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Abstract 

This paper is devoted to some last algorithmic progress in classical elimination theory from the complexity point of view. 
These results will be presented as a short survey (without proofs) treating essentially upper and lower bounds problems. The 
first aim of this paper is to show that the upper bounds results - as much progress as they may represent - seem not to solve 
satisfactorily the basic problems we are considering. On the other hand we shall also show how both the improvement of 
general algorithms and the research of lower bounds are related to certain mathematical tools as duality theory or arithmetic 
intersection theory. 
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1. Notations and definitions 

1.1. Notations 

Let k be an infinite and perfect field, k an algebraic closure of k and let XI, . . . , X, be indeterminates 
over k. By A” := A”(k) we denote the n-dimensional affine space over k endowed with its Zariski topology. 
The inputs of the algorithms we are going to consider will be polynomials F, F1, . . . , F, E k[Xl , . . . , X,] 
(n 2 2) where the total degrees deg Fj (1 < j < s) are bounded by an integer d 3 2. 

Wedenoteby (Fl,..., F,) the ideal generated by F1, . . . , Fy in k[Xl, . . . , Xn] and by V := (FI = 
0 . . 3 Fs = 0) := {x E A”; Fl(x) = . . . 
pbiynomials. Let V = Cl U 

= F,(x) = 0} the algebraic variety of A” defined by these 
. . . U Ct be the decomposition of V in irreducible components. For 1 < j < t 

we define dimension and degree of Cj as usually and denote these quantities by dim Cj and deg Cj. The 
dimension of V is defined as dim V := max{dim Cj; 1 < j < t} and its degree - less customarily - as 
deg V := cj deg Cj (see [19] for details). 
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1.2. On the algorithmic models 

The inputs of our algorithms (multivariate polynomials with coefficients in the ground field k) will be 
represented in three different ways: by all their coefficients (dense representation), by arithmetical circuits 
which allow their evaluations (straight line program representation) or by their nonzero coefficients (sparse 
representation). The algorithms use only arithmetical operations (addition, subtraction, multiplication, 
division), comparisons in k, selections of elements of k (associated to comparisons) and boolean operations 
(if char(k) = p > 0 we shall also include as basic arithmetical operations the extraction of pth roots in 
k). Everyone of these algorithmic ground steps is counted at unit cost. Sometimes we shall also consider 
straightlineprogramsink[Xt,...,X,]orink(Xt,..., X, ). A suitable algorithmic model for our purpose 
is given by the notion of an arithmetical network over k ([15], see also [33,34] for precisions on straight 
line programs). 

In order to compute the complexities of the algorithms we consider them as families of arithmetical 
networks parametrized by the quantities s, d, n (number of elements, maximal degree, number of variables) 
and others (length of straight line programs, sparsity) which measure the size of the polynomial input. Thus 
we obtain immediately two complexity measures: sequential time (network size) and parallel time (network 
depth). We consider these complexity measures as real-valued functions depending on the input par,ameters 
of the given problem and we try to analyze their asymptotic behavior. 

1.3. Some basic problems 

In order to illustrate the complexity results we shall consider some basic general algorithmic problems 
of algebraic geometry and commutative algebra: 
(1) The ideal triviality problem. Decide whether V = VI holds and if this is the case find Pt , . . . , P, E 

k[Xl,..., X,] such that the identity 1 = PI Fl + . . . + I’,F’, is satisfied. 
(2) The radical membership problem. Decide whether F vanishes on V and if this is the case find N E N 

and PI,. . . , P, E k[Xl, . . . , X,] such that F* = Pi F1 + . . + P,y F, holds. 
(3) The ideal membership problem for complete intersections. Suppose that F1, . . . , F, form a regu- 

lar sequence of k[Xl, . . . , X,]. Decide whether F belongs to the ideal generated by F1, . . . , F, in 
k]Xt , . . . , X,]andifthisisthecasefindPt,...,P, ??k[Xt,...,X,]suchthatF= PlFl+...+P,F, 
holds. 

(4) The zero-dimensional elimination problem. Let Y be a given linear form of k[Xl , . . . , X,]. Compute 
dim V and if dim V = 0 find a nonzero one-variate polynomial Q E k[Y] and n-variate polynomials 
PI,. . ., P, ??k[x~,..., X,] such that Q(Y) = P1 FI + . + P, F, holds. 

(5) The general elimination problem. Let 0 < m -C n and let n: A” + Am be the projection map 
n(xt, . . . ,x,) = (XI,. . . , x,). Find polynomials Qt , . . . . Qt E k[Xl, . . . , X,] and a quantifier free 
formula 0 in the first order language of fields with constants from k, involving only the polynomials 
QI,..., Qt as basic terms, such that @ defines the set n(V). 

2. The dense representation model 

In this section we suppose that all polynomials occurring as inputs, outputs or intermediate results of our 
algorithms are given in dense representation: the data structure which represents a polynomial is supplied 
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with one unit of memory space for each possible coefficient in it; in other words we represent a polynomial 
G E k[Xt, . . . ( X,] of degree at most 6 by the vector of all its (“z”) possible coefficients. Since (“fi”) <can, 
we observe that to the polynomial G corresponds in dense representation a data structure of size O(6”). In 
particular in problems (l)-(5) the input polynomials Fr , . . . , F, are represented by a vector of total length 
O(sdn), the polynomial F by one of length O((deg F)n) and the linear form Y by one of length II. 

The quantities d, n, s are the natural parameters for the complexity of the algorithms considered in this 
section. 

From a fundamental paper of Grete Hermann [23] one deduces that the problems (l)-(5) can be solved 
in sequential time which depends polynomially on d, s, deg F and in doubly exponential manner on the 
number of variables n of the problem. This result (shown by Hermann by means of classic elimination 
theory arguments) can also be obtained by rewriting techniques (Griiebner basis calculations). 

The apparition in 1986 of a single exponential version of the affine Nullstellensatz in characteristic 0 by 
Brownawell [5] and its generalization for an arbitrary field in [6,7,27] is the essential tool which allows the 
obtention of more precise complexity bounds for (l)-(5): 

An effective Nullstellensatz for ideal triviality. The ideal (Fl , . . . , TV:,) is trivial iff there exist PI, . . . , P, 
E k[Xl) . . . ( X,] satisfying the conditions 1 = cj Pj Fj and maxi {deg Pj Fj} < d”. 

A well-known example due to Mayr and Meyer [29] shows that the fact that one considers the membership 
problem for the polynomial 1 is essential for the single exponential nature of the problem. However the 
same kind of bounds can be obtained for an important particular case: 

An efective Nullstellensatz for complete intersections. Suppose that FI , . . . , F, form a regular sequence in 
k]Xl,..., X,]. Then F belongs to (Fl, . . . , F,) iff there exist polynomials PI, . . . , P, E k[Xl, . . . , X,] 
such that F = cj Pj Fj and maxi {deg Pj Fj} 6 deg F + dS < deg F + dn holds. 

See [ 1 l] for a proof. Somewhat different versions of the effective Nullstellensatz for complete intersections 
and generalizations of it are contained in [ 1,3,8,32]. 

Let us also remark that the degree bounds of type dn which appear in the quoted Nullstellensatze are 
almost optimal (see [5], where this fact is illustrated by an example due to Mora, Lazard, Masser and 
Philippon). 

Joining these two Nullstellensatze with parallelizable algorithms for basic linear algebra (see [4,30]) one 
obtains the following theorem. 

Theorem 1 ([ 11,131). There exist uniform algorithms (realized by uniform families of networks over k) 
which solve problems (I) and (4) in sequential time so(‘)do a n d parallel time O(n4 log2 sd); problems 
(2) and (3) in sequential time sO(‘)(max(d, deg F})‘(n2) and parallel time 0(n4 log2(s max[d, deg F))) 
and problem (5) in sequential time s”(‘)do((n-m)2m) an d parallel time O((n - m)4m log2 sd). 

The statements of this theorem and their proofs are contained in the quoted papers [ 11,131 or can be 
easily deduced from their content. For the same type of complexity result concerning problem (5) by a 
somewhat different algorithm we refer to [24]. 

Let us mention that the complexity bounds of Theorem 1 are at present the best ones for uniform 
algorithms solving problems (l)-(5). 

Observe also that the complexity bounds given in Theorem 1 are not polynomial in the size of the input 
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(essentially O(s8) for the input size versus s o(‘)d”(n2) for the complexity) and from this point of view, 
they are unsatisfactory algorithms. 

On the other hand the problems (l)-(5) involve all polynomials in their outputs which may have degree 
of order R (d”) (this is a consequence of the example of Mora, Lazard, Masser and Philippon mentioned 
before for the problems (l)-(4) and of Bezout’s Theorem for (5)). Therefore the outputs of problems (l)-(5) 
may have size Q (sdn2) or at least size s2 (dn2). This implies that the sequential time bounds of Theorem 1 
are polynomial in the size of the output of problems (l)-(5) ( recall that the output polynomials are given 
in dense representation). 

An improvement of the order of complexity in Theorem I is therefore only possible if changing the data 
structure representing the polynomials we deal with. 

In a first attempt to solve this problem one can think on representing the polynomials sparsely. Although 
considerable effort has been spent in this direction (see e.g. [18]) no result at present is known which 
connects in a satisfactory way sparse representation of polynomials with elimination theory. This may be 
due to the fact that the sparse representation of a polynomial may become dense when transforming the 
variables linearly. 

A different efficient representation of polynomials without this defect is given by straight line programs 
(arithmetical circuits). This representation has been used in the past by several authors implicitly and 
explicitly (see e.g. [20,21,26]). It is crucial for the statements and their proofs in the next section. 

3. A mixed model 

3.1. A mixed model: dense representation and straight line programs 

In Section 2 we explained the constraints of the dense representation in order to obtain “good” complex- 
ities for the problems (l)-(5). Unfortunately the simple change of the data structure “dense representation” 
by “straight line programs” does not seem to be the good solution. A factible intermediate answer is pro- 
posed by Giusti and Heintz [ 161: roughly speaking, the inputs are considered in dense representation, the 
parameters agree with those of dense representation model (exceptionally some input polynomials are given 
by straight line programs with an upper bound for their lengths as a new parameter) and the output is a 
finite collection of straight line programs. 

This model, although apparently somewhat artificial, seems to be well adapted to this kind of algorithms, 
where the variables play often the role of elements of the ground field (parameters). In fact, this model 
allows to solve problems (l)-(4) in “good time”, i.e. polynomial in the input size. 

3.2. Correct test sequences 

A crucial point in algorithms treating with polynomial expressions is the “equality checking” between 
two polynomials which appear as intermediate results. Suppose for the moment that one wishes to know if 
an n-variate polynomial G with degree 6 produced by a suitable arithmetical circuit is the zero polynomial. 
A straightforward procedure for this purpose consists in the succesive evaluation of the arithmetical circuit 
in the integer points of a box of cardinality (6 + 1)” (interpolation) and is therefore exponential in the 
degree of G. 
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This main difficulty can be partially avoided by means of a fine result due to Heintz and Schnorr [21]. 
Let S, L be nonnegative integers. We consider the set W(6, n, L) of all polynomials in k[Xl , . . . , X,] 

of degree bounded by 6 which can be evaluated by an arithmetic circuit in k(X1, . . . , X,) of size bounded 
by L. Let m E N, we say that a sequence y := (yt , . . . , ym) (where yi E kn for 1 < i < m) is a correct te..sf 
sequencefor W (8, n , L) if the polynomial 0 is the unique polynomial of the set W (6, n, L) that annihilates 
YI,M, . . . and ym. 

With these notations we have the following proposition. 

Proposition 1 ([21, Theorem 4.41). Let r c k be ofcardinality 2L(6 + 1)2, m := 6(L + n)(L + n + 1) 
and note u (6, n, L, r) the subset of knm of all the correct test sequences of W(6, n, L) contained in Pm. 
Then the following inequality holds: 

(#LJnm (1 - (#f)-“/6) < #a(6, n, L, r). 

Suppose now that G E k[Xl, . . . , X,] is an arbitrary polynomial whose degree is bounded by 6 and 
which can be computed by an arithmetical circuit in k[Xl , . . . , X,] without divisions of size L and depth 
1. From the previous proposition one deduces the following corollary. 

Corollary 1 ([14, Corollaire 2.11). There exists an arithmetical network overk of size O(Lm) = O(L(L + 
n)2) and depth O(1) which decides if G is the polynomial zero. Moreover this network can be constructed 
by a probabilistic algorithm in sequential time 0( L (L + n)2) and parallel time O(1); its failure probability 
is smaller than E = l/262144. 

Let us remark here some interesting consequences of these results for the algorithmic model: 
- Proposition 1 guarantees the existence of at least one correct test sequence of size m which depends 

polynomially on the parameters (and not exponentially as in interpolation). Unfortunately no uniform 
polynomial time algorithm which produces correct test sequences is known up to now and this unsolved 
question gives the nonuniform character of the algorithms we will consider. However the construction 
of correct test sequences is absolutely independent of the type of the problem and depends only on the 
parameters; therefore if one knows a priori upper bounds for all the intermediate results in the algorithm, 
it is quite natural to consider the construction of the correct test sequences as a preprocessing, computed 
once for ever. 

- Corollary 1 introduces a probabilistic algorithm (chasing randomly the correct test sequence) which 
unfortunately has a failure probability (E < i): if one is interested in the application of this procedure 
in order to check if a given polynomial is zero, the answer NO is always true but YES involves a failure 
probability smaller than E. In this sense the algorithm is more interesting than those of Monte Carlo type 
but it is not a Las Vegas algorithm (there are wrong answers). It produces random algorithms which solve 
the elimination problems (l)-(5) with a more precise model than those based in generic selections of 
parameters in Zariski open sets. 

3.3. Upper bounds 

In this section we present new results concerning upper complexity bounds for our list of problems 
(l)-(5). Proofs can be found in [14,16,17]. Throughout this section we shall suppose d 2 n 3 2. 
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Let V = {Fl = 0, . . . , F, = 0) be the variety defined by the polynomials F1, . . . , F,, which we think 
to be given in dense representation or alternatively by a division free straight line program of length L and 
depth 1. Let r := dim V. 

We say that the variables Xl, . . . , X, are in Noether position with respect to V if for each r < i < n 
there exists a polynomial of k[Xr , . . . , Xr, Xi] which is manic in Xi and vanishes on V. 

Theorem 2 ([16, Theo&me 3.5 and Theoreme 3.7.21). There exists an arithmetical network of size L’ = 
,O(l)LO(I)dO(n-r) and depth 1’ = O((n - r)* log* sd + Z) which computes the following items: 
(i) the dimension r = dim V of the algebraic variety defined by F1, . . . , F, in A”. 

(ii) a nonsingular n x n matrix M with entries from k such that the variables Y1, . . . , Y,, which we obtain 
transforming X1, . . . , X, by means of M, are in Noetherposition with respect to V. 

There exists a random algorithm which constructs the arithmetical network above in sequential time L’ 
and parallel time 1’. 

Theorem 2 implies that for 0 -C s < n one can test in sequential time L”(l)do(“-S) and parallel time 
O((n - s)* log* d + 1) whether the polynomials F1, . . . , F, form a regular sequence in k[Xl , . . . , X,]. 
This leads to the following result related to problem (3). 

Theorem 3 ([14, Theoreme 4.1 and Remarque 4.2.7.1). Let 0 -C s < n and suppose that for any index 
n - s < i -C n the polynomials F) , . . . , Fn_i form a regular sequence and generate a radical ideal in 
k]Xl,..., X,]. Let F be represented by a division free straight line program in k[Xl, . . . , X,] of length L 
and depth 1. 

Then there exists an arithmetical network over k of size L’ := L6(deg F)*dO@) and depth 1’ := 
O(l* log(deg F)s7 log4 d) which decides whether F belongs to the ideal. If this is the case, the network 
constructs a division free straight line program ,6 in k[Xl , . . . , X,] of length (L deg F)2do(S) and depth 
O(l* log(deg F)s7 log4 d) representing polynomials PI, . . . , I’, E k[Xl , . . . , X,] satisfying thefollowing 
conditions: 
- F = PIF1 +...+ P,F,, 
- max{deg PI, . . . , deg Ps) = (deg F)d°CS). 
There exists a random algorithm which constructs the arithmetical network above in sequential time L’ 
and parallel time 1’. 

Remark 1 ([3 11). In fact, if char(k) = 0 one obtains the more precise upper bound 3sdS+dS-’ max(deg F, d} 
for the degrees of Pi (1 6 i < s) (also assuming that (Fl , . . . , F,) is a regular ideal a similar bound holds 
for arbitrary characteristics). 

From Theorems 2 and 3 and their proofs one infers a series of consequences which we formulate in 
subsequent propositions of this section. 

Proposition 2 ([14, Thtorkme 5.2 and Proposition 5.21, see also [17]). 
(i) There exists an arithmetical network over k of size s ‘(l)dO@) and depth O(n* log2 sd) which decides 

whether the ideal (Fl , . . . , FS) is trivial. Ifthis is the case the network constructs a division free straight 
lineprogramt!Iink[Xl,..., X,] which represents polynomials PI, . . . , P, E k[Xl, . . . , X,1 such that 
the following conditions are fulfilled: 
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- the length of B is s”(l)do(“) and its depth is O(n* log* sd), 
_ the polynomials PI, . . . , P, are of degree do(“) and satisfy 1 = PI F1 + . . . + PS FT. 

(ii) Increasing the depth in the statement (i) to 0(n12 log9 sd) an arithmetical network as above can be 
constructed by a random algorithm in sequential time s O(‘)d’@) andparallel time O(n’* log9 sd). 

Remark 2 ([3 I]). Refining the methods of [ 141 one obtains more precise upper bounds for the polynomials 
Pi: 4nd” (if char(k) = 0) and 4n(d + 1)” (for all characteristics). 

Remark 3. From Proposition 2 one deduces by Rabinowitsch’s Trick the following fact: suppose that F 
is given in dense representation, one can decide whether F belongs to the radical of the ideal (F1 , . . . , FS) 
in nonuniform time L := s’(‘)(max{d, deg F})‘(“) and parallel time 1 := 0(n2 log*(s max{d, deg F))). 
If this is the case one finds in sequential time L and parallel time 1 a natural number N of order do@) 
and a division free straight line program fi in k[Xl , . . . , X,] of length L and depth 1 which satisfies the 
following condition: /3 represents polynomials PI, . . . , P, E k[Xl , . . . , X,] of degree (deg F)d”cn) such 
that FN = PI F1 + a f . + PS F, holds. 

Proposition 3 ([ 16, Section 3.4.7 and Lemma 3.6.1). There exists a random algorithm which constructs in 
sequential time s o(*)d”(n) and in parallel time O(n2 log2 sd) the following items: 
- a nonzero polynomial Q(Y) E k[ Y] represented by its (dense) coeficient vector; 
_ a nonsingular matrix M which entries from k which transforms the variables X1, . . . , X, into new ones 

Y1,...,Yrz; 
- polynomials G 1, . . . , G, in the variables Y1, . . . , Y,, given by their coeficients in sparse representation, 

such that Q(Y) belongs to the ideal (Fl , . . . , F,), the degree of the polynomials G 1, . . . , G, is bounded 
by deg _V < d” and they form a reduced Griibner basis of the radical of (F1 , . . . , F,) with respect to the 
lexicographic monomial ordering Y1 < . . . < Y,,. 

Proposition 4. Let 0 < m < n and let n: A” + Am be the canonical projection n(xl , . . . , x,) = 

(Xl,..., x,). We consider FI, . . . , F, as elements of k[Xl, . . . , X,][X,+l, . . . , X,], i.e. as polynomi- 
als in the variables Xm+l , . . . , X, with coeficients which themselves are elements of k[Xl , . . . , X,]. We 
suppose that F1, . . . , F, are given with respect to the variables X,,,+l, . . . , X, in dense representation 
whereas their coeficients, being polynomials of k[Xl , . . . , X,,,], are given by a division free straight line 
program in k[Xl, . . . , X,] of length L and depth 1. Then there exists an arithmetic network over k of size 
L’ := L2so(‘)do(“-m) and depth 1’ := 0(1 + (n - m)* log2 sd) which constructs a quantifierfree formula 
@ in theJirst order language ofjields with constants from k such that the following conditions are satisJied: 
- The terms contained in the formula @ are polynomials of k[Xl, . . . , X,] of degree d”(n-m) represented 

by a division free straight line program in k[Xl, . . . , X,] of length L’ and depth 1’. 
_ @ defines the projection set n(V). 
The arithmetic network above can be constructed by a probabilistic Monte Carlo algorithm in sequential 
time L’ and parallel time 1’. 

A proof of Proposition 4 in the nonuniform complexity model is implicitly contained in [ 16). 
The next proposition illustrates a general duality existing between the number of variables n and the 

number of equations s in problems (l)-(5). 
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Proposition 5 ([2]). There exist random algorithms which determine the dimension of the variety V in 
sequential time s ‘(‘)d’@) andparallel time 0(n2 log2 sd) or in sequential time L”(‘)(nd)‘@) andparallel 
time 0(s2 log2 nd + 1). 

4. Some relative lower bounds 

In this section we discuss whether it is possible to obtain polynomial sequential complexity results when 
we represent the input polynomials Ft , . . . , F, by straight line programs or when we give them in sparse 
representation. All proofs can be found in [20]. 

4.1. The U-resultant 

For the moment let Uu, . . . , U, and X0 be new indeterminates and let G 1, . . . , G, be homogeneous 
polynomials of k[Xu, . . . , X,] of degree at most d defining a projective variety W of dimension zero. We 
recall main properties of the U-resultant R of (G 1, . . . , G,): 
- R E k[Uo, . . . , U,,]; 
- deg R = deg(Gt, . . . , G,) < dn; 
- for any point (~0, . . . , u,) f A ‘+I the projective variety defined by the forms G 1, . . . , G,, ~0x0 +. . . + 

unXn is nonempty iff R(uo, . . . , u,) = 0; 
- ifs = n then R is the ordinary resultant of the homogeneous polynomials G 1, . . . , G, , UoXo+. . .+U,X, 

with respect to the variables X0, . . . , X, . 
For more details on U-resultants and ordinary resultants we refer to [ 10; 25; 35, Kapitel 11, Section 791 

The improved complexity bounds in the last section are all based on the following fundamental result 
essentially due to Lazard (see [ 10,16,28]). 

Proposition 6. The U-resultant of the homogeneous ideal (G1 , . . . , G,) in the polynomial ring k[Xo, . . . , 
X,] can be evaluated by a division free straight line program B in k[Uo, . . . , U,] of length so(’ and 
depth O(n2 log2 sd). The nonscalardepth of /I is O(n log d). The circuit fi can be constructedfrom the input 
Gl,..., G, (which is given in dense representation) in uniform sequential time so(’ and parallel 
time 0(n2 log2 sd). The nonscalar parallel time of the algorithm is O(n log d). If k is thejeld of rational 
numbers Q then the binary length of the parameters used during the procedure is of order O(nt logd), 
where t denotes the maximal binary length of the coeficients of G 1, . . . , G,. 

Let us observe that Proposition 9 entails a (partial) answer for the projective version of problem (4). 
In [20] the following lower bound result for the evaluation of the U-resultant is obtained. 

Proposition 7. Let G1, . . . , G, be given by a wellparallelizable straight line program of length L. If there 
exists a uniform well parallelizable algorithm which is polynomial in L and n and which constructs a 
division free straight line program in k[Uo, . . . , U,,] of the same complexity class for the evaluation of the 
U-resultant of the homogeneous ideal generated by G1, . . . , G,, then P = N P holds. 

4.2. The zero-dimensional elimination problem 
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Proposition 8. Let k := Q (Zij; 1 <i, j 6 n) and let the polynomials F1, . . . , FS in the ring k[Xl , . . . , X,,] 
be given by a division free straight line program in k[Xl , . . . , X,] of length L. Suppose that there exists 
an arithmetic network of size (Ln) O(‘) which uses only parameters from Q and which solves the a&fine 
zero-dimensional elimination problem (problem (4)) for any input F1 , . . . , FS in the following way: if the 
algebraic variety de$ned by F1, . . . , F, is zero-dimensional, the network produces a monotone division 
free straight line program /3 in k[Y] of length (Ln) O(‘) which represents the (unique) manic polynomial 
Q(Y) of minimal degree which belongs to ( FI , . . . , FS). 
Then the n x n-permanent over Q can be evaluated by an arithmetic circuit of length no(‘). 

4.2.1. A di.cult zero-dimensional elimination problem 

Theorem 4 ([20, Theorem 18 and Theorem 191). Let F1 := X: - X1, . . . , F,, := X2 - Xn, F,+l := 

Y2 - Cl<i<n 2 ‘-‘Xi, Fn+2 := Y and V, := {Fl = 0, . . . , F,, = 0, F,+l = 0, Fn+2 2 0). We con- 
sider the family ({ F1, . . . , Fn+2})nE~ of sets of polynomials Fl, . . . , F,,+2 E Q[Xl, . . . , X,, Y] and 
the family (V,,)nE~ of semialgebraic subsets V,, of R*+‘. Let n,, := Rn+’ + R be the projection map 
%z(xl,...,&,Y) =y. 

Denote by Q,, the unique manic polynomial of R[ Y] of minimal degree which defines n,, (V,,). 
Then the polynomials F1, . . , , F,,+2 can be represented by a division free straight line program in 

NXI,..., X,, Y] of length O(n) and depth 0( 1). 
Howevel; any algorithm which produces a division free straight line program in R[Y] evaluating the 

polynomial Q,, needs sequential tiine Cl 2 ( .f2/ n ) and parallel time Q(n) for the representation of the 
output. 

Let us remark that in the formulation of the example of Theorem 19 of [20] the output is given exactly by 
the polynomial Qn of minimal degree while the usual output of a quantifier elimination procedure applied 
to the obvious formula defining V, would be the quantifier formula $,, in the first order language of ordered 
fields given by (P(Y2) = 0 A Y > 0), where P = no<j<2n(Y - A). 

Remark 4. Suppose for the moment that the family of polynomials (n,<j __d (Y - j))d,=N is hard to evaluate 
(up to now this remains an open question). Then either the zero-dimensional elimination problem (problem 
(4)) is hard to solve for k = Q and k = @ when inputs and outputs are given by division free straight line 
programs, or greatest common divisor computations of univariate polynomials given in the same way are 
difficult. 
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