ÁLGEBRA II Primer Cuatrimestre — 2014

Práctica 8: Teoremas clásicos de estructura

Dominios de ideales principales

- **1.1.** Mostrar que $\mathbb{Z}[\sqrt{10}]$ y $\mathbb{Z}[\sqrt{-10}]$ no son dominios de factorización única. Encontrar ideales no principales en estos anillos.
- **1.2.** (a) Mostrar que $\mathbb{Z}[\sqrt{d}]$ es euclideano si $d \in \{-2, 2, 3\}$.
- (b) Factorizar a $16 + 11\sqrt{2}$ como producto de elementos irreducibles del anillo $\mathbb{Z}[\sqrt{2}]$.
- (c) Un número primo $p \in \mathbb{Z}$ es irreducible en $\mathbb{Z}[\sqrt{-2}]$ sii -2 es un cuadrado en \mathbb{Z}_p . Dé ejemplos de factorizaciones en $\mathbb{Z}[\sqrt{-2}]$ de números primos de \mathbb{Z} .
- **1.3.** Sea $p \in \mathbb{N}$ un número primo, $\mathfrak{p} = (p)$ el ideal primo correspondiente y sea $\mathbb{Z}_{\mathfrak{p}}$ la localización de \mathbb{Z} en \mathfrak{p} . Describir todos sus ideales. Mostrar que $\mathbb{Z}_{\mathfrak{p}}$ es un dominio de ideales principales con un único ideal maximal y encontrar un conjunto completo de elementos primos no asociados dos a dos.
- **1.4.** Sea A un dominio de ideales principales y sea M un A-módulo finitamente generado. Mostrar que
- (a) M es de torsión sii $hom_A(M,A) = 0$; y
- (b) M es indescomponible sii o bien $M \cong A$ o bien existe $p \in A$ irreducible y $n \in \mathbb{N}$ tal es que $M \cong A/(p^n)$.

¿Qué puede decir cuando M no es finitamente generado?

- **1.5.** Sea $p \in \mathbb{N}$ un número primo. Encuentre todos los grupos abelianos de orden p^2 , p^3 , p^4 y p^5 .
- **1.6.** Sea G un grupo abeliano finito y sea $p \in \mathbb{N}$ un número primo tal que $p \mid |G|$. Entonces el número de elementos de orden p de G es coprimo con p.
- **1.7.** (a) Para los siguientes grupos abelianos, dar la factorización del teorema de estructura:
 - 1. $\mathbb{Z}_4 + \mathbb{Z}_6 + \mathbb{Z}_9$;
 - 2. $\mathbb{Z}_2 + \mathbb{Z}_2 + \mathbb{Z}_8 + \mathbb{Z}_{14}$;
 - 3. $\mathbb{Z}_2 + \mathbb{Z} + \mathbb{Z}_{49} + \mathbb{Z}$;
 - 4. $\mathbb{Z}_{12} + \mathbb{Z}_{21} + \mathbb{Z} + \mathbb{Z} + \mathbb{Z}_{20} + \mathbb{Z}_9 + \mathbb{Z}_7$.
- (*b*) Determinar la factorización canónica de un grupo abeliano *G* de orden 36 que tiene exactamente 2 elementos de orden 3 y que no tiene elementos de orden 4.
- (c) Determinar la factorización canónica de un grupo abeliano G de orden 225 que tiene por lo menos 40 elementos de orden 15 y tal que todo subgrupo de orden 9 es isomorfo a $\mathbb{Z}_3 \oplus \mathbb{Z}_3$.
- **1.8.** Determinar los factores invariantes de los siguientes grupos abelianos dados por generadores y relaciones.
 - 1. $G = \langle a, b, c \rangle$; 2a + 3b = 0, 2a + 4c = 0.
 - 2. $G = \langle a, b, c \rangle$; a = 3b, a = 3c.
 - 3. $G = \langle a, b, c \rangle$; 3a = -c, 3a = 3c 8b.

- 4. $G = \langle a, b, c \rangle$; 3a = b, b = 3c.
- 1.9. Calcular los coeficientes de estructura de los siguientes cocientes.
 - 1. \mathbb{Z}^4/S , con $S = \{x \in \mathbb{Z}^4 : x_1 + x_2 + x_3 + x_4 = 0, x_1 + x_2 2x_3 = 0\}$.
 - 2. \mathbb{Z}^3/S , con $S = \{x \in \mathbb{Z}^3 : x_1 \text{ es par, } x_1 + 5x_2 x_3 = 0\}.$
 - 3. \mathbb{Z}^3/S , con $S = \{x \in \mathbb{Z}^3 : x_1 = x_2 + x_3 \text{ es par, } 3 \mid x_3\}$.
- **1.10.** Sean p,q,r primos distintos. Determinar la cantidad de grupos no isomorfos de orden n en cada caso.
 - 1. $n = p^6 a^3 r$.
 - 2. $n = p^2 q^4 r^5$.
 - 3. $n = p^3 q^4$.
- **1.11.** Sea $G \subset \mathbb{Z}^n$ un subgrupo.
- (a) $[\mathbb{Z}^n : G]$ es finito sii G tiene rango n.
- (b) Si G tiene rango n y $\{g_1, \ldots, d_n\}$ es una base de G, sea $M \in M_n(\mathbb{Z})$ la matriz que tiene a los g_i como columnas. Mostrar que $[\mathbb{Z}^n : G] = |\det M|$.

Módulos y anillos semisimples

- **2.1.** Sea A un anillo y sea M un A-módulo simple. Entonces o bien M, considerado como grupo abeliano, es isomorfo a una suma directa de copias de \mathbb{Q} , o bien existe $p \in \mathbb{N}$ primo tal que M es, considerado como grupo abeliano, isomorfo a una suma directa de copias de \mathbb{Z}_p .
- **2.2.** Sea *A* un anillo conmutativo y *M* y *N* dos *A*-módulos. Si alguno de *M* o *N* es semisimple, $M \otimes_A N$ es semisimple.
- **2.3.** (a) Si A es un anillo semisimple y $B \subset A$ es un subanillo, ¿es B necesariamente semisimple?
- (b) Si *A* es un anillo semisimple e $I \triangleleft A$ es un ideal bilátero, entonces A/I es semisimple.
- 2.4. Anillos de matrices.
- (a) Sean A y B anillos y n, $m \in \mathbb{N}$. Entonces $\mathsf{M}_m(\mathsf{M}_n(A)) \cong \mathsf{M}_m(A)$ y $\mathsf{M}_n(A \times B) \cong \mathsf{M}_n(A) \times \mathsf{M}_n(B)$.
- (b) Si *A* es un anillo semisimple y $n \in \mathbb{N}$, entonces $M_n(A)$ es semisimple.
- (c) Sea A un anillo y sea $n \in \mathbb{N}$. Sea P el conjunto de vectores fila de n componentes en A y sea Q el conjunto de vectores columna de n componentes en A. Entonces P es un A- $M_n(A)$ -bimódulo y Q es un $M_n(A)$ -A-bimódulo con acciones de $M_n(A)$ inducidas por el producto matricial. Más aún, hay un isomorfismo $Q \otimes_A P \cong M_n(A)$ de $M_n(A)$ -bimódulos y un isomorfismo $P \otimes_{M_n(A)} Q \cong A$ de A-bimódulos.

Como consecuencia de esto, si M es un A-módulo izquierdo, entonces

$$P \otimes_{\mathsf{M}_{-}(A)} (Q \otimes_{A} M) \cong M.$$

- (*d*) Si M es un A-B-bimódulo y N es un B-módulo izquierdo proyectivo, entonces $M \otimes_B N$ es un A-módulo proyectivo.
- (*e*) Sea *A* un anillo. Si existe $n \in \mathbb{N}$ tal que $M_n(A)$ es semisimple, entonces el anillo *A* mismo es semisimple.
- **2.5.** Sea A un anillo, M un A-módulo finitamente generado. Si $B = \operatorname{End}_A(M)$ y A es semisimple, entonces B es semisimple. Notemos que esto tiene como caso particular a la segunda parte del ejercicio **2.4**, ya que si $M = A^n$, entonces $\operatorname{End}_n(M) \cong \operatorname{M}_n(A)$.

- **2.6.** (a) Un anillo artiniano a izquierda sin divisores de cero es un anillo de división.
- (b) Si A es un anillo sin divisores de cero tal que $M_n(A)$ es semisimple para algún $n \in \mathbb{N}$, entonces A es un anillo de división.

Álgebras de grupo

y

- **3.1.** Muestre que si $k \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, entonces $kS_3 \cong k \times k \times M_2(k)$.
- **3.2.** Encuentre la descomposición de Wedderburn para kD_4 con $k \in \{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ si $D_4 = \langle s, t : s^2 = t^4 = 1, sts = t^{-1} \rangle$.
- **3.3.** Sea $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ el grupo de los cuaterniones unitarios. Muestre que

$$\mathbb{Q}Q\cong\mathbb{Q}\times\mathbb{Q}\times\mathbb{Q}\times\mathbb{Q}\times\mathbb{H}_{\mathbb{Q}},$$

$$\mathbb{R}Q\cong\mathbb{R}\times\mathbb{R}\times\mathbb{R}\times\mathbb{R}\times\mathbb{H}_{\mathbb{R}},$$

$$\mathbb{C}Q\cong\mathbb{C}\times\mathbb{C}\times\mathbb{C}\times\mathbb{C}\times\mathbb{M}_{2}(\mathbb{C}).$$

Aquí $\mathbb{H}_{\mathbb{R}}$ es el anillo de los cuaterniones reales y $\mathbb{H}_{\mathbb{Q}}$ es el análogo definido sobre \mathbb{Q} .

Álgebras de grupos cíclicos

Si $n \in \mathbb{N}$, sea G_n un grupo cíclico de orden n y sea $g_n \in G_n$ un generador.

[1] **4.1.** Sea k un cuerpo de característica cero. Si $kG_n \cong \mathsf{M}_{n_1}(D_1) \times \cdots \times \mathsf{M}_{n_r}(D_r)$ es la factorización de kG_n como k-álgebra dada por el teorema de Wedderburn, de manera que es $r \in \mathbb{N}$, $n_1, \ldots, n_r \in \mathbb{N}$ y D_1, \ldots, D_r son k-álgebras de división, entonces $n_1 = n_2 = \cdots = n_r = 1$ y D_i es un cuerpo para cada $i \in \{1, \ldots, r\}$.

En particular, hay exactamente r isoclases de kG_n -módulos simples y si S_1, \ldots, S_n son representantes de estas clases, hay un isomorfismo de kG_n -módulos $kG_n \cong \bigoplus_{i=1}^r S_i$.

- [1] **4.2.** Sea k un cuerpo de característica cero. Sea M un kG_n -módulo simple y sea $a: m \in M \mapsto g_n m \in M$ la multiplicación por g_n . Entonces $a \in \operatorname{End}_{kG_n}(M)$ porque kG_n es un anillo conmutativo. Sea $\mu \in k[X]$ el polinomio minimal de a sobre k. Muestre que μ es irreducible en k[X]. Además, si $k = \mathbb{Q}$, entonces μ tiene coeficientes enteros.
 - **4.3.** Álgebras de grupos cíclicos sobre \mathbb{C} . Sea $\Omega_n \subset \mathbb{C}^\times$ el subgrupo multiplicativo de \mathbb{C}^\times de las raíces n-ésimas de la unidad.
- [1] (a) La aplicación $\phi: \chi \in \mathsf{hom}_{\mathsf{Grp}}(G_n, \Omega_n) \mapsto \chi(g_1) \in \Omega_n$ es un isomorfismo de grupos abelianos. Esto implica que el conjunto $\hat{G}_n = \mathsf{hom}_{\mathsf{Grp}}(G_n, \Omega_n)$ tiene exactamente n elementos; llamemoslos χ_1, \ldots, χ_n .
- [1] (b) Muestre que si χ , $\rho \in \hat{G}_n$, entonces

$$\sum_{g\in G_n}\chi(g)\rho(g^{-1})=\delta_{\chi,\rho}.$$

Sugerencia. Multiplique el miembro izquierdo de esta igualdad por $(1 - \chi(g_1)\rho(g_1^{-1}))$.

[1] (c) Si
$$\chi \in \hat{G}_n$$
, sea $e_{\chi} = \frac{1}{n} \sum_{g \in G_n} \chi(g^{-1})g \in \mathbb{C}G_n$. Entonces si χ , $\rho \in \hat{G}_n$,
$$e_{\chi}^2 = e_{\chi},$$

$$e_{\chi} e_{\rho} = 1, \quad \text{cuando } \chi \neq \rho,$$

$$y$$

$$\sum_{\chi \in \hat{G}_n} e_{\chi} = 1.$$

[1] (d) Consideremos el anillo $A=\mathbb{C}\times\cdots\times\mathbb{C}$ con n factores y sean $x_1,\ldots,x_n\in A$ los elementos de la base canónica. Hay un isomorfismo de anillos $\phi:\mathbb{C}G_n\to A$ tal que $\phi(e_{\chi_i})=x_i$ si $1\leq i\leq n$. Describa representantes para cada isoclase de $\mathbb{C}G_n$ -módulos simples.

Abraham Adrian Albert 1905–1972, Estados Unidos.

Albert fue uno de los pioneros en el estudio de la estructura de las álgebras de división. Su libro *Structure of Algebras* es un clásico.