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1. Introduction

In 1876, J. Lüroth in [17] presented his famous result, currently known as Lüroth’s
theorem: if k ⊂ L ⊂ k(u) is an extension of fields, where k(u) is the field of rational
functions in one variable u, then L = k(v) for a suitable v ∈ L (see [24, §10.2] for a
modern proof). In 1893 G. Castelnuovo solved the same problem for rational function
fields in two variables over an algebraically closed ground field. For three variables,
Lüroth’s problem has been solved negatively.

In 1932 J.F. Ritt [20] addressed the differential version of this result: Let F be an
ordinary differential field of characteristic 0, u an indeterminate over F and F〈u〉 the
smallest field containing F , u and all its derivatives. Then, if G is a differential field
such that F ⊂ G ⊂ F〈u〉, there is an element v ∈ G such that G = F〈v〉. Such an element
will be called a Lüroth generator of the extension F ⊂ G.

In fact, Ritt considered the case of a differential field F of meromorphic functions
in an open set of the complex plane and G a finitely generated extension of F . Later,
E. Kolchin in [15] and [16] gave a new proof of this theorem for any differential field of
characteristic 0 and without the hypothesis of finiteness on G. Contrary to the classi-
cal setting, the differential Lüroth problem fails in the case of two variables (see [19]).
A possible weak generalization of the differential Lüroth’s theorem to dimension greater
than one is the conjecture in control theory which states that every system linearizable
by dynamic feedback is linearizable by endogenous feedback, or in algebraic terms, that
a subextension of a differentially flat extension is differentially flat [6], [7, Section 4.2].

The present paper deals with quantitative aspects of the differential Lüroth’s theorem.
Our main result is the following theorem, which follows from Propositions 5 and 19.

Theorem 1. Let F be an ordinary differential field of characteristic 0, u differentially tran-
scendental over F and G := F〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉, where Pj , Qj ∈ F{u}
are relatively prime differential polynomials of order at most e � 1 (i.e. at least one
derivative of u occurs in Pj or Qj for some j) and total degree bounded by d such that
Pj/Qj /∈ F for every 1 � j � n. Then, any Lüroth generator v of the differential exten-
sion G/F can be written as the quotient of two relatively prime differential polynomials
P (u), Q(u) ∈ F{u} with order bounded by min{ord(Pj/Qj); 1 � j � n} and total degree
bounded by min{(d + 1)(e+1)n, (nd(e + 1) + 1)2e+1}.

Our approach combines elements of Ritt’s and Kolchin’s proofs (mainly the intro-
duction of the differential polynomial ideal related to the graph of the rational map
u �→ (Pj/Qj)1�j�n) with estimations concerning the order and the differentiation index
of differential ideals developed in [22,3,5]. These estimations allow us to reduce the prob-
lem of computing a Lüroth generator to a Gröbner basis computation in a polynomial
ring in finitely many variables (see Remark 17).

An algorithmic version of Ritt’s proof of the differential Lüroth’s theorem is given
in [8]. The authors propose a deterministic algorithm that relies on the computation
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of ascending chains by means of the Wu–Ritt’s zero decomposition algorithm; however,
no quantitative questions on the order or the degree of the Lüroth generator are ad-
dressed. For effectiveness considerations of the classical not differential version, we refer
the interested reader to [18,23,1,11,12,2].

This paper is organized as follows. In Section 2 we introduce the notations, defini-
tions and previous results from differential algebra (mainly concerning the notions of
order and differentiation index) needed in the rest of the paper. In Section 4, by esti-
mating the differentiation index and the order of an associated DAE system, we provide
a characterization of a Lüroth generator by means of an ideal of a polynomial ring in
finitely many variables. This enables us to obtain degree upper bounds for its numerator
and denominator by considering an elimination problem in effective classical algebraic
geometry. As a byproduct, we give a Gröbner basis based procedure for the computation
of a Lüroth generator. Finally, in Section 5 we show two simple examples illustrating our
constructions.

2. Preliminaries

In this section we introduce the notation used throughout the paper and recall some
definitions and results from differential algebra.

2.1. Basic definitions and notation

A differential field (F ,Δ) is a field F with a set of derivations Δ = {δi}i∈I , δi : F → F .
In this paper, all differential fields are ordinary differential fields; that is to say, they are
equipped with only one derivation δ; for instance, F = Q, R or C with δ = 0, or F = Q(t)
with the usual derivation δ(t) = 1. For this reason, we will simply write differential field
(instead of ordinary differential field).

Let (F , δ) be a differential field of characteristic 0.
The ring of differential polynomials in α indeterminates z := z1, . . . , zα, which is

denoted by F{z1, . . . , zα} or simply F{z}, is defined as the commutative polynomial ring
F [z(p)

j , 1 � j � α, p ∈ N0] (in infinitely many indeterminates), extending the derivation
of F by letting δ(z(i)

j ) = z
(i+1)
j , that is, z

(i)
j stands for the ith derivative of zj (as

customarily, the first derivatives are also denoted by żj). We write z(p) := z
(p)
1 , . . . , z

(p)
α

and z[p] := z, z(1), . . . , z(p) for every p ∈ N0.
The fraction field of F{z} is a differential field, denoted by F〈z〉, with the derivation

obtained by extending the derivation δ to the quotients in the usual way. For g ∈ F{z},
the order of g with respect to zj is ord(g, zj) := max{i ∈ N0: z

(i)
j appears in g}, and the

order of g is ord(g) := max{ord(g, zj): 1 � j � α}; this notion of order extends naturally
to F〈z〉 by taking the maximum of the orders of the numerator and the denominator in
a reduced representation of the rational fraction.

Given differential polynomials H := h1, . . . , hβ ∈ F{z}, we write [H] to denote the
smallest differential ideal of F{z} containing H (i.e. the smallest ideal containing the
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polynomials H and all their derivatives of arbitrary order). The minimum radical dif-
ferential ideal of F{z} containing H is denoted by {H}. For every i ∈ N, we write
H(i) := h

(i)
1 , . . . , h

(i)
β and H [i] := H,H(1), . . . , H(i).

A differential field extension G/F consists of two differential fields (F , δF ) and (G, δG)
such that F ⊆ G and δF is the restriction to F of δG . Given a subset Σ ⊂ G, F〈Σ〉
denotes the minimal differential subfield of G containing F and Σ.

An element ξ ∈ G is said to be differentially transcendental over F if the family
of its derivatives {ξ(p): p ∈ N0} is algebraically independent over F ; otherwise, it is
said to be differentially algebraic over F . A differential transcendence basis of G/F is a
minimal subset Σ ⊂ G such that the differential field extension G/F〈Σ〉 is differentially
algebraic. All the differential transcendence bases of a differential field extension have
the same cardinality (see [14, Ch. II, Sec. 9, Theorem 4]), which is called its differential
transcendence degree.

2.2. Differential polynomials, ideals and manifolds

Here we recall some definitions and properties concerning differential polynomials and
their solutions.

Let g ∈ F{z} = F{z1, . . . , zα}. The class of g for the order z1 < z2 < · · · < zα of
the variables is defined to be the greatest j such that z

(i)
j appears in g for some i � 0 if

g /∈ F , and 0 if g ∈ F . If g is of class j > 0 and of order p in zj , the separant of g, which
will be denoted by Sg, is ∂g/∂z

(p)
j and the initial of g, denoted by Ig, is the coefficient

of the highest power of z(p)
j in g.

Given g1 and g2 in F{z}, g2 is said to be of higher rank in zj than g1 if either
ord(g2, zj) > ord(g1, zj) or ord(g2, zj) = ord(g1, zj) = p and the degree of g2 in z

(p)
j is

greater than the degree of g1 in z
(p)
j . Finally, g2 is said to be of higher rank than g1 if g2

is of higher class than g1 or they are of the same class j > 0 and g2 is of higher rank in
zj than g1.

We will use some elementary facts of the well-known theory of characteristic sets.
For the definitions and basic properties of rankings and characteristic sets, we refer the
reader to [14, Ch. I, §8–10].

Let H be a (not necessarily finite) system of differential polynomials in F{z}. The
manifold of H is the set of all the zeros η ∈ Gα of H for all possible differential extensions
G/F .

Every radical differential ideal {H} of F{z} has a unique representation as a finite
irredundant intersection of prime differential ideals, which are called the essential prime
divisors of {H} (see [21, Ch. II, §16–17]).

For a differential polynomial g in F{z} of positive class and algebraically irreducible,
there is only one essential prime divisor of {g} which does not contain Sg; the manifold
of this prime differential ideal is called the general solution of g (see [21, Ch. II, §12–16]).
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2.3. Hilbert–Kolchin function and differentiation index

Let P be a prime differential ideal of F{z}. The differential dimension of P, de-
noted by diffdim(P), is the differential transcendence degree of the extension F ↪→
Frac(F{z}/P) (where Frac denotes the fraction field). The differential Hilbert–Kolchin
function of P with respect to F is the function HP,F : N0 → N0 defined as:

HP,F (i) := the (algebraic) transcendence degree of Frac
(
F
[
z[i]]/(P ∩ F

[
z[i]])) over F .

For i 
 0, this function equals the linear function diffdim(P)(i + 1) + ord(P), where
ord(P) ∈ N0 is an invariant called the order of P [14, Ch. II, Sec. 12, Theorem 6]. The
minimum i from which this equality holds is the Hilbert–Kolchin regularity of P.

Let F be a finite set of differential polynomials contained in P of order bounded by
a non-negative integer e. Throughout the paper we assume that e � 1, in other words,
all the systems we consider are actually differential but not purely algebraic.

Definition 2. The set F is quasi-regular at P if, for every k ∈ N0, the Jacobian matrix
of the polynomials F, Ḟ , . . . , F (k) with respect to the variables z[e+k] has full row rank
over the fraction field of F{z}/P.

A fundamental invariant associated to ordinary differential algebraic equation systems
is the differentiation index. There are several definitions of this notion (see [3] and the
references given there), but in every case it represents a measure of the implicitness of
the given system. Here we will use the following definition, introduced in [3, Section 3],
in the context of quasi-regular differential polynomial systems with respect to a fixed
prime differential ideal P:

Definition 3. The P-differentiation index σ of a quasi-regular system F of polynomials
in F{z} of order at most e is

σ := min
{
k ∈ N0:

(
F, Ḟ , . . . , F (k))

Pe+k
∩ F

[
z[e]]

Pe
= [F ]P ∩ F

[
z[e]]

Pe

}
,

where, for every k ∈ N0, Pe+k := P∩F [z[e+k]] (i.e. the contraction of the prime ideal P),
F [z[e+k]]Pe+k

denotes the localized ring at the prime ideal Pe+k and (F, Ḟ , . . . , F (k))Pe+k

is the algebraic ideal generated by F, Ḟ , . . . , F (k) in F [z[e+k]]Pe+k
.

Roughly speaking, the differentiation index of the system F is the minimum number of
derivatives of the polynomials F needed to write all the relations given by the differential
ideal P up to order e.
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3. Differential Lüroth’s theorem

In [20, Ch. VIII] (see also [21] and [14]), the classical Lüroth’s theorem for transcen-
dental field extensions is generalized to the differential algebra framework:

Theorem 4 (Differential Lüroth’s theorem). Let F be an ordinary differential field of
characteristic 0 and let u be differentially transcendental over F . Let G be a differential
field such that F ⊂ G ⊂ F〈u〉. Then, there is an element v ∈ G such that G = F〈v〉.

Our goal is the following: for n > 1, let be given differential polynomials P1, . . . , Pn,
Q1, . . . , Qn ∈ F{u}, with Pj/Qj /∈ F and Pj , Qj relatively prime polynomials for every
1 � j � n, and denote

G := F
〈
P1(u)/Q1(u), . . . , Pn(u)/Qn(u)

〉
,

which is a subfield of F〈u〉. We are interested in a priori upper bounds for the orders
and degrees of a Lüroth generator of G/F , that is, for a pair of differential polynomials
P,Q ∈ F{u} such that Q �≡ 0 and G = F〈P (u)/Q(u)〉. These bounds will also allow us
to reduce the problem of computing a Lüroth generator to standard computer algebra
computations in a polynomial ideal in finitely many variables.

An optimal estimate for the order of the polynomials P and Q can be obtained by
elementary computations (see Section 3.1). However, the problem of estimating their
degrees seems to be a more delicate question which requires a more careful analysis that
we will do in the subsequent sections of the paper.

3.1. Bound for the order

We start by proving an upper bound for the order of a Lüroth generator. The following
proposition will prove the first part of Theorem 1.

Proposition 5. Under the previous assumptions and notation, any element v ∈ G such
that G = F〈v〉 satisfies ord(v) � min{ord(Pj/Qj): 1 � j � n}.

Proof. Let v ∈ G be such that G = F〈v〉 and ε := ord(v).
For j = 1, . . . , n, let vj = Pj(u)/Qj(u). By assumption, vj /∈ F . Let T be a new

differential indeterminate over F . Since vj ∈ G = F〈v〉, there exists Θj ∈ F〈T 〉 such
that vj = Θj(v). Let Nj = ord(Θj). Then, ord(vj) � Nj + ε. In addition,

∂vj
∂u(Nj+ε) = ∂(Θj(v))

∂u(Nj+ε) =
∑ ∂Θj

∂T (i) (v)
∂v(i)

∂u(Nj+ε) = ∂Θj

∂T (Nj)
(v) ∂v(Nj)

∂u(Nj+ε) .

i�0
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Since Nj is the order of Θj , it follows that ∂Θj

∂T (Nj) �= 0, and as v is differentially tran-

scendental over F , we have that ∂Θj

∂T (Nj) (v) �= 0. Furthermore, ∂v(Nj)

∂u(Nj+ε) = ∂v
∂u(ε) �= 0, since

ε = ord(v). We conclude that ∂vj

∂u(Nj+ε) �= 0 and, therefore, ord(vj) = Nj + ε.
The proposition follows. �
Note that the above proposition shows that all possible Lüroth generators v have the

same order. In fact, two arbitrary generators are related by a homographic map with
coefficients in F (see for instance [15, §1], [21, Ch. II, §44]).

3.2. Ritt’s approach

Here we discuss some ingredients which appear in the classical proofs of Theorem 4
(see [21,15]) and that we also consider in our approach.

Following [21, II. §39 and §40], let y be a new differential indeterminate over the
field F〈u〉 (and, in particular, over G) and consider the differential prime ideal Σ of all
differential polynomials in G{y} vanishing at u:

Σ :=
{
A ∈ G{y} such that A(u) = 0

}
. (1)

Lemma 6. The manifold of Σ is the general solution of an irreducible differential polyno-
mial B ∈ G{y}. More precisely, B is a differential polynomial in Σ with the lowest rank
in y.

Proof. Let B ∈ Σ be a differential polynomial with the lowest rank in y. Note that
B ∈ G{y} is algebraically irreducible, since Σ is prime. We denote the order of B by k

and the separant of B by SB = ∂B/∂y(k). Consider the differential ideal

Σ1(B) :=
{
A ∈ G{y}

∣∣ SBA ≡ 0 mod {B}
}
.

As shown in [21, II. §12], the ideal Σ1(B) is prime; moreover, we have that A ∈ Σ1(B) if
and only if Sa

BA ≡ 0 mod [B] for some a ∈ N0 and, in particular, if A ∈ Σ1(B) is of order
at most k = ord(B), then A is a multiple of B (see [21, II. §13]). Furthermore, Σ1(B) is
an essential prime divisor of {B} and, in the representation of {B} as an intersection of
its essential prime divisors, it is the only prime which does not contain SB [21, II. §15].
Therefore, the manifold of Σ1(B) is the general solution of B.

In order to prove the lemma, it suffices to show that Σ = Σ1(B).
Let A ∈ Σ1(B). Then, SBA ∈ {B}. Taking into account that Σ is prime, {B} ⊂ Σ,

and SB /∈ Σ, it follows that A ∈ Σ.
To see the other inclusion, consider a differential polynomial A ∈ Σ. By the minimality

of B, we have that A is of rank at least the rank of B. Reducing A modulo B, we obtain
a relation of the type

Sb
BI

c
BA ≡ R mod [B],
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where b, c ∈ N0, IB is the initial of B and R is a differential polynomial whose rank is
lower than the rank of B. Since A and B lie in the differential ideal Σ, it follows that
R ∈ Σ, and so, the minimality of B implies that R = 0. In particular, Sb

BI
c
BA ∈ [B] and,

therefore, IcBA ∈ Σ1(B). Now, IB /∈ Σ1(B) since, otherwise, it would be a differential
polynomial in Σ with a rank lower than the rank of B (recall that Σ1(B) ⊂ Σ); it follows
that A ∈ Σ1(B). �

Multiplying the polynomial B ∈ G{y} given by Lemma 6 by a suitable denominator,
we obtain a differential polynomial C ∈ F{u, y} with no factor in F{u}. The following
result is proved in [21, II. §42 and §43]:

Proposition 7. If P0(u) and Q0(u) are two non-zero coefficients of C (regarded as a
polynomial in F{u}{y}) such that P0(u)/Q0(u) /∈ F , the polynomial

D(u, y) := Q0(u)P0(y) − P0(u)Q0(y)

is a multiple of C by a factor in F , and G = F〈P0(u)/Q0(u)〉. �
Note that, by the definition of C, the ratio between two coefficients of C coincides

with the ratio of the corresponding coefficients of B.

3.3. An alternative characterization of a Lüroth generator

Under the previous assumptions, consider the map of differential algebras defined by

ψ : F{x1, . . . , xn, u} → F
{
P1(u)/Q1(u), . . . , Pn(u)/Qn(u), u

}
xi �→ Pi(u)/Qi(u)

u �→ u

Let P ⊂ F{x, u} be the kernel of the morphism ψ; then, we have an isomorphism

F
{
P1(u)/Q1(u), . . . , Pn(u)/Qn(u), u

}

 F{x1, . . . , xn, u}/P.

This implies that P is a prime differential ideal and, moreover, that the fraction field of
F{x1, . . . , xn, u}/P is isomorphic to F〈u〉. In addition, the previous isomorphism gives
an inclusion

F
{
P1(u)/Q1(u), . . . , Pn(u)/Qn(u)

}
↪→ F{x1, . . . , xn, u}/P,

and the inclusion induced from this map in the fraction fields leads to the original
extension G = F〈P1(u)/Q1(u), . . . , Pn(u)/Qn(u)〉 ↪→ F〈u〉.

As above, let y be a new differential indeterminate over F〈u〉 and Σ the ideal of G{y}
introduced in (1). If A ∈ G{y} is a non-zero differential polynomial in Σ, multiplying it
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by an adequate element in F{P1(u)/Q1(u), . . . , Pn(u)/Qn(u)}, we obtain a differential
polynomial in F{P1(u)/Q1(u), . . . , Pn(u)/Qn(u)}{y}, with the same rank in y as A.
Taking a representative (with respect to ψ) in F{x1, . . . , xn} for each of its coefficients,
we get a differential polynomial Â ∈ F{x1, . . . , xn, y}, with the same rank in y as A,
such that Â(x1, . . . , xn, u) ∈ P.

Conversely, given a differential polynomial M ∈ F{x1, . . . , xn, u} such that M ∈
P and not every coefficient of M as a polynomial in F{x1, . . . , xn}{u} lies in P ∩
F{x1, . . . , xn}, the differential polynomial

M̃(y) := M
(
P1(u)/Q1(u), . . . , Pn(u)/Qn(u), y

)
∈ G{y} (2)

is not the zero polynomial, vanishes at u and has a rank in y no higher than that of M .
We conclude that if M ∈ F{x1, . . . , xn, u} is a differential polynomial with the lowest

rank in u among all the differential polynomials as above, the associated differential
polynomial M̃(y) is a multiple by a factor in G of the minimal polynomial B of u over
G introduced in Lemma 6. Therefore, by Proposition 7, a Lüroth generator of G/F can
be obtained as the ratio of any pair of coefficients of M̃ ∈ G{y} provided that this ratio
does not lie in F . Moreover:

Proposition 8. Let M ∈ F{x1, . . . , xn, u} be a differential polynomial in P \ (P ∩
F{x1, . . . , xn}){u} with the lowest rank in u and let M̃(y) ∈ G{y} be as in (2). As-
sume that M̃ ∈ F(u[ε]){y} for a suitable non-negative integer ε. Consider two generic
points υ1, υ2 ∈ Qε+1. Let P (y) and Q(y) be the differential polynomials obtained from
M̃(y) by substituting u[ε] = υ1 and u[ε] = υ2 respectively. Then P (u)/Q(u) is a Lüroth
generator of G/F .

Proof. By Proposition 7, we have that

M̃(y) = M
(
P1(u)/Q1(u), . . . , Pn(u)/Qn(u), y

)
= γ

(
Q0(u)P0(y) − P0(u)Q0(y)

)
for some γ ∈ G, and P0, Q0 are such that G = F〈P0(u)/Q0(u)〉. Then, by means of two
specializations υ1, υ2 of the variables u[ε] so that Q0, Q1, . . . , Qn and γ do not vanish
and P0(υ1)/Q0(υ1) �= P0(υ2)/Q0(υ2), we obtain polynomials of the form

P (y) = α1P0(y) − β1Q0(y) and Q(y) = α2P0(y) − β2Q0(y),

where α1, α2, β1, β2 ∈ F and α1β2 − α2β1 �= 0. The proposition follows since
F〈P (u)/Q(u)〉 = F〈P0(u)/Q0(u)〉 = G. �
4. Reduction to a polynomial ring and degree bound

In this section, we will obtain upper bounds for the order and the degree of the
differential polynomial M ∈ F{x1, . . . , xn, u} involved in our characterization of a Lüroth
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generator of G/F (see Proposition 8). These bounds imply, in particular, an upper bound
for the degrees of the numerator and the denominator of the generator (see Section 4.3).

4.1. Bounding the order of a minimal polynomial M

Here we estimate the order in the variables x = x1, . . . , xn and u of a differential
polynomial M(x, u) ∈ P \ (P∩F{x1, . . . , xn}){u} of minimal rank in u, where P is the
prime differential ideal introduced in Section 3.3.

Remark 9. The differential dimension of P equals 1, since the fraction field of
F{x1, . . . , xn, u}/P is isomorphic to F〈u〉.

Let e := max{ord(Pj/Qj): 1 � j � n}. Without loss of generality, we may assume
that ord(P1(u)/Q1(u)) � · · · � ord(Pn(u)/Qn(u)). Consider the elimination order in
F{x1, . . . , xn, u} with x1 < · · · < xn < u.

Since P1(u)/Q1(u) /∈ F , it is transcendental over F . Now, as the variable u(e+1) ap-
pears in the derivative (P1(u)/Q1(u))′ but it does not appear in P1(u)/Q1(u), it follows
that (P1(u)/Q1(u))′ is (algebraically) transcendental over F(P1(u)/Q1(u)). Continuing
in the same way with the successive derivatives, we conclude that P1(u)/Q1(u) is dif-
ferentially transcendental over F . This implies that the differential ideal P contains no
differential polynomial involving only the variable x1.

Thus, a characteristic set of P for the considered elimination order is of the form

R1(x1, x2), R2(x1, x2, x3), . . . , Rn−1(x1, . . . , xn), Rn(x1, . . . , xn, u).

Furthermore, Rn(x1, . . . , xn, u) is a differential polynomial in P\(P∩F{x1, . . . , xn}){u}
with a minimal rank in u, that is, we can take M(x, u) = Rn(x, u). Following [22,
Lemma 19], we may assume this characteristic set to be irreducible. Then, by [22, The-
orem 24], we have that ord(Ri) � ord(P) for every 1 � i � n; in particular,

ord(M) � ord(P). (3)

The order of the differential prime ideal P can be computed exactly. In order to do this,
we introduce a system of differential polynomials that provides us with an alternative
characterization of the ideal P which enables us to compute its order.

For every j, 1 � j � n, denote Fj := Qj(u)xj − Pj(u) ∈ F{x, u}, and let F :=
F1, . . . , Fn. Then we have:

Lemma 10. The ideal P is the (unique) minimal differential prime ideal of [F ] which
does not contain the product Q1 . . . Qn. Moreover, P = [F ] : (Q1 . . . Qn)∞.

Proof. From the definitions of P and F it is clear that [F ] ⊂ P and Q1(u) . . . Qn(u) /∈ P.
Moreover, since F is a characteristic set for the order in F{x, u} given by u < x1 < · · · <
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xn and P∩F{u} = (0), we conclude that for any polynomial H ∈ P there exists N ∈ N0
such that (Q1(u) . . . Qn(u))NH ∈ [F ] (observe that Qj is the initial and the separant of
the polynomial Fj for every j). The proposition follows. �

The system F we have introduced has the following property that we will use in the
sequel (recall Definition 2):

Lemma 11. The system F is quasi-regular at P.

Proof. Let e be the maximum of the orders of the differential polynomials Fj , 1 � j � n.
For every i ∈ N, let Ji be the Jacobian matrix of the polynomials F [i−1] with respect to
the variables (x, u)[i−1+e]. We have that

∂F
(k)
j

∂x
(l)
h

=
{ 0 if h �= j or h = j, k < l(

k
l

)
Q

(k−l)
j if h = j, k � l

and so, for every i ∈ N, the minor of Ji corresponding to partial derivatives with re-
spect to the variables x[i−1] is a scalar multiple of (Q1(u) . . . Qn(u))i, which is not zero
modulo P. �

Now, we apply results from [3] in order to compute the order of P.

Proposition 12. The order of the differential ideal P equals e = max{ord(Pj(u)/Qj(u)):
1 � j � n}.

Proof. Lemma 10 states that the ideal P is an essential prime divisor of [F ], where
F := F1, . . . , Fn with Fj(x, u) := Qj(u)xj − Pj(u), 1 � j � n, and, as shown in
Lemma 11, the system F is quasi-regular at P. Therefore, taking into account that
e is the maximum of the orders of the polynomials in F , by [3, Theorem 12], the regu-
larity of the Hilbert–Kolchin function of P is at most e− 1. This implies that the order
of P can be obtained from the value of this function at e − 1; more precisely, since the
differential dimension of P equals 1, we have that

ord(P) = trdegF
(
F
[
x[e−1], u[e−1]]/(P ∩ F

[
x[e−1], u[e−1]]))− e.

In order to compute the transcendence degree involved in the above formula, we
observe first that

F
[
x[e−1], u[e−1]]/(P ∩ F

[
x[e−1], u[e−1]]) 
 F

[
(Pj/Qj)[e−1], u[e−1]].

It is clear that the variables u[e−1] are algebraically independent in this ring. Then,
if L = F(u[e−1]), the order of the ideal P coincides with the transcendence de-
gree of L((Pj/Qj)[e−1], j = 1, . . . , n) over L. Without loss of generality, we may



12 L. D’Alfonso et al. / Journal of Algebra 406 (2014) 1–19
assume that ord(P1/Q1) = e. Since the variable u(e) appears in P1/Q1, we have
that L(u(e))/L(P1/Q1) is algebraic. Similarly, since u(e+1) appears in (P1/Q1)′, it
follows that the extension L(u(e), u(e+1))/L((P1/Q1), (P1/Q1)′) is algebraic. Proceed-
ing in the same way with the successive derivatives of P1/Q1, we conclude that
L(u(e), u(e+1), . . . , u(2e−1)) is algebraic over L((P1/Q1)[e−1]).

Since ord(Pj/Qj) � e for j = 1, . . . , n, we have that L((Pj/Qj)[e−1], j = 1, . . . , n) ⊂
L(u(e), u(e+1), . . . , u(2e−1)) and, by the arguments in the previous paragraph, this exten-
sion is algebraic. Therefore,

trdegLL
(
(Pj/Qj)[e−1], j = 1, . . . , n

)
= trdegLL

(
u(e), u(e+1), . . . , u(2e−1)) = e. �

Then, by inequality (3) we conclude:

Proposition 13. There is a differential polynomial M ∈ P \ (P∩F{x1, . . . , xn}){u} with
the lowest rank in u such that ord(M) � e. �
4.2. Reduction to algebraic polynomial ideals

As stated in Proposition 8, the Lüroth generator of G/F is closely related with a
polynomial M(x1, . . . , xn, u) ∈ P \ (P ∩ F{x1, . . . , xn}){u} with the lowest rank in u.

By Proposition 13, such a polynomial M can be found in the algebraic ideal P ∩
F [x[e], u[e]] of the polynomial ring F [x[e], u[e]]. The following result will enable us to work
with a finitely generated ideal given by known generators; the key point is the estimation
of the P-differentiation index of the system F := F1, . . . , Fn (see Definition 3):

Lemma 14. The P-differentiation index of F equals e. In particular, we have that

[F ]P ∩ F
[
x[e], u[e]]

Pe
=

(
F, Ḟ , . . . , F (e))

P2e
∩ F

[
x[e], u[e]]

Pe
,

where Pe := P ∩ F [x[e], u[e]] and P2e := P ∩ F [x[2e], u[2e]].

Proof. For every k ∈ N, let Jk be the Jacobian submatrix of the polynomials
F, . . . , F (k−1) with respect to the variables (x, u)(e), . . . , (x, u)(e+k−1). The P-differentia-
tion index of F can be obtained as the minimum k such that rank(Jk+1)− rank(Jk) = n

holds, where the ranks are computed over the fraction field of F{x, u}/P (see [3, Sec-
tion 3.1]).

Now, since the order of the polynomials F in the variables x is zero, no derivative x(l)

with l � e appears in F, Ḟ , . . . , F (e−1). This implies that the columns of the Jacobian
submatrices Jk of these systems corresponding to partial derivatives with respect to x(l),
l = e, . . . , e + k − 1, are null. On the other hand, as e is the order of the system F , we
may suppose that the variable u(e) appears in the polynomial F1 and so, ∂F1/∂u

(e) �= 0.
Thus, ∂F (i)

1 /∂u(h) �= 0 for h − i = e and ∂F
(i)
j /∂u(h) = 0 for h − i > e; that is, the

matrices Jk, k = 1, . . . , e, are block, lower triangular matrices of the form
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Jk =

⎛
⎜⎜⎝

0 · · · 0 ∗
0 · · · 0 � 0 · · · 0 ∗
...

...
...

...
...

...
...

... · · ·
0 · · · 0 � 0 · · · 0 � · · · 0 · · · 0 ∗

⎞
⎟⎟⎠

where 0 denotes a zero column vector and ∗ a non-zero column vector. Then, rank(Jk) = k

for k = 1, . . . , e. Moreover,

Je+1 =
(

Je
∂F (e)

∂x(e) · · · · · · 0 · · · 0 ∗

)

and, by the diagonal structure of

∂F (e)

∂x(e) =

⎛
⎜⎜⎜⎜⎝

Q1(u) 0 · · · 0

0 Q2(u)
. . .

...
...

. . . . . . 0
0 · · · 0 Qn(u)

⎞
⎟⎟⎟⎟⎠ ,

we see that rank(Je+1) = rank(Je) + n.
It follows that the P-differentiation index of the system equals e. �

Notation 15. We denote by V ⊂ A(e+1)n ×A2e+1 the affine variety defined as the Zariski
closure of the solution set of the polynomial system

F = 0, Ḟ = 0, . . . , F (e) = 0,
∏

1�j�n

Qj �= 0,

where F = F1, . . . , Fn and Fj(x, u[e]) = Qj(u[e])xj − Pj(u[e]) for every 1 � j � n.

The algebraic ideal corresponding to the variety V is (F, Ḟ , . . . , F (e)) : q∞, where
q :=

∏
1�j�n Qj . This ideal is prime, since it is the kernel of the map

F
[
x[e], u[2e]] → F

[
(Pj/Qj)[e]1�j�n, u

[2e]]
x

(k)
j �→ (Pj/Qj)(k)

u(i) �→ u(i)

Then, V is an irreducible variety. Moreover, F, Ḟ , . . . , F (e) is a reduced complete inter-
section in {q �= 0} and so, the dimension of V is 2e + 1.

Now, the ideal of the variety V enables us to re-interpret the ideal P ∩ F [x[e], u[e]]
where the minimal polynomial M lies:

Proposition 16. The following equality of ideals holds:(
F, Ḟ , . . . , F (e)) : q∞ ∩ F

[
x[e], u[e]] = P ∩ F

[
x[e], u[e]].
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Proof. We start showing that

(
F, Ḟ , . . . , F (e)) : q∞ ∩ F

[
x[e], u[e]] =

(
F, Ḟ , . . . , F (e))

P2e
∩ F

[
x[e], u[e]].

First note that (F, Ḟ , . . . , F (e)) : q∞ ⊂ (F, Ḟ , . . . , F (e))P2e since q /∈ P. Conversely,
if h ∈ (F, Ḟ , . . . , F (e))P2e ∩ F [x[e], u[e]], there is a polynomial g ∈ F [x[2e], u[2e]] such
that g /∈ P and gh ∈ (F, Ḟ , . . . , F (e)); but g /∈ (F, Ḟ , . . . , F (e)) : q∞, since otherwise,
qNg ∈ (F, Ḟ , . . . , F (e)) ⊂ P for some N ∈ N contradicting the fact that q /∈ P and g /∈ P.
Since (F, Ḟ , . . . , F (e)) : q∞ is a prime ideal, it follows that h ∈ (F, Ḟ , . . . , F (e)) : q∞.

Now, Lemma 14 implies that

(
F, Ḟ , . . . , F (e))

P2e
∩ F

[
x[e], u[e]] = [F ]P ∩ F

[
x[e], u[e]].

Finally, since [F ]PF{x, u}P = PPF{x, u}P (see [3, Proposition 3]), we conclude that

[F ]P ∩ F
[
x[e], u[e]] = PP ∩ F

[
x[e], u[e]] = P ∩ F

[
x[e], u[e]];

therefore,

(
F, Ḟ , . . . , F (e)) : q∞ ∩ F

[
x[e], u[e]] = P ∩ F

[
x[e], u[e]]. �

The previous proposition can be applied in order to effectively compute the polynomial
M(x1, . . . , xn, u) ∈ P\(P∩F{x1, . . . , xn}){u} with minimal rank in u, and consequently
a Lüroth generator of the extension G/F , working over a polynomial ring in finitely many
variables (see Proposition 8):

Remark 17. Consider the polynomial ideal (F, Ḟ , . . . , F (e)) : q∞ ⊂ F [x[e], u[2e]]. Compute
a Gröbner basis G of this ideal for a pure lexicographic order with the variables x[e]

smaller than the variables u[2e] and u < u̇ < · · · < u(2e). Then, the polynomial M is
the smallest polynomial in G which contains at least one variable in u[2e]. A Lüroth
generator of G/F can be obtained from the polynomial M following Proposition 8.

4.3. Degree bounds

In order to estimate the degree of a minimal polynomial M(x1, . . . , xn, u) as in the
previous section and, therefore, by Proposition 8, also the degree of a Lüroth generator
of G/F , we will relate M to an eliminating polynomial for the algebraic variety V under
a suitable linear projection.

Let k0 ∈ N0 be the order of u in M . By Proposition 13, we have that k0 � e and so,
M ∈ F [x[e], u[k0]]. Consider the field extension

K := Frac
(
F
[
x[e]]/(P ∩ F

[
x[e]])) ↪→ Frac

(
F
[
x[e], u[e]]/(P ∩ F

[
x[e], u[e]])) =: L.
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The minimality of the rank in u of M is equivalent to the fact that {u[k0−1]} ⊂ L is
algebraically independent over K and M is the minimal polynomial of u(k0) ∈ L over
K(u[k0−1]).

Then, if Z ⊂{x[e]} is a transcendence basis of K over F and we denote U := {u[k0−1]} ⊂
L, we have that {Z,U} ⊂ L is algebraically independent over F and {Z,U, u(k0)} ⊂ L is
algebraically dependent over F and, since L ⊂ F(V), the same holds in F(V).

Let N be the cardinality of {Z,U}. Consider the projection

π : V → AN+1, π
(
x[e], u[2e]) =

(
Z,U, u(k0)

)
. (4)

From the construction of Z, U , the dimension of π(V) equals N and so, the Zariski
closure of π(V) is a hypersurface in AN+1. Let M0 ∈ F [Z,U, u(k0)] be an irreducible
polynomial defining this hypersurface (recall that V is an irreducible variety). From [13,
Lemma 2], we have the inequality

degM0 � degV. (5)

Note that M0 ∈ P\(P∩F{x}){u} and ordu(M0) = k0 = ordu(M). However, M0 may
not necessarily have the property of minimal rank in u, as the following simple example
shows:

Example 1. Let G = F〈u̇, (u̇)2〉. Here:

• e = 1, n = 2,
• F1 = x1 − u̇, F2 = x2 − (u̇)2, q = 1.

Following our previous construction,

V = V (F1, F2, Ḟ1, Ḟ2) = V
(
x1 − u̇, x2 − (u̇)2, ẋ1 − u(2), x

(2)
2 − 2u̇u(2))

and we can take Z = {x2, ẋ2} and U = {u}. Then, M0 = (u̇)2 − x2, which has not
minimal rank in u, since u̇− x1 vanishes over V. In fact, M = u̇− x1.

Even though the polynomial M0 is not the minimal rank polynomial M we are looking
for, the following relation between their degrees will be sufficient to obtain a degree upper
bound for a Lüroth generator.

Proposition 18. With the previous assumptions and notation, we have that
deg(U,u(k0))(M) � deg(U,u(k0))(M0). In particular, deg(U,u(k0))(M) � deg(V).

Proof. By construction, M is the minimal polynomial of u(k0) over K(U) and M0 is the
minimal polynomial of u(k0) over F(Z,U). Without loss of generality, we may assume
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that M and M0 are polynomials with coefficients in F having content 1 in K[U ] and
F [Z,U ] respectively. Since F(Z,U) ⊂ K(U), we infer that M divides M0 in K[U ][u(k0)].
The proposition follows taking into account inequality (5). �

Recalling that a Lüroth generator v of G/F can be obtained as the quotient of two
specializations of the variables x1, . . . , xn and their derivatives in the polynomial M (see
Proposition 8) and that two arbitrary generators are related by a homographic map
with coefficients in F (see [15, §1], [21, Ch. II, §44]), we conclude that the degrees of
the numerator and the denominator of any Lüroth generator of G/F are bounded by the
degree of the variety V.

We can exhibit purely syntactic degree bounds for V in terms of the number n of
given generators for G/F , their maximum order e, and an upper bound d for the degrees
of their numerators and denominators.

First, since the variety V is an irreducible component of the algebraic set defined
by the (e + 1)n polynomials F, Ḟ , . . . , F (e) of total degrees bounded by d + 1 (here
F = F1, . . . , Fn and Fj(x, u) = Qj(u)xj −Pj(u)), Bézout’s theorem (see for instance [13,
Theorem 1]) implies that

degV � (d + 1)(e+1)n.

An analysis of the particular structure of the system leads to a different upper bound
for deg(V), which is not exponential in n: taking into account that V is an irreducible
variety of dimension 2e + 1, its degree is the number of points in its intersection with a
generic linear variety of codimension 2e + 1, that is,

degV = #
(
V ∩ V (L1, . . . , L2e+1)

)
,

where, for every 1 � i � 2e+1, Li is a generic affine linear form in the variables x[e], u[2e],

Li

(
x[e], u[2e]) =

∑
1�j�n
0�k�e

aijkx
(k)
j +

∑
0�k�2e

biku
(k) + ci. (6)

For every 1 � j � n, the equation Fj(xj , u) = 0 implies that, generic points of V

satisfy xj = Pj(u)/Qj(u). Proceeding inductively, it follows easily that, generically

x
(k)
j =

(
Pj(u)
Qj(u)

)(k)

= Rjk(u[e+j])
Qj(u[e])k+1 with deg(Rjk) � d(k + 1)

for every 1 � j � n, 0 � k � e. Substituting these formulae into (6) and clearing
denominators, we deduce that the degree of V equals the number of common solutions
of the system defined by the 2e + 1 polynomials



L. D’Alfonso et al. / Journal of Algebra 406 (2014) 1–19 17
Li

(
u[2e]) :=

( ∏
1�j�n

Qe+1
j

)
Li

((
P1

Q1
, . . . ,

Pn

Qn

)[e]

, u[2e]
)

=
∑

1�j�n
0�k�e

aijkRjkQ
e−k
j

∏
h�=j

Qe+1
h +

∑
0�k�2e

biku
(k)

∏
1�j�n

Qe+1
j + ci

∏
1�j�n

Qe+1
j

for generic coefficients aijk, bik, ci and the inequality q �= 0. From the upper bounds for
the degrees of the polynomials Qj , Rjk, it follows that Li is a polynomial of total degree
bounded by nd(e + 1) + 1 for every 1 � i � 2e + 1. Therefore, Bézout’s bound implies
that

degV �
(
nd(e + 1) + 1

)2e+1
.

We conclude that:

Proposition 19. Under the previous assumptions and notation, the degrees of the numer-
ator and the denominator of any Lüroth generator of G/F are bounded by min{(d +
1)(e+1)n, (nd(e + 1) + 1)2e+1}. �

This completes the proof of Theorem 1.

5. Examples

As before, let F be a differential field of characteristic 0 and u a differentially tran-
scendental element over F .

Example 2. Let G = F〈u/u̇, u + u̇〉. In this case, we have:

• e = 1, n = 2,
• F1 = u̇x1 − u, F2 = x2 − u− u̇, q = u̇.

As the ideal (F1, F2, Ḟ1, Ḟ2) = (u̇x1 − u, x2 − u − u̇, u(2)x1 + u̇ẋ1 − u̇, ẋ2 − u̇ − u(2)) is
prime and does not contain u̇, we have that (F1, F2, Ḟ1, Ḟ2) : q∞ = (F1, F2, Ḟ1, Ḟ2) and,
therefore,

V = V (F1, F2, Ḟ1, Ḟ2) = V
(
u̇x1 − u, x2 − u− u̇, u(2)x1 + u̇ẋ1 − u̇, ẋ2 − u̇− u(2)).

The dimension of V equals 3 and {x1, x2, ẋ1} is a transcendence basis of F(V) over F .
Then, k0 = 0 and so, we look for a polynomial M0(x1, x2, ẋ1, u) ∈ (F1, F2, Ḟ1, Ḟ2). It is
easy to see that

M0(x1, x2, ẋ1, u) = (x1 + 1)u− x1x2.
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Since degu(M0) = 1 we can take M = M0. Finally, specializing (u, u̇, u(2)) into
u1 = (1, 1, 0) and u2 = (0, 1, 0), we compute specialization points (1, 2, 1) and (0, 1, 1)
respectively for (x1, x2, ẋ1); hence, we obtain the following Lüroth generator for G/F :

v = P (u)
Q(u) = 2u− 2

u
.

In the previous example, the polynomial M lies in the polynomial ideal (F1, F2), that
is, no differentiation of the equations is needed in order to compute it and, consequently,
a Lüroth generator can be obtained as an algebraic rational function of the given gener-
ators. However, this is not always the case, as the following example shows.

Example 3. Let G = F〈u̇, u + u(2)〉. We have:

• e = 2, n = 2,
• F1 = x1 − u̇, F2 = x2 − u− u(2), q = 1.

Following our previous arguments, we consider the ideal

(
F1, F2, Ḟ1, Ḟ2, F

(2)
1 , F

(2)
2

)
=

(
x1 − u̇, x2 − u− u(2), ẋ1 − u(2), ẋ2 − u̇− u(3), x

(2)
1 − u(3), x

(2)
2 − u(2) − u(4)).

This is a prime ideal of F [x[2], u[4]]. The variety V is the zero-set of this ideal and it has
dimension 5. A transcendence basis of F(V) over F including a maximal subset of x[2]

is {x1, x2, ẋ1, ẋ2, x
(2)
2 } and the minimal polynomial of u over F(x1, x2, ẋ1, ẋ2, x

(2)
2 ) is

M0 = u− x2 + ẋ1.

Again, since degu(M0) = 1, we can take M = M0. Two specializations of this polynomial
lead us to a Lüroth generator of G/F of the form v = u+a

u+b . We conclude that G = F〈u〉.

6. Conclusions

We give degree and order upper bounds for a Lüroth generator of a differential field
generated by a finite number of differential rational functions in one variable.

These bounds can be applied to effectively compute a Lüroth generator working in a
polynomial ring in finitely many variables. Although these computations can be done by
means of Gröbner bases techniques, we expect that more specific symbolic algorithms
with better complexity bounds could be designed following Kronecker’s approach (see [9]
and [10]) adapted to the differential setting in the spirit of [4]. This will be the subject
of our future work.
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