ÁLGEBRA II Segundo Cuatrimestre — 2015

Práctica 7: Módulos II

Condiciones de cadena

- **1.** Anillos de matrices. Sea $n \in \mathbb{N}$. Probar que un anillo A es noetheriano a izquierda, resp. a derecha, si y solo si $M_n(A)$ es noetheriano a izquierda, resp. a derecha.
- 2. Probar que un dominio íntegro artiniano es un cuerpo.
- 3. Probar las siguientes afirmaciones.
- (a) Un grupo abeliano artiniano es de torsión.
- (b) Un grupo abeliano es artiniano y noetheriano si y solo si es finito.
- **4.** *Extensiones finitas de anillos.* Sean A un anillo y $B \subset A$ un subanillo tal que A es finitamente generado como B-módulo a izquierda. Probar que si B es noetheriano a izquierda, entonces A es noetheriano a izquierda.
- **5.** Álgebras de matrices formales. Sean A y B anillos y sea M un A-B-bimódulo. Sea T el grupo abeliano $A \oplus M \oplus B$. Dados $a \in A$, $m \in M$ y $b \in B$, notamos por $\begin{pmatrix} a & m \\ 0 & b \end{pmatrix}$ al elemento $(a, m, b) \in T$.
- (a) Probar que la fórmula

$$\begin{pmatrix} a & m \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} a' & m' \\ 0 & b' \end{pmatrix} = \begin{pmatrix} aa' & am' + mb' \\ 0 & bb' \end{pmatrix}$$

define un producto asociativo en T. Concluir que $(T, +, \cdot)$ es un anillo, el cual también notamos por $\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$.

- (b) Probar que *T* es noetheriano a izquierda, resp. a derecha, si y solo si *A* y *B* son noetherianos a izquierda, resp. a derecha, y *M* es finitamente generado como *A*-módulo a izquierda, resp. *B*-módulo a derecha.
- (c) Probar que $T = \begin{pmatrix} \mathbb{Z} & \mathbb{Q} \\ 0 & \mathbb{Q} \end{pmatrix}$ no es isomorfo a su anillo opuesto.
- **6.** *Polinomios de Laurent.* Sea k un cuerpo y sea $A = k[X, X^{-1}]$ el anillo de polinomios de Laurent con coeficientes en k. Muestre que A es noetheriano.
- [†]**7.** *Extensiones de Ore.* Sea A un anillo y sea $\sigma: A \to A$ un morfismo de anillos. Sea B el A-módulo libre con base $\{X^i \mid i \in \mathbb{N}_0\}$. Probar las siguientes afirmaciones.
- (a) Existe exactamente una estructura de anillo sobre B tal que
 - 1. La función $a \in A \mapsto aX^0 \in B$ es un morfismo de anillos,
 - 2. $XX^i = X^{i+1}$ para todo $i \in \mathbb{N}_0$, y
 - 3. $Xa = \sigma(a)X$ para todo $a \in A$.

Notamos por $A[X; \sigma]$ al anillo correspondiente.

- (*b*) Si σ es invectivo y A es un dominio, entonces $A[X;\sigma]$ es un dominio.
- (c) Si σ es inyectivo y A es un anillo de división, entonces $A[X;\sigma]$ es un dominio de ideales principales.
- (*d*) Si σ es automorfismo y A es noetheriano a izquierda, resp. derecha, entonces $A[X;\sigma]$ es noetheriano a izquierda, resp. derecha.

8. Extensiones de Ore II. Sean A, B y σ como en el ejercicio anterior. Una σ -derivación de A es un morfismo aditivo $\delta: A \to A$ que satisface

$$\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$$
, para todos $a, b \in A$.

Si $\sigma=\mathrm{id}_A$, decimos simplemente que δ es una derivación de A.

Probar las siguientes afirmaciones

- (a) Existe exactamente una estructura de anillo sobre B tal que
 - 1. La función $a \in A \mapsto aX^0 \in B$ es un morfismo de anillos,
 - 2. $XX^i = X^{i+1}$ para todo $i \in \mathbb{N}_0$, y
 - 3. $Xa = \sigma(a)X + \delta(a)$ para todo $a \in A$.

Notamos por $A[X; \sigma, \delta]$ al anillo correspondiente.

- (*b*) Si σ es inyectivo y A es un dominio, entonces $A[X; \sigma, \delta]$ es un dominio.
- (*c*) Si σ es inyectivo y A es un anillo de división, entonces $A[X; \sigma, \delta]$ es un dominio de ideales principales.
- (*d*) Si σ es automorfismo y A es noetheriano a izquierda, resp. derecha, entonces $A[X;\sigma,\delta]$ es noetheriano a izquierda, resp. derecha.
- **9.** El álgebra de Weyl como extensión de Ore. Sean $A = \mathbb{k}[X]$, $\sigma = \mathrm{id}_A$ y $\delta = \frac{\partial}{\partial X}$.
- (a) Muestre que δ es una derivación de A.
- (b) Muestre que el álgebra de Weyl es isomorfa a $A[X;\sigma,\delta]$, en particular es noetheriana.

Módulos libres, proyectivos e inyectivos

- **10.** Probar que ℚ no es un ℤ-módulo libre. ¿Es proyectivo?
- **11.** Para cada A-módulo a izquierda M, sea $M^* = \operatorname{Hom}_A(M, A)$ con la estructura de A-módulo a derecha inducida por la estructura de A-módulo a derecha de A. Muestre que M es proyectivo y finitamente generado si y solo si M^* lo es.
- [†]**12.** Bases duales. Sea A un anillo y P un A-módulo a izquierda. Una base dual para P es una familia $\{(x_i, f_i)\}_{i \in I}$ donde $(x_i, f_i) \in P \times P^*$ para cada $i \in I$, que cumple las siguientes condiciones:
 - (i) para todo $x \in P$ el conjunto $\{i \in I : f_i(x) \neq 0\}$ es finito, y
 - (ii) para todo $x \in P$ vale la igualdad $x = \sum_{i \in I} f_i(x) x_i$.

Notar (i) implica que la suma en (ii) tiene sentido.

- (a) Muestre que un A-módulo P es proyectivo si y solo si posee una base dual.
- (b) Muestre que un *A* módulo *P* es proyectivo y finitamente generado si y solo si posee una base dual finita.
- **13.** Resoluciones proyectivas. Sea A un anillo. Probar las siguientes afirmaciones.
- (a) Para cada A-módulo M existe un diagrama

$$\cdots \longrightarrow P_{p+1} \xrightarrow{d^p} P_p \longrightarrow \cdots \longrightarrow P_1 \xrightarrow{d^0} P_0 \xrightarrow{\epsilon} M \longrightarrow 0$$

de A-módulos y morfismos de A-módulos que es exacto, y en el que para cada $p \in \mathbb{N}_0$ el módulo P_p es proyectivo. El morfismo ϵ se llama *aumentación*, y el diagrama obtenido al reemplzar ϵ por 0 es llamado una *resolución proyectiva* de M.

- (b) Los A-módulos P_p pueden elegirse libres para todo $p \in \mathbb{N}_0$.
- (c) Si A es noetheriano a izquierda y M es finitamente generado, entonces los A-módulos P_p pueden elegirse finitamente generados para todo $p \in \mathbb{N}_0$.

(*d*) Si $f: M \rightarrow N$ es un morfismo de *A*-módulos y

$$\cdots \longrightarrow P_p \longrightarrow P_{p-1} \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$
 y
$$\cdots \longrightarrow Q_p \longrightarrow Q_{p-1} \longrightarrow \cdots \longrightarrow Q_1 \longrightarrow Q_0 \longrightarrow 0$$

son resoluciones proyectivas de M y N, respectivamente, entonces existen morfismos $f_p: P_p \to Q_p$ para cada $p \ge 0$ que hacen conmutar el siguiente diagrama:

$$\cdots \longrightarrow P_{p} \longrightarrow P_{p-1} \longrightarrow \cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0$$

$$\downarrow^{f_{p}} \qquad \downarrow^{f_{p-1}} \qquad \downarrow^{f_{1}} \qquad \downarrow^{f_{0}} \qquad \downarrow^{f}$$

$$\cdots \longrightarrow Q_{p} \longrightarrow Q_{p-1} \longrightarrow \cdots \longrightarrow Q_{1} \longrightarrow Q_{0} \longrightarrow N \longrightarrow 0$$

- (e) Encuentre resoluciones proyectivas para
 - (i) un A-módulo proyectivo;
 - (ii) el \mathbb{Z} -módulo \mathbb{Z}_n para cada $n \in \mathbb{Z}$;
 - (iii) el $\mathbb{k}[X]$ -módulo $S = \mathbb{k}[X]/(X)$.
- 14. Probar que el grupo abeliano $\mathbb{Z}^{\mathbb{N}}$ no es un \mathbb{Z} -módulo libre.

Sugerencia. Sea $M \subset \mathbb{Z}^{\mathbb{N}}$ el subgrupo de todos los elementos $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ tales que para todo $n \in \mathbb{N}$, el conjunto $\{i \in \mathbb{N} : 2^n \nmid x_i\}$ es finito. Probar que si $\mathbb{Z}^{\mathbb{N}}$ es libre entonces M es libre de rango no numerable, y analizar el grupo abeliano M/2M.

- **15.** (a) Probar que \mathbb{Z} no es un \mathbb{Z} -módulo inyectivo, pero \mathbb{Q} y \mathbb{Q}/\mathbb{Z} sí lo son.
- (b) Dar condiciones necesarias y suficientes para que un \mathbb{Z} -módulo sea inyectivo.
- **16.** Sea *A* un dominio de integridad y sea *K* su cuerpo de fracciones.
- (a) Probar que K es un A-módulo inyectivo.
- (b) Probar que todo K-módulo es un A-módulo inyectivo.
- 17. Sea G un grupo finito y k un cuerpo tal que |G| es inversible en k. Mostrar que todo k[G]-módulo es proyectivo e inyectivo. ¿Es cierto que todo k[G]-módulo es libre?
- **18.** Probar que si *A* es un anillo de división entonces todo *A*-módulo es inyectivo y proyectivo.
- **†19.** Sea $\alpha \in \mathbb{C}$. Decimos que α es un *entero algebraico* si el ideal

$$I(\alpha) = \{ f \in \mathbb{Z}[X] \mid f(\alpha) = 0 \}$$

está generado por un polinomio mónico no nulo.

- (a) Probar que las siguientes afirmaciones son equivalentes.
 - (i) El número α es un entero algebraico.
 - (ii) El anillo $\mathbb{Z}[\alpha] \subset \mathbb{C}$ es libre y finitamente generado como \mathbb{Z} -módulo.
 - (iii) Existe un subanillo $R\subset\mathbb{C}$, libre y finitamente generado como \mathbb{Z} -módulo, tal que $\alpha\in R$
 - (*iv*) Existe un \mathbb{Z} -submódulo $A \subset \mathbb{C}$ libre y finitamente generado tal que $\alpha A \subset A$.

Sugerencia. Para probar $(iv) \Rightarrow (i)$, fije una base de A y estudie la matriz en dicha base de la transformación \mathbb{Z} -lineal dada por multiplicar por α .

(b) Usar el ítem anterior para probar que la suma y el producto de dos enteros algebraicos es un entero algebraico, y concluir que los enteros algebraicos forman un subanillo de \mathbb{C} .