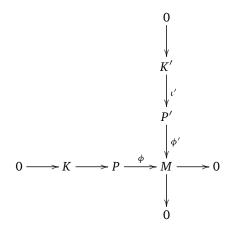
ÁLGEBRA II Primer Cuatrimestre — 2014

Segundo parcial

Apellido y nombre:		
CARRERA:	L.U.:	Hojas:

1. Sea *A* un anillo y considere el siguiente diagrama de *A*-módulos a izquierda:



donde la fila y la columna son sucesiones exactas cortas. Además P y P' son módulos proyectivos. Pruebe que $K \oplus P' \cong K' \oplus P$.

Sugerencia. Considere el A-módulo $X=\{(p,p')\in P\times P': \phi(p)=\phi(p')\}$ y uselo para completar el diagrama convenientemente.

Solución. Es fácil ver que X es un A-módulo. Además las proyecciones se restringen a X y dan morfismos $\pi: X \to P$ y $\pi': X \to P'$ que resultan sobreyectivos.

Vale que $\ker \pi \cong K'$. En efecto, si $(p,p') \in \ker \pi$ entonces $p = \pi(p,p') = 0$. Como $(p,p') \in X$ vemos que $\phi'(p') = \phi(0) = 0$. Como la sucesión vertical es exacta, existe $k' \in K'$ tal que $\iota'(k') = p'$. De esta manera obtenemos un morfismo $\ker \pi \to K'$ que resulta un isomorfismo (ejercicio).

Análogamente ker $\pi'\cong K$. Haciendo esto obtuvimos dos sucesiones exactas cortas $0\to K\to X\to P'\to 0$ y $0\to K'\to X\to P\to 0$. Estas dos sucesiones se parten pues P y P' son proyectivos. Por lo tanto $K\oplus P'\cong X\cong K'\oplus P$ como queríamos.

2. Sean A un anillo y M un A-módulo a izquierda finitamente presentado. Supongamos que el conjunto $\{m_1, \cdots, m_n\} \subseteq M$ genera a M. Sea K el núcleo del morfismo $f: A^n \to M$ dado por $f(e_i) = m_i$. Notar que la información del enunciado se puede codificar en el diagrama de filas

exactas

$$A^{s} \longrightarrow A^{r} \longrightarrow M \longrightarrow 0$$

$$\parallel$$

$$0 \longrightarrow K \longrightarrow A^{n} \longrightarrow M \longrightarrow 0$$

Pruebe que K es finitamente generado (en particular ser finitamente presentado no depende de los generadores elegidos).

Solución. Como A^s y A^r son libres (y en particular proyectivos) podemos completar el diagrama del enunciado a un diagrama conmutativo de filas exactas

$$\begin{array}{cccc}
A^s & \longrightarrow A^r & \longrightarrow M & \longrightarrow 0 \\
\downarrow g & & \downarrow f & & \parallel \\
0 & \longrightarrow K & \longrightarrow A^n & \longrightarrow M & \longrightarrow 0
\end{array}$$

El lema de la serpiente nos da una sucesión exacta larga

$$\ker g \to \ker f \to \ker id \to \operatorname{coker} g \to \operatorname{coker} f \to \operatorname{coker} id$$

pero como ker id = coker id = 0 concluimos que hay un isomorfismo coker $g\cong\operatorname{coker} f$. Esto nos permite armar una sucesión exacta corta

$$0 \to A^s \to K \to \operatorname{coker} f \to 0$$

en las que tanto A^s como coker f son finitamente generados. Concluimos que K también es finitamente generado.

Solución. Si cambiamos la primera fila por $0 \to K' \to A^r \to M \to 0$ donde K' es el núcleo de $A^r \to M$, estamos en condiciones de usar el primer ejercicio del parcial para concluir que $K \oplus A^r \cong A^n \oplus K'$. Además sabemos que K' es finitamente generado (pues recibe un epi de A^s) y por lo tanto $K \oplus A^r \cong A^n \oplus K'$ es finitamente generado. Como K es un sumando directo de un finitamente generado resulta, también, finitamente generado.

- 3. Sea G un grupo abeliano finitamente generado
- (a) Pruebe que si G es finito, entonces $G \cong \mathsf{hom}_{\mathbb{Z}}(G, \mathbb{Q}/\mathbb{Z})$.
- (*b*) Encuentre un grupo abeliano finitamente generado tal que $G \not\cong \mathsf{hom}_{\mathbb{Z}}(G, \mathbb{Q}/\mathbb{Z})$.
- (c) Pruebe que si G es finito, entonces la evaluación

$$ev: G \to \mathsf{hom}_{\mathbb{Z}}(\mathsf{hom}_{\mathbb{Z}}(G, \mathbb{Q}/\mathbb{Z}), \mathbb{Q}/\mathbb{Z})$$

es un isomorfismo.

Solución. Como G es finitamente generado, el teorema de estructura nos dice que G es suma directa de grupos cíclicos. Además sabemos que $\mathsf{hom}(M \oplus N, T) \cong \mathsf{hom}(M, T) \oplus \mathsf{hom}(N, T)$. Estas dos cosas implican que basta probar el resultado para G un grupo cíclico. Vale que $\mathsf{hom}(\mathbb{Z}/n\mathbb{Z}, M) \cong \{x \in M : nx = 0\}$. Por lo tanto

$$\mathsf{hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Q}/\mathbb{Z}) \cong \{x \in \mathbb{Q}/\mathbb{Z} : nx = 0\} = \{\frac{a}{n} \in \mathbb{Q}/\mathbb{Z} : 0 \le a \le n-1\} \cong \mathbb{Z}/n\mathbb{Z}.$$

Poniendo $G = \mathbb{Z}$ obtenemos un contraejemplo para el segundo item.

En el tercer item, es fácil ver que ev es un morfismo y que el codominio es isomorfo al dominio (usando dos veces el primer item). Para ver que es un isomorfismo alcanza con ver que es inyectivo o sobreyectivo. Lo más fácil es ver que es inyectivo. Supongamos que ev(g)=0, esto quiere decir que f(g)=0 para todo morfismo $f:G\to \mathbb{Q}/\mathbb{Z}$. Si $g\neq 0$ entonces podemos definir $f:\langle g\rangle\to \mathbb{Q}/\mathbb{Z}$ de manera que $f(g)=\frac{1}{n}$ donde n es el orden de g. Ahora extendemos este morfismo a todo G (usando el teorema de estructura o el hecho de que \mathbb{Q}/\mathbb{Z} es un \mathbb{Z} -módulo inyectivo).

- **4.** (a) Sea $f: M \to N$ un morfismo de A-módulos.
 - 1. Si M es simple, entonces f es o bien nula o bien inyectva.
 - 2. Si N es simple, entonces f es o bien nula o bien sobreyectiva.
 - 3. Si M y M son simples, entonces f es o bien nula o bien un isomorfismo.
- (b) Si M es un A-módulo simple, $End_A(M)$ es un anillo de división.
- **5.** Se dice que un complejo de *A*-módulos (C,d) es contractil si existe una familia de morfismos $s_n: C_n \to C_{n+1}$ tales que $\mathrm{id}_C = sd + ds$. Pruebe que todo complejo acíclico de *A*-módulos libres acotado inferiormente es contractil.

Solución. Supongamos que $C_n=0$ para todo n<0. Definimos $s_n=0$ para todo n<0. Para definir s_0 , consideremos el diagrama

$$C_{1} \longrightarrow C_{0} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

La condición id = sd + ds queda ahora id $_{C_0} = d_1 s_0$. Como d_1 es epi y C_0 es libre (en particular proyectivo) d_1 resulta una retracción y por lo tanto existe s_0 que verifica lo pedido.

La construcción de s_n para todo n es por inducción. Ya tenemos construidos s_0 , supongamos construidos s_k para todo k < n y construyamos s_n . Para eso miramos el diagrama

$$C_{n+1} \longrightarrow C_n \longrightarrow C_{n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Queremos construir $s_n: C_n \to C_{n+1}$ tal que $d_{n+1}s_n = \operatorname{id} - s_{n-1}d_n$. Sea $f = \operatorname{id} - s_{n-1}d_n$, usando la hipótesis inductiva es fácil ver que $d_n f = 0$ y por lo tanto podemos pensar $f: C_n \to \ker d_n = \operatorname{im} d_{n+1}$. Esto nos permite considerar el diagrama

$$C_{n}$$

$$\downarrow f$$

$$C_{n+1} \xrightarrow{d_{n+1}} \operatorname{im} d_{n+1} \longrightarrow 0$$

La existencia de la flecha punteada es consecuencia de que C_n es proyectivo y que la (co)restricción de d_{n+1} es epi. Es claro que la flecha que construimos satisface lo pedido.