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The Four-Color problem

The Four-Color Conjecture was settled in the XIX century:

Every map can be colored using at most four colors in such a
way that adjacent regions (i.e. those sharing a common
boundary segment, not just a point) receive different colors.
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In terms of graphs...

Clearly a graph can be constructed from any map, the regions
being represented by the vertices of the graph and two vertices
being joined by an edge if the regions corresponding to the vertices
are adjacent.

The resulting graph is planar, that is, it can be drawn in the plane
without any edges crossing.

So, the Four-Color Conjecture asks if the vertices of a planar graph
can be colored with at most 4 colors so that no two adjacent
vertices use the same color.
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History

The Four-Color Conjecture first seems to have
been formulated by Francis Guthrie. He was a
student at University College London where he
studied under Augusts De Morgan.

After graduating from London he studied law but
some years later his brother Frederick Guthrie had
become a student of De Morgan. Francis Guthrie
showed his brother some results he had been
trying to prove about the coloring of maps and
asked Frederick to ask De Morgan about them.

Guthrie

De Morgan
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De Morgan was unable to give an answer but, on 23 October 1852, the
same day he was asked the question, he wrote a letter to Sir William
Hamilton in Dublin:

A student of mine asked me today to give him a reason for a fact which I
did not know was a fact - and do not yet. He says that if a figure be
anyhow divided and the compartments differently colored so that figures
with any portion of common boundary line are differently colored - four
colors may be wanted, but not more - the following is the case in which
four colors are wanted. Query cannot a necessity for five or more be
invented. ... If you retort with some very simple case which makes me
out a stupid animal, I think I must do as the Sphynx did...

Hamilton replied on 26 October 1852 (showing the
efficiency of both himself and the postal service):

I am not likely to attempt your quaternion of colors
very soon.

Hamilton



The Four-Color problem

Statement
History
First attempts
The proofs

The first published reference is found in Arthur
Cayley’s, On the colorings of maps, Proc. Royal
Geographical Society 1, 259–261, 1879.

On 17 July 1879 Alfred Bray Kempe announced in
Nature that he had a proof of the Four-Color
Conjecture.

Kempe was a London barrister who had studied
mathematics under Cayley at Cambridge and
devoted some of his time to mathematics
throughout his life.

At Cayley’s suggestion Kempe submitted the
Theorem to the American Journal of Mathematics
where it was published in the ends of 1879.

Cayley

Kempes
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Idea of Kempe’s proof

Kempe used an argument known as the method of
Kempe chains.

If we have a map in which every region is colored red,
green, blue or yellow except one, say X. If this final
region X is not surrounded by regions of all four colors
there is a color left for X. Hence suppose that regions
of all four colors surround X.

If X is surrounded by regions A, B, C, D in order,
colored red, yellow, green and blue then there are two
cases to consider.

(i) There is no chain of adjacent regions from A to C
alternately colored red and green.

(ii) There is a chain of adjacent regions from A to C
alternately colored red and green.

BA C

D

X

BA C

D

X

BA C

D

X
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Cases:

(i) There is no chain of adjacent regions from A to C
alternately colored red and green.

(ii) There is a chain of adjacent regions from A to C
alternately colored red and green.

If (i) holds there is no problem. Change A to green,
and then interchange the color of the red/green
regions in the chain joining A. Since C is not in the
chain it remains green and there is now no red region
adjacent to X. Color X red.

If (ii) holds then there can be no chain of yellow/blue
adjacent regions from B to D. [It could not cross the
chain of red/green regions.] Hence property (i) holds
for B and D and we change colors as above.

BA C

D

X

BA C

D

X
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The Four-Color Theorem returned to being the Four-Color
Conjecture in 1890.

Percy John Heawood, a lecturer at Durham England,
published a paper called Map coloring theorem. In it
he states that his aim is “...rather destructive than
constructive, for it will be shown that there is a defect
in the now apparently recognised proof...”.

Although Heawood showed that Kempe’s proof was

wrong he did prove that every map can be 5-colored in

this paper.
Heawood

Exercise

Using Kempe’s ideas, prove that every map can be 5-colored.

Hint: Every planar graph has at least one vertex of degree at
most 5.
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It was not until 1976 that the four-color
conjecture was finally proven by Kenneth Appel
and Wolfgang Haken at the University of Illinois.
They were assisted in some algorithmic work by
John Koch.

K. Appel and W. Haken, Every planar map is
four colorable. Part I. Discharging, Illinois J.
Math. 21 (1977), 429–490.

K. Appel, W. Haken and J. Koch, Every
planar map is four colorable. Part II.
Reducibility, Illinois J. Math. 21 (1977),
491–567.

Appel
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Idea of the proof

If the four-color conjecture were false, there would be at least one
map with the smallest possible number of regions that requires five
colors. The proof showed that such a minimal counterexample
cannot exist through the use of two technical concepts:

An unavoidable set contains regions such that every map must
have at least one region from this collection.

A reducible configuration is an arrangement of countries that
cannot occur in a minimal counterexample. If a map contains
a reducible configuration, and the rest of the map can be
colored with four colors, then the entire map can be colored
with four colors and so this map is not minimal.
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Idea of the proof

Using different mathematical rules and procedures, Appel and
Haken found an unavoidable set of reducible configurations, thus
proving that a minimal counterexample to the four-color conjecture
could not exist.

Their proof reduced the infinitude of possible maps to 1,936
reducible configurations (later reduced to 1,476) which had to be
checked one by one by computer.

However, the unavoidability part of the proof was over 500 pages
of hand written counter-counter-examples (these graph colorings
were verified by Haken’s son!). The computer program ran for
hundreds of hours.
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But most of the researchers thought that there were two reasons
why the Appel-Haken proof was not completely satisfactory.

Part of the Appel-Haken proof uses a computer, and cannot
be verified by hand, and

Even the part that is supposedly hand-checkable is
extraordinarily complicated and tedious, and no one has
verified it in its entirety.
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Ten years ago, another proof:

N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas,
The four color theorem, J. Combin. Theory Ser. B. 70
(1997), 2–44.

N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas,
A new proof of the four color theorem, Electron. Res.
Announc. Amer. Math. Soc. 2 (1996), 17–25 (electronic).

Robertson Sanders Seymour Thomas
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Outline of the proof

The basic idea of the proof is the same as Appel and Haken’s. The
authors exhibit a set of 633 “configurations”, and prove each of
them is “reducible”. Recall, that this is a technical concept that
implies that no configuration with this property can appear in a
minimal counterexample to the Four-Color Theorem. It has been
known since 1913 that every minimal counterexample to the
Four-Color Theorem should be a special structure, called
“internally 6-connected triangulation”.

In the second part of the proof they prove that at least one of the
633 configurations appears in every internally 6-connected planar
triangulation. This is called proving unavoidability, and here the
method used differs from that of Appel and Haken. The first part
of proof needs a computer. The second part can be checked by
hand in a few months, or, using a computer, it can be verified in
about 20 minutes.
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Why is this proof “better”?

The unavoidable set has size 633 as opposed to the 1476 member
set of Appel and Haken, and the second part of the proof uses only
about 30 rules, instead of the 300+ of Appel and Haken (and by
computer can be verified in about 20 minutes against hundred of
hours of the other proof).
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At December 2004 in a scientific meeting in France, a joint group
between people by Microsoft Research in England and INRIA in
France announced the verification of the Robertson et al. proof by
formulating the problem in the equational logic program Coq and
confirming the validity of each of its steps (Devlin 2005,
Knight 2005).
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But in both cases (Appel and Haken, and Robertson et al.), the
‘proofs’ are not proofs in the traditional sense, because they
contain steps that can never be verified by humans. Up today, a
traditional mathematical proof is not known for the Four-Color
Theorem.
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Some basic concepts about computational complexity

A problem is a general question to be answered, usually
possessing several parameters, whose values are left
unspecified.

A problem is described by giving:

1. A general description of all its parameters.
2. A statement of what properties the answer (or solution) is

required to satisfy.

The difficulty of a problem is related to its structure and the
length of the instance to be considered. This length is given
by one or two parameters, for example, in the graph coloring
problem, the number of vertices of the graph.
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Some basic concepts about computational complexity

In order to know the complexity of an algorithm we need to
calculate the number of elementary arithmetic operations that
the algorithm does to solve a given problem. This number is a
function of the length of the instance.

We say that a problem is in P if there exists an algorithm of
polynomial complexity to solve it (the number of those
operations is always upper bounded by a polynomial function
in n, the input length).
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NP-completeness theory

It is applied to decision problems, problems whose answer is
“YES” or “NOT” (but it is easy to see that this theory has
several consequences on optimization problems).

For example, the decision problem related to the graph
coloring problem is the following: “Given a graph G and an
integer number k, is there a valid coloring with at most k
colors?”

A decision problem π consists of a set Dπ of instances and a
subset Yπ ⊆ Dπ whose answer is “YES”.
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NP-completeness theory

A problem π ∈ NP if there exists a polynomial certificate to
verify an instance of “YES” (this is, if I can verify in
polynomial time that an instance of “YES” is right).

So, it is not difficult to see that P ⊆ NP.

Open Conjecture: P 6= NP.
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Polynomial reduction

Let π and π′ be two decision problems. We say that
f : Dπ′ → Dπ is a polynomial reduction of π′ in π if f can be
computed in polynomial time and for every d ∈ Dπ′ ,
d ∈ Yπ′ ⇔ f (d) ∈ Yπ. Notation: π′ 4 π.

Note that if π′′ 4 π′ and π′ 4 π then π′′ 4 π, because the
composition of two polynomial reductions is a polynomial
reduction.
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NP-complete problems

A problem π is NP-complete if:

1. π ∈ NP.
2. For every π′ ∈ NP, π′ 4 π.

If a problem π verifies condition 2., we say that π is NP-hard
(it is so “difficult” as all the problems in NP).
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P 6= NP? or P = NP?

If there is a problem π ∈ NP-c ∩ P, then P=NP.

If π ∈ NP-c ∩ P, there is a polynomial time algorithm to solve
π, because π is in P. On the other hand, as π ∈ NP-c, for
every π′ ∈ NP, π′ 4 π.

Let π′ be in NP. We have to use the polynomial reduction
which transforms instances of π′ in instances of π, and then
the polynomial time algorithm which solves π. It is easy to see
that we obtain a polynomial time algorithm to solve π′.

It is known any problem neither in NP-c ∩ P, nor in NP \ P
(in this last case, it would be proved that P 6= NP).



Some basic concepts about computational complexity
NP-completeness theory
P 6= NP? or P = NP?
NP-completeness proofs

Inclusions between the classes
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How do we have to do to prove that a problem is
NP-complete?

Cook’s Theorem (1971)

SAT is NP-complete.

The proof is direct: it is easy to see that SAT is in
NP. Then, it is considered a general problem π ∈
NP and a general instance d ∈ Dπ. Using a
polynomial non-deterministic Turing machine to
solve π, it is generated in polynomial time a logic
formula ϕπ,d such that d ∈ Yπ if and only if ϕπ,d
is satisfiable.

Cook
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How do we have to do to prove that a problem is
NP-complete?

Using Cook’s Theorem, the standard technique to prove that a
problem π is NP-complete uses the transitivity of 4, and consists
in the following:

1. Prove that π is in NP.

2. Choose an appropriated problem π′ belonging to NP-c.

3. Build a polynomial reduction f of π′ in π.

The second condition of the definition holds using the transitivity:
let π′′ be a problem in NP. As π′ is NP-c, π′′ 4 π′. But it was
proved that π′ 4 π, so π′′ 4 π.
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Some famous problems in NP-c

Traveling Salesman Problem (TSP)

Graph coloring

Integer Programming
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Graph coloring

A k-coloring of a graph G is an assignment of one color to
each vertex of G such that no more than k colors are used
and no two adjacent vertices receive the same color.

A graph is called k-colorable iff it has a k-coloring.

4-coloring 3-coloring
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Chromatic number
A clique in a graph G is a complete subgraph maximal under
inclusion. The cardinality of a maximum clique is denoted by
ω(G ).
The chromatic number of a graph G is the smallest number k
such that G is k-colorable, and it is denoted by χ(G ). An
obvious lower bound for χ(G ) is ω(G ):

ω(G ) ≤ χ(G ) ∀G .

ω = 3 χ = 4
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Applications

The problem of coloring a graph has several applications such as
scheduling, register allocation in compilers, frequency assignment
in Mobile radios, etc.

Example: Examination schedule

Each student must take an examination in each of his/her courses.
Let X be the set of different courses and let Y be the set of
students. Since the examination is written, it is convenient that all
students in a course take the examination at the same time. What
is the minimum number of examination periods needed?

Exercise

Model this problem as a coloring problem.
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Computational complexity

The graph k-colorability problem is the following:

INSTANCE: A graph G = (V ,E ) and a positive integer k ≤ V .

QUESTION: Is G k-colorable?

This problem is NP-complete (Karp, 1972), and
remains NP-c for k = 3.

Exercise

What happens for k = 2?

Karp
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Planar graphs coloring

For planar graphs the paper by Robertson et al. gives a quadratic
algorithm to four-color planar graphs, an improvement over the
quadric algorithm by Appel and Haken.

Exercise

Does it mean that the k-colorability problem is polynomial for
planar graphs?
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Some easy properties about χ(G )

Let G be a graph with n vertices and G its complement.
Then:

χ(G ) ≤ ∆(G ) + 1, where ∆(G ) is the maximum degree of G .

χ(G ) ω(G ) ≥ n

χ(G ) + ω(G ) ≤ n + 1

χ(G ) + χ(G ) ≤ n + 1
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Brooks’ Theorem

Brooks’ Theorem (1941)

Let G be a connected graph. Then G is ∆(G )-colorable, unless:

1. ∆(G ) 6= 2, and G is a ∆(G ) + 1-clique, or

2. ∆(G ) = 2, and G is an odd cycle.
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Graph coloring algorithms

As it was said, it is not known a polynomial time algorithm to
determine χ(G ). Let us see the following no efficient algorithm
(contraction-connection):

Consider a graph G with two non-adjacent vertices a and b. The
connection G1 is obtained by joining the two non-adjacent vertices a
and b with an edge. The contraction G2 is obtained by shrinking
{a, b} into a single vertex c(a, b) and by joining it to each neighbor
in G of vertex a and of vertex b (and eliminating multiple edges).

A coloring of G in which a and b have the same color yields a
coloring of G1. A coloring of G in which a and b have different
colors yields a coloring of G2.

Repeat the operations of connection and contraction in each graph
generated, until the resulting graphs are all cliques. If the smallest
resulting clique is a k-clique, then χ(G ) = k .
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Graph coloring algorithms

Exercise

Apply this method in the following graph
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Chromatic polynomial

The chromatic polynomial of a graph G is defined to be a function
PG (k) that expresses for each integer k the number of distinct
possible k-colorings for a graph G .

Example 1: If G is a tree with n vertices, then:

PG (k) = k(k − 1)n−1

Example 2: If G is a n-clique, then:

PG (k) = k(k − 1)(k − 2) . . . (k − n + 1)
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Chromatic polynomial

Property: PG (k) = PG1(k) + PG2(k), where G1 and G2 are the
graphs defined in the connection-contraction algorithm.

Exercise

Prove that the chromatic polynomial of a cycle Cn is:

PCn(k) = (k − 1)n + (−1)n(k − 1)
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Chromatic index

The chromatic index χ′(G ) of a graph G is defined to be the
smallest number of colors needed to color the edges of G so
that no two adjacent edges have the same color.

Clearly χ′(G ) ≥ ∆(G ), the maximum degree of G .

A q-coloring of the edges of G is defined to be a partition of
the edge set of G into q subsets that are matchings (a set of
edges which do not share endpoints).
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Chromatic index

Property: If G is a complete graph with n vertices, then

χ′(G ) = n − 1, if n is even
χ′(G ) = n, if n is odd

Vizing’s Theorem (1964): Let G be a graph, then

∆ ≤ χ′(G ) ≤ ∆(G ) + 1.

The problem of determining if there exists a ∆(G )-coloring of
a graph G is NP-complete (Holyer, 1981), even if the given
graph is triangle-free with ∆(G ) = 3 (Koreas, 1997).
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A famous class of graphs associated to graph coloring

A graph G is perfect if ω(H) = χ(H) for every
induced subgraph H of G (Berge, 1961).

Berge
Berge conjectured two statements:

1. A graph is perfect if and only if its complement is perfect.
2. A graph is perfect if and only if it contains neither induced

odd cycle of length at least five nor its complement.
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The Perfect Graph Theorem (Lóvasz, 1972; Fulkerson, 1973)

A graph is perfect if and only if its complement is perfect.

Lóvasz Fulkerson

Exercise

Prove that odd holes and their complements are not perfect.
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The Strong Perfect Graph Theorem (Chudnovsky, Robertson, Seymour,
Thomas, 2002)

A graph is perfect if and only if it contains neither induced odd
cycle of length at least five nor its complement.

This work was published recently:

Chudnovsky M., Robertson N., Seymour P. and Thomas R.,
The Strong Perfect Graph Theorem, Annals of Mathematics
164 (2006), 51–229.

Chudnovsky Robertson Seymour Thomas
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Polynomial (but no efficient!) recognition
The characterization by Chudnovsky et al. does not lead to a polynomial
recognition of perfect graphs (the complexity of recognizing odd holes is
open).

In 2002, two polynomial algorithms for recognizing perfect
graphs were presented.

Recognizing Berge Graphs, Chudnovsky and
Seymour, 2002 (an O(n9) algorithm).

A Polynomial Algorithm for Recognizing Perfect
Graphs, Cornuéjols, Liu and Vušković, 2002 (an
O(n20) algorithm).

In 2005, it was published the following joint work:

Chudnovsky M., Cornuéjols G., Liu X., Seymour P.
and Vušković K., Recognizing Berge Graphs,
Combinatorica 25 (2005), 143–187.

Cornuéjols

Vušković
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Another definition of perfect graphs
An independent set (or stable set) in a graph G is a subset of
pairwise non-adjacent vertices of G . The stability number
α(G ) is the cardinality of a maximum independent set of G .

A clique cover of a graph G is a subset of cliques covering all
the vertices of G . The clique-covering number k(G ) is the
cardinality of a minimum clique cover of G .

It is easy to see that α(G ) = ω(G ) and k(G ) = χ(G ).

So, by PGT: A graph G is perfect when α(H) = k(H) for
every induced subgraph H of G .

α = 3

k = 3
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Clique-perfect graphs

A clique-independent set is a collection of pairwise
vertex-disjoint cliques. The clique-independence number
αc(G ) is the size of a maximum clique-independent set of G .

A clique-transversal of a graph G is a subset of vertices that
meets all the cliques of G . The clique-transversal number
τc(G ) is the size of a minimum clique-transversal of G .

Clearly, αc(G ) ≤ τc(G ) for every graph G .

A graph G is clique-perfect when αc(H) = τc(H) for every
induced subgraph H of G .
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Clique-perfect graphs

The terminology “clique-perfect” has been introduced by
Guruswami and Pandu Rangan in 2000, but the equality of
the parameters αc and τc was previously studied by Berge in
the seventies.

Guruswami Pandu Rangan

The complete list of minimal clique-imperfect graphs is still
not known. Another open question concerning clique-perfect
graphs is the complexity of the recognition problem.
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Question: is there some relation between clique-perfect
graphs and perfect graphs?

Odd holes C2k+1, k ≥ 2, are not clique-perfect:
αc(C2k+1) = k and τc(C2k+1) = k + 1.

Antiholes Cn, n ≥ 5, are clique-perfect if and only if n ≡ 0(3)
(Reed, 2000): τc(Cn) = 3 and αc(Cn) = 2 or 3, being 3 only
if n is divisible by three.

C5 C7 C9
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So we have the following scheme of relation between perfect
graphs and clique-perfect graphs:

C 6k±1

C 6k±2 C 6k
C 6k+3

perfect clique-perfect
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In several works, clique-perfect graphs have been characterized by
a restricted list of forbidden induced subgraphs when the graph
belongs to a certain class. Some of this characterizations lead to
polynomial time recognition algorithms for clique-perfection within
these classes.

J. Lehel and Z. Tuza, Neighborhood perfect graphs, Discrete
Mathematics 61 (1986), 93–101.

F. Bonomo, M. Chudnovsky and G.D., Partial
characterizations of clique-perfect graphs, Electronic Notes in
Discrete Mathematics 19 (2005), 95–101.

F. Bonomo and G.D., Characterization and recognition of
Helly circular-arc clique-perfect graphs, Electronic Notes in
Discrete Mathematics 22 (2005), 147–150.
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Example: The characterization for line graphs
Let H be a graph. Its line graph L(H) is the intersection graph of
the edges of H. A graph G is a line graph if there exists a graph H
such that G = L(H).

Theorem

Let G be a line graph. Then the following statements are
equivalent:

1. No induced subgraph of G is and odd hole, or a pyramid.

2. G is clique-perfect.

3. G is perfect and it does not contain a pyramid.

pyramid
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Example: The characterization for line graphs

Line graphs have polynomial time recognition (Lehot, 1974).

The recognition of clique-perfect line graphs can be reduced to the
recognition of perfect graphs with no pyramid, which is solvable in
polynomial time.

pyramid
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Coordinated graphs

Let v be a vertex of a graph G and m(v) the number of
cliques containing v .

Let M(G ) be the maximum m(v) for any v in G .

Let F (G ) be the cardinality of a minimum partition of the
cliques of G into clique-independent sets, that is, the smallest
number of colors that can be assigned to the cliques of G so
that intersecting cliques have different colors.

Note that F (G ) ≥ M(G ) for any graph G .

m(v) = 3,m(w) = 1,M = 3

F = 4



Perfect graphs
Characterization and recognition
Variations of perfect graphs
Some subclasses of perfect graphs

Coordinated graphs

Let v be a vertex of a graph G and m(v) the number of
cliques containing v .

Let M(G ) be the maximum m(v) for any v in G .

Let F (G ) be the cardinality of a minimum partition of the
cliques of G into clique-independent sets, that is, the smallest
number of colors that can be assigned to the cliques of G so
that intersecting cliques have different colors.

Note that F (G ) ≥ M(G ) for any graph G .

m(v) = 3,m(w) = 1,M = 3 F = 4



Perfect graphs
Characterization and recognition
Variations of perfect graphs
Some subclasses of perfect graphs

Coordinated graphs

We say that a graph G is coordinated if F (H) = M(H), for
every induced subgraph H of G (this class of graph was
defined by Bonomo, D. and Groshaus in 2002).

Property: Coordinated graphs are perfect.

The complete list of minimal non-coordinated graphs is still
not known. Again, they have been characterized by a
restricted list of forbidden induced subgraphs when the graph
belongs to a certain class (Bonomo, D., Soulignac and Sueiro,
2006).
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Example: The characterization for complements of forests

A forest is a graph with no cycles.

Theorem

Let G be a complement of a forest. Then G is coordinated if and
only if G contains neither 2P4 nor R as induced subgraphs.

2P4 and R

This theorem leads to a linear time recognition of coordinated
graphs if the given graph is a complement of a forest.

The general recognition of coordinated graphs is NP-hard
(Soulignac and Sueiro, 2006).
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Some subclasses of perfect graphs

A graph is an interval graph if it is the intersection graph of a
set of intervals over the real line. A unit interval graph is the
intersection graph of a set of intervals of length one.

A split graph is a graph whose vertex set can be partitioned
into a complete graph K and a stable set S . A split graph is
said to be complete if its edge set includes all possible edges
between K and S .

A bipartite graph is a graph whose vertex set can be
partitioned into two independent sets V1 and V2. A bipartite
graph is said to be complete if its edge set includes all
possible edges between V1 and V2.
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Some subclasses of perfect graphs

A cograph is a graph with no induced P4.

The line graph of a graph is the intersection graph of its
edges. Line graphs of bipartite graphs are perfect.

A graph is distance-hereditary if the distance between any two
vertices in a connected induced subgraph containing both is
the same as in the original graph.

A graph is a block graph if it is connected and every maximal
2-connected component is complete.
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The list-coloring problem
In order to take into account particular constraints arising in
practical settings, more elaborate models of vertex coloring have
been defined in the literature. One of such generalized models is
the list-coloring problem, which considers a prespecified set of
available colors for each vertex.

Given a graph G and a finite list L(v) ⊆ N for each vertex
v ∈ V , the list-coloring problem asks for a list-coloring of G ,
i.e., a coloring f such that f (v) ∈ L(v) for every v ∈ V .
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The list-coloring problem

Many classes of graphs where the vertex coloring problem is
polynomially solvable are known, the most prominent being
the class of perfect graphs [Grötschel-Lovász-Schrijver, 1981].

Meanwhile, the list-coloring problem is NP-complete for
perfect graphs, and is also NP-complete for many subclasses
of perfect graphs, including split graphs, interval graphs, and
bipartite graphs.

Trees and complete graphs are two classes of graphs where
the list-coloring problem can be solved in polynomial time. In
the first case it can be solved using dynamic programming
techniques [Jansen-Scheffler, 1997]. In the second case, the
problem can be reduced to the maximum matching problem in
bipartite graphs.
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We are going to explore the complexity boundary between vertex
coloring and list-coloring in different classes of graphs (some of
them, subclasses of perfect graphs). The goal is to analyze the
computational complexity of coloring problems lying “between”
(from a computational complexity viewpoint) these two problems.
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The precoloring extension problem
Some particular cases of list-coloring have been studied.

The precoloring extension (PrExt) problem takes as input a
graph G = (V ,E ), a subset W ⊆ V , a coloring f ′ of W , and
a natural number k , and consists in deciding whether G
admits a k-coloring f such that f (v) = f ′(v) for every v ∈W
or not [Biro-Hujter-Tuza, 1992].

In other words, a prespecified vertex subset is colored beforehand,
and our task is to extend this partial coloring to a valid k-coloring
of the whole graph.
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The µ-coloring problem

Another particular case of the list-coloring problem is the following.

Given a graph G and a function µ : V → N, G is µ-colorable
if there exists a coloring f of G such that f (v) ≤ µ(v) for
every v ∈ V [Bonomo-Cecowski, 2005].

This model arises in the context of classroom allocation to courses,
where each course must be assigned a classroom which is large
enough so it fits the students taking the course.
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The (γ, µ)-coloring problem

A new variation of this problem is the following (Bonomo, D.,
Marenco, 2006).

Given a graph G and functions γ, µ : V → N such that
γ(v) ≤ µ(v) for every v ∈ V , we say that G is
(γ, µ)-colorable if there exists a coloring f of G such that
γ(v) ≤ f (v) ≤ µ(v) for every v ∈ V .
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The classical vertex coloring problem is clearly a special case
of µ-coloring and precoloring extension, which in turn are
special cases of (γ, µ)-coloring.

Furthermore, (γ, µ)-coloring is a particular case of
list-coloring.

These observations imply that all the problems in this
hierarchy are polynomially solvable in those graph classes
where list-coloring is polynomial and, on the other hand, all
the problems are NP-complete in those graph classes where
vertex coloring is NP-complete.
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General results

Since all the problems are NP-complete in the general case, there
are also polynomial-time reductions from list-coloring to
precoloring extension and µ-coloring. An example is shown in the
figure, where we can see a list-coloring instance and its
corresponding precoloring extension and µ-coloring instances.
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These reductions involve changes in the graph, but are closed
within some graph classes. This fact allows us to prove the
following general results.
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General results

Theorem

Let F be a family of graphs with minimum degree at least two. Then
list-coloring, (γ, µ)-coloring and precoloring extension are polynomially
equivalent in the class of F-free graphs.

Theorem

Let F be a family of graphs satisfying the following property: for every
graph G in F , no connected component of G is complete, and for every
cutpoint v of G , no connected component of G \ v is complete. Then
list-coloring, (γ, µ)-coloring, µ-coloring and precoloring extension are
polynomially equivalent in the class of F-free graphs.

Since odd holes and antiholes satisfy the conditions of the theorems
above, these theorems are applicable for many subclasses of perfect
graphs.
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Review: complexity table for coloring problems

Class coloring PrExt µ-col. (γ, µ)-col. list-col.
Complete bipartite P P P P NP-c
Bipartite P NP-c NP-c NP-c NP-c
Cographs P P P ? NP-c
Distance-hereditary P NP-c NP-c NP-c NP-c
Interval P NP-c NP-c NP-c NP-c
Unit interval P NP-c NP-c NP-c NP-c
Complete split P P P P NP-c
Split P P NP-c NP-c NP-c
Line of Kn,n P NP-c NP-c NP-c NP-c
Line of Kn P NP-c NP-c NP-c NP-c
Complement of bipartite P P ? ? NP-c
Block and cacti P P P P P
Clique-trees of height 1 P P P P NP-c
Clique-trees of height 2 P NP-c P NP-c NP-c
Clique-trees of height 3 P NP-c NP-c NP-c NP-c

“NP-c”: NP-complete problem, “P”: polynomial problem, “?”: open problem.

Unless P = NP, µ-coloring and precoloring extension are strictly more difficult than
vertex coloring, list-coloring is strictly more difficult than (γ, µ)-coloring, and
(γ, µ)-coloring is strictly more difficult than µ-coloring and precoloring extension.
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Review: hierarchy of coloring problems
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(γ, µ)-coloring is polynomial for complete bipartite graphs

Proof: The following is a combinatorial algorithm that solves
(γ, µ)-coloring in polynomial time for complete bipartite graphs.

Let G = (V ,E ) be a complete bipartite graph, with bipartition
V1 ∪ V2, and let γ, µ : V → N such that γ(v) ≤ µ(v) for every
v ∈ V .

We have to consider two cases:

(i) There exists a vertex v such that γ(v) = µ(v).

(ii) For every vertex v , γ(v) < µ(v).

(1,3)

(1,3)

(1,1)

(2,3)
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Case (i):

If γ(v) = µ(v), the vertex v must be colored with
color µ(v). Suppose v ∈ V2. Since G is complete
bipartite, no vertex of V1 can use color µ(v).

So, we can color with color µ(v) every vertex w
of V2 such that γ(w) ≤ µ(v) ≤ µ(w) without
affecting the feasibility of the problem.

Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:

(1,3)

(1,3)

(1,1)

(2,3)

(3,3)

(2,3)

(2,2)(1,3)

21 3

Example 2:
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21 3 4
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Then we remove those vertices and remove the
color µ(v) from the universe of colors (we
renumber the remaining colors so that they are
still consecutive numbers).

If some vertex of V1 remains with no available
color, the original graph was not (γ, µ)-colorable.
Otherwise, we repeat this procedure until
reaching either a coloring, or the non-colorability,
or the case (ii).

Example 1:
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Case (ii):

If for every vertex v , γ(v) < µ(v), then every vertex has
among its possible colors at least an odd color and an even
color.

So the graph is (γ, µ)-colorable, we can color the vertices of
V1 with odd colors and the vertices of V2 with even colors.
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µ-coloring is NP-complete for split graphs
Proof: It is used a reduction from the dominating set problem on
split graphs, which is NP-complete (A. Bertossi, 1984).

An instance of the dominating set problem on split graphs is given
by a split graph G and an integer k ≥ 1, and consists in deciding if
there exists a subset D of V (G ), with |D| ≤ k, and such that
every vertex of V (G ) either belongs to D or has a neighbor in D.
Such a set is called a dominating set.

k=3

dominating set
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Let G be a split graph and k ≥ 0; V (G ) = K ∪ I , K is a complete
and I is an independent set. We may assume G with no isolated
vertices and k ≤ |K |.

We will construct a split graph G ′ and a function
µ : V (G ′)→ N such that G ′ is µ-colorable if and only if G
admits a dominating set of cardinality at most k:

V (G ′) = K ∪ I
K is a complete and I is an independent set in G ′

for v ∈ K and w ∈ I , vw ∈ E (G ′) iff vw 6∈ E (G )
µ(v) = |K | for v ∈ K and µ(w) = k for w ∈ I .

instance of split dominating set instance of split µ-coloring
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Suppose first that G admits a dominating set D with |D| ≤ k .
Since G has no isolated vertices, G admits such a set D ⊆ K .

dominating set

µ-coloring

Let us define a µ-coloring of G ′ as follows:

color the vertices of D using different colors from 1 to |D|
color the remaining vertices of K using different colors from
|D|+ 1 to |K |
for each vertex w in I , choose w ′ in D such that ww ′ ∈ E (G )
and color w with the color used by w ′.
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Suppose now that G ′ is µ-colorable, and let c : V (G ′)→ N
be a µ-coloring of G ′. Since µ(v) = |K | for every v ∈ K and
K is complete in G ′, it follows that c(K ) = {1, . . . , |K |}.

µ-coloring

dominating set

Since k ≤ |K |, for each vertex w ∈ I there is a vertex w ′ ∈ K
such that c(w) = c(w ′) ≤ k. Then ww ′ 6∈ E (G ′), so
ww ′ ∈ E (G ). Thus the set {v ∈ K : c(v) ≤ k} is a
dominating set of G of size k .
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