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Abstract. Let k be an infinite field,A the polynomial ringk[x1, ..., xn]
andF ∈ AN×M a matrix such thatImF ⊂ AN is A -free (in particular,
Quillen-Suslin Theorem implies thatKerF is also free). LetD be the
maximum of the degrees of the entries ofF ands the rank ofF . We show
that there exists a basis{v1, . . . , vM} of AM such that{v1, . . . , vM−s}
is a basis ofKerF , {F (vM−s+1), . . . , F (vM )} is a basis ofImF and
the degrees of their coordinates are of order((M − s)sD)O(n4) .

This result allows to obtain a single exponential degree upper bound for
a basis of the coordinate ring of a reduced complete intersection variety in
Noether position.

1 Introduction

This article deals with the computation of the solutions of linear equation
systems over a polynomial ring. After the seminal paper by E.Mayr and
A.Meyer [19], it is well known the constraints of linear algebra methods as
a tool in effective commutative algebra. In particular, Mayr-Meyer’s monoid
leads to an intrinsic hyperexponential growth of the degrees of the syzygies.

In terms of linear equation systems this fact can be restated saying that
there exist families of polynomial matrices such that every system of gener-
ators of their kernels contains a vector with at least one coordinate of double
exponential degree. More precisely, in [7, Corollaire, pag.10] the following
result is shown :
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Let ε > 0 . Let n and D be integers such thatn ≥ 10 , D ≥ 3 ,
D ≥ 2 + 1

32ε . There exists a polynomial sequenceP1, . . . , Pn of degree
bounded byD in A := k[x1, . . . , xn] (where P1 := x1 , P2 := x2 )
such that any system of generators of theA -submodule ofAn consisting
of all the sequencesUi with

∑
i UiPi = 0 , contains at least one vector

whose first coordinate has degree≥ N , where log2 log2N > (1
8 − ε)n+

log2 log2D − 9
4 .

However, under certain additional hypothesis on the matrix associated
to the linear system, more precise estimations can be done. For example,
if the matrix is unimodular (i.e. the rows can be extended to a basis of the
whole space), a single exponential upper bound for the degree of a basis of
its kernel is given in [5, Corollary 3.2].

In the present paper we treat the more general case where the columns of
the matrix generate a freeA -module (in particular, Quillen-Suslin Theorem
assures that the kernel is also free). In this case it is not too difficult to show
a polynomial upper bound for the degree of a system of generators of the
kernel (see [2, Corollary 10] or Lemma 1 below). Nevertheless our purpose
here is to find bases of low degree for the kernel and the image.

More precisely, letk be an infinite field,A := k[x1, ..., xn] be the
polynomial ring in the indeterminatesx1, . . . , xn and F ∈ AN×M be a
matrix such thatImF is A -free. Denote byD the maximum of the degrees
of the entries ofF and bys the rank ofF . Therefore we have (see Theorem
18 below) :

Theorem There exists a basis{v1, . . . , vM} of AM such that :

– {v1, . . . , vM−s} is a basis ofKerF ;
– the coordinates of the vectorsvj have degrees of order((M−s)sD)O(n3)

for j = 1, . . . ,M − s .
– {F (vM−s+1), . . . , F (vM )} is a basis ofImF .
– the coordinates of the vectorsvj have degrees of order((M−s)sD)O(n4)

for j = M − s+ 1, . . . ,M .
– if k := Q and ` is an upper bound for the binary length of the entries

of the matrixF , then the coefficients ofv1, . . . vM have binary lenght
of order `((M − s)sD)O(n4) .

Under suitable stronger conditions (for instance, ifF corresponds to the
matrix of a linear projection) the degree upper bounds of the Theorem can
be slightly improved (see Sect. 6).

The methods we use in order to prove the main theorem (developed
in Sects. 2 to 5) are strongly inspired on the works of D.Quillen, A.Suslin,
L.Vaserstein and M.Hochster related to the resolution of the so called
“Serre’s Conjecture” (on this subject let us mention the remarkable books
of T.Y.Lam [17] and E.Kunz [15]). We combine this approach with the ef-
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fective version of Hilbert Nullstellensatz (see [13], [9] and the references
given in [3] and [22]) and its consequences in the quantitative study of poly-
nomial unimodular matrices following [5]. Another approach on effective
Quillen-Suslin Theorem by means of Gröbner Basis may be found in [18].

The last section is devoted to an application of the mentioned theorem
in the frame of effective commutative algebra : letk be an infinite field and
f1, . . . , fn−r be a regular sequence ink[x1, . . . , xn] of degrees bounded by
an integerd . Suppose that the variablesx1, . . . , xn are in Noether position
with respect to the polynomialsfi (i.e. the natural mapk[x1, . . . , xr] →
k[x1, . . . , xn]/(f1, . . . , fn−r) is an injective and integral morphism).

Write R := k[x1, . . . , xr] andS := k[x1, . . . , xn]/(f1, . . . , fn−r) . It
is well known (see for example [8, Corollary 18.17] or [12, Lemma 3.3.1])
that, under these conditions,S is a locally freeR -module of finite rank
(bounded bydn−r following Bezout’s Inequality) and hence free (Quillen-
Suslin Theorem).

This situation appears frequently in problems related to effective elim-
ination theory (see [20], [12], [6], [1], [14], [11]). In this context it is nat-
ural to ask about quantitative properties of bases of the moduleS . To our
knowledge the only significative result for this problem deals with the ho-
mogeneous case, where a basis whose coordinates have single exponential
degree is obtained with the aid of elementary properties of Gröbner bases.

In this sense we obtain the following result (see Theorem 26 below) :

Theorem Suppose thatS is a reduced ring. Then, there exist a basis ofS
over R formed by polynomials of degrees of orderdO((n−r)r4) .

The proof of this theorem combines the previous results of linear algebra
over the polynomial ring with consequences of Gorenstein duality theory.

The methods of the proofs of both theorems are explicit and they can be
easily transformed into algorithmic procedures; however their complexity
bounds are too bad, even for theoretical purposes. Therefore the problem of
how to find single exponential algorithms remains open.

Because of some technical difficulties in the developement of the article
we think that a guide through it may be useful.

The procedure for the proof of the main result (Theorem 18) follows
essentially a recursive argument in the number of the variables based on the
well known Vaserstein’s Theorem ([15, Ch.IV, Sect. 1, Th.1.18]) :Let R
be a commutative ring,x be an indeterminate overR and U be a matrix
with coefficients inR[x] . ThenU and U(0) are equivalent if and only if
there existπ1, . . . , πH ∈ R such that1 ∈ (π1, . . . , πH) and the matrices
U and U(0) are equivalent overRπj [x] (for all j = 1, . . . , H ).

Unfortunately we are not able to state a quantitave version of Vaserstein’s
Theorem for our matrixF . However in Proposition 19 and in Lemma 20 of
Sect. 5 we prove an adequate version of this theorem for an auxiliary matrix
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F̃ linked to F (see Definition 14) which allows to prove Theorem 18. The
matrix F̃ has as columns a system of generators ofKerF constructed in
Lemma 1 of Sect. 2 (in particular, sinceKerF is free, the matrixF̃ also
verifies that its image isA -free, although its size and degree are slightly
bigger than those ofF ).

Sections 3 and 4 are devoted to the construction of the elementsπ1, . . . ,
πH ∈ k[x1, . . . , xn−1] required for the effective version of Vaserstein’s
result of Sect. 5 (see Proposition 19).

In Sect. 3 we exhibit a freek[x1, . . . , xn−1] -moduleQ associated to the
matrix F ; Q is the quotientImF/L , whereL is generated by a maximal
linearly independent family of columns ofF .

An explicit computation of a presentation forQ (see Definition 4 and
Lemma 6) is used in Sect. 4 in order to obtain a new explicit presentation
of ImF localized in the elementsπj ∈ k[x1, . . . , xn−1] . In particular,
estimations for degrees of a basis ofImFπj are given (see Lemma 13). The
technical results Proposition 10 and Lemmas 11 and 12 play a central rôle
in the construction of an intermediate matrix related to theπj ’s.

In Sect. 6 we study the particular case of a projection matrix; in this
case, a quantitative version of Vaserstein’s Theorem can be done, without
the introduction of auxiliary matrices. This fact leads to better degree bounds
(see Theorem 23).

Acknowledgements.The third author (P.S.) thanks the Laboratoire GAGE, Ecole Polytech-
nique, Palaiseau, specially Prof. Marc Giusti, for its hospitality during the winter season
96–97.

2 A system of generators for the kernel ofF

Let k be an infinite field,A := k[x1, ..., xn] and F ∈ AN×M a matrix
verifying that ImF is a freeA -module. In this case, Quillen-Suslin Theo-
rem (see for instance [15, Ch.IV, Th.3.15.]) implies thatKerF is also free.
Denote byD the maximum of the degrees of the entries ofF and bys the
rank of F . The columns ofF will be denoted byC1, . . . , CM .

With these notations we are able to estimate a system of generators of
KerF of low degree (see also [2, Corollary 10] and [23, Corollary 2.4.1]) :

Lemma 1 The kernel of the matrixF can be generated as anA -module
by 3(M − s)(sD)n polynomial vectors with degrees bounded bysD .

Proof. Since s = rkF there exists at least one non zeros × s minor;
without loss of generality, let us suppose that the firsts× s principal minor
δ is non zero (in particular, the firsts columns are linearly independent).
Therefore, by Cramer’s rule, we have fori = 1, ...,M − s :
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δ Cs+i = b1iC1 + · · · + bsiCs , (1)

where bji are polynomials inA uniquely determined, whose degrees
are bounded bysD .

Dividing relation (1) by the GCD ofb1i, . . . , bsi, δ we obtain new rela-
tions

δi Cs+i = b′1iC1 + · · · + b′siCs. (2)

Clearly, the vectors

wi := (b′1i, . . . , b
′
si, 0, . . . ,−δi, . . . , 0),

where−δi occurs in the coordinates+ i , belong toKerF .
Repeating this construction for all thes× s non zero minors ofF , we

get a family of vectors lying in the kernel.
We claim that this family generatesKerF .
For this it is enough to show that for any maximal idealM ⊂ A

these vectors span the kernel of the corresponding localized application
F : AM

M → AN
M .

Clearly, the columnsC1, . . . , CM generateImFM ; by Nakayama’s
Lemma, sinceImFM/MImFM is a s -dimensional vector space, we de-
duce that there exists a basis ofImFM consisting ofs suitable columns of
the matrixF . Without loss of generality, we may suppose thatC1, . . . , Cs

is anAM -basis ofImFM and therefore, there existp1i, . . . , psi ∈ A and
qi ∈ A \ M , such that

qiCs+i = p1iC1 + · · · + psiCs, (3)

for i = 1, . . . ,M − s .
We now show that noδi in (2) belongs toM : suppose on the contrary

that δj ∈ M , from the relations (2) and (3) we deduce :

qjb
′
kj = pkjδj

for k = 1, . . . , s . In particular, sinceqj /∈ M , all the irreducible factors
of δj which belong toM are also factors of all theb′kj ’s. This contradicts
the coprimality ofb′1j , . . . , b

′
sj , δj .

We finish the claim remarking that the vectorswi are anAM -basis of
KerFM because they are a basis of the vector spaceKerFM/MKerFM
(they areM − s linearly independent vectors).
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In order to shrink the obtained system of generators, for every non zero
minor δ we modify slightly the vectorswi in the following way: letgδ :=
mcm(δ1, . . . , δM−s) and setw̃i :=

gδ

δi
wi .

Let us observe that:

– w̃i ∈ AM .
– The coordinates of̃wi have degrees bounded bysD (observe thatgδ

divides δ ).
– If δi /∈ M for i = 1, . . .M−s , thengδ /∈ M . In particular the vectors
w̃i are a system of generators ofKerFM and the ideal generated by the
polynomialsgδ is A .

– If δ runs over all the non zeros× s minors, the corresponding vectors
w̃i generateKerF .

Since gδ divides δ , the degrees of the polynomialsgδ are bounded
by sD and then they span ak vector space of dimension smaller than(
n+ sD

sD

)
≤ e(sD)n .

Fix a maximalk -linearly independent family ofgδ ’s; for each one of
thesegδ ’s consider theM − s vectors associated to it. The collection of
all these vectors is also a system of generators ofKerF .

3 A free k[x1, . . . , xn−1] -module related to Im F

From now on we writeB for the polynomial ringk[x1, . . . , xn−1] .
Since ImF is a freeA -module of ranks > 0 , there is a non zero

s× s minor of F ; after a linear change of coordinates, we may assume that
the first s × s principal minor,µ , is monic with respect to each variable
x1, . . . , xn .

Remark 2Under this assumption the image of the matrixF (0) ∈ BN×M ,
obtained by replacingxn by 0 in F , isB -free. Moreover, leth1, . . . , hs ∈
AN be a basis ofImF and w1, . . . , wt ∈ AM be the system of gener-
ators of KerF constructed in Lemma 1. Then the corresponding vectors
h1(0), . . . , hs(0) andw1(0), . . . , wt(0) are aB -basis ofImF (0) and a
B -system of generators ofKerF (0) respectively.

In fact, letv ∈ ImF (0) andv′ ∈ BM be such thatF (0)(v′) = v ; since
F (v′) is anA -linear combination of the vectorsh1, . . . , hs , replacingxn

by 0 , one deduces thatv is aB -linear combination of the vectorshj(0) ’s.
The assumption about thes× s minor µ implies that the rank ofImF (0)
over the fraction field ofB is alsos . Thereforeh1(0), . . . , hs(0) areB -
linearly independent.

In a similar way the assertion about the generators ofKerF (0) follows.
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Let L be the free submodule ofAN generated by the firsts columns
C1, . . . , Cs . Consider the exact sequence

0 → L → ImF → Q → 0 (4)

whereQ := ImF/L .
Clearly, Q is generated by the images of the columnsCs+1, . . . , CM

and thenµQ = 0 (due to the relations (1) forδ = µ ).
We write d := degxn

µ− 1 (note thatd ≤ sD − 1 ).
Sinceµ is monic inxn , Q admits a naturalB -module structure of finite

type generated by the images of the elementsxj
nCi with j = 0, . . . , d and

i = s+ 1, . . . ,M .

Proposition 3 TheB -moduleQ is free of finite rank.

Proof. Let ℘ ⊂ B be a maximal ideal; tensoring the exact sequence (4)
(as a sequence ofB -modules) byB/℘ , we claim that the sequence of
B/℘ -vector spaces

0 → L/℘L → ImF/℘ImF → Q/℘Q → 0 (5)

is exact.
To prove our claim it is enough to show that the injectionL ↪→ ImF

is preserved after tensoring. In fact, letw := α1C1 + · · · + αsCs be an
element inL ∩ ℘ImF .

Thenw may be written as a linear combination of the columnsC1, . . . ,
CM with coefficients in℘A .

Then we have :

α1C1 + · · · + αsCs = w = β1C1 + · · · + βMCM

with αj ∈ A and βi ∈ ℘A . Multiplying this equality byµ and using
(1) we deduce the relations :

µαj = µβj +
M−s∑
i=1

βs+ibji

for j = 1, ..., s.
Regarding this formula as a polynomial identity inB[xn] and comparing

coefficients (recallµ is monic) we observe that theαj ’s belong to℘A and
thenw ∈ ℘L , i.e. w = 0 in L/℘L .

From the exactness of (5) we deduce thatQ is a locally projectiveB -
module and then projective (see [15, Ch.IV, Prop.3.4]). Therefore it is a free
B -module of finite type, by Quillen-Suslin.
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Definition 4 For k = 0, . . . , d := degxn
µ − 1 and i = s + 1, . . . ,M ,

let xk
nCi be the canonical system of generators ofQ as aB -module, and

let m := (d+ 1)(M − s) .
Let e0,s+1, e1,s+1, . . . , ed,s+1, . . . , ed,M be the canonical basis ofBm .

Therefore, we have a surjective mapϕ : Bm → Q , defined asϕ(eki) :=
xk

nCi (observe thatKerϕ is B -free).

We are interested now in the computation of a system of generators for
Kerϕ of low degree.

Let w1, . . . , wt be a system of generators ofKerF as in Lemma 1 (in
particular,t ≤ e(M −s)(sD)n ). Sinceµ is monic inxn , we can compute
the euclidean division inB[xn] for each coordinate, and we write :

wj = µqj + rj (6)

where qj and rj are inAM and the degree inxn of each coordinate
of rj is bounded byd , meanwhile, the total degree is bounded by(sD)2 .

For eachxk
nrj ∈ AM with j = 1, . . . , t andk = 0, . . . , d , we compute

again the euclidean division :

xk
nrj = µqkj + rkj (7)

whererkj ∈ AM , deg rkj = 2(sD)3 and degxn
rkj ≤ d .

For each vectorrkj , we consider the vectorVkj consisting of theM−s
last coordinates. We replace the multi-indexkj by h = 1, . . . , t(d+ 1) .

For eachh , Vh can be decomposed :

Vh = Vh,0 + xnVh,1 + · · · + xd
nVh,d

and eachVh,k , being a vector inBM−s , can be written

Vh,k = (Vh,k,s+1, . . . , Vh,k,M ).

Proposition 5 The vectors(Vh,0,s+1, Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M )
∈ B(d+1)(M−s) , with h = 1, . . . , t(d + 1) , are a system of generators of
Kerϕ .

Proof. First, we show that these vectors belong toKerϕ .
Applying the definition ofϕ , we have

ϕ(Vh,0,s+1, Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M ) =
∑
i,k

Vh,k,ixk
nCi

=
M∑

i=s+1

Qh,iCi.
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with Qh,i :=
∑

k Vh,k,ix
k
n .

It suffices to show that
∑M

i=s+1Qh,iCi ∈ L .
With the notations above;Vh = (Qh,s+1, . . . , Qh,M ) , and then, revers-

ing the euclidean divisions (7) and (6), there existP1, . . . , Ps ∈ A such
that :

(P1, . . . , Ps, Qh,s+1, . . . , Qh,M ) = xk
nw + µr

wherek ∈ N , w ∈ KerF and r ∈ AM .
Multiplying this identity by the “column vector”(C1, . . . , CM ) we

obtain :

s∑
i=1

PiCi +
M∑

i=s+1

Qh,iCi = µ

M∑
i=1

riCi,

becausew ∈ KerF .
SinceµCi ∈ L for all i = 1, . . . ,M , we deduce that

∑
iQh,iCi ∈ L ,

and so, the vectors are inKerϕ .
Now, we will show that they are a system of generators ofKerϕ .
Let (q0,s+1, q1,s+1, . . . , qd,M ) be an element inKerϕ ⊂ B(d+1)(M−s) ;

that is to say

q0,s+1Cs+1 + q1,s+1xnCs+1 + . . .+ qd,Mx
d
nCM ∈ L.

Writing Qi :=
∑

k qk,ix
k
n , we know that there existP1, . . . , Ps ∈ A

such that

Qs+1Cs+1 + · · · +QMCM = P1C1 + · · · + PsCs.

This means that the vector(−P1, . . . ,−Ps, Qs+1, . . . , QM ) ∈ AM

belong toKerF , and then, if{w1, . . . , wt} is the system of generators of
KerF constructed in Lemma 1, there existα1, . . . αt ∈ A such that

(−P1, . . . ,−Ps, Qs+1, . . . , QM ) =
∑

αjwj .

Dividing the αj ’s andwj ’s by µ , we can write, for a certainw ∈ AM

(−P1, . . . ,−Ps, Qs+1, . . . , QM ) = µw +
∑

βjrj

wheredegxn
βj ≤ d and rj are the ones defined in (6).

Repeating the division (7) we obtain

(−P1, . . . ,−Ps, Qs+1, . . . , QM ) = µw′ +
∑

βkjrkj

with βkj ∈ B (see (7)).
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Comparing the lastM − s coordinates, and simplifying the notation,
we have

(Qs+1, . . . , QM ) = µv +
∑

βhVh

for a certainv ∈ AM−s .
Sinceβh ∈ B for all index h , and sincedegxn

Qi and degxn
Vh are

strictly lower thandegxn
µ , we obtain thatv is zero from the uniqueness

of the euclidean algorithm inB[xn] . Then

(Qs+1, . . . , QM ) ∈ BV1 + · · · +BVt(d+1).

The proof finishes developing this identity in powers ofxn .

With the notations above, we observe thatt ≤ e(M−s)(sD)n , d ≤ sD
and deg Vh = 2(sD)3 , and then we have the following result:

Lemma 6 There exists a matrixG ∈ Bm×p , wherem := (M−s)(d+1) ,
p := t(d + 1) ≤ e(M − s)(sD)n+1 and degG = 2(sD)3 , such that
ImG = Kerϕ .

Proof. Take G as the matrix whose columns are the vectors(Vh,0,s+1,
Vh,1,s+1, . . . , Vh,d,s+1, . . . , Vh,d,M ) , for h = 1, . . . , p .

Observe thatm ≤ p sinceM − s = rk (KerF ) ≤ t .

4 Another local presentation for Im F

This section is devoted to exhibit a basis ofImF under a suitable localiza-
tion in an element of the ringB := k[x1, ..., xn−1] (Lemma 13 below).

We recall the notations introduced in the previous sections.
We denote bys the rank of the matrixF and byµ ∈ A := k[x1, ..., xn]

the first principals× s minor of F ; after a suitable change of coordinates
we may suppose thatµ is a monic polynomial in all the variables. Set
d := degxn

µ− 1 andm := (d+ 1)(M − s) (see Definition 4).
We defineϕ : Bm → Q := ImF/L the B -linear application defined

on the canonical basis byϕ(eki) := xk
nCi , for k = 0, ..., d and i =

s+1, ...,M (whereL is theA -free module generated by the firsts columns
of F , denoted byC1, ..., Cs ; see also Definition 4).

Let G ∈ Bm×p be the matrix whose columns are a system of generators
of the kernel ofϕ , following Lemma 6, and letq ≤ m be the rank of the
B -moduleKerϕ (which is free becauseB is a polynomial ring andQ is
B -free from Proposition 3).
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The q × q minors of G generate the ringB (since ImG = Kerϕ
is a direct summand ofBm ) and their degrees are bounded by2q(sD)3

(therefore by2(M − s)(sD)4 ).
Let ξ be a non zeroq × q minor. Without loss of generality we may

suppose thatξ involves the firstq columns ofG , that we will denote by
K1, . . . ,Kq (in particularϕ(K1) = · · · = ϕ(Kq) = 0 ). Unfortunately,
despite the polynomialsξ ∈ B generate the whole ringB , we are not able
to construct a basis for the localizedAξ -moduleImFξ , and we shall need
to refined them by suitable multiplications (see Lemma 13 below).

For them − q rows not used in the construction of the minorξ , let
ek1,i1 , . . . , ekm−q ,im−q be the correspondingm−q vectors of the canonical
basis ofBm (see Definition 4). For the sake of simplicity we will denote
the vectorsekj ,ij by uj , j = 1, . . . ,m− q .

Clearly K1, . . . ,Kq, u1, . . . , um−q are a basis ofBm
ξ since the deter-

minant of the correspondingm×m matrix Z is ξ or −ξ .
Then we have

Proposition 7 The vectorsϕ(ekj ,ij ) = x
kj
n Cij , j = 1, . . . ,m− q , are a

basis of theBξ -moduleQξ .

Meanwhile consider the vectorsxk1
n Ci1 , . . . , x

km−q
n Cim−q , C1, . . . , Cs .

From Proposition 7 and the definition of theB -moduleQ (see (4)), for
each index̀ , ` = 1, . . . ,m− q , there exist uniquẽβ(`)

1 , . . . , β̃
(`)
m−q ∈ Bξ

and α̃(`)
1 , . . . , α̃

(`)
s ∈ Aξ such that

−xn x
k`
n Ci` =

m−q∑
j=1

β̃
(`)
j x

kj
n Cij +

s∑
i=1

α̃
(`)
i Ci. (8)

We will analize this relations more deeply.

First assumek` < d : then −x1+k`
n Ci` = −ϕ(e) for a certain vectore

of the canonical basis ofBm (see Definition 4).
On the other hand we can write inBm

ξ :

−e = λ1K1 + · · · + λqKq + λq+1u1 + · · · + λmum−q (9)

for certain(λ1, . . . , λm) ∈ Bm
ξ .

Hence, applyingϕ we have

−xnϕ(u`) = −x1+k`
n Ci` = −ϕ(e) =

m−q∑
j=1

λq+jϕ(uj)
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(recall thatϕ(Kl) = 0 for all l andϕ(uj) = x
kj
n Cij ) .

Therefore in (8) we can takẽβ(`)
j := λq+j , for all j .

In order to estimate the degree ofλq+j we consider the product of (9)
by the matrixZ−1 :

−Z−1 e =


 λ1

...
λm


 .

In particular, theλq+j ’s are the lastm − q entries of a column of the
matrix −Z−1 . SinceZ belongs toBm×m anddet(Z) = ±ξ we can write

β̃
(`)
j =

β
(`)
j

ξ
(10)

where, by Cramer’s rule, theβ(`)
j ’s are polynomials inB whose degrees

are bounded by(m− 1)2(sD)3 ≤ 2m(sD)3 .
For the casek` = d , instead of−x1+k`

n Ci` , we write (xd+1
n − µ)Ci`

and the argument runs similarly. Here the upper bound for the polynomials
β

(`)
j is 2(m− 1)(sD)3 + (sD) ≤ 2m(sD)3 .

In order to obtain an estimation for the degrees in (8) it remains only to
bound the degrees of thẽα(`)

i ’s.
Rewriting formula (8), we constructQ1, . . . , QM−s ∈ Bξ[xn] such that

the equality

Q1Cs+1 + · · · +QM−sCM =
s∑

i=1

α̃
(`)
i Ci

holds inAN
ξ and ξQl ∈ A for all l = 1, . . . ,M − s are polynomials

of degree bounded byd+ 2m(sD)3 .
On the other hand, relation (1) for the firsts× s minor µ of the matrix

F yields the equality :

Q1Cs+1 + · · ·+QM−sCM = Q1

s∑
r=1

br1
µ
Cr + · · ·+QM−s

s∑
r=1

br,M−s

µ
Cr.

Taking into account that the columnsC1, . . . , Cs are linearly indepen-
dent, we deduce :

α̃
(`)
i =

∑M−s
l=1 bilQl

µ
.
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Let h be the minimal exponent such thatξhα̃
(`)
i ∈ A . SinceξQl ∈ A

for all l and the polynomialsµ and ξ are relatively primes (becauseµ is
monic in all the variables andξ belongs toB ), we deduce thath ≤ 1 , and
then

ξα̃
(`)
i ∈ A and µ divides ξ

M−s∑
l=1

bilQl in A. (11)

Therefore, by (1) , (10) and (11) :

deg(ξα̃(`)
i ) ≤ max

l
{deg(bilξQl)} ≤ (sD) + max

j
{deg β(`)

j } + d

≤ (sD) + 2m(sD)3 + d.

Sincem ≤ (M − s)sD , we are able to rewrite (8) as follows :

−xn x
k`
n Ci` =

m−q∑
j=1

β
(`)
j

ξ
x

kj
n Cij +

s∑
i=1

α
(`)
i

ξ
Ci , (12)

whereβ(`)
j ∈ B , α(`)

i ∈ A and deg β(`)
j , degα(`)

i ≤ 4(M − s)(sD)4

for all indicesj , i and ` ( ` = 1, ...,m− q ).
The following definition allows to show a new local presentation ofImF

which we will consider in the sequel.

Definition 8 Let ψ : Am−q+s → ImF be the linear application defined
by :

– ψ(ej) = x
kj
n Cij , for all j = 1, . . . ,m− q,

– ψ(ej) = Cj−m+q , for all j = m− q + 1, . . . ,m− q + s .
Observe thatψ depends on the choice of the minorξ .
The localized morphismψξ is surjective (Proposition 7 and the definition

of Q ), and thenKerψξ is a projectiveAξ -module becauseImFξ is Aξ -
free .

Moreover, with the notations above we have the following result bor-
rowed from [15, Ch.IV, page 115]:

Proposition 9 The matrixU ∈ A
(m−q)×(m−q+s)
ξ , where the` -th row is

the vector

(
β

(`)
1
ξ
, . . . ,

β
(`)
m−q

ξ
,
α

(`)
1
ξ
, . . . ,

α
(`)
s

ξ
) + xne`
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( e` is the` -th vector of the canonical basis ofAm−q+s ), is a unimodular
matrix in Aξ (i.e. the (m − q) × (m − q) minors generate the ringAξ )
and its rows are a basis ofKerψξ (in particular Kerψξ is free). Moreover
ξU ∈ A(m−q)×(m−q+s) and deg ξU ≤ 4(M − s)(sD)4 .

Proof. Let S ⊂ Am−q+s
ξ be the submodule generated by the rows of the

matrix U . From the relations (12) it is clear thatS ⊂ Kerψξ .
In order to see the other inclusion, we observe the following : for all

` = 1, . . . ,m− q and for all p ∈ Aξ there existγ1, . . . , γm−q ∈ Bξ and
γm−q+1, . . . , γm−q+s ∈ Aξ (depending oǹ and p ) such that

pe` −
m−q+s∑

j=1

γjej ∈ S.

This can be done by a straightforward recursion argument developingp
in powers of the variablexn .

Therefore, if(p1, . . . , pm−q+s) ∈ Kerψξ , we can rewrite it as follows

(p1, . . . , pm−q+s) = w +
m−q+s∑

j=1

γjej

wherew ∈ S , γ1, . . . , γm−q ∈ Bξ and γm−q+1, . . . , γm−q+s ∈ Aξ .
Applying ψ we have the following identity inImFξ :

0 =
m−q∑
j=1

γj x
kj
n Cij +

m−q+s∑
j=m−q+1

γjCj−m+q. (13)

Looking this equality modulo the freeAξ -moduleLξ generated by the
columnsC1, ..., Cs (see (4) in Sect. 3) one deduces the relation inQξ :

0 =
m−q∑
j=1

γj x
kj
n Cij ,

and, since the elementsx
kj
n Cij , j = 1, . . . ,m − q , are aBξ -basis of

Qξ (see Proposition 7), we haveγj = 0 for j = 1, . . . ,m− q .
Thus, the linear combination (13) can be reduced to

0 =
m−q+s∑

j=m−q+1

γjCj−m+q.

Since the column vectorsC1, . . . , Cs are linearly independent we have
alsoγj = 0 for j = m−q+1, . . . ,m−q+s . Then(p1, . . . , pm−q+s) ∈ S
and thereforeS = Kerψξ .
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Moreover, the rows of the matrixU are aAξ -basis ofKerψξ : ImFξ

is Aξ -free of ranks and thenKerψξ is locally free of rankm− q ; since
the rows of the matrixU generateKerψξ , by Nakayama’s Lemma, they
are a basis for the localization in any maximal ideal ofAξ and then they
areAξ -linearly independent.

The unimodularity of the matrixU follows from the decomposition
Am−q+s

ξ ' Kerψξ ⊕ ImFξ .

The following results (Proposition 10 and Lemmas 11 and 12) allow
to construct the adequate polynomials inB in order to obtain bases for
localizations ofImF (see Lemma 13 below) by means of suitable changes
of coordinates inA(m−q+s)

ξ .

First, following [15, Ch.IV, Lemma 3.12], we are able to simplify the
matrix U using “xn -division with remainder” between the matrix formed
by the lasts columns ofU and the matrix consisting of the firstm − q
columns ofU in the obvious way :

Proposition 10 Let U ∈ A
(m−q)×(m−q+s)
ξ be the matrix of Proposition 9.

There exists an invertible matrixC ∈ A
(m−q+s)×(m−q+s)
ξ verifying

UC =


 |
xnIdm−q + U1 | U2

|




where ξU1 ∈ B(m−q)×(m−q) , ξ4(M−s)(sD)4U2 ∈ B(m−q)×s , and
ξ4(M−s)(sD)4C ∈ A(m−q+s)×(m−q+s) are matrices whose entries have de-
grees bounded by16(M − s)2(sD)8 .

The matrixU can be modified by another change of coordinates in such
a way that all its entries belong to a suitable localization of the ringB .
For this purpose it is convenient to consider the matrixUC in Proposition
10 as ak(x1, . . . , xn−1)[xn] -unimodular matrix in order to apply Suslin’s
reduction procedure following [17] and [5] (see the next two lemmas). Un-
fortunately this approach requires the introduction of certain polynomials
in B playing the r̂ole of theξ ’s. Fortunately their amount and degrees can
be appropriately controlled (Lemma 13 below).

Lemma 11 (cf. [5, Lemma 4.4])Let V := UC be the matrix defined in
Proposition 10. For eachz ∈ An−1 \ {ξ = 0} there exists an invert-
ible matrix Λz ∈ k(m−q+s)×(m−q+s) such that: if V ′ := V Λz , ∆1 :=
det[V ′

1 , . . . , V
′
m−q] , (the (m − q) × (m − q) minor built from the first

m− q columns ofV ′ ), ∆2 := det[V ′
1 , . . . , V

′
m−q−1, V

′
m−q+1] and cz :=

Resxn(∆1, ∆2) the resultant of∆1 and∆2 with respect to the indetermi-
nate xn , then cz(z) /= 0 .
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Proof. Let z = (z1, . . . , zn−1) ∈ An−1 \{ξ = 0} be given; letk[yij ; 1 ≤
i, j ≤ m−q+s] be the polynomial ring in(m−q+s)2 new indeterminates
over k . By Y we denote them− q+ s square matrix[yij ] with columns
Y1, . . . , Ym−q+s . We write Y ′ and Y ′′ for the (m − q + s) × (m − q)
matrices[Y1, . . . , Ym−q] and [Y1, . . . , Ym−q−1, Ym−q+1] respectively. Let
V ′ := V Y .

From the Binet-Cauchy formula ([10, Ch.2]) we see that:

∆1 := det[V ′
1 , . . . , V

′
m−q] =

∑
I

det(VI) det((tY ′)I) (14)

∆2 := det[V ′
1 , . . . , V

′
m−q−1, V

′
m−q+1] =

∑
I

det(VI) det((tY ′′)I)

whereI runs through all sequences(i1, . . . , im−q) such that1 ≤ i1 <
· · · < im−q ≤ m− q + s .

Let c := c(x1, . . . , xn−1, Y ) := Resxn(∆1, ∆2) be the resultant of∆1
and∆2 with respect to the indeterminatexn .

Claim.- c(z, Y ) = c(z1, . . . , zn−1, Y ) /= 0 .
Proof of the claim. From Proposition 10 we have that the polynomial
det[V1, . . . , Vm−q] is monic in xn and m − q = degxn

(det[V1, . . . ,
Vm−q]) > degxn

(det(VI)) for all sequences of natural numbersI =
(i1, . . . , im−q) with 1 ≤ i1 < · · · < im−q ≤ m − q + s and I /=
(1, . . . ,m− q) .

Thus (14) implies thatc(z, Y ) = c(z1, . . . , zn−1, Y ) = Resxn(∆1(z,
xn, Y

′), ∆2(z, xn, Y
′′)) .

Suppose now thatc(z, Y ) = 0 . Then there existsp ∈ k[xn, Y ] with
degxn

(p) ≥ 1 such thatp divides both∆1(z, xn, Y
′) and∆2(z, xn, Y

′′) .
In particular we havep ∈ k[xn, Y1, . . . , Ym−q−1] . Let h ∈ k[xn, Y

′] be
such that

ph = ∆1 =
∑

I

det(VI(z, xn)) det((tY ′)I). (15)

Let I ⊂ k[xn][Y ′] be the ideal generated by all the determinants
det((tY ′)I) ; I is a homogeneous prime ideal (see [4, Ch.2, Th.2.10]).
From (15) we see thatp and h must be homogeneous inY ′ and that
degY ′(p) + degY ′(h) = m − q . The polynomialp doesn’t belong toI
since it is independent fromYm−q .

Since ∆1 ∈ I by (15) and I is prime we concludeh ∈ I and
degY ′(h) ≥ m − q . Thus degY ′(p) = 0 , i.e. p ∈ k[xn] . Now, again
by (15), we see thatp divides all det(VI(z, xn)) .
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The unimodularity ofV (Propositions 9 and 10) implies that the ideal
generated by all polynomialsdet(VI(z, xn)) is trivial in k[xn] . Therefore
p ∈ k , which contradictsdegxn

(p) ≥ 1 . This finishes the proof of the
claim.

Sincek is infinite and sincec(z, Y ) 6= 0 there existsΛz ∈GLm−q+s(k)
such thatc(z, Λz) /= 0 .

Lemma 12 (cf. [5, Lemma 4.5])Let V := UC be the matrix defined in
Proposition 10. Letz ∈ An−1 \ {ξ = 0} , Λz ∈ GLm−q+s(k) , V ′ =
V Λz , ∆1 , ∆2 and cz ∈ Bξ be as in Lemma 11. Then there exists an

invertible matrixΩ ∈ A
(m−q+s)×(m−q+s)
czξ such thatV Ω = V (0) (where

V (0) denotes the matrixV after the evaluationxn 7→ 0 ) and (czξu)lΩ
is a polynomial matrix inA(m−q+s)×(m−q+s) . The degrees of the entries
of (czξu)lΩ and the integersu and l are of order ((M − s)sD)O(1) ,
independently ofz .

Proof. Let z ∈ An−1 \ { ξ = 0 } , c := cz and g, h ∈ Bξ[xn] be such that
c = g∆1 + h∆2.

From Proposition 10, without loss of generality, we may assume that
there exists a constantη ∈ N independent ofz , of order((M−s)sD)O(1) ,
such thatξηg , ξηh are polynomials inA , ξηc belongs toB , and the
total degrees of these polynomials are bounded by another constant of size
((M − s)sD)O(1) .

For eachj , m− q + 2 ≤ j ≤ m− q + s , there exists a column vector
Gj ∈ A

(m−q)×1
cξ with controlled degrees such thatV ′

j (0) − V ′
j = cGj .

ThereforeV ′
j (0) − V ′

j = g∆1Gj + h∆2Gj .

Let B1 := adj[V ′
1 , . . . , V

′
m−q] be the adjoint matrix of the(m− q) ×

(m − q) matrix [V ′
1 , . . . , V

′
m−q] . Similarly, let B2 be the adjoint of the

matrix [V ′
1 , . . . , V

′
m−q−1, V

′
m−q+1] .

Thus:
∆1gGj = [V ′

1 , . . . , V
′
m−q](B1gGj)

and
∆2hGj = [V ′

1 , . . . , V
′
m−q−1, V

′
m−q+1](B2hGj) .

From these equalities we conclude that

V ′
j (0) − V ′

j = g1V
′
1 + · · · + gm−q+1V

′
m−q+1

for suitableg1, . . . , gm−q+1 ∈ Acξ .
This holds for allm− q + 2 ≤ j ≤ m− q + s . Therefore there exists

a unimodular matrixΩ′ in Acξ which is a product of(m− q + 1)(s− 1)
elementary matrices and such that:

V Ω′ = [V ′
1 , . . . , V

′
m−q+1, V

′
m−q+2(0), . . . , V ′

m−q+s(0)].
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Let T be the(m− q + 1) × (m− q + 1) matrix defined by

T :=
1
c

adj

(
V ′

1 .... V ′
m−q V ′

m−q+1
0 .... −h g

)
×

(
V ′

1(0) .... V ′
m−q(0) V ′

m−q+1(0)
0 .... −h(0) g(0)

)
.

Sincec does not depend onxn it is easy to see thatT ∈ A
(m−q+1)×(m−q+1)
cξ

and det(T ) = 1 . ThereforeT ∈ SLm−q+1(Acξ) . Moreover, we have

[V ′
1 , . . . , V

′
m−q+1]T = [V ′

1(0), . . . , V ′
m−q+1(0)].

One easily checks now thatΩ := Ω′
(
T 0
0 Ids−1

)
verifies the asser-

tion.

From the previous lemmas we are able to show local estimations for
the degree of a basis of the image ofF . We emphasize the fact that the
localizing polynomials involve only the variablesx1, . . . , xn−1 :

Lemma 13 There exist polynomialsπ1, . . . , πH ∈ B such that

1. 1 ∈ (π1, . . . , πH) .
2. deg πj = ((M − s)sD)O(1) .
3. H = ((M − s)sD)O(n) .
4. for all j = 1, . . . , H there exists a basis ofImFπj formed by polyno-

mial vectors of degree((M − s)sD)O(1) .

Proof. We construct the polynomialsπj as follows : for each non zero
q× q minor ξ of the matrixG (see Lemma 6 and the notations introduced
in the beginning of this section) consider thek -linear space generated by the
polynomialsczξu ∈ B of Lemma 12, wherez runs over the setAn−1\{ξ =
0} ; since deg(czξu) = ((M − s)sD)O(1) , the dimension of this space is
bounded by((M − s)sD)O(n) . We denote byξk ’s the elements of a basis
of this space.

From Lemma 11 and Hilbert Nullstellensatz one deduces that the poly-
nomials ξξk generateBξ ; on the other hand the minorsξ generate the
ring B (recall thatImG is a direct summand ofBm from Lemma 6 and
Definition 4). Therefore the polynomialsξξk generate the ringB when ξ
runs over all theq × q minors ofG .

Fix ξξk and let z ∈ An−1 be such thatξk = czξ
u . Let C andΩ in

A
(m−q+s)×(m−q+s)
ξξk

be the matrices defined in Proposition 10 and Lemma
12 respectively.
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SinceV (0) = V Ω = UCΩ and the rows ofU form a basis ofKerψξ

(see Proposition 9), the rows ofV (0) form a basis ofKerψξξk
after the

linear change of coordinates inA(m−q+s)
ξξk

given by the matrixCΩ .
Cleaning the denominators of the matrixV (0) multiplying by a suitable

power of ξ (as in Proposition 10) we get a matrixW ∈ B(m−q)×(m−q+s) .
SinceW is Bξξk

-unimodular (becauseImψξξk
is Aξξk

-free) its (m −
q) × (m − q) minors γi, i ∈ I , generate the ringBξξk

. The degrees of
these minors are clearly bounded by((M − s)sD)O(1) , and then, we may
consider again only((M − s)sD)O(n−1) of them.

We take the polynomialsπj as the polynomialsγiξξk where ξ runs
over all theq × q minors ofG .

In order to finish the proof we observe that for each minorγi it is easy to
exhibit a basis of the image of the mapψ localized in the polynomialγiξξk :
it suffices to take the image byψ of those rows of(CΩ)−1 corresponding
to those columns ofW not considered in the construction ofγi .

In this way we obtain a basis for the image ofF localized in πj of
degrees bounded by((M − s)sD)O(1) .

We introduce two new auxiliary matrices (let us observe that the image
of both matrices areA -free modules) :

Definition 14 Let F̃ ∈ AÑ×M̃ be the matrix whose columns are the gen-
erators ofKerF constructed in Lemma 1. Therefore we have :

– deg F̃ ≤ sD .
– Ñ := M .
– M̃ ≤ 3(M − s)(sD)n .
– Im F̃ is A -free.
– s̃ := the rank ofF̃ (we haves̃ = M − s ).
Analogously, let F̂ ∈ AN̂×M̂ be the matrix whose columns are the

generators ofKer F̃ constructed applying Lemma 1 tõF .
– deg F̂ ≤ (M − s)sD .
– N̂ ≤ 3(M − s)(sD)n .
– M̂ = ((M − s)sD)O(n2) .
– Im F̂ is A -free.
– ŝ := the rank ofF̂ (where ŝ = M̃ − s̃ ).

For technical reasons we need a result forF̃ and F̂ similar to Lemma
13. This can be done repeating the arguments used forF . We note that the
change of coordinates in Sect. 3 that assures the existence of a minor monic
in all the variables can be made simultaneously for the three matricesF ,
F̃ and F̂ .

Lemma 15 There exist polynomials̃π1, . . . , π̃H̃
∈ B such that
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1. 1 ∈ (π̃1, . . . , π̃H̃
) .

2. deg π̃j = ((M − s)sD)O(n) .
3. H̃ = ((M − s)sD)O(n2) .
4. for all j = 1, . . . , H̃ there exists a basis ofIm F̃π̃j

= KerFπ̃j
formed

by polynomial vectors of degree((M − s)sD)O(n) .

Lemma 16 There exist polynomialŝπ1, . . . , π̂Ĥ
∈ B such that

1. 1 ∈ (π̂1, . . . , π̂Ĥ
) .

2. deg π̂j = ((M − s)sD)O(n2) .
3. Ĥ = ((M − s)sD)O(n3) .
4. for all j = 1, . . . , Ĥ there exists a basis ofIm F̂π̂j

= Ker F̃π̂j
formed

by polynomial vectors of degree((M − s)sD)O(n2) .

Remark 17Taking the productsπiπ̃j π̂k , we will suppose that the polyno-
mials πj , π̃j and π̂j are the same in Lemma 13, 15 and 16, with the last
estimations for the degree and the number of the polynomials.

5 The main Theorem

This section is devoted to the proof of our main result :

Theorem 18 Let k be an infinite field,A := k[x1, . . . , xn] and F ∈
AN×M be a polynomial matrix whose image is anA -free module of ranks
and whose entries have total degrees bounded by an integerD . Then there
exists a basis{v1, . . . , vM} of AM such that:

– {v1, . . . , vM−s} is a basis ofKerF .
– the coordinates of the vectorsvj , for j = 1, . . . ,M − s , have degree

of order ((M − s)sD)O(n3) .
– {F (vM−s+1), . . . , F (vM )} is a basis ofImF .
– the coordinates of the vectorsvj , for j = M − s + 1, . . . ,M , have

degree of order((M − s)sD)O(n4) .
– if k := Q and ` is an upper bound for the binary length of the entries

of the matrixF , then the coefficients ofv1, . . . , vM have binary lenght
of order `((M − s)sD)O(n4) .

On our way to prove this theorem, we will make usemutatis mutandisof
the local-global techniques due to Vaserstein (see for example [15, Ch.IV,
Th.1.18.]) in combination with the effective version of Quillen-Suslin The-
orem given in [5].

Recall that for any matrixG with entries in a polynomial ring,G(0)
denotes the new matrix obtained by replacing the last variable by0 .

With the notations introduced in the previous section, we will prove the
following local result for the auxiliary matrix̃F (Definition 14) :
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Proposition 19 For all πj ∈ B chosen after Remark 17 (forj = 1, . . . ,
H ), there exist a non negative integerη and invertible matricesPj ∈
AM×M

πj
and Qj ∈ AM̃×M̃

πj
such that :

1. η = ((M − s)sD)O(n2) .
2. πη

jPj ∈ AM×M and deg(πη
jPj) = ((M − s)sD)O(n2) .

3. πη
jQj ∈ AM̃×M̃ and deg(πη

jQj) = ((M − s)sD)O(n2) .

4. F̃ = PjF̃ (0)Qj .

Proof. Fix an indexj . From Remark 17 one can take the polynomialsπj

unifying the Lemmas 13, 15 and 16 and obtains bases forImFπj , Im F̃πj ,

and Im F̂πj of appropriate degrees.

Consider now the exact sequences associated to the matricesF and F̃ :

0−−−−→Im F̃πj = KerFπj−−−−→AM
πj

F−−−−→ImFπj−−−−→0

0−−−−→Im F̂πj = Ker F̃πj−−−−→AM̃
πj

F̃−−−−→Im F̃πj−−−−→0

From the first sequence and the construction described in Lemma 13, it
is possible to obtains vectors inAM

πj
whose images byF form a basis

ImFπj . Adding theM − s vectors of the basis ofIm F̃πj (Lemma 15) we
obtain a basis ofAM

πj
. Write Bj for this basis.

In the same way one obtains a basisCj of AM̃
πj

from the second exact

sequence completing the basis ofIm F̂πj with the preimages of the basis of

Im F̃πj in AM̃
πj

. From the previous results one infers that all the polynomial

vectors ofBj and Cj have degree bounded by((M − s)sD)O(n2) .
For all integerq , denote byEq the canonical basis ofAq .
Then, we have

F̃ = P C Q,

where

– P := [ Id ]BjEM
∈ AM×M

πj
,

– Q := [ Id ]E
M̃

Cj ∈ AM̃×M̃
πj

– C is the diagonal matrix :

(
IdM−s 0

0 0

)
.

Moreover, the matricesπη
jP and πη

jQ have all their entries inA and

their degrees of order((M − s)(sD))O(n2) , for a certainη ∈ N of order
((M − s)sD)O(n2) .
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Finally, replacingxn by 0 , one has :

F̃ (0) = P (0) C Q(0).

And then :
F̃ = Pj F̃ (0) Qj

wherePj := PP−1(0) andQj := Q−1(0)Q are invertible matrices in
Aπj , with controlled degrees (recall thatπj ∈ B ).

Now we make use of Vaserstein’s argument (see [15, Ch.IV, Th.1.18.])
in order to “glue” the matricesPj ’s and the matricesQj ’s.

Lemma 20 There exist two invertible matricesP ∈ AM×M and Q ∈
AM̃×M̃ of degrees of order((M − s)sD)O(n3) such thatF̃ = PF̃ (0)Q.

Proof. Fix an indexj, j = 1, . . . , H , and lety be a new variable. Consider
the matrices with entries inAπj [y] :

Pj(xn + y)P−1
j , PjP

−1
j (xn + y) , Q−1

j (xn + y)Qj , Q
−1
j Qj(xn + y).

From Proposition 19 (modifying slightlyη , if necessary), we may sup-
pose that the matrices

Pj(xn + πη
j y)P

−1
j , PjP

−1
j (xn + πη

j y) ,

Q−1
j (xn + yπη

j )Qj , Q−1
j Qj(xn + πη

j y)

have all the entries inA[y] (it suffices to take an appropriate power ofπj

in order to eliminate the denominators).
Then, the matrices

Γj := Pj(xn + πη
j y)P

−1
j and Λj := Q−1

j Qj(xn + πη
j y)

are invertible inA[y]M×M and A[y]M̃×M̃ respectively, with entries of
degree of order((M − s)sD)O(n2) .

Again after Proposition 19 we have the relation :

F̃ (xn + πη
j y) = Γj F̃ Λj (16)

for j = 1, . . . , H .
From item 1 of Lemmas 13-16 and Remark 17, we have1 ∈ (πη

1 , . . . , π
η
H)

and, applying the effective Nullstellensatz (see [13] or [9]), there exist
α1, . . . , αH ∈ xnB such that :

xn = α1π
η
1 + · · · + αHπ

η
H and degαj = ((M − s)sD)O(n3) ∀j.
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Considering the identity (16) forj := H and replacingxn 7→
H−1∑
q=1

αqπ
η
q

and y 7→ αH , we get :

F̃ = ΓH(
H−1∑
q=1

αqπ
η
q , αH) F̃ (

H−1∑
q=1

αqπ
η
q ) ΛH(

H−1∑
q=1

αqπ
η
q , αH).

Applying once again the formula (16), withj := H − 1 , and replacing

xn 7→
H−2∑
q=1

αqπ
η
q and y 7→ αH−1, we have

F̃ (
H−1∑
q=1

αqπ
η
q ) = ΓH−1(

H−2∑
q=1

αqπ
η
q , αH−1) F̃ (

H−2∑
q=1

αqπ
η
q )

· ΛH−1(
H−2∑
q=1

αqπ
η
q , αH−1),

and thenF̃ can be written

ΓH(
H−1∑
q=1

αqπ
η
q , αH)ΓH−1(

H−2∑
q=1

αqπ
η
q , αH−1) F̃ (

H−2∑
q=1

αqπ
η
q )

·ΛH−1(
H−2∑
q=1

αqπ
η
q , αH−1)ΛH(

H−1∑
q=1

αqπ
η
q , αH).

Thus, we obtain for all indexu, u = 0, . . . , j , wherej = 1, . . . , H a
relation of the type :

F̃ =
[ j∏
u=0

ΓH−u(
H−u−1∑

q=1

αqπ
η
q , αH−u)

]
F̃ (

H−j∑
q=1

αqπ
η
q )

·
[ j∏
u=0

ΛH−u(
H−u−1∑

q=1

αqπ
η
q , αH−u)

]
.

In particular, forj = H , the assertion follows.

Applying the same argument in a recurrent way on the number of vari-
ables, one deduces :
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Corollary 21 There exist two invertible matricesV ∈ AM×M and W ∈
AM̃×M̃ of degrees of order((M − s)sD)O(n3) such that

F̃ = V F̃ (0, . . . , 0)W.

In particular, there exists a basis ofIm F̃ formed by vectors of degree
of order ((M − s)sD)O(n3) .

Proof. From Remark 2 we have thatF (0) verifies the same conditions as

F (i.e. the image ofF (0) is B -free) and thatF̃ (0) = F̃ (0) (since the
vectorswj(0) are a system of generators ofKerF (0) ). Therefore we can
apply again the same argument as in Lemma 20 to the matrixF̃ (0) .

Now, we are able to prove Theorem 18.
Proof of Theorem 18.Since Im F̃ = KerF , Corollary 21 allows us to
estimate the degrees of a certain basisv1, . . . , vM−s of KerF . Applying [5,
Th.3.1.] for the unimodular matrix inA(M−s)×M formed by these vectors,
we infer the existence ofs vectors vM−s+1, . . . , vM in AM such that
{v1, . . . vM} is a basis ofAM and deg vi ≤ ((M − s)sD)O(n4) , for i =
M − s+ 1, . . . ,M .

Clearly {F (vM−s+1), . . . , F (vM )} is a basis ofImF .
From the estimation given in [14, Corollary 4] the computation of the

growth of the binary lengths is straightforward but tedious.

6 The case of the matrix of a projection map

In this sectionF ∈ AM×M denotes a polynomial matrix such thatF 2 = F
(i.e. F is the matrix of a projection map ofAM ). It is well known that in
this caseAM = KerF ⊕ ImF and, in particular,ImF and KerF are
both A -free.

SinceF ′ := Id −F corresponds also to a projection map and since the
bases ofKerF and ImF form a basis ofAM , several arguments of the
last two sections can be simplified and the degree bounds in Theorem 18
may be improved.

We observe first that the Lemmas 13, 15 and 16 can be replaced by the
following result (which doesn’t involve neither the auxiliary matrix̃F nor
the matrix F̂ ) :

Lemma 22 Let F ∈ AM×M be the matrix of a projection map whose
entries are polynomials with total degrees bounded by an integerD and let
s be the rank ofF . Then there exist polynomialsπ1, . . . , πH ∈ B such
that :

1. 1 ∈ (π1, . . . , πH) .
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2. deg πj = ((M − s)sD)O(1) .
3. H = ((M − s)sD)O(n) .
4. for all index j = 1, . . . , H , there exist bases ofImFπj and KerFπj

consisting of polynomial vectors of degrees of order((M − s)sD)O(1) .

Proof. Applying Lemma 13 toF andF ′ one obtains a family of polyno-
mials πj ∈ B and bases forImFπj and ImF ′

πj
with appropriate degrees

(indeed, the polynomialsπj for F andF ′ are different but this constraint
can be avoided multiplying them as in Remark 17). SinceImF ′

πj
= KerFπj

the lemma follows.

With the aid of this lemma, we are able to simplify the proof of Propo-
sition 19 observing that the join of a basis ofImF and a basis ofImF ′
gives a basis of the whole spaceAM . Since Lemma 20 and Corollary 21
follow directly from Proposition 19, we obtain analougous results for the
matrix F instead of the matrixF̃ . The improvement of the degree upper
bounds in this case is due to the fact that the introduction of the matricesF̃
and F̂ is unnecessary.

We can summarize these facts in the following more precise statement
of Theorem 18 :

Theorem 23 Let F ∈ AM×M be the matrix of a projection map involving
polynomials whose degrees are bounded by an integerD and let s be the
rank of F . Then there exists a basis{v1, . . . , vM} of AM , such that the
first M − s vectors form a basis ofKerF , the lasts vectors are a basis
of ImF and the degrees of the coordinates of these vectors are of order
((M − s)sD)O(n) .

We observe that if the matrixF does not correspond to a projection
map, but the spaceAM is decomposed asKerF ⊕ ImF , the arguments
of the last two sections can be also simplified. In this case it is enough to
consider the Lemmas 13 and 15, in order to obtain Proposition 19, Lemma
20 and Corollary 21 for the matrixF . In fact, for these three results it is
only necessary to know how to complete the bases of the image and the
kernel to bases of the whole space under a suitable localization; the matrix
F̃ must be introduced in order to obtain a basis of a localization ofKerF
and then the bases of the kernel and the image can be completed.

In other words we have :

Theorem 24 Let F ∈ AM×M be a matrix such thatAM = KerF ⊕
ImF . Suppose thatF involves polynomials whose degrees are bounded
by an integerD and that s is the rank ofF . Then there exists a basis
{v1, . . . , vM} of AM , such that the firstM − s vectors form a basis of
KerF and have degrees of order((M−s)sD)O(n2) , and the lasts vectors
are a basis ofImF and have degrees of order((M − s)sD)O(n3) .
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7 An application to reduced complete intersections

Let k be an infinite field andf1, . . . , fn−r be a regular sequence in
k[x1, . . . , xn] of degrees bounded by an integerd > 1 . Suppose that the
variablesx1, . . . , xn are in Noether position with respect to the polynomi-
als fi . More precisely, the natural mapk[x1, . . . , xr] → k[x1, . . . , xn]/
(f1, . . . , fn−r) is an injective and integral morphism.

Write R := k[x1, . . . , xr] andS := k[x1, . . . , xn]/(f1, . . . , fn−r) .
It is well known (see for example [8, Corollary 18.17] or [12, Lemma

3.3.1]) that, under these conditions,S is a locally freeR -module of fi-
nite rank (bounded bydn−r following Bezout’s Inequality) and hence free
(Quillen-Suslin Theorem).

This context (“polynomial regular sequence + Noether position”) appears
frequently in several approaches related to effectivity problems in Computer
Algebra, even in the positive dimensional case (see for instance [20], [11],
[21]). At this point it is quite natural to look for properties ofR -bases ofS
(degree bounds, algorithms to compute them, etc.), but we have been unable
to find any significative result related to this subject in the literature.

In this frame we are interested in the study of the existence of a basis
consisting of polynomials with single exponential degrees, in the case where
the ringS is reduced.

For this purpose we combine our previous results with quantitative facts
about duality in complete intersection rings (following [16] and [21]).

We start by recalling some known facts about duality theory.
We denote byS∗ the dual space HomR(S,R) . The R -module S∗

admits a natural structure ofS -module in the following way : for any pair
(b, β) in S×S∗ the productb.β is theR -linear application ofS∗ defined
by (b.β)(x) := β(bx) , for eachx in S .

Our assumptions aboutR andS allow to show that theS -modulesS
and S∗ are isomorphic (see [16, Example F.19 and Corollary F.10]) and
thereforeS∗ can be generated by a single element.

A generatorσ of S∗ is called atrace of S over R . If the jacobian
associated to the regular sequence is invertible inS , it is well known that,
under our hypothesis, the applicationb 7→ Tr(ηb) is a trace ofS over R
(where ηb is the endomorphism induced by the multiplication byb ∈ B
and Tr is the usual trace).

Therefore we have the following :

Proposition 25 (see [21, Proposition 3])There exist a traceσ ∈ S∗ and
polynomialsam and cm in k[x1, . . . , xn], 1 ≤ m ≤ M , such that :

– deg(am) + deg(cm) ≤ (n− r)(d− 1) ;
– M ≤ 3(n− r)(d− 1)n−r ;
– the “trace formula” : b =

∑
m σ(bcm)am holds for all b ∈ S .



Free modules over a polynomial ring 705

From this proposition we infer that the classes of the polynomialsam, 1 ≤
m ≤ M , are a system of generators ofS over R and that theR -bilinear
form Φ : S × S → R defined byΦ(b, b′) := σ(bb′) is non degenerate.

By means of Proposition 25 we are able to apply our previous results
about polynomial matrices in order to obtain the following :

Theorem 26 There exists a basis ofS over R formed by polynomials of
degrees of orderdO((n−r)r4) .

Proof. Let F : RM → RM be the linear map defined by the matrix
(Φ(ai, aj))ij and let G : RM → S be the map defined byej 7→ aj .
SinceS is free,KerG is a freeR -submodule ofRM .

From the fact thatΦ is non degenerate, it is easy to see thatKerF =
KerG and that the following diagram is commutative :

0 −−−−→ KerF −−−−→ RM F−−−−→ ImF −−−−→ 0

id

y id

y ϕ

y
0 −−−−→ KerG −−−−→ RM G−−−−→ S −−−−→ 0

whereϕ is an isomorphism.
In particular,ImF is also a freeR -module.
From [21, Theorem 13], one has

degΦ(ai, aj) = deg σ(aiaj) ≤ deg(V )(1 + max{deg(aiaj), (n− r)d})
≤ deg(V )(1 + 2(n− r)(d− 1))

(whereV is the set of all the common zeros off1, . . . , fn−r ). By means
of Bezout Inequality we deduce :

deg(F ) = max
i,j

{degΦ(ai, aj)} ≤ dn−r(1 + 2(n− r)(d− 1)).

Applying Theorem 18 to the matrixF we obtain a basis forKerF of
degrees of orderdO((n−r)r3) and then, a basis forImF of degrees of order
dO((n−r)r4) . Throughϕ we get a basis forS with the same degree upper
bounds.

We note that in the casek := Q , from the upper bounds for the binary
length of the coefficients of the entries of the matrix(Φ(ai, aj))ij given in
[14] and Theorem 18 above, the basis of Theorem 26 have binary length
of order ηdO((n−r)r4) (where η is a bound for the binary length of the
coefficients of the polynomialsf1, . . . , fn−r ).
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