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Abstract. Let k& be an infinite field,A the polynomial ringk[z1, ..., z,]
and F € AN*M a matrix such thalm F ¢ AV is A-free (in particular,
Quillen-Suslin Theorem implies thdter F' is also free). LetD be the
maximum of the degrees of the entriesiéfand s the rank of F'. We show
that there exists a basig, ... ,vpr} of AM such that{vy,... ,vy_s}
is a basis ofKer F', {F(var—s41),...,F(vpr)} is a basis oflm F* and
the degrees of their coordinates are of ordg¥/ — s)sD)°m") |

This result allows to obtain a single exponential degree upper bound for
a basis of the coordinate ring of a reduced complete intersection variety in
Noether position.

1 Introduction

This article deals with the computation of the solutions of linear equation
systems over a polynomial ring. After the seminal paper by E.Mayr and
A.Meyer [19], it is well known the constraints of linear algebra methods as
atool in effective commutative algebra. In particular, Mayr-Meyer’'s monoid
leads to an intrinsic hyperexponential growth of the degrees of the syzygies.

In terms of linear equation systems this fact can be restated saying that
there exist families of polynomial matrices such that every system of gener-
ators of their kernels contains a vector with at least one coordinate of double
exponential degree. More precisely, in [7, Corollaire, pag.10] the following
result is shown :

* Partially supported by UBACYT and PID-CONICET.
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Lete > 0. Let n and D be integers such that > 10 , D > 3,

D >2+ ﬁ . There exists a polynomial sequengg, ... , P, of degree
bounded byD in A := k[zy,...,x,] (Where P, := z1 , P» := x3)
such that any system of generators of thesubmodule ofA™ consisting
of all the sequence®’; with >, U;P; = 0, contains at least one vector
whose first coordinate has degree N , wherelog, logy N > (% —e)n+
logy logy, D — %.

However, under certain additional hypothesis on the matrix associated
to the linear system, more precise estimations can be done. For example,
if the matrix is unimodular (i.e. the rows can be extended to a basis of the
whole space), a single exponential upper bound for the degree of a basis of
its kernel is given in [5, Corollary 3.2].

In the present paper we treat the more general case where the columns of
the matrix generate a fre#¢ -module (in particular, Quillen-Suslin Theorem
assures that the kernel is also free). In this case it is not too difficult to show
a polynomial upper bound for the degree of a system of generators of the
kernel (see [2, Corollary 10] or Lemma 1 below). Nevertheless our purpose
here is to find bases of low degree for the kernel and the image.

More precisely, letk be an infinite field, A := k[x1,...,x,] be the
polynomial ring in the indeterminates,, ... ,z, and F € AN*M pe a
matrix such thalm F' is A -free. Denote byD the maximum of the degrees
of the entries ofF” and bys the rank of £'. Therefore we have (see Theorem
18 below) :

Theorem There exists a basiévy, ... ,vy} of AM such that :

— {v1,... ,vp—s} is abasis ofKer F';

— the coordinates of the vectors have degrees of ordé(M —s)s D) (")
forj=1,... ,M —s.

— {F(vpr—s+1), ..., F(var)} is abasis oflm F'.

— the coordinates of the vectors have degrees of ordéf ) —s)sD)° (")
forj=M-—-s+1,... , M.

— if k:= Q and/ is an upper bound for the binary length of the entries
of the matrix £, then the coefficients afy, ... vy, have binary lenght
of order ¢((M — s)sD)°"")

Under suitable stronger conditions (for instanceyitorresponds to the
matrix of a linear projection) the degree upper bounds of the Theorem can
be slightly improved (see Sect. 6).

The methods we use in order to prove the main theorem (developed
in Sects. 2 to 5) are strongly inspired on the works of D.Quillen, A.Suslin,
L.Vaserstein and M.Hochster related to the resolution of the so called
“Serre’s Conjecture” (on this subject let us mention the remarkable books
of T.Y.Lam [17] and E.Kunz [15]). We combine this approach with the ef-
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fective version of Hilbert Nullstellensatz (see [13], [9] and the references
given in [3] and [22]) and its consequences in the quantitative study of poly-
nomial unimodular matrices following [5]. Another approach on effective
Quillen-Suslin Theorem by means of @kmer Basis may be found in [18].

The last section is devoted to an application of the mentioned theorem
in the frame of effective commutative algebra : kebe an infinite field and
fi,..., fn—r bearegularsequencehz,, ... ,z,] of degrees bounded by
an integerd . Suppose that the variables, . .. , z,, are in Noether position
with respect to the polynomialg; (i.e. the natural magk|z1, ... ,z,] —
klxi,...,zn]/(f1,..., fn—r) is @aninjective and integral morphism).

Write R := k[z1,... ,z,) and S = k[z1,... ,xn)/(f1,- .., fo—r). It
is well known (see for example [8, Corollary 18.17] or [12, Lemma 3.3.1])
that, under these conditions, is a locally free R-module of finite rank
(bounded byd"~" following Bezout's Inequality) and hence free (Quillen-
Suslin Theorem).

This situation appears frequently in problems related to effective elim-
ination theory (see [20], [12], [6], [1], [14], [11]). In this context it is nat-
ural to ask about quantitative properties of bases of the mo8lul€ our
knowledge the only significative result for this problem deals with the ho-
mogeneous case, where a basis whose coordinates have single exponential
degree is obtained with the aid of elementary properties 0bGer bases.

In this sense we obtain the following result (see Theorem 26 below) :

Theorem Suppose that is a reduced ring. Then, there exist a basis%of
over R formed by polynomials of degrees of ord&t((n—)r")

The proof of this theorem combines the previous results of linear algebra
over the polynomial ring with consequences of Gorenstein duality theory.

The methods of the proofs of both theorems are explicit and they can be
easily transformed into algorithmic procedures; however their complexity
bounds are too bad, even for theoretical purposes. Therefore the problem of
how to find single exponential algorithms remains open.

Because of some technical difficulties in the developement of the article
we think that a guide through it may be useful.

The procedure for the proof of the main result (Theorem 18) follows
essentially a recursive argument in the number of the variables based on the
well known Vaserstein's Theorem ([15, Ch.IV, Sect. 1, Th.1.18]¢t R
be a commutative ringy be an indeterminate oveR and U be a matrix
with coefficients inR[z|. ThenU and U (0) are equivalent if and only if
there existry, ... , 7y € R such thatl € (m,... ,my) and the matrices
U and U(0) are equivalent over, [z] (forall j =1,... H).

Unfortunately we are not able to state a quantitave version of Vaserstein’s
Theorem for our matrixt’. However in Proposition 19 and in Lemma 20 of
Sect. 5 we prove an adequate version of this theorem for an auxiliary matrix
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F linked to F (see Definition 14) which allows to prove Theorem 18. The
matrix ' has as columns a system of generator&ef £’ constructed in
Lemma 1 of Sect. 2 (in particular, sindeer F' is free, the matrixF also
verifies that its image isA -free, although its size and degree are slightly
bigger than those of").

Sections 3 and 4 are devoted to the construction of the elements. |
wy € kl[r1,...,z,—1] required for the effective version of Vaserstein’s
result of Sect. 5 (see Proposition 19).

In Sect. 3we exhibitafreg[zy, ... ,z,_1]-module@ associated to the
matrix F'; @ is the quotienim F'/L , where L is generated by a maximal
linearly independent family of columns df .

An explicit computation of a presentation fay (see Definition 4 and
Lemma 6) is used in Sect. 4 in order to obtain a new explicit presentation
of Im F' localized in the elements; € k[zy,...,2,-1]. In particular,
estimations for degrees of a basislaf /', are given (see Lemma 13). The
technical results Proposition 10 and Lemmas 11 and 12 play a cedltFal r
in the construction of an intermediate matrix related to4hés.

In Sect. 6 we study the particular case of a projection matrix; in this
case, a quantitative version of Vaserstein’s Theorem can be done, without
the introduction of auxiliary matrices. This fact leads to better degree bounds
(see Theorem 23).

AcknowledgementsThe third author (P.S.) thanks the Laboratoire GAGE, Ecole Polytech-
nique, Palaiseau, specially Prof. Marc Giusti, for its hospitality during the winter season
96-97.

2 A system of generators for the kernel of F’

Let k& be an infinite field,A := k[zy,...,z,] and F € AN*M a matrix
verifying thatIm F' is a free A-module. In this case, Quillen-Suslin Theo-
rem (see for instance [15, Ch.IV, Th.3.15.]) implies tikatr £ is also free.
Denote byD the maximum of the degrees of the entriesofand by s the
rank of F'. The columns ofF’" will be denoted byC1, ... ,Cj;.

With these notations we are able to estimate a system of generators of
Ker F' of low degree (see also [2, Corollary 10] and [23, Corollary 2.4.1]) :

Lemma 1 The kernel of the matri¥’ can be generated as ad -module
by 3(M — s)(sD)™ polynomial vectors with degrees boundedddy .

Proof. Since s = rkF there exists at least one non zesox s minor;
without loss of generality, let us suppose that the firgts principal minor

¢ is non zero (in particular, the first columns are linearly independent).
Therefore, by Cramer’s rule, we have foe 1,..., M — s:



Free modules over a polynomial ring 683

0 Csyi = b1;C1 4 - - + b5 Cs 1)

where b;; are polynomials inA uniquely determined, whose degrees
are bounded by D .

Dividing relation (1) by the GCD oby;, ... , b, § we obtain new rela-
tions

0; Cs—i—i = b’lZCl + -+ b;ZCs (2)

Clearly, the vectors

Wy ::(/17;,...,[)/ 0 ...,—(5i,...,0),

519 Y

where —¢; occurs in the coordinate + i, belong toKer F'.

Repeating this construction for all thex s non zero minors off', we
get a family of vectors lying in the kernel.

We claim that this family generatdser F'.

For this it is enough to show that for any maximal idedd C A
these vectors span the kernel of the corresponding localized application
F: A%t — Aﬁ\v/l .

Clearly, the columng’y, ... ,Cys generatelm Fq; by Nakayama's
Lemma, sincdm Fy(/ MIm F), is a s-dimensional vector space, we de-
duce that there exists a basislai Fy; consisting ofs suitable columns of
the matrix F'. Without loss of generality, we may suppose that . .. , C;
is an A -basis oflm F,, and therefore, there exist;, ... ,ps; € A and
¢i € A\ M, such that

¢iCsti = p1iC1 + - -+ + psi Cs, (3

fori=1,... M—s.
We now show that n@; in (2) belongs toM : suppose on the contrary
that §; € M, from the relations (2) and (3) we deduce :

qibj = Drjo;
fork=1,...,s.Inparticular, sincey; ¢ M, alltheirreducible factors
of ; which belong toM are also factors of all thé; ; 's. This contradicts
the coprimality ofb’lj, . ,b’sj, ;.
We finish the claim remarking that the vectars are an A -basis of
Ker Fpy because they are a basis of the vector sgaeely/ MKer F
(they areM — s linearly independent vectors).
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In order to shrink the obtained system of generators, for every non zero
minor § we modify slightly the vectorsu; in the following way: letgs :=
mem(dq, ... ,0p—s) and setw; := %wi .

Let us observe that: '

- w; € AM

— The coordinates ofy; have degrees bounded BY) (observe thaiys
dividesd).

—If 6 ¢ Mfori=1,... M —s,thengs ¢ M. In particular the vectors
w; are asystem of generatorsBer Fy, and the ideal generated by the
polynomialsgs is A.

— If § runs over all the non zere x s minors, the corresponding vectors
w; generateKer F'.

Since g5 divides §, the degrees of the polynomialg are bounded
by sD and then they span & vector space of dimension smaller than

(” L‘;D> < e(sD)".

Fix a maximal k -linearly independent family ofj; 's; for each one of
thesegs’'s consider theM — s vectors associated to it. The collection of
all these vectors is also a system of generatorKafF' . m

3 Afree k[x1,... ,zn—1]-module related to Im F

From now on we writeB for the polynomial ringk[x1, ... ,x,—1].

Since Im F' is a free A-module of ranks > 0, there is a non zero
s x s minor of F'; after a linear change of coordinates, we may assume that
the first s x s principal minor, 1, is monic with respect to each variable
Tlyeeo yTp -

Remark 2Under this assumption the image of the matfix0) €¢ BN*M |
obtained by replacing,, by 0 in F',is B -free. Moreover, let,... ,hs €
A" be a basis ofim F and wy, ... ,w; € AM be the system of gener-
ators of Ker F' constructed in Lemma 1. Then the corresponding vectors
h1(0), ..., hs(0) and w;(0),... ,w(0) are aB-basis oflm F'(0) and a
B-system of generators dfer F'(0) respectively.

Infact, letv € Im F(0) andv’ € BM be such thaf(0)(v') = v;since
F(v') is an A-linear combination of the vectors,, . .. , hs, replacingz,
by 0, one deduces that is a B -linear combination of the vectors;(0) 's.
The assumption about thex s minor p implies that the rank ofm F'(0)
over the fraction field ofB is alsos. Thereforeh;(0), ... ,hs(0) are B-
linearly independent.

In a similar way the assertion about the generatoidsaf #'(0) follows.
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Let L be the free submodule ol generated by the first columns
C1,...,Cs. Consider the exact sequence

0>L—->ImF—->Q—0 (4)

where@ :=Im F'/L.

Clearly, @ is generated by the images of the colunfiis, 1, ... ,Cus
and thenu@ = 0 (due to the relations (1) fof = u).

We write d := deg, p— 1 (note thatd < sD —1).

Sincey ismonicinz, , ) admits a naturaB -module structure of finite
type generated by the images of the elemeit§’; with j =0,... ,d and
i=s+1,... , M.

Proposition 3 The B-module@ is free of finite rank.

Proof. Let p C B be a maximal ideal; tensoring the exact sequence (4)
(as a sequence ob -modules) by B/, we claim that the sequence of
B/p-vector spaces

0= L/pL —-ImF/pImF — Q/pQ — 0 (5)

is exact.

To prove our claim it is enough to show that the injectibn— Im F’
is preserved after tensoring. In fact, let := a;Cy + - -+ + a;Cs be an
elementinL N plm F'.

Thenw may be written as a linear combination of the colundiys. . . |
Cyy with coefficients inp A .

Then we have :

a1Ci+ - +aCs=w = 1C1+ -+ BuCuyr

with o; € A and 3; € pA. Multiplying this equality by, and using
(1) we deduce the relations :

M—s
pog = pf; + Z Bstibji
=1

forj=1,..,s.

Regarding this formula as a polynomial identityAtjx,,] and comparing
coefficients (recalls is monic) we observe that the; 's belong top A and
thenw € pL,i.e.w=0in L/pL.

From the exactness of (5) we deduce thais a locally projectiveB -
module and then projective (see [15, Ch.lV, Prop.3.4]). Therefore itis a free
B -module of finite type, by Quillen-Suslim
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Definiton 4 For k = 0,... ,d :=deg, p—1andi=s+1,... , M,
let zkC; be the canonical system of generatorgpfas a B -module, and
let m:=(d+1)(M —s).

Leteg s41,€1,641,--- ;€ds+1,--- ,€q,p DEthe canonical basis @™ .
Therefore, we have a surjective map: B"™ — @, defined asp(ey;) :=
2k C; (observe thaier o is B -free).

We are interested now in the computation of a system of generators for
Ker ¢ of low degree.

Let wy,...,w; be a system of generators Kier F' asin Lemma 1 (in
particular,t < e(M — s)(sD)™). Sincen is monic inz,, , we can compute
the euclidean division imB[x,,| for each coordinate, and we write :

wj = pgj T (6)
where ¢; and r; are in AM and the degree in,, of each coordinate
of r; is bounded byd, meanwhile, the total degree is bounded(by)?.
Foreachrkr; € AM with j =1,... ,tandk =0,... ,d,we compute
again the euclidean division :

TRy = gk + Tk (7

wherery; € AM | deg Thj = 2(sD)3 and deg, 7rj <d.

For each vectory; , we consider the vectdry; consisting of theM — s
last coordinates. We replace the multi-indexby h =1,... ,¢(d+1).

For eachh, V}, can be decomposed :

Vii = Vo +2nVia + - 4+ 23 Via
and eachV}, ., being a vector inBM=s | can be written

Vi = Vhkst1s -+ > Vi)
Proposition 5 The vectors(Vy, 0.s+1, V1,541 - -+ » Vids+1s- - - > Vid,M)
e BUHDM=s) ‘with h = 1,... ,t(d + 1), are a system of generators of

Ker .

Proof. First, we show that these vectors belondder ¢ .
Applying the definition ofy, we have

O(Vh0,641, Vils+1s- - > Vidst1s- - > VadM) = E Vi kixk C;
ik

M
= Z QniCi.

1=s+1
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with Qh,i = Zk Vh’k,ixﬁ .

It suffices to show thad~ " | Q5,;C; € L.

With the notations abovey, = (Qp s+1,--- , Qn ), and then, revers-
ing the euclidean divisions (7) and (6), there exi4t ... , Ps € A such
that :

(Pla"' 7P85Qh,8+17"' ’Q}LM) :‘Tq]zw‘}'/”‘

wherek € N, w € Ker F andr € AM .
Multiplying this identity by the “column vector’(C1,... ,Cy) we
obtain :

s M M
Y PCi+ Y QuiCi=pnY riCi
i=1 =1

1=s+1

becausew € Ker F'.

SinceuC; € L forall i =1,... , M, we deduce thap , Qp,,;C; € L,
and so, the vectors are ier ¢ .

Now, we will show that they are a system of generator¥ef ¢ .

Let (qo,s+1, 41,511, - - - »qa.0r) beanelementifer o ¢ B+ =s)
that is to say

90.5+1Cs+1 + q1.s4120Cs11 + - .. + qariCus € L.
Writing Q; := >, qr.ix% , we know that there exisP;,... ,Ps € A
such that
Qs+1Csy1+ -+ QuCy = PCy + -+ - + PCs.

This means that the vectdr—P, ..., —Ps, Qsi1,... ,Qun) € AM
belong toKer F', and then, if{wy,... ,w;} is the system of generators of
Ker F' constructed in Lemma 1, there exist, ... a; € A such that

(—Pl, v ,—Ps, QS+1, e ,QM) = Zajwj.
Dividing the «; 's and w; 's by 1, we can write, for a certaim < AM

(_Pla"' a_PSaQSJrla'-' aQM):Mw+Zﬁ]T]

wheredeg, (3; <d andr; are the ones defined in (6).
Repeating the division (7) we obtain

(_Pla"' 7_P57Qs+1>"' aQM) :Mw/+zﬁk3rk]
with gi; € B (see (7)).
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Comparing the last\/ — s coordinates, and simplifying the notation,
we have

(Qsy1,---,Qn) = pv + Zﬁth

for a certainy € AM—5.

Since 3, € B for all index h, and sincedeg, (; anddeg, Vj, are
strictly lower thandeg, ., we obtain thatv is zero from the uniqueness
of the euclidean algorithm ilB[x,,] . Then

(Qst1,---,Qn) € BVI + -+ + BV 441y
The proof finishes developing this identity in powersagf. m

With the notations above, we observe that e(M —s)(sD)", d < sD
anddeg V}, = 2(sD)3, and then we have the following result:

Lemma 6 There exists a matrix: € B™*?P,wherem := (M —s)(d+1),
pi=td+1) < e(M —s)(sD)"! and deg G = 2(sD)?, such that
ImG =Kerp.

Proof. Take G as the matrix whose columns are the vectovs o 541,
Vh7175+1, - th,d,s—I—la e 7Vh,d7M) , for h = 1, ..,p. 1

Observe thatn < p sinceM — s =1k (Ker ') <t.

4 Another local presentation for Im F

This section is devoted to exhibit a basislaf 7' under a suitable localiza-
tion in an element of the rind@ := k[x1, ..., z,—1] (Lemma 13 below).

We recall the notations introduced in the previous sections.

We denote bys the rank of the matrix” and by € A := k[zy, ..., 4]
the first principals x s minor of F'; after a suitable change of coordinates
we may suppose that is a monic polynomial in all the variables. Set
d:=deg, p—1andm :=(d+1)(M — s) (see Definition 4).

We definey : B™ — @ := Im F'/L the B-linear application defined
on the canonical basis by(ey;) = zkC;, for k = 0,....,d and i =
s+1,..., M (whereL isthe A -free module generated by the firsstolumns
of F', denoted by, ..., C; ; see also Definition 4).

Let G € B™*P be the matrix whose columns are a system of generators
of the kernel of, following Lemma 6, and lety < m be the rank of the
B-moduleKer ¢ (which is free becaus# is a polynomial ring and? is
B -free from Proposition 3).
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The ¢ x ¢ minors of G generate the ringB (sinceIm G = Ker ¢
is a direct summand of3™) and their degrees are bounded dy(sD)3
(therefore by2(M — s)(sD)*).

Let £ be a non zera; x ¢ minor. Without loss of generality we may
suppose that involves the firstq columns of G, that we will denote by
Ki,... K, (in particular o(K;) = --- = ¢(K,) = 0). Unfortunately,
despite the polynomial§ € B generate the whole ring , we are not able
to construct a basis for the localizet: -module Im F¢ , and we shall need
to refined them by suitable multiplications (see Lemma 13 below).

For the m — ¢ rows not used in the construction of the mindy let
Chyyits - -+ 5 Chm_q.im_o D€ the corresponding: —q vectors of the canonical
basis of B (see Definition 4). For the sake of simplicity we will denote
the vectorsey, ;; by u;, j=1,... ,m —q.

Clearly K1,..., K4, u1,... ,un—q are a basis of3/" since the deter-
minant of the correspondingn x m matrix Z is £ or —¢.

Then we have

Proposition 7 The vectorsp(e, i,) = xlffci]. ,j=1,... ,m—gq,area
basis of theB; -moduleQ¢ . m
Meanwhile consider the vectorg' C;, , . . . ,x,’im—qciqu, Cci,...,Cs.
From Proposition 7 and the definition of tl&-module @ (see (4)), for
eachindex(, ¢/ =1,... ,m — q, there exist uniquéy), ceey ,(f)_q € B;
andal”,... al" € A such that
m—q ~ L S
—Tp xﬁfC’iZ = Z ﬂj(e) Ty Ci; + Z az@ci. (8)
j=1 i=1

We will analize this relations more deeply.

First assumek, < d : then —:z,lfkfcie = —p(e) for a certain vectoe

of the canonical basis aB™ (see Definition 4).
On the other hand we can write iBgL :

—e= MK+ + XNEKg+ Agpiur + -+ Mg €)

for certain (A1, ..., A\m) € Bgﬁ
Hence, applyingy we have

m—q
—xpp(ug) = _37711+kzcie = —p(e) = Z )‘q+j90(uj)
j=1
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(recall thaty(K;) = 0 forall I and p(u;) = xfﬂ(]ij).

Therefore in (8) we can takéj(e) = Ag4j, forall j.
In order to estimate the degree af,; we consider the product of (9)

by the matrixZ ! :
A1
—Zle=1| : |].
Am

In particular, the),;;'s are the lastn — ¢ entries of a column of the
matrix —Z 1. SinceZ belongs toB™*™ anddet(Z) = +¢ we can write

@
£

where, by Cramer’s rule, th,é](.é) 's are polynomials inB whose degrees
are bounded bym — 1)2(sD)? < 2m(sD)3.

For the casék, = d, instead of—z**:C;, , we write (zd+1 — 1),
and the argument runs similarly. Here the upper bound for the polynomials
3\ is 2(m — 1)(sD)? + (sD) < 2m(sD)?.

In order to obtain an estimation for the degrees in (8) it remains only to
bound the degrees of th?él(e) 's.

Rewriting formula (8), we constru@®1, ... , Qar—s € Be[z,] suchthat
the equality

B = (10)

QiCoi1+ -+ Qu-sCrr =Y & C;
=1

holds in A and£Q; € A forall I =1,...,M — s are polynomials

of degree bounded by + 2m(sD)3.
On the other hand, relation (1) for the firstx s minor p of the matrix
F yields the equality :

s

- by br M—s
Q108+1+"‘+QM780M:lefcr—’_"'—’_QMfSZ M C’r-
r=1 r=1
Taking into account that the columis, ... ,C, are linearly indepen-
dent, we deduce :
20 _ Xit b

(2

1
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Let A be the minimal exponent such th@(t&’l(f) € A.SinceéQ; € A
for all I and the polynomialg: and ¢ are relatively primes (becaugeis
monic in all the variables ang belongs toB ), we deduce that < 1, and
then

M—s
¢a” €A and  pdivides €Y by@Q inA (11)
=1

Therefore, by (1) , (10) and (11) :

deg(éal?) < max{deg(buf@Qi)} < (sD) + max{deg ﬂj(e)} td
J
< (sD) + 2m(sD)? + d.

Sincem < (M — s)sD, we are able to rewrite (8) as follows :

m—q 5(3) . N0
—n ahChy =y @l Ciy + > G (12)
j=1 i=1

whereﬁj@) € B, 041@) € A and degﬂj(»é), deg 0%@ < 4(M — s)(sD)*
for all indicesj, ¢ and? (/ =1,...,m — q).

The following definition allows to show a new local presentatiofrafF’
which we will consider in the sequel.

Definition 8 Let ¢y : A™~ 9t — Im F be the linear application defined
by :

—(e;) = x'ﬁjCij,foraII j=1,...,m—g,

—Y(ej) =Cj_myq,forall j=m—qg+1,... m—qg+s.

Observe that) depends on the choice of the mingr

The localized morphisny, is surjective (Proposition 7 and the definition
of @), and thenKer ¢¢ is a projectiveA, -module becausém F; is A -
free .

Moreover, with the notations above we have the following result bor-
rowed from [15, Ch.IV, page 115]:

Proposition 9 The matrixU < Aém*Q)X(m*q“) , Where the/-th row is
the vector

©® FORN G NG
1 m—q 1 s
) ) ) geee -) + xpe
e ¢ ¢ ) ¢
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(e¢ isthe/-th vector of the canonical basis gf™~9+¢), is a unimodular
matrix in A¢ (i.e. the (m — q) x (m — ¢) minors generate the ringl, )
and its rows are a basis dfer ¢¢ (in particular Ker v is free). Moreover
€U € Am=a)x(m=a+s) and deg¢U < 4(M — s)(sD)*.

Proof. Let S ¢ A7 7"* be the submodule generated by the rows of the
matrix U . From the relations (12) it is clear that C Ker ¢ .

In order to see the other inclusion, we observe the following : for all
¢=1,...,m—q andforallp € A¢ there existyi, ... ,ym—q € B¢ and
Ym—g+1,--- s Ym—g+s € A¢ (depending or? and p) such that

m—q-+s

pep — Z Y€ € S.
j=1

This can be done by a straightforward recursion argument develgping
in powers of the variable:,, .

Therefore, if (p1, ... ,pm—qg+s) € Ker1e, we can rewrite it as follows
m—q+s
(pla"' >pqu+8) =w + Z Yi€j
j=1
wherew € S, v1,... ,Ym—q € Be andy—g41,- ., Ym—g+s € Ac.

Applying ¢ we have the following identity idm F¢ :

m—q m—q+s
k.
0 = E Y5 :szC'ij + E YiCi—mtq- (13)
j=1 j=m—q+1

Looking this equality modulo the fred, -module L, generated by the
columns(y, ..., Cs (see (4) in Sect. 3) one deduces the relatio@in:

m—q
k-
0 = Z’yjm'n]Cij,
Jj=1

and, since the elemenhskﬂ C,-j ,j=1,...,m—q, are aB, -basis of
Q¢ (see Proposition 7), we havg =0 for j =1,... ,m —q.
Thus, the linear combination (13) can be reduced to

m—q+s
0= %Cjim+q
Jj=m—q+1
Since the column vector§', . .. , Cs are linearly independent we have

alsoy; =0for j =m—q+1,... ,m—qg+s.Then(pi,... ,Pm—g+s) €5
and thereforeS = Ker 1) .
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Moreover, the rows of the matrik’ are a A, -basis ofKer¢¢ : Im Fy
is A¢ -free of ranks and thenKer 1, is locally free of rankm — ¢ since
the rows of the matrixU generateKer ¢¢, by Nakayama’'s Lemma, they
are a basis for the localization in any maximal ideal4f and then they
are A¢ -linearly independent.

The unimodularity of the matrixXJ follows from the decomposition
Azn_q+s ~Kertpe @Im Fy. m

The following results (Proposition 10 and Lemmas 11 and 12) allow
to construct the adequate polynomials fih in order to obtain bases for
localizations oflm F' (see Lemma 13 below) by means of suitable changes

of coordinates |nA(m ats)
First, following [15, Ch.lV, Lemma 3.12], we are able to simplify the
matrix U using “x,, -division with remainder” between the matrix formed

by the lasts columns of U and the matrix consisting of the first — ¢
columns ofU in the obvious way :

Proposition 10 Let U € Aém*‘” X(m=a+9) he the matrix of Proposition 9.
(m—g+s)x(m—gq+s)

There exists an invertible matrig' € AE verifying
|
UC = | zpldp—g+ U1 | Uz
|
where €U, € Bm—ax(m=q) = ¢Ad(M=s)(sD)', ¢ Bm—a)xs gngd

M =)D 0 g g(m—gts)x(m— ++9) are matrices whose entries have de-
grees bounded b¥6(M — s)?(sD)%. m

The matrixU can be modified by another change of coordinates in such
a way that all its entries belong to a suitable localization of the g
For this purpose it is convenient to consider the matfik' in Proposition
10 as ak(x1, ... ,xn—1)[xs]-unimodular matrix in order to apply Suslin’s
reduction procedure following [17] and [5] (see the next two lemmas). Un-
fortunately this approach requires the introduction of certain polynomials
in B playing the ble of the¢’s. Fortunately their amount and degrees can
be appropriately controlled (Lemma 13 below).

Lemma 11 (cf. [5, Lemma 4.4])Let V' := UC be the matrix defined in
Proposition 10. For each: € A"~1\ {¢ = 0} there exists an invert-
ible matrix A € klm—ats)x(m=ats) gych that: if V' := VA,, A =
det[V{,...,Vy,_,], (the (m — q) x (m — ¢) minor built from the first
m — q columns ofV"), Ay :=det[V],... V] 1,V _, 1] andec, :=
Res,,, (A1, Ag) the resultant ofA; and As with respect to the indetermi-
nate x,,, thenc,(z) # 0.
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Proof. Let z = (21,... ,2,-1) € A" 1\ {¢ = 0} be given; letk[y;;; 1 <
i,j < m—q+s] bethe polynomial ring ir{m —qg+s)? new indeterminates
over k. By Y we denote then — ¢ + s square matriXy;;] with columns
Yi,...,Yi_gts. We write Y’ and Y” for the (m — ¢+ s) x (m — q)
matrices[Y1, ... , Y4 and[Y1,... ,Y;_q—1, Yin—g41] respectively. Let
Vi=VY.

From the Binet-Cauchy formula ([10, Ch.2]) we see that:

Avi=det[V],... Vi g =) det(VD) det('V)) - (14)
I

Ay = det[‘/lla cet T/n—q—la T/rz—q+1] = Zdet(V]) det((tyu)l)
1

where runs through all sequencgs, . .. ,i,_,) suchthatl <i; <
e <dpg<m—q+s.

Letc:=c(x1,... ,2p-1,Y) := Res,, (A1, Az) be the resultant o,
and A, with respect to the indeterminats, .

Claim.- ¢(z,Y) = ¢(z1,... ,2n-1,Y) # 0.
Proof of the claim. From Proposition 10 we have that the polynomial

det[V1,...,Vin—g] is monic in z,, and m — ¢ = deg, (det[Vi,...,
Vin—q]) > deg, (det(V7)) for all sequences of natural numbers =
(11, . yim—g) With 1 < iy < -+ < dppg < m—gq+s and #
(1,...,m—q).

Thus (14) implies that(z,Y) = ¢(z1,... ,2n-1,Y) = Resg, (A1 (%,
T, Y'), Aoz, 20, Y")).

Suppose now that(z,Y) = 0. Then there exist® € k[z,,Y] with
deg, (p) > 1 suchthatp divides bothA,(z,z,,Y") and Ay(z, z,,Y").
In particular we havep € k[zy,,Y1,...,Ym—q—1]. Let h € k[z,, Y] be
such that

ph = Ay = det(Vi(z,2n)) det(("Y');). (15)
1

Let T C k[z,][Y’] be the ideal generated by all the determinants
det((*Y”");); Z is a homogeneous prime ideal (see [4, Ch.2, Th.2.10]).
From (15) we see thap and h must be homogeneous ik’ and that
degy (p) + degy~(h) = m — ¢q. The polynomialp doesn’t belong taZ
since it is independent fron;,,_, .

Since A; € 7 by (15) andZ is prime we concludeh € 7 and
degy/(h) > m — q. Thus degy/(p) = 0, i.e. p € k[x,]. Now, again
by (15), we see thap divides all det(V7(z, x,)) .
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The unimodularity ofV' (Propositions 9 and 10) implies that the ideal
generated by all polynomialdet (V;(z, z,)) is trivial in k[xz,]. Therefore
p € k, which contradictsdeg, (p) > 1. This finishes the proof of the
claim.

Sincek isinfinite and since(z, Y') # 0 thereexists1, € GLy,—q4s(k)
suchthate(z,4,) # 0. m

Lemma 12 (cf. [5, Lemma 4.5])Let V' := UC be the matrix defined in
Proposition 10. Letz: € A" 1\ {¢ = 0}, A, € GLy—g1s(k), V' =
VA,, A1, Ay and c, € B¢ be as in Lemma 11. Then there exists an
invertible matrix 2 € A7) %" =17) gyuch thatV 2 = V(0) (where

V(0) denotes the matrnV after the evaluationz,, — 0) and (c.£%)! 02

is a polynomial matrix inA(m—e+s)x(m—a+s)  The degrees of the entries
of (c.£%)'2 and the integersu and [ are of order (M — s)sD)°(M),
independently ot .

Proof. Let z € A" '\ {£ =0}, c:=¢, and g, h € Be[z,] be such that
c= gl + hAs.

From Proposition 10, without loss of generality, we may assume that
there exists a constante N independent of, of order (M —s)sD)°(1)
such that{"qg, £7h are polynomials inA, £"¢ belongs toB, and the
total degrees of these polynomials are bounded by another constant of size
(M — 5)sD)°M)

Foreachj, m —q+2 < j <m — q+ s, there exists a column vector
G; € Affé”_q)“ with controlled degrees such tha{/(0) — V; = cG;.
Thereforer’(O) — Vj’ = gA1Gj + hAG;.

Let By := adj[V{,...,V,,_,] be the adjoint matrix of thé¢m — q) x

s Vm—

(m — q) matrix [V{,... V| Similarly, let B, be the adjoint of the
matrix [V{, ..., V1, Vol
Thus:
AlgG] = [Vvllu s 7Vm q](BlgG )
and

From these equalltles we conclude that

Vj’(O) — Vj’ =qgVi+--- +gm—q+1V gl

for suitablegy, ... ,gm—q+1 € Ace .

This holds for allm — g + 2 < j < m — ¢ + s. Therefore there exists
a unimodular matrix?’ in A.¢ which is a product ofim — ¢+ 1)(s — 1)
elementary matrices and such that:

V= [Vllv SRR T;’L*q+17 7;17q+2(0)7 s 7V7;1 q+s(0)]
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Let T be the(m — ¢ + 1) x (m — ¢+ 1) matrix defined by

e iadj[“f o V/n;w)]
O

Sincec does notdepend an, itis easyto see that e A&”_q*l)x(m_”l)

anddet(7") = 1. ThereforeT € SL,,_q+1(Ac¢) . Moreover, we have

Vi Vi gl T = [VI(0), -, Vi1 (0)).

T

One easily checks now tha? :=
0 TIds—q

) verifies the asser-
tion. m

From the previous lemmas we are able to show local estimations for
the degree of a basis of the image Bf. We emphasize the fact that the
localizing polynomials involve only the variables, ... ,z,_1 :

Lemma 13 There exist polynomialsy, ... ,7y € B such that

1. 1e(m,... , 7).

2. degm; = (M — s)sD)°W).,

3. H=((M—s)sD)°".

4. forall j =1,..., H there exists a basis din F;;, formed by polyno-
mial vectors of degre¢(M — s)sD)°() .

Proof. We construct the polynomials; as follows : for each non zero
q x ¢ minor ¢ of the matrixG (see Lemma 6 and the notations introduced
in the beginning of this section) consider thelinear space generated by the
polynomialsc.£* € B of Lemma 12, where runs over the seA” 1\ {¢ =

0}; since deg(c.£*) = (M — s)sD)°(), the dimension of this space is
bounded by((M — s)sD)°(™ . We denote by, 's the elements of a basis
of this space.

From Lemma 11 and Hilbert Nullstellensatz one deduces that the poly-
nomials £§;, generateS,; on the other hand the minois generate the
ring B (recall thatlm G is a direct summand oB™ from Lemma 6 and
Definition 4). Therefore the polynomials’;, generate the ring3 when ¢
runs over all theg x ¢ minors of .

Fix £&, and letz € A"~! be such thatt, = c.£%. Let C and £2 in
Aég_q“)x(m_q*s) be the matrices defined in Proposition 10 and Lemma
12 respectively.
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SinceV (0) = V2 = UCY? and the rows oU form a basis ofer 1¢
(see Proposition 9), the rows d¢f (0) form a basis ofKer ¢, after the
linear change of coordinates m(m 7+9) given by the matrixC'2 .

Cleaning the denominators of the mat#i}0) multiplying by a suitable
power of ¢ (as in Proposition 10) we get a matrix’ € B(m—0)*(m—a+s)
Since W is Bg, -unimodular (becausém v, is Ag, -free) its (m —
q) X (m — q) minors ;, i € I, generate the ring3¢, . The degrees of
these minors are clearly bounded b/ — s)sD)°() , and then, we may
consider again only(M — s)sD)°"=1 of them.

We take the polynomialsr; as the polynomialsy;{&;, where £ runs
over all theq x ¢ minors of .

In order to finish the proof we observe that for each minpitis easy to
exhibit a basis of the image of the maplocalized in the polynomiad; £&;, :
it suffices to take the image by of those rows of(C'2)~! corresponding
to those columns of’ not considered in the construction of.

In this way we obtain a basis for the image 5f localized in 7; of
degrees bounded by M — 5)sD)°() . m

We introduce two new auxiliary matrices (let us observe that the image
of both matrices ared -free modules) :

Definition 14 Let F € ANXM be the matrix whose columns are the gen-
erators ofKer F' constructed in Lemma 1. Therefore we have :

- degﬁ <sD.

- &:: M.

- M <3(M —s)(sD)".

—ImF is A-free.

— §:= the rank of F (we haves = M — s).

Analogously, letF € ANXM pe the matrix whose columns are the
generators o er F' constructed applying Lemma 1 t6.

—degF < (M —s)sD.

— N < 3(M — s)(sD)".

— M = ((M — s)sD)O®*)

—ImF is A-free.

— %:= therank of F (wheres = M — s).

For technical reasons we need a result forand £ similar to Lemma
13. This can be done repeating the arguments usefl' fdMe note that the
change of coordinates in Sect. 3 that assures the existence of a minor monic
in all thg variables can be made simultaneously for the three matfiges
F and F.

Lemma 15 There exist polynomialgy, . .. € B such that

’ H
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1. 1e(m,...,75).

2. deg7; = (M — 5)sD)°™

3. H=((M - s)sD)°"")

4. forall j =1,...,H there exists a basis din ﬁ%j = Ker Iz, formed
by polynomial vectors of degregM — s)sD)°(™) . m

Lemma 16 There exist polynomialgy, ... ,75 € B such that

1. 1e(m,...,7g).

2. deg7; = (M — s)sD)°"").

3. H = ((M —s)sD)°"")

4. forall j =1,...,H there exists a basis din Iz, = Ker Iz, formed
by polynomial vectors of degreg¢M — s)sD)°"") . m

Remark 17Taking the productsr;7 ;7 , we will suppose that the polyno-

mials 7;, 7; and 7; are the same in Lemma 13, 15 and 16, with the last
estimations for the degree and the number of the polynomials.

5 The main Theorem

This section is devoted to the proof of our main result :

Theorem 18 Let k£ be an infinite field,A := k[zy,...,z,] and F €
ANXM he g polynomial matrix whose image is anfree module of ranls
and whose entries have total degrees bounded by an intBgérhen there

exists a basigv1, ... ,var} of AM such that:
— {v1,... ,vp—s} isabasis ofKer F'.
— the coordinates of the vectors;, for j = 1,... ,M — s, have degree

of order ((M — 5)sD)°"")

- {F(UM—s—i-l)a C ,F(U]y[)} is a basis oflm F'.

— the coordinates of the vectors;, for j = M — s+ 1,...,M, have
degree of order((M — s)sD)°"") .

— if k:= Q and /£ is an upper bound for the binary length of the entries
of the matrix F', then the coefficients afy, . . . , vy, have binary lenght
of order ¢((M — s)sD)O"")

On our way to prove this theorem, we will make umsetatis mutandisf
the local-global techniques due to Vaserstein (see for example [15, Ch.l1V,
Th.1.18.]) in combination with the effective version of Quillen-Suslin The-
orem given in [5].

Recall that for any matrixG with entries in a polynomial ring((0)
denotes the new matrix obtained by replacing the last variable.by

With the notations introduced in the previous section, we will prove the
following local result for the auxiliary matrix® (Definition 14) :
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Proposition 19 For all 7; € B chosen after Remark 17 (fgr=1, ... ,
H), there exist a non negative integer and invertible matricesP; €

AMXM and Q; € AM*M such that :
1. n=((M - s)sD)°"")
2
2. TP e Aﬂiﬂ‘i and deg(xP;) = (M — 5)sD)°")
2
3. 71;7QJ 6:4MXM and deg(Tr;]Qj) = ((M — s)sD)°™")
4. F = PF(0)Q;.
Proof. Fix an indexj . From Remark 17 one can take the polynomiajs
unifying the Lemmas 13, 15 and 16 and obtains base&fof’,; , Im F7,
and Im Er]. of appropriate degrees.
Consider now the exact sequences associated to the matriees F:

0———Im Fy, = Ker Fy, AM L Im Py, 0

F

0——Im ﬁﬂj = Ker ﬁﬂj Ag Im ﬁﬂj 0

From the first sequence and the construction described in Lemma 13, it
is possible to obtairs vectors in A% whose images by’ form a basis

Im Fy; . Adding the M — s vectors of the basis dfm ﬁ,rj (Lemma 15) we
obtain a basis ofA} . Write B; for this basis.

In the same way one obtains a baSis of Aﬁ‘z from the second exact
sequence completing the basislef 7, with the preimages of the basis of
Im F}j in AWM:. From the previous results one infers that all the polynomial

vectors of B; and C; have degree bounded yM — s)sD)O("*)
For all integerg, denote by&, the canonical basis afi?.
Then, we have B
F =PCQ,

where
- P .= [Id]gng S A%XM,

- Q= [Id}gﬂcj e AMxM

T

— (' is the diagonal matrix :(IdMS 0 ) .

0 0
Moreover, the matriceﬁyP and w;.’Q have all their entries ind and

their degrees of ordef(M — s)(sD))°"*) , for a certainy € N of order
((M — s)sD)°"*)
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Finally, replacingz,, by 0, one has :
F(0) = P(0) C Q(0).
And then : _ _
F = P; F(0) Q;

where P; := PP~1(0) and @, := Q~*(0)Q are invertible matrices in
Ax; , with controlled degrees (recall that € B). m

Now we make use of Vaserstein's argument (see [15, Ch.lV, Th.1.18.])
in order to “glue” the matrices; ’s and the matrices); ’s.

Lemma 20 There exist two invertible matrice® € AM*M and Q ¢
AMXM of degrees of ordet(M — s)sD)°("") suchthatF = PF(0)Q.

Proof. Fixanindexj, j = 1,..., H,andlety be anew variable. Consider
the matrices with entries ial; [y] :

Pi(zn+y)P ', PPy (wn+y), QF (2n +9)Q) , Q5 'Qj(xn +1).

From Proposition 19 (modifying slightly , if necessary), we may sup-
pose that the matrices

Pj($n + W;?y)Pjil ) Pijil(xn + 71';73/) )
Qj_l(-rn + yﬂ?)@j ) Q]_le(xn + 77;73/)
have all the entries iM[y] (it suffices to take an appropriate power of

in order to eliminate the denominators).
Then, the matrices

Iy := Pj(z,, + 7r;7y)P;1 and A;:= Q;le(xn + w;’y)
are invertible in A[y]™ > and AJy]™*M respectively, with entries of
degree of ordef (M — s)sD)°™") .

Again after Proposition 19 we have the relation :

F(an+mly) = I} F A (16)

forj=1,... ,H.

From item 1 of Lemmas 13-16 and Remark 17, we hawe(r7, ... ,7};)

and, applying the effective Nullstellensatz (see [13] or [9]), there exist
i, ... o € xp B such that .

Typ =oaqm] +---+agny and degay; = (M — s)sD)O("3) V7.
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H-1
Considering the identity (16) fof := H and replacinge, — Y o
q=1
andy — oy, we get:
H-1 _H-1 H-1
H(Y - agrlan) F(Y agr?) Ag(> agnl, op).
q=1 q=1 qg=1
Applying once again the formula (16), with:= H — 1, and replacing
H-2
Ty Z agm! andy — ay_1, we have
q=1
_ H-1 H-2 H—
FOY_ aqm) = Tr-1(Y aqmys an-1) Z agmy)
q=1 q=1 q=1
H—2
A () agnlam)
q=1
and thenF' can be written
H-1 H-2 _H-2
(Y ol am) a1 (Y agnl,ap_1) F(Y | agrl)
g=1 q=1 q=1
H-2 H-1
-AH_l(Z aqﬂg,aH_l)AH(Z aqwg,aH).
q=1 q=1
Thus, we obtain for all indext, « =0,...,j,wherej=1,... ,H a
relation of the type :
_ 7 H—u—l _ H—j
F = {H Iy Z Qg g u)] F() agm))
u=0 q=1 q=1

H—u—1

-[ﬁAH_u Z Oéqﬂ'g,OéH_u)]
u=0 q

=1
In particular, forj = H , the assertion followsa

Applying the same argument in a recurrent way on the number of vari-
ables, one deduces :
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Corollary 21 There exist two invertible matriceg € AMXM and W €
AMXM of degrees of ordef(M — s)sD)°") such that

F = VF(,... ,0)W.

In particular, there exists a basis din F formed by vectors of degree
of order ((M — s)sD)°®") |

Proof. From Remark 2 we have thdt(0) verifies the same conditions as

F (i.e. the image ofF'(0) is B-free) and thatﬁ()/) = F(0) (since the
vectorsw;(0) are a system of generators Kkr £'(0) ). Therefore we can
apply again the same argument as in Lemma 20 to the mAYs . m

Now, we are able to prove Theorem 18.
Proof of Theorem 18.Since Im F = Ker F, Corollary 21 allows us to
estimate the degrees ofacertainbasis . . , vy, of Ker F'. Applying[5,
Th.3.1.] for the unimodular matrix ild(M—5)*M formed by these vectors,
we infer the existence of vectorsvys_si1,...,vy in AM such that
{v1,... v} is a basis ofAM and degv; < ((M — 5)sD)°") for i =
M-s+1,... , M.

Clearly {F(vpr—s+1),--. , F(var)} is a basis oflm F'.

From the estimation given in [14, Corollary 4] the computation of the
growth of the binary lengths is straightforward but tediomsis.

6 The case of the matrix of a projection map

In this sectionF’ € AM*M denotes a polynomial matrix such that = F
(i.e. F is the matrix of a projection map o™ ). It is well known that in
this caseA™ = Ker I’ @ Im F' and, in particularlm F' and Ker F' are
both A -free.

Since F’ := 1d — F' corresponds also to a projection map and since the
bases ofKer I’ and Im I’ form a basis ofA" , several arguments of the
last two sections can be simplified and the degree bounds in Theorem 18
may be improved.

We observe first that the Lemmas 13, 15 and 16 can be replaced by the
following result (which doesn’t involve neither the auxiliary mattix nor
the matrix F) :

Lemma22 Let F € AM*M pe the matrix of a projection map whose
entries are polynomials with total degrees bounded by an intégend let

s be the rank ofF'. Then there exist polynomials;,... ,mg € B such
that :

1. 16(71’1,...,71’[{).
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2. degm; = ((M — s)sD)°W).

3. H=((M —5)sD)°™ .

4. for allindexj = 1,... , H, there exist bases dim I, and Ker Fr,
consisting of polynomial vectors of degrees of ordg¥/ — s)sD)°(1)

Proof. Applying Lemma 13 toF’ and F” one obtains a family of polyno-
mials 7; € B and bases fofm F;;; andIm F7’rj with appropriate degrees
(indeed, the polynomials; for F and F” are different but this constraint
can be avoided multiplyingthem asin Remark 17). SihneF,’,j = Ker I,
the lemma followsm

With the aid of this lemma, we are able to simplify the proof of Propo-
sition 19 observing that the join of a basis bfi I’ and a basis ofim F’
gives a basis of the whole spacg” . Since Lemma 20 and Corollary 21
follow directly from Proposition 19, we obtain analougous results for the
matrix F instead of the matrixt’ . The improvement of the degree upper
bounds in this case is due to the fact that the introduction of the matfices
and F' is unnecessary.

We can summarize these facts in the following more precise statement
of Theorem 18 :

Theorem 23 Let F € AM*M pe the matrix of a projection map involving
polynomials whose degrees are bounded by an intégeand let s be the

rank of F'. Then there exists a basig, ... ,vyr} of AM such that the

first M — s vectors form a basis oKer F', the lasts vectors are a basis

of Im F' and the degrees of the coordinates of these vectors are of order
(M —5)sD)°™) . m

We observe that if the matrix’ does not correspond to a projection
map, but the spacel™ is decomposed aKer F' & Im F', the arguments
of the last two sections can be also simplified. In this case it is enough to
consider the Lemmas 13 and 15, in order to obtain Proposition 19, Lemma
20 and Corollary 21 for the matri¥’. In fact, for these three results it is
only necessary to know how to complete the bases of the image and the
kernel to bases of the whole space under a suitable localization; the matrix
F must be introduced in order to obtain a basis of a localizatioKaf F
and then the bases of the kernel and the image can be completed.

In other words we have :

Theorem 24 Let F € AM*M pe a matrix such thatd™ = Ker F @

Im F'. Suppose thatf’ involves polynomials whose degrees are bounded
by an integerD and that s is the rank of £'. Then there exists a basis
{vi,...,vp} of AM | such that the firstM — s vectors form a basis of
Ker F and have degrees of ordé(M — s)sD)°("*) | and the lasts vectors

are a basis ofim ' and have degrees of ordéfM — s)sD)°") . u
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7 An application to reduced complete intersections

Let £ be an infinite field andf,..., f,—» be a regular sequence in
klxi,...,z,] Of degrees bounded by an integér> 1. Suppose that the
variablesz, ... ,z, arein Noether position with respect to the polynomi-
als f;. More precisely, the natural mapz1, ... ,z,| — k[z1,... ,2,]/
(f1,---, fa—r) is aninjective and integral morphism.

Write R := k[z1,... ,z,] and S := k[z1,... ,xn)/(f1,- -, for) -

It is well known (see for example [8, Corollary 18.17] or [12, Lemma
3.3.1]) that, under these conditions, is a locally free R-module of fi-
nite rank (bounded byi"~" following Bezout's Inequality) and hence free
(Quillen-Suslin Theorem).

This context (“polynomial regular sequence + Noether position”) appears
frequently in several approaches related to effectivity problems in Computer
Algebra, even in the positive dimensional case (see for instance [20], [11],
[21]). At this point it is quite natural to look for properties &f-bases ofS
(degree bounds, algorithms to compute them, etc.), but we have been unable
to find any significative result related to this subject in the literature.

In this frame we are interested in the study of the existence of a basis
consisting of polynomials with single exponential degrees, in the case where
the ring S is reduced.

For this purpose we combine our previous results with quantitative facts
about duality in complete intersection rings (following [16] and [21]).

We start by recalling some known facts about duality theory.

We denote byS* the dual space Hom(S, R). The R-module S*
admits a natural structure &f -module in the following way : for any pair
(b,3) in S x S* the producth.3 is the R -linear application ofS* defined
by (b.6)(x) := p(bx), for eachz in S.

Our assumptions about and S allow to show that theS -modules.S
and S* are isomorphic (see [16, Example F.19 and Corollary F.10]) and
thereforeS* can be generated by a single element.

A generatoro of S* is called atrace of S over R. If the jacobian
associated to the regular sequence is invertibl§ jht is well known that,
under our hypothesis, the applicatibn— Tr(n,) is a trace ofS over R
(where n, is the endomorphism induced by the multiplication by B
and Tr is the usual trace).

Therefore we have the following :

Proposition 25 (see [21, Proposition 3[Jhere exist a tracer € S* and
polynomialsa,, and ¢, in k[z1,...,2,], 1 <m < M, such that:
- deg(am) + deg(cm) < (n - T)(d - 1) ;
-M<3(n—r)(d-1)""T",
—the “trace formula” : b= )", o(béy)am, holdsforallbe S. m
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From this proposition we infer that the classes of the polynomigls 1 <
m < M, are a system of generators §fover R and that theR -bilinear
form & : S x S — R defined by®(b,t') := o(bb') is non degenerate.
By means of Proposition 25 we are able to apply our previous results
about polynomial matrices in order to obtain the following :

Theorem 26 There exists4 a basis & over R formed by polynomials of
degrees of ordeg/© (=) |

Proof. Let F : RM — RM pe the linear map defined by the matrix
(®(a;,a;));; and letG : RM — S be the map defined by; — a;.
Since S is free, Ker G is a free R -submodule ofRM .

From the fact that®? is non degenerate, it is easy to see tRat ' =
Ker G and that the following diagram is commutative :

0 — KerF — s RM I o mmp — 4 0

I

0 ——» KeeG — RM 9, & ___ 4

where ¢ is an isomorphism.
In particular,Im F' is also a freeR -module.
From [21, Theorem 13], one has

deg @(a;, a;) = dego(a;a;) < deg(V)(1 + max{deg(a;a;), (n —r)d})
<deg(V)(1+2(n—r)(d—1))

(whereV isthe set of allthe common zeros ff, . . . , f,_). By means
of Bezout Inequality we deduce :

deg(F) = max{deg @(a, )} < 4" (1+2(n —r)(d = 1)).

Applying Theorem 18 to the matri¥’ we obtain a basis folKer F' of
degrees of orded®(n=7)") and then, a basis fdim F of degrees of order
dO((n=r)r*) Through¢ we get a basis oS with the same degree upper
bounds.m

We note that in the cask := Q, from the upper bounds for the binary
length of the coefficients of the entries of the matfi(a;, @;));; givenin
[14] and Theorem 18 above, the basis of Theorem 26 have binary length
of order nd°(("="") (where n is a bound for the binary length of the
coefficients of the polynomialgy, ... , fn—:).
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