
AAECC 8, 125—134 (1997)

On Intrinsic Bounds in the Nullstellensatz

T. Krick1, J. Sabia1, P. Solernó2
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Abstract. Let k be a field and f
1
, . . . , f

s
be non constant polynomials in

k[X
1
, . . . , X

n
] which generate the trivial ideal. In this paper we define an

invariant associated to the sequence f
1
, . . . , f

s
: the geometric degree of the system.

With this notion we can show the following effective Nullstellensatz: if d denotes
the geometric degree of the trivial system f

1
, . . . , f

s
and d :"max

j
deg( f

j
), then

there exist polynomials p
1
, . . . , p

s
3k[X

1
, . . . , X

n
] such that 1"+

j
p
j
f
j

and
deg p

j
f
j
63n2dd. Since the number d is always bounded by (d#1)n~1, one

deduces a classical single exponential upper bound in terms of d and n, but in some
cases our new bound improves the known ones.

Keywords: complete intersection polynomial ideals, trace theory, effective
Nullstellensatz, geometric degree.

1 Introduction

Let k be a field, kM its algebraic closure and let X
1
, . . . , X

n
be indeterminates over

k ; for any finite polynomial sequence f
1
, . . . , f

s
in k[X

1
, . . . , X

n
] such that

1 belongs to the ideal ( f
1
, . . . , f

s
) we define D( f

1
, . . . , f

s
) in the following way:

D( f
1
, . . . , f

s
) :"minMmaxMdeg p

j
f
j
; 1"+ p

j
f
j
NN .

An effective Hilbert Nullstellensatz means to provide an explicit function which is
an upper bound for D.

During the last years, many efforts have been made in order to improve the
effective double exponential version of Hilbert Nullstellensatz due to G. Hermann
[15]. The first single exponential bound for D was obtained by D. Brownawell [5]
for k"C in 1986. Later, L. Caniglia, A. Galligo and J. Heintz [6] extended this
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result for any field and finally, J. Kollár [16] showed that D6(maxMd, 3N )n, where
d is the maximum of the total degrees of the polynomials f1 , . . . , f

s
(see also [10]

and [19]). This is the best bound known up to now for d73 (for d"2 the more
precise bound n2n`2 can be obtained; see [20, 22]) and, in fact, a well known
example shows that it is asymptotically optimal (see Example 1 below). Related
results can be found also in the research papers [21, 4, 19, 7, 12, 11, 1, 17, 13] and
in the surveys [3, 23].

In this paper we exhibit a new effective Nullstellensatz which doesn’t depend so
much on the degree of the involved polynomials as the ones mentioned above, but
on a more intrinsic invariant: the geometric degree of a trivial polynomial system.

First, following [14], we define the geometric (or set-theoretical) degree of an
algebraic affine variety »LAn

k
as the sum of the degrees of its irreducible

components (where, as usual, the degree of an irreducible variety is the cardinal of
its intersection with a generic linear variety of complementary dimension).

If », ¼LAn
k

are affine varieties, Bezout Inequality states the inequality
deg(»W¼ )6deg(» ) deg(¼) (see for instance [14, Theorem 1] for an elementary
proof ).

Let f1 , . . . , f
s
3k[X1 , . . . , X

n
] be non constant polynomials such that

13 ( f1 , . . . , f
s
). First let us suppose that the characteristic of k is zero; from

Bertini’s Theorem and suitable arguments of genericity (cf. [12, Section 3.2],
[20, Section 5.2] and [17, Section 6.1]), it is possible to show that there exist an
integer t, 26t6n#1, and t kM -linear combinations g1 , . . . , g

t
of the polynomials

f
j
such that:

— 13 (g1 , . . . , g
t
),

— g1 , . . . , g
t~1 is a regular sequence,

— (g1 , . . . , g
j
) is a radical ideal, for all j"1, . . . , t.

If the characteristic of k is positive, a similar result holds for kM -linear combinations
of the polynomials f

j
and X

i
f
j
, j"1, . . . , s, i"1, . . . , n (see [12, Section 3.2] or

[20, Section 5.2]).
In both cases denote by G the set of all sequences g1 , . . . , g

t
for all possible t,

26t6n#1, which verify the three conditions.

Definition 1 Under these assumptions we define the geometric degree of the trivial
system f1 , . . . , f

s
as the quantity

min
G G max

16j6.*/Mt~1,n~1N
Mdeg» (g

1
, . . . , g

j
)NH ,

where »(g
1
, . . . , g

j
)LAn

k
denotes the variety of common zeros of the poly-

nomials g
1
, . . . , g

j
.

With this notion our main result is the following (see Theorem 7 below):

Theorem ¸et f
1
, . . . , f

s
3k[X

1
, . . . , X

n
] be polynomials which generate the triv-

ial ideal, d :"max
j
deg f

j
and d be the associated geometric degree. ¹hen

D( f
1
, . . . , f

s
)63n2dd.

Let us observe that the geometric degree of a system is always bounded by its
algebraic-combinatoric ‘‘Bezout number’’ which is given by the Hilbert function of
a suitable homogeneous ideal. Moreover, from Bezout inequality, this number is
bounded by dn~1 (in characteristic zero) or by (d#1)n~1 (in any characteristic),

126 T. Krick et al.



and then, from our result a single exponential bound for D( f
1
, . . . , f

s
) can be

reobtained. However, in many cases, the value of the geometric degree of the
system is much smaller than its Bezout number since this geometric degree does
not take into account multiplicities or degrees of certain components at infinity. In
this sense, our effective Nullstellensatz can be considered more intrinsic and
improves the known ones (see Example 3 of Section 4).

As an intermediate step in the proof of the Nullstellensatz, we also obtain
similar bounds for the membership problem in a complete intersection case (see
Lemma 5 below).

The techniques used here are exactly the same ones that in [20], which rely on
elementary duality theory for Gorenstein algebras applied as a tool for algebraic
complexity questions (method introduced in [11]). In fact, this paper may be
considered as another way (more intrinsic) of applying the trace inequalities of
[20] and [11] to effective Nullstellensätze.

Similar results can be obtained by means of algorithmic tools (see [13]) or
combinatoric methods (see [22]).

We thank Joos Heintz and Marc Giusti for pointing out this problem to us.

2 Preliminaries

We denote by k an arbitrary field; since our statements of effective Nullstellensätze
don’t depend on algebraic extensions of k, we may suppose in the sequel that k is
algebraically closed.

Let X
1
, . . . , X

n
be indeterminates over k and k[X

1
, . . . , X

n
] be the poly-

nomial ring with coefficients from k. For each polynomial f3k[X
1
, . . . , X

n
] we

write deg f for its total degree (by convention deg 0 :"!1).
Let 06r(n be a non-negative integer, f

1
, . . . , f

n~r
3k[X

1
, . . . , X

n
] a

regular sequence, A :"k[X
1
, . . . , X

r
], B :"k[X

1
, . . . , X

n
]/( f

1
, . . . , f

n~r
) and

suppose that the canonical morphism APB is an integral monomorphism
(Noether position). In this case, it is well known that B is a free A-module. For any
polynomial f3k[X

1
, . . . , X

n
] we denote by fM its class in B. D denotes the

determinant of the Jacobian matrix A
L f

i
LX

r`j
B
16i, j6n~r

and we assume that DM is

not a zero divisor in B (therefore the Jacobian criterion implies that B is reduced).
The set of common zeros of the regular sequence f

1
, . . . , f

n~r
in An

k
is denoted

by ».
The following definitions and statements of basic trace theory for Gorenstein

algebras can be found in [18, Appendix F] (see also [20, Sect. 4.2]). This is a useful
tool in Effective Algebra and several applications of duality theory in this field can
be found for instance in [4, 9, 24, 11, 8, 2, 17].

Consider the ring B as an A-algebra and denote by B* its dual space
Hom

A
(B, A). Our assumptions guarantee that B* admits a natural structure of

cyclic B-module (any generator of B* is called a trace of B over A).
Let k : B?

A
BPB be the multiplication morphism k (b? b@) :"bb@ and denote

byK its kernel. The annihilator Ann
B?

AB
(K) is a cyclic B-module. Moreover, for

each generator +
m
b
m

? b@
m
, there exists a uniquely determinated trace p3B* such

that for all b3B the so-called trace formula holds:

b" +
16m6M

p (bb@
m
)b

m
. (1)
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In particular we observe that b
1
, . . . , b

M
is a system of generators of the A-

module B.
Let ½

r`1
, . . . , ½

n
be new indeterminates over k ; for each polynomial

f 3k[X
1
, . . . , X

n
] we denote by f (Y) the element of the polynomial ring

k[X
1
, . . . , X

r
, ½

r`1
, . . . , ½

n
] defined by f (Y) :"f (X

1
, . . . , X

r
, ½

r`1
, . . . , ½

n
).

Hence we have the canonical isomorphism of A-algebras:

B ?
A
B:A[X

r`1
, . . . , X

n
, ½

r`1
, . . . , ½

n
]/( f

1
, . . . , f

n~r
, f (Y)

1
, . . . , f (Y)

n~r
) . (2)

If one considers each polynomial f (Y)
i

!f
i

as a polynomial in the variables
½

r`1
, . . . , ½

n
with coefficients in k[X

1
, . . . , X

n
] (16i6n!r), its Taylor ex-

pansion around the point (X
r`1

, . . . , X
n
) gives the relation:

f (Y)
i

!f
i
" +

16j6n~r

a
ij
(½

r`j
!X

r`j
)

where a
ij
3k[X

1
, . . . , X

n
, ½

r`1
, . . . , ½

n
]"A[X

r`1
, . . . , X

n
, ½

r`1
, . . . , ½

n
]

are polynomials of total degree bounded by d!1. Following [18, Corollary E.19
and Example F.19] the class of det(a

ij
) modulo the ideal ( f

1
, . . . ,

f
n~r

, f (Y)
1

, . . . , f (Y)
n~r

) gives a generator of Ann
B?

AB
(K) by means of the identifica-

tion (2). Developing this determinant we obtain (see [11, °3.4]):

Proposition 2 ¹here exists polynomials a
m
, c

m
in k[X

1
, . . . , X

n
] satisfying

deg(a
m
)#deg(c

m
)6(n!r)(d!1) (16m6M) such that +

m
aN
m
? cN

m
is a gener-

ator of Ann
B?

AB
(K). j

Definition 3 The trace associated to the generator of Ann
B?

AB
(K) introduced in

Proposition 2 will be called the trace associated to the regular sequence
f
1
, . . . , f

n~r
and we will denote it by pD . In particular we have fM "+

m
pD( fM cN

m
)aN

m
,

for all f3k[X
1
, . . . , X

n
].

For any polynomial g3k[X
1
, . . . , X

n
] such that its class gN 3B is not a zero

divisor, let X
g
"¹ s#a

s~1
¹s~1#. . .#a

0
3A[¹ ] be the characteristic poly-

nomial of the endomorphism of B consisting in multiplication by gN . We define
a new polynomial g*3k[X

1
, . . . , X

n
] which depends on g in the following way:

g* :"gs~1#a
s~1

gs~2#. . .#a
2
g#a

1
. (3)

Observe that gg*#a
0
"X

g
(g) is an element of the ideal ( f

1
, . . . , f

n~r
)

(Hamilton-Cayley ) and a
0
90 since multiplication by gN is injective.

Under these hypothesis we have:

Theorem 4 ([20, Theorem 10]) ¸et pD3B* be the trace associated to f
1
, . . . , f

n~r
;

let g and f be polynomials in k[X
1
, . . . , X

n
] such that gN 3B is not a zero divisor.

¹hen the following inequality holds:

deg pD(g* fM )6deg(») (1#maxMdeg f, deg g#(n!r)dN) . j

3 A Division Lemma for Complete Intersections and Nullstellensatz

Let r be an integer, 06r6n!1. We assume that f
1
, . . . , f

n~r
is a regular

sequence contained in k[X
1
, . . . , X

n
]. Let d be an upper bound for the degrees of

all polynomials f
j
, 16j6n!r.
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For each j, r6j6n!1, let I
j
be the ideal generated by f

1
, . . . , f

n~j
, and set

A
j
:"k[X

1
, . . . , X

j
], B

j
:"k[X

1
, . . . , X

n
]/I

j
. Suppose that the canonical mor-

phism A
j
PB

j
is an integral monomorphism and that the corresponding Jacobian

D
j
is not a zero divisor in B

j
.

We write K
j
for the kernel of the application k

j
: B

j
?

Aj
B

j
PB

j
introduced in

Section 2 and a ( j)
m

, c(j)
m

3k[X
1
, . . . , X

n
] are such that +

m
aN ( j)
m

? cN ( j)
m

is the gener-
ator of Ann

Bj
?Bj

(K
j
) defined in Proposition 2. Its associated trace will be denoted

by p
j
.

Let »
j
LAn

k
be the algebraic variety defined by the ideal I

j
and let

o :"maxMdeg(»
j
) ; r#16j6n!1N .

Under the previous assumptions we have the following division lemma (see, for
instance, [16, 4, 20, 17, 1] for similar results):

Lemma 5 ¸et f be a polynomial in the ideal I
r
. ¹hen there exists polynomials

p
1
, . . . , p

n~r
in k[X

1
, . . . , X

n
] such that:

f f"
n~r
+
i/1

p
i
f
i

f deg p
i
f
i
62(n!r)2od#omaxMdeg f, dN (16i6n!r) .

Proof. We shall construct recursively polynomials p
n~r

, p
n~r~1

, . . . , p
1
3

k[X
1
, . . . , X

n
] such that for any index j, r6j6n!1, the following properties

are verified:

(I) the polynomial f!p
n~r

f
n~r

!. . .!p
n~j

f
n~j

belongs to the ideal I
j`1

(where
I
n
denotes the zero ideal)

(II) the polynomial p
n~j

can be written in the form

p
n~j

"+
m

a (j`1)
m

a ( j`1)
m

where a ( j`1)
m

are the polynomials which appear in Proposition 2 and a ( j`1)
m

are
polynomials in the ring A

j`1
which degrees are uniformly bounded by a constant

D
j
defined recursively by:

D
r
:"o (1#d (n!r!1)#maxMdeg f, dN )

D
j`1

:"D
j
#o (1#2d(n!j!1)) (4)

for r6j6n!2. (Let us observe that, from these bounds, we have deg p
n~j

(D
j
#(n!j!1)d for all j, r6j6n!1.)

In order to show the fulfilment of statements (I) and (II) we start the recursive
procedure at j"r.

Since the polynomial f belongs to the ideal I
r
, there exists a polynomial

h3k[X
1
, . . . , X

n
] such that:

f,h f
n~r

mod I
r`1

. (5)

We define p
n~r

:"+
m

p
r`1

(hM cN (r`1)
m

)a (r`1)
m

.
First we observe that the trace formula (1) for the element +

m
aN ( j`1)
m

? cN ( j`1)
m

implies that p
n~r

!h belongs to I
r`1

. So p
n~r

satisfies condition (I).
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Since the element fM
n~r

is not a zero divisor in the ring B
r`1

we can define,
following (3), the polynomials f *

n~r
3k[X

1
, . . . , X

n
] and a3A

r`1
(a90) in such

a way that f *
n~r

f
n~r

!a is an element of the ideal I
r`1

. Multiplying the equality
(5) by f *

n~r
we obtain:

f *
n~r

f,ah modI
r`1

.

Thus the polynomial identity

ap
n~r

"+
m

p
r`1

( f *
n~r

fM cN (r`1)
m

)a(r`1)
m

holds.
Since a3A

r`1
and p

r`1
is A

r`1
-linear, a divides the polynomials p

r`1
( f *

n~r
fM cN (r`1)

m
), whose degrees are uniformly bounded by o (1#d(n!r!1)]

maxMdeg f, dN)"D
r
(see Theorem 4). Therefore defining

a(r`1)
m

:"
1

a
p
r`1

( f *
n~r

fM cN (r`1)
m

)

property (II) holds.
Let now j, r6j6n!2 and suppose that there exist polynomials

p
n~r

, . . . , p
n~j

satisfying conditions (I) and (II). We are going to repeat mutatis
mutandis the same procedure used in the case j"r in order to prove conditions (I)
and (II) for j#1.

Since the polynomial g :"f!p
n~r

f
n~r

!. . .!p
n~j

f
n~j

belongs to the ideal
I
j`1

(condition (I) for j ) there exists a polynomial h3k[X
1
, . . . , X

n
] such that:

g,h f
n~j~1

modI
j`2

. (6)

The polynomial p
n~j~1

is defined by:

p
n~j~1

:"+
m

p
j`2

(hM cN (j`2)
m

)a (j`2)
m

.

The trace formula (1) implies that p
n~j~1

!h belongs to I
j`2

. So condition (I ) is
verified for j#1.

Following (3) let us consider the polynomials f *
n~j~1

3k[X
1
, . . . , X

n
] and

a3A
j`2

such that f *
n~j~1

f
n~j~1

!a3I
j`2

.
From (6) we obtain:

f *
n~j~1

g,ah mod I
j`2

.

Therefore

ap
n~j~1

"+
m

p
j`2

( f *
n~j~1

gN cN (j`2)
m

)a ( j`2)
m

holds in the polynomial ring k[X
1
, . . . , X

n
]. Taking into account that a divides

the polynomials p
j`2

( f *
n~j~1

gN cN ( j`2)
m

) we define

a (j`2)
m

:"
1

a
p
j`2

( f *
n~j~1

gN cN (j`2)
m

) .

In order to show that p
n~j~1

satisfies condition (II) it suffices to prove that the
degrees of the polynomials a ( j`2)

m
are bounded by D

j`1
.

First we observe that deg a ( j`2)
m

is bounded by deg p
j`2

( f *
n~j~1

gN cN ( j`2)
m

) for
each index m.
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From the definition of the polynomial g we have:

degp
j`2

( f *
n~j~1

gN cN (j`2)
m

)

"deg p
j`2A f *

n~j~1
fM cN (j`2)

m
!

j
+
l/r

f *
n~j~1

pN
n~l

fM
n~l

cN ( j`2)
m B

6max Gdeg p
j`2

( f *
n~j~1

fM cN ( j`2)
m

), deg p
j`2

]A j
+
l/r

f *
n~j~1

pN
n~l

fM
n~l

cN ( j`2)
m BH (7)

Theorem 4 implies:

deg p
j`2

( f *
n~j~1

fM cN (j`2)
m

)6

6o (1#max Mdeg f#deg c(j`2)
m

, deg f
n~j~1

#(n!j!2)dN)6

6o (1#(n!j!2)d#max Md, deg f N).

In order to bound the remainder part of (7), we use condition (II) to replace each
polynomial p

n~l
, r6l6j :

degp
j`2 A

j
+
l/r

f *
n~j~1A+

m{

a (l`1)
m{

aN (l`1)
m{

) fM
n~l

cN (j`2)
m

6max
l,m{

Mdegp
j`2

( f *
n~j~1

a (l`1)
m{

aN (l`1)
m{

fM
n~l

cN (j`2)
m

)N

Taking into account that the polynomials a (l`1)
m{

are elements of the ring A
l`1

and
therefore are in A

j`2
we obtain:

max
l,m{

Mdegp
j`2

( f *
n~j~1

a (l`1)
m{

aN (l`1)
m{

fM
n~l

cN ( j`2)
m

)N"

"max
l,m{

Mdeg a (l`1)
m{

#degp
j`2

( f *
n~j~1

aN (l`1)
m{

fM
n~l

cN ( j`2)
m

)N

From Theorem 4 and condition (II) for l we deduce:

deg a (l`1)
m{

#degp
j`2

( f *
n~j~1

aN (l`1)
m{

fM
n~l

cN ( j`2)
m

)6D
l
#o (1#(2n!l!j!2)d)

Summarizing the inequalities above we have that deg a ( j`2)
m

is bounded by the
expression:

maxGo (1#(n!j!2)d#maxMd, def f N),

max
r6l6j

MD
l
#o (1#(2n!l!j!2)d )NH .

Since D
j`1

7D
j
for all index j one infers that D

l
7o maxMd, deg f N for all l and

then

deg a ( j`2)
m

6 max
r6l6j

MD
l
#o(1#(2n!l!j!2)d)N .
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From the fact that D
j`1

7D
j
#od a simple computation shows that:

max
r6l6j

MD
l
#o (1#(2n!l!j!2)d )N"D

j
#o (1#2d(n!j!1))"D

j`1
.

Then we have:

deg a (j`2)
m

6D
j`1

and so, condition (II) is verified for j#1.
From the recursive definition of the integers D

j
it is easy to prove the formula:

D
j
"o (maxMdeg f, dN#1#d (n!r!1)#( j!r)(1#d (2n!r!j!1))). (8)

Summarizing, this recursive method produces polynomials p
1
, . . . , p

n~r
in

k[X
1
, . . . , X

n
] such that f"+

16i6n~r
p
i
f
i

and deg p
i
6D

n~i
#(i!1)d,

16i6n!r. From the definition of D
j
and from (8) we have

D
n~i

#(i!1)d6D
n~1

"od ((n!r)2!1)#o (maxMdeg f, dN#n!r!1). (9)

Therefore, deg p
i
f
i
6D

n~1
#d and, from (9), this quantity is obviously bounded

by 2od(n!r)2#o maxMdeg f, dN and the lemma follows. j

Corollary 6 ¸et s3N, 26s6n#1, f
1
, . . . , f

s
be polynomials in k[X

1
, . . . , X

n
]

such that f
1
, . . . , f

s~1
is a regular sequence verifying the previous assumptions for

r :"n!s#1 and such that 13 ( f
1
, . . . , f

s
). ¸et d be an upper bound for the degrees

of the polynomials f
j
, 16j6s. ¹hen D( f

1
, . . . , f

s
)62n2od. In particular, if d is

the geometric degree of the system f
1
, . . . , f

s
, the inequality D( f

1
, . . . , f

s
)62n2dd

holds.

Proof. First suppose s(n#1. Taking into account that in the first step of the
proof of Lemma 4 we didn’t use the fact that the ideal is generated by a regular
sequence (in fact, we only use that f

n~r
is not a zero divisor modulo I

r`1
) we

obtain 1"+
j
p
j
f
j
where deg p

j
f
j
62n2od(16j6s).

Now assume s"n#1. As f
1
, . . . , f

n
is a regular sequence these polynomials

generate a 0-dimensional idea I
0

and the class of f
n`1

is a unit in the factor ring
k[X

1
, . . . , X

n
]/I

0
. In other words, there exists a polynomial p

n`1
3k

[X
1
, . . . , X

n
] such that 1!p

n`1
f
n`1

3I
0
.

Formula (1) and Proposition 2 in the case A"k and B"k[X
1
, . . . , X

n
]/I

0
imply that there exists a k-system of generators of B consisting of polynomials
a
m
3k[X

1
, . . . , X

n
] (16m6M) with degrees bounded by n(d!1).

Therefore, without loss of generality, we can suppose that deg p
n`1

6n(d!1).
Now, applying inequality (9) of Lemma 4 for r"0 to the polynomial

f :"1!p
n`1

f
n`1

which belongs to the ideal I
0

and has degree bounded by
n(d!1)#d, we obtain polynomials p

1
, . . . , p

n
such that:

!
n`1
+
i/1

p
i
f
i
"1

!deg p
i
f
i
6od(n2!1)#o (n(d!1)#d#n!1)#d62n2od .

The stated last inequality is a direct consequence of the definition of the geometric
degree of a trivial polynomial system (see Definition 1). j

The general case can be deduced from this corollary by means of Bertini’s
Theorem:
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Theorem 7 ¸et f
1
, . . . , f

s
3k[X

1
, . . . , X

n
] be polynomials which generate the

trivial ideal, d :"max
j
deg f

j
and d be the associated geometric degree (cf. Definition

1). ¹hen D( f
1
, . . . , f

s
)63n2dd.

Proof. Without loss of generality we may suppose d'1. Then the proof is an
immediate consequence of [12, Section 3.2.] or [20, Section 5.2.] (see also [17])
which state the following: there exists a suitable number of generic linear combina-
tions of the polynomials f

j
(if char(k)"0) and eventually of the polynomials X

i
f
j

(if char(k)'0), j"1, . . . , s and i"1, . . . , n, say g
1
, . . . , g

t
, which verify the

conditions:

1. 13 (g
1
, . . . , g

t
),

2. g
1
, . . . , g

t~1
is a regular sequence,

3. the ideal (g
1
, . . . , g

j
) is radical for j"1, . . . , t.

Therefore the result follows from Corollary 6 applied to the polynomials
g
1
, . . . , g

t
, after a suitable linear change of coordinates to put the variables into

Noether position and taking into account that max
j
deg(g

j
)6d#1. j

4 Examples

Example 1 The following example shows that in the definition of the geometric
degree of a trivial polynomial system, the radical condition is unavoidable in order
to obtain the stated bounds. Let us consider the classic example:

f
1
:"Xd

1
, f

2
:"X

1
!Xd

2
, . . . , f

n~1
:"X

n~2
!Xd

n~1
, f

n
"1!X

n~1
Xd~1

n
.

Clearly f
1
, . . . , f

n~1
is a regular sequence which is not reduced step-by-step, and

13 ( f
1
, . . . , f

n
). Specializing any equality 1"p

1
f
1
#. . .#p

n
f
n

on the curve
parametrized by (t (d~1)dn~2 , . . . , t (d~1)d, td~1, t~1) one deduces that
deg

Xn
p
1
7(d!1)dn~1 and therefore from Corollary 6 or Theorem 7 one has:

d7
(d!1)dn~2

2n2
.

However in this case deg»( f
1
, . . . , f

j
)"1, for all 16j6n!1.

Example 2 In this simple example one easily sees that the maximum of the degrees
of the involved polynomials must occur in the stated upper bounds:

f
1
:"X

1
, f

2
:"X

2
!X

1
, . . . , f

n
:"X

n
!X

1
, f

n`1
"1!Xd

1
.

Here f
1
, . . . , f

n
is a step-by-step reduced regular sequence and 13 ( f

1
, . . . , f

n`1
).

Specializing again any representation 1"p
1

f
1
#. . .#p

n`1
f
n`1

on (t , . . . , t) it
immediately follows that deg p

1
f
1
7d. On the other hand d"1 and our bound is

2n2d (Corollary 6).

Example 3 The last example shows that our upper bound improves in some cases
Kollár’s:

f
1
:"X

1
, f

2
:"X

2
!Xd

1
, . . . , f

n
:"X

n
!Xd

n~1
, f

n`1
"1!Xd

n
.
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In this case Kollár’s bound is dn~1 (see [16, 10, 19]) while ours is 2n2d since d"1.
Effectively we have the following representation:

1"(Xd~1
1

. . . Xd~1
n

) f
1
#(Xd~1

2
. . . Xd~1

n
) f

2
#. . .#(Xd~1

n
) f

n
#f

n`1
.
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1989—1990, Astérisque Vol. 189—190, 107—131 (1991)
24. Vasconcelos, W.: Jacobian Matrices and Constructions in Algebra. Proc. 9th Int. Conf.

Applied Algebra. Algebraic Algorithms and Error Correcting Codes AAECC-9,
New Orleans, 1991, Lecture Notes Comput. Sci., Vol. 539, pp. 48—64. Berlin, Heidelberg,
New York: Springer 1992

134 T. Krick et al.


