Geometría Diferencial

Primer Cuatrimestre — 2016

Práctica 1: Variedades y funciones diferenciables I

- 1. Decida si las siguientes afirmaciones son verdaderas o falsas. Justifíquese su respuesta, y piense qué habría que cambiar en cada ítem para que su respuesta cambie.
- (a) La función $f : \mathbb{R} \to \mathbb{R}$ dada por $f(t) = t^2$ define un atlas $\{(\mathbb{R}, f)\}$.
- (b) Idem, pero ahora con $f(t) = t^n$ donde $n \in \mathbb{Q}$.
- (c) Si $\alpha:(a,b)\to\mathbb{R}^3$ parametriza una curva contenida en $\{y=0\}$, entonces su superficie de revolución es una variedad de dimensión 2.
- (*d*) Si $M, N \subset \mathbb{R}^d$ son variedades, entonces $M \cup N$ es variedad.
- (e) Si $M, N \subset \mathbb{R}^d$ son variedades y $M \cap N = \emptyset$ entonces $M \cup N$ es una variedad.
- (f) Si al cono $\{a \in \mathbb{R}^{d+1} \mid a_1^2 + \dots + a_d^2 = a_{d+1}^2\}$ le sacamos el orígen entonces resulta una variedad de dimensión d, y si no, no.
- **2.** Sea V un espacio vectorial real de dimensión $d \ge 1$ y sea $\mathcal{B} = \{v_1, \dots, v_d\}$ una base de V. Sea $\phi : \mathbb{R}^n \to V$ la función $\phi(t_1, \dots, t_d) = \sum_{i=1}^n t_i v_i$.
- (a) Mostrar que hay una única topología sobre V que hace que ϕ sea un homeomorfismo, y esa topología no depende de la base \mathcal{B} elegida.
- (*b*) Mostrar que la estructura diferenciable determinada sobre V por el atlas $\{(V, \phi^{-1})\}$ no depende de la base \mathcal{B} elegida.
- **3.** Consideramos en $S^d=\{a\in\mathbb{R}^{d+1}:\|a\|=1\}$ los puntos $\mathfrak{n}=(0,\ldots,0,1)$ y $\mathfrak{s}=(0,\ldots,0,-1)$.
- (a) Dado $a \in S^d \setminus \{\mathfrak{n}\}$, se define la *proyección estereográfica de a desde* \mathfrak{n} como el único punto $(x_1,\ldots,x_d) \in \mathbb{R}^d$ tal que a,\mathfrak{n} y $(x_1,\ldots,x_d,0)$ son colinales; la proyección estereográfica respecto de \mathfrak{s} se define de forma análoga. Probar que las proyecciones estereográficas forman un atlas \mathcal{C}^∞ de S^d .
- (b) Para cada $1 \le i \le d+1$ notamos por $\tau_i: \mathbb{R}^{d+1} \to \mathbb{R}^d$ a la función dada por la fórmula $\tau_i(x_1,\ldots,x_{d+1})=(x_1,\ldots,\hat{x_i},\ldots,x_{d+1})$. Notamos también $U_i^+=\{a\in S^d\mid a_i>0\}$, y $U_i^-=\{a\in S^d\mid a_i<0\}$. Probar que

$$\mathcal{A} = \{(U_i^+, \tau_i), (U_i^-, \tau_i) \mid 1 \le i \le d+1\}$$

es un atlas C^{∞} de S^d .

- (c) Probar que las estructuras diferenciables determinadas por ambos atlas son iguales.
- 4. Probar las siguientes afirmaciones.
- (a) Si M es una variedad de dimensión m y $U \subseteq M$ es un abierto no vacío, entonces U tiene una estructura natural de variedad diferenciable de dimensión m. Con respecto a esta estructura, la inclusión $U \hookrightarrow M$ es una función diferenciable.
- (b) Si $n \ge 1$, entonces el conjunto $\mathsf{GL}(n,\mathbb{R}) \subset M_n(\mathbb{R})$ de las matrices inversibles es una variedad diferenciable de dimensión n^2 de manera natural.
- **5.** ¿Es posible construir un altas de S^2 con una sola carta?
- **6.** Construya explícitamente un atlas diferenciable sobre los siguientes espacios topológicos y determine sus dimensiones:
- (a) el cilindro $Z = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\};$
- (b) la cinta de Moebius;
- (c) el plano proyectivo $\mathbb{P}^2(\mathbb{R})$;

(d) el toro
$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ factores}}$$
.

- 7. Sea $n \in \mathbb{N}$. Consideramos en $S^n \subset \mathbb{R}^{n+1}$ la siguiente relación de equivalencia: dados $v, w \in S^n$, decimos que $v \sim w$ si y solo si $v = \pm w$. El espacio proyectivo n-dimensional $\mathbb{P}^n(\mathbb{R})$ es el espacio cociente S^n/\sim . Probar que este espacio es una variedad diferenciable compacta y conexa, y calcular su dimensión.
- **8.** Sea $M \subset \mathbb{R}^3 \times \mathbb{R}^3 \setminus \{(0,0)\}$ el conjunto de pares de vectores (v,w) tal que $\langle v,w \rangle = 0$, donde $\langle -,- \rangle$ es el producto interno usual. Probar que M es una variedad y calcular su dimensión.
- **9.** Sea $\phi : \mathbb{R} \to \mathbb{R}$ dada por $\phi(t) = t^3$. Probar las siguientes afirmaciones.
- (a) Los conjuntos $\mathcal{A} = \{(\mathbb{R}, \mathsf{id})\}$ y $\mathcal{A}' = \{(\mathbb{R}, \phi)\}$ son dos atlas sobre \mathbb{R} que no son compatibles, de manera que los atlas maximales que los contienen son distintos y determinan variedades diferenciables \mathbb{R} y \mathbb{R}_{ϕ} distintas.
- (*b*) Las variedades diferenciables \mathbb{R} y \mathbb{R}_{ϕ} son difeomorfas.
- 10. Sean M y N variedades de dimensiones m y n, respectivamente. Probar las siguientes afirmaciones.
- (a) El espacio producto $M \times N$ tiene una estructura natural de variedad diferenciable de dimensión m+n, y las proyecciones $p_1: M \times N \to M$ y $p_2: M \times N \to N$ son funciones diferenciables.
- (b) Si P es una variedad y $f: P \to M$ y $g: P \to N$ son funciones diferenciables, existe una única función diferenciable $h: P \to M \times N$ tal que $p_1 \circ h = f$ y $p_2 \circ h = g$.
- (c) Las funciones id : $M \to M$ y $\Delta : M \to M \times M$ dada por $\Delta(x) = (x, x)$ son differenciables.
- **11.** Muestre que los siguientes espacios son variedades diferenciables y determine sus dimensiones.
- (a) $\mathsf{GL}(n,\mathbb{C}) \subset M_n(\mathbb{C})$, el conjunto de las matrices $n \times n$ complejas inversibles;
- (b) $\mathsf{SL}(n,\mathbb{R}) \subset M_n(\mathbb{R})$, el conjunto de las matrices $n \times n$ reales de determinante 1;
- (c) $\mathsf{SL}(n,\mathbb{C}) \subset M_n(\mathbb{C})$, el conjunto de las matrices $n \times n$ complejas de determinante 1;
- (*d*) $O(n,\mathbb{R}) \subseteq M_n(\mathbb{R})$, el conjunto de las matrices $n \times n$ reales ortogonales;
- (e) $U(n,\mathbb{R}) \subseteq M_n(\mathbb{C})$, el conjunto de las matrices $n \times n$ complejas unitarias.
- 12. Pruebe que las funciones

$$\mu: \mathsf{GL}(n,\mathbb{R}) \times \mathsf{GL}(n,\mathbb{R}) \to \mathsf{GL}(n,\mathbb{R})$$
 $\iota: \mathsf{GL}(n,\mathbb{R}) \to \mathsf{GL}(n,\mathbb{R})$ $(A,B) \mapsto AB$ $A \mapsto A^{-1}$

son diferenciables; esto nos dice que $GL(n, \mathbb{R})$ es un *grupo de Lie*.

- 13. Sea M una variedad de dimensión 1.
- (a) Si M es conexa y sin borde, $M \cong S^1$ o $M \cong \mathbb{R}$.
- (b) Si M es compacta y con borde, entonces $M \cong S^1$ o $M \cong [0,1]$.
- 14. Probar las siguientes afirmaciones.
- (a) Toda variedad diferenciable tiene un atlas diferencial numerable $\mathcal{A} = \{(U_i, \phi_i) \mid i \in I\}$ tal que $\phi_i(U_i) = B(0, 1)$.
- (b) El atlas del ejercicio anterior se puede elegir de forma que, si $\tilde{U}_i = \phi_i^{-1}(B(0,1/2))$, entonces $\tilde{A} = \{(\tilde{U}_i, \phi_i) \mid i \in I\}$ es un atlas diferencial compatible con A.

No variedades

Por definición una variedad (topológica) es un espacio topológico Hausdorff, localmente Euclídeo y con una base numerable de abiertos. En esta sección vemos ejemplos de cómo pueden fallar estas tres propiedades.

- **15.** La lemniscata. Sea $\alpha : \mathbb{R} \to \mathbb{R}^2$ la función $\alpha(t) = (2\sin(t), \sin(2t))$. Dado $r \in \mathbb{R}$, notamos α_r a la restricción de α al intervalo $(r, r + 2\pi)$. La imagen de α_0 es una curva \mathcal{C} llamada *lemniscata*.
- (a) Probar que $\{(\mathcal{C}, \alpha_{-\pi})\}$ y $\{(\mathcal{C}, \alpha_0)\}$ son atlas \mathcal{C}^{∞} sobre \mathcal{C} . ¿Es la lemniscata una subvariedad regular de \mathbb{R}^2 con alguna de estas estructuras?
- (b) Pruebe que las dos estructuras definidas sobre la lemniscata son distintas y difeomorfas.
- (c) ¿Para qué r's resulta α_r una parametrización de la lemniscata?

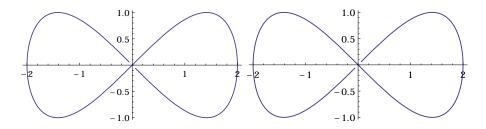


Figura 1: Las dos estructuras diferenciables de la lemniscata

- **16.** La recta con un punto doble. Sea $S = \mathbb{R}^{\times} \sqcup \{A, B\}$. Sea $\mathcal{B} \subset \mathcal{P}(S)$ la familia formada por todos los intervalos abiertos contenidos en \mathbb{R}^{\times} , y por todos los conjuntos de la forma $((r,s) \cap \mathbb{R}^{\times}) \cup \{A\}$ y $((r,s) \cap \mathbb{R}^{\times}) \cup \{B\}$, con r < 0 < s. Probar que:
- (a) \mathcal{B} es base de una topología sobre S;
- (b) S admite un atlas C^{∞} ;
- (c) S es localmente euclídeo y tiene una base numerable, pero no es Hausdorff.
- **17.** La recta extendida. Consideramos en $\mathbb{R} \times \mathbb{R}$ el siguiente orden: (a,b) < (c,d) si y solo si a < c o a = c y b < d. Probar que $\mathbb{R} \times \mathbb{R}$ con la topología inducida por este orden es localmente euclídeo y Hausdorff, pero no admite una base numerable de abiertos.
- **18.** La cereza. Demuestre que si le damos a esta suculenta y esférica cereza la topología de subespacio de \mathbb{R}^3 , entonces no es una variedad topológica.¹

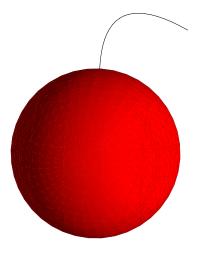


Figura 2: Cereza

¹Notar que la suculencia no juega ningún rol, con lo cual el resultado vale para cerezoides arbitrarios.