ÁLGEBRA II Segundo Cuatrimestre — 2015

Práctica 5: Propiedades universales

En toda esta práctica k es un cuerpo.

1. Probar que la k-álgebra libre sobre el conjunto $\{*\}$ es isomorfa a k[X]. *Sugerencia.* Pruebe que el álgebra de polinomios tiene la propiedad universal deseada.

2. Sean X,Y,Z conjuntos y sean $f:X\to Y$ y $g:Y\to Z$ funciones. Probar las siguientes afirmaciones:

- (a) f induce un morfismo de álgebras $f_* : \mathbb{k}\langle X \rangle \to \mathbb{k}\langle Y \rangle$;
- (b) $(id_X)_*$ es la identidad del álgebra $\mathbb{k}\langle X\rangle$;
- (c) $(g \circ f)_* = g_* \circ f_*$.
- 3. Sean A y B anillos. Fijamos un elemento $a \in \mathsf{Z}(A)$ y definimos $\tilde{A} = A[X]/(aX-1)$. Probar que el morfismo $A \to \tilde{A}$ tiene la siguiente propiedad universal: para todo morfismo de anillos $\phi: A \to B$ tal que $\phi(a) \in B^\times$, existe un único morfismo $\tilde{\phi}: \tilde{A} \to B$ tal que conmuta el diagrama

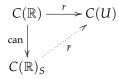
- **4.** Sea A un anillo. Se define [A, A] como el ideal bilátero generado por $\{ab ba \mid a, b \in A\}$.
- (a) Sea B un anillo conmutativo. Probar que todo morfismo $\tilde{\phi}:A\to B$ induce un morfismo $\tilde{\phi}:A/[A,A]\to B$.
- (*b*) Sea Γ un conjunto finito y sea $A = \mathbb{k}\langle \Gamma \rangle$. Probar que el álgebra A/[A,A] es isomorfa a un álgebra de polinomios en #Γ variables.
- † 5. Sean g, h ∈ $\mathbb{k}[X]$ y sea f = gh.
- (a) Probar que existe un morfismo $\mathbb{k}[X]/(f) \to \mathbb{k}[X]/(g) \times \mathbb{k}[X]/(h)$.
- (b) Encontrar el núcleo del morfismo anterior cuando $\mathbb{k}=\mathbb{R}$ y $\mathbb{k}=\mathbb{C}$.
- (c) Sea $f = \prod_{i=1}^n (X z_i)^{r_i} \in \mathbb{C}[X]$. Probar que $\mathbb{C}[X]/(f) \cong \prod_{i=1}^n \mathbb{C}[X]/(X z_i)^{r_i}$.

Localización

En esta sección los anillos son conmutativos.

- **6.** Sean A un anillo y $S \subset A$ un subconjunto multiplicativamente cerrado de A.
- (a) Si $S \subset A^{\times}$ entonces $A_S \cong A$.
- (*b*) Si $0 \in S$ entonces $A_S \cong 0$.
- 7. Sean A un anillo, $S \subset A$ un subconjunto multiplicativamente cerrado e $I \subset A$ un ideal. Sea \bar{S} la imagen de S por la aplicación canónica $A \to A/I$. Probar que $(A/I)_{\bar{S}} \cong A_S/IA_S$.
- **8.** Sean A un anillo, $S,T\subset A$ subconjuntos multiplicativamente cerrados de A y T' la imagen de T por la aplicación canónica $A\to A_S$. Probar que $U=\{st:s\in S,t\in T\}$ es un conjunto multiplicativamente cerrado en A y que $(A_S)_{T'}\cong A_U$.
- **9.** Sean A un anillo y $S \subset A$ un subconjunto multiplicativamente cerrado.

- (a) Supongamos que A es un dominio de integridad. Muestre que la aplicación canónica $A \to A_S$ es inyectiva.
- (b) Encuentre condiciones necesarias y suficientes para que la aplicación canónica $A \rightarrow A_S$ sea inyectiva.
- **10.** Sean A un anillo y $\mathfrak{p} \in \mathsf{Spec}\ A$. Muestre que $S = A \setminus \mathfrak{p}$ es un conjunto multiplicativamente cerrado. En general, escribimos $A_{\mathfrak{p}}$ en lugar de $A_{A \setminus \mathfrak{p}}$.
- **11.** Sea X un espacio métrico y sea A=C(X) el anillo de las funciones reales continuas sobre X. Probar que para cada $x_0\in X$ el conjunto $S(x_0)=\{f\in A:f(x_0)\neq 0\}$ es multiplicativamente cerrado. ¿Es inyectiva la aplicación canónica $A\to A_S$?
- [†]**12.** Sean $A = C(\mathbb{R})$, U = (0,1) y $S = \{ f \in A : f \text{ no se anula en el intervalo } (0,1) \}$.
- (a) Pruebe que *S* es multiplicativamente cerrado en *A*.
- (b) Sea $r: C(\mathbb{R}) \to C(U)$ la restricción de funciones. Muestre que existe un único morfismo $\bar{r}: C(\mathbb{R})_S \to C(U)$ tal que conmuta el diagrama



- (c) Muestre que \bar{r} es un isomorfismo.
- **13.** Sean A un anillo, $S \subset A$ un subconjunto multiplicativamente cerrado y $f: A \to A_S$ la aplicación canónica.
- (a) Muestre que si $I \subset A_S$ es un ideal, entonces $f^{-1}(I)$ es un ideal de A. De esta forma se obtiene una aplicación $f^* : \operatorname{Id}(A_S) \to \operatorname{Id}(A)$ del conjunto de ideales de A_S al conjunto de ideales de A.
- (b) Muestre que f^* preserva inclusiones e intersecciones y que es inyectiva.
- (c) Si $J \subset A$ es un ideal, entonces J está en la imagen de f^* sii $J = f^{-1}(JA_S)$ sii ningún elemento de S es un divisor de cero en A/J.
- (*d*) Muestre que $f^*(\operatorname{Spec} A_S) \subset \operatorname{Spec} A$ de manera que, por restricción, obtenemos una inyección $f^*:\operatorname{Spec} A_S \to \operatorname{Spec} A$. La imagen de esta aplicación es exactamente $\{\mathfrak{p}\in\operatorname{Spec} A:\mathfrak{p}\cap S=\varnothing\}$.
- **14.** Sean A un anillo y $S \subset A$ un subconjunto multiplicativamente cerrado.
- (a) Si $I \subset A$ es un ideal maximal entre los que no intersecan a S, entonces I es primo.
- (b) Describa el nilradical de A_S .
- **15.** Sea $p \in \mathbb{N}$ un número primo y $\mathfrak{p} = (p)$ el ideal primo de \mathbb{Z} correspondiente. Muestre que si $I \subset \mathbb{Z}_{\mathfrak{p}}$ es un ideal no nulo, entonces existe $r \in \mathbb{N}_0$ tal que $I = p^r \mathbb{Z}_p$.
- **16.** Sea A un anillo y $T \subset A$ un subconjunto. Sea $\Gamma = \{\gamma_t : t \in T\}$ un conjunto de variables indexadas por T y sea $A[\Gamma]$ el anillo de polinomios con variables en Γ . Sea $S \subset A$ el menor subconjunto multiplicativamente cerrado de A que contiene a T. Muestre que existe un isomorfismo

$$A_S \cong A[\Gamma] / \langle t \gamma_t - 1 \mid t \in T \rangle$$
.

- 17. Sea A un anillo. Muestre que $S\subset A$ es un subconjunto multiplicativamente cerrado maximal sii $A\setminus S$ es un ideal primo minimal.
- **18.** Sean A un anillo y $S \subset A$ un subconjunto multiplicativamente cerrado. Decimos que S es saturado si $ab \in S$ si y solo si $a \in S$ y $b \in S$. Muestre que S es saturado sii $A \setminus S$ es unión de ideales primos.
- **19.** Sea A un anillo. Describa el subconjunto $S \subset A$ multiplicativamente cerrado maximal tal que $A \to A_S$ es inyectivo.