖V

≥ α∗‖v‖V ∀v ∈ Wh (3.42)

and

sup
v∈Vh

b(v, q)
‖v‖V

≥ β∗‖q‖Q ∀q ∈ Qh (3.43)
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In fact, as we have mentioned in Chapter 1, (3.42) follows from (3.41)
since Wh is finite dimensional.

Now, we can prove the fundamental general error estimates due to Brezzi
[9].

Theorem 3.3.4 If the forms a and b satisfy (3.41), (3.42) and (3.43), there
exists C > 0, depending only on α∗, β∗, ‖a‖ and ‖b‖ such that the following
estimates hold. In particular, if the constants α∗ and β∗ are independent of
h, then C is independent of h.

‖u− uh‖V + ‖p− ph‖Q ≤ C{ inf
v∈Vh

‖u− v‖V + inf
q∈Qh

‖p− q‖Q} (3.44)

and, when Ker Bh ⊂ Ker B,

‖u− uh‖V ≤ C inf
v∈Vh

‖u− v‖V (3.45)

Proof. From Theorem 3.3.3 we know that, under these assumptions,
there exists a unique solution (uh, ph) ∈ Vh×Qh of (3.40) and that it satisfies

‖uh‖V + ‖ph‖Q ≤ C{‖f‖V ′ + ‖g‖Q′}
with C = C(α∗, β∗, ‖a‖, ‖b‖). Therefore, the form c defined in (3.30) satisfies
the condition (1.19) on the space Vh ×Qh with the inverse of this constant
C (see Remark 1.4.1). Therefore, we can apply Lemma 1.4.1 to obtain the
estimate (3.44).

On the other hand, we know that uh ∈ Wh(g) is the solution of

a(uh, v) = 〈f, v〉 ∀v ∈ Wh (3.46)

and, since Wh ⊂ W , subtracting (3.46) from (3.31) we have,

a(u− uh, v) = 0 ∀v ∈ Wh

Now, since a satisfies (3.41), given w ∈ Wh(g) we can proceed as in
Lemma 1.4.1 to show that

‖w − uh‖V ≤ ‖a‖
α∗

‖u− w‖V

and therefore,

‖u− uh‖V ≤ (1 +
‖a‖
α∗

) inf
w∈Wh(g)

‖u− w‖V
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To conclude the proof we will see that, if (3.43) holds, then

inf
w∈Wh(g)

‖u− w‖V ≤ (1 +
‖b‖
β∗

) inf
v∈Vh

‖u− v‖V (3.47)

Given v ∈ Vh, from Lemma 3.3.1 we know that there exists a unique
z ∈ W⊥

h such that

b(z, q) = b(u− v, q) ∀q ∈ Qh

and
‖z‖V ≤ ‖b‖

β∗
‖u− v‖V

thus, w = z + v ∈ Vh satisfies Bhw = g, that is, w ∈ Wh(g). But

‖u− w‖V ≤ ‖u− v‖V + ‖z‖V ≤ (1 +
‖b‖
β∗

)‖u− v‖V

and so (3.47) holds.
In the applications, a very useful criterion to check the inf-sup condition

(3.43) is the following result due to Fortin [21].

Theorem 3.3.5 Assume that (3.32) holds. Then, the discrete inf-sup con-
dition (3.43) holds with a constant β∗ > 0 independent of h, if and only if,
there exists an operator

Πh : V → Vh

such that
b(v −Πhv, q) = 0 ∀v ∈ V , ∀q ∈ Qh (3.48)

and
‖Πhv‖V ≤ C‖v‖V ∀v ∈ V (3.49)

with a constant C > 0 independent of h.

Proof. Assume that such an operator Πh exists. Then, from (3.48),
(3.49) and (3.32) we have, for q ∈ Qh,

β‖q‖Q ≤ sup
v∈V

b(v, q)
‖v‖V

= sup
v∈V

b(Πhv, q)
‖v‖V

≤ C sup
v∈V

b(Πhv, q)
‖Πhv‖V

and therefore, (3.43) holds with β∗ = β/C.
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Conversely, suppose that (3.43) holds with β∗ independent of h. Then,
from (3.34) we know that, for any v ∈ V , there exists a unique vh ∈ W⊥

h

such that
b(vh, q) = b(v, q) ∀q ∈ Qh

and
‖vh‖V ≤ ‖b‖

β∗
‖v‖V

and therefore, Πhv = vh defines the required operator.

Remark 3.3.1 In practice, it is sometimes enough to show the existence of
the operator Πh verifying (3.48) and (3.49) for v ∈ S, where S ⊂ V is a
subspace where the exact solution belongs, and the norm on the right hand
side of (3.49) is replaced by a strongest norm (that of the space S). This
is in some cases easier because the explicit construction of the operator Πh

requires regularity assumptions which do not hold for a general function in
V . For example, in the problem analyzed in the previous section we have
constructed this operator on a subspace of V = H(div, Ω) because the degrees
of freedom defining the operator do not make sense in H(div, T ). Indeed, we
need more regularity for v (for example v ∈ H1(T )2) in order to have the
integral of the normal component of v against a polynomial on a side ` of T
well defined. It is possible to show the existence of Πh defined on H(div,Ω)
satisfying (3.48) and (3.49) (see [21]). However, as we have seen, this is
not really necessary to obtain error estimates.
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