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Abstract

Let K be an algebraically closed fiels, ¢ K" be a smooth equidimensional algebraic variety
and |l (V) cC K[Xg,...,Xn] be the ideal of all polynomials vanishing ah. We show hat there
exig¢s a system of gneratorsfq, ..., fm of 1 (V) such thatm < (n — dimV)(1 + dimV) and
deg fi) < degV fori = 1,...,m. If charK) = 0 we present a probabilistic algorithm which
computes the generatoffg, ..., fm from a set-theoretical description ®f. If V is given as the
common zero locus of polynomials of degrees bounded @hyencoded by straight-line programs of
length L, the aforithm obtains the generators bfV) with error pobability bounded by within
compleity s(nd™ O log?([1/e])L.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The paper deals with quantitative considenas about the generation of the ideal of a
snmoothequidimensional affine algebraic variety.

Let K be an algebraically closed field\" be the affine spacK" equipped with the
Zariski topology and/ c A" be an algebraic variety. We denote bgv) the ideal of all
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polynomials inK[xj, .. ., Xn] vanishing oriV. Thedimension and the geometric degree of
V are denoted by dind and degv respectively.

Roughly speaking, we consider the following two problems related to the id&&l
for an arbitrarysnoothequidimensional affine variety:

(I) Existence of a system of generators lalv) with “few” polynomials and “low”
degree (se&heorem Ibelow).

(I If V is given (set-theoretically) as the set of solutions of a polynomial equation
system, exHiit an “efficient” algorithm which constructs a system of generators of
I (V) asin (l) (seeTheorem llbelow).

The estimation of upper bounds for the numbeeqfiationgdefining a algelaic variety

(not necessarily smooth) has been a main object of study in algebraic geometry through the
last century (see the surveyubeznik(1989 for a desription of the development of the
field). The frst modern result on the subject goes badkrionecker(1882, who staes that

any algebraic variety in a-dimensional ambient space can be described set-theoretically
by n + 1 polynomial equations (sde€unz 1985 Chapter |, Section 5, Exercise 1 for an
elementary proof). Only in 1972 difitorch(1972 andEisenbud and Evand973 show
independently that, in fact, the upper bound- 1 can be replaced by (a proof of this
result may be found iKunz 1985 Chapter V, Section 1, Theorem 1.4). Itis easy to see that
in the zero-dimensional case the upper bounid optimal (see for instancghafarevich
1994 Chapter |, Section 6.2, Corollary 5).

Neither Kronecker’s nor Storch—Eisenbud-alBg’s results seem to contain a discussion
about the degrees of the defining equations involved. Howevetigmtz (1983
Proposition 3) a version of Kronecker's them with degree bounds is exhibited: every
affine algebraic variety c A" can be defined by + 1 equations with degrees bounded
by degV. Nevertteless, up to now, we do not know whether a similar effective degree
upper bound for the Storch—Eisenbud—Evans theorem holds.

As the estimation of the nuber of equations is in some sense a geometrical problem,
it is not surprising that the methods and results concerning the number and degree of
generators of the idedl(V), for an affine or projective algebraic variety, are quite
different from the previous ones and involve more sophisticated pure algebraic tools.

Unlike the bounds for the number of defining equations, no general bound depending
only on the dimension of the ambient space can be expected for the number of generators
of the ideall (V) without additional assumptions on the varidty An exampe due to
Macaulay(1916 Chapter I, Section 34) and studied B®ybhyankan1973 shows that for
eachm e N there exists amffinealgebraic curve/y, c A3 suchthat | (Vi) cannot be
generated by less than polynomials. Another interesting example of the same kind for
projectivezero-dimensional (hence regular) varietie®thhas been shown b@eramita
(1983. However, a remarkable “analog” of the Storch—-Eisenbud—Evans theorem holds for
locally complete intersection polynomial ideals:

Theorem (Kumar, 1978and Sathaye1978 seealsoKunz 1985 Chapter V, Section 5,
Theorem 5.21 for a proofl.et V C A" be an algebraic variety such thatV) is a locally
complete intersection (this holds, for instance, if V is a smooth variety). Théndan be
generated by polynomials.
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Unfortunately, from he proofs of this result it does not seem clear how to deduce an
estimate for the degree of timegenerators of (V) staed in the theorem, at least in terms
of elementary geometriovariants of he varietyV (as dimension or degree).

On the other had, concerning only estimates for the degree of generatotg\65,
sharp upper bounds for certain classepufjectivevarigtiesV C P" can be obtained from
the study of the Castelnuo—Mumfard regularity regV). Roughly speaking, ray) is
the minimal upper bound for the degrees of the generators of the modules of syzygies
associated withK[xo, ..., Xn]/1 (V) (see Eisenbud 1994 Sedion 205, for precise
definitions). In particular, re®y) becomes an upper bound for the maximal degi@é)
of a minimal system of generators bfV). Despite the doubly exponential gap between
Castehuovo—Mumford regularity and degrees of generators of a homogeneous ideal in the
worstcase (se&iusti, 1984andBayer and Mumford 1993 Example 3.9), under suitable
hypotheses, rety) provides better bounds fal(V): for instance, ifV c P" is assumed
smooth and equidimensional, the inequatity') < reg(V) < (dimV +1)(degV —2)+2
holds (cf.Bayer aad Mumford 1993 Theorem 3.12). See alddagel and Schenzg(1998
for sharp bounds for generalized locallpl@n—Macaulay projective varieties.

In the case of a smooth irreducible varistyc A" it is also possible to exhibit an upper
bound for the degrees of the generator$ @f ) in terms of deg/ by means of elementary
geometric (not homological) tools:

Theorem (Mumford, 197Q seealsoSeidamberg 1975 Catanesgl992andProposition 8
below). Let V c A" be a smooth irreducible algebraic variety. TheiVl) can be
generated by polynomials whose degrees are boundetkhy .

The same result is re-obtained Bgidaberg(1975 andby Catanes€1992 consideing
generic linear projections and their associated eliminating polynomials, which can be
viewed as suitable specializations of the Chow form of the va¥iesee alsd@roposition 8
andCorollary 16 below). Let us remark that no explicit “low” upper bound for the number
of generators is given iMumford (1970, Seideaberg(1975 or Catanes€1992.

However, based on the Seidenberg—Catanese approach, we are able to obtain a “low”
upper bound for the number of generatorsl ¢¥/) with degrees bounded by d¥gby
reconstructing the defining ideal &f from sufficiently many linear projections o&f
onto suitably chosen linear spaces of dimension Mimt 1. The construction, which
is descrbed in Section 3 may be summarized as follows: the image of each of the
projections mentioned is a hypersurface that is defined by a single polynomial of degree
at most dey. Then, associated with a family af — dimV such pojections we have
n — dimV polynomials which generatgV) locally at the points ban open dense subset
of V (that is, the set of “bad points” at which(V) is not generated by the — dimV
polynomials is contained in a closed subvarietpobf dimension at most dind — 1).

By choosing different families of projectionthe dimension of the set of “bad points” is
reduced successively to divh— 2, ..., 0, —1. So, after onsidemg dimV + 1 families

of projections, each of which adas— dimV new polynomials, we obtain a family of
polynomials which generate(V) locally at each point and, therefore, is a system of
generators of (V).
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Thus we provide an answer to the problem (I) (in some sense, a weak mixture of
Kumar—Sathaye and Muoford—Seidenberg—Catanese theorems):

Theorem | (SeeTheorem 1Melow). Let V < A" be a smooth equidimensional
algebraic variety and set m= (n — dimV)(1 + dimV). There existpolynomials
f1,..., fm € KI[Xg,...,Xn] with degrees bounded bgegV such hat I(V) =

(fls~-'7 fm)

As Professor M Chardin(Universig Pigre et Marie Curie, Paris) kindly pointed out to

us, this result seems not to be completely new and it might be known by some specialists
in the area. Anyway we havesdided to include a complete proof of it in this paper for
several easons: we are unaware of a precise reference, and we do not even know whether
it is actually publishedBesides,our proof is quite elementary, requiring only a basic
knowledge of commutative algebra and algebraic geometry (see for indamze1985
Chapter VI, ®ction 1 andShafarevich1977 Chater I). On the other hand, the correctness

of our algorithm solving problem (I1) is strongly based on that proof and so we need it for
the sake of comprehensiveness.

Concerning the problem (ll), suppose now that an algebraic vaviety A" is given
by a finite set of polynomial defining equatiogs = O, ..., gs = 0. A basic question
in computer algebra is how to construct from the polynomgpld < i < s, a set of
generators of the idedl(V) c K[x4, ..., Xa] (or equivalatly, by Hilbert Nullstellensatz,

a system of gegrators of theadical of the polynomial idealq;, . . ., gs)).

Although many general effective procedures have been provided during the last
15 years (see for instandgianni et al, 1988 Alonso et al. 1991, Vascortelos 1992
Krick andLogar, 1992 Eisenbud et aJ. 1992 Matsumoto 2001, Fortuna et al. 2002
Kemper 2002, all of them involve (explicitly or implicitly) Gobner basis computations
and, therefore, their algebraicroplexity behaviors become at leaktubly exponentiah
same of the natural input parameters (the number or degree of polynagialumber of
variables, or dimV, etc.). An alternative single-expongal approach avoiding rewriting
techniques is given irArmendiriz and Solera {1995, but this method only works when
the input polynomialsys, . . ., gs form a regular sequence and the varigtys assumed to
be Cohen—Macaulay. Up to now, the problenfintling a single-expomial algorithm for
the computation of the radical of an arbitrary polynomial ideal remains open.

Here we combine the guments used to proveheorem land the fast computation of
the Chow form of an arbitrary algebraic variety developeddmnimo et al.(in pres$ or
Jeonimo (2002 (see alsdection 5.2bdow) in order to obtain a probabilistic algorithm
which runs insingle-exponentiatime and computes the ideal(V) for any snooth
equidimensional algebraic variety c A".

The Chow form is a classical tool that has been extensively used in the resolution of
different problems involving algebraic vaties. For instance, it is a well known fact that
defining equations of an equidimensional variety can be derived easily from its Chow
form (see for examplean der Vaerden(1939 Sectons 36, 37) for a classical approach
or Jeonimo et al.(2007) for analgorithmic version of this result). In this paper, we show
that under our assumptions the generatoig®f) statd inTheorem Ican also be obtained
from the Chow form ol by suitable generic specializations (&sction 3.
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This procedure—computation and specialization of the Chow form-efeads to the
construction of an algorithm (se®ection 5.3 which allows us to prove the following
complexity result (se§ection 5.%or a brief discussion about the computational model):

Theorem Il (SeeTheorem 1&elow). SupposecharK) = 0. Let g, ..., gs be poly-
nomids in K[Xxa, ..., Xy] of degrees bounded by d. Set > {x € A" : gi(x) =
0,...,0s(X) = 0}. Assumnethat V is smooth equidimensional a@id< dimV <n — 1.

Then there is a probabilistic algorithm which computes, for ang (0, 1), a set of
(n —dimV)(1 + dimV) polynomials of degrees bounded tiggV whichgenerdes the
ideal 1(V) with error probability bounded by. The input of the algorithm is the family
of defining polynomialsg. .., gs encoded by straight-line programs of length L and the
parametere, and its output is a family of straight-line programs of lengtmd™) ©® L
encoding the generators of the idealM). The werall complexity of the algorithm is
bounded by é&d™)°® log?([1/&])L.

Note that, in addition to improving the theoretical complexity of the computation of
generators foil (V) with respect to the known results (single exponential versus double
exponential),Theorem IIproducesew generators with degrees bounded byitatninsic
invariant ofV.

Let us observe that the extremal cases dim= 0 or dimV = n — 1 (not considered
in the statement oTheorem I) are wellknown: for the zero-dimensional case it is not
difficult to adapt slightly several of the above mentioned procedures computing the radical
in order to obtain complexity upper bounds asTimeorem || the case of a hypersurface
(not necessarily smooth) is a direct consequence of the known GCD algorithms for
multivariate polynomials (see for instankaltofen 19889.

Finally, we remark thatheorem lladmits a similar version where the complexity bound
depends on the geometric degpeef the input polynomial system instead of thez®ut
numberd" (seeTheorem 1%helow).

The paper is organized as followSectons 2and3 are devoted to provingheorem |
above, as well as to developing the tools we use in the subsequent sectiSestitm 4
we show that the eliminating polynomials defined iBection 2are in fact suitable
specializations of the Chow form of the variety (Corollay 16). Section 5is devoted to
the dgorithm underlyingTheorem Il in Section 5.1we sketch the coputational model,
in Section 5.2veintroduce the algorithm that will be applied for the computation of Chow
forms, inSection 5.3ve descte our algorithm and iBectons 5.4and5.5 we conpute
its error probability and its total complexity.

2. Preliminaries
2.1. Notation and definitions

Throughout this papdf denotes an algebraically closed field anthe set ofpositive
integers.

Letn € N. We denote byA" the affine spac&" equipped with the Zariski topology
and byK[xi, ..., Xn] the polynomial ring inn indeterminates.
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Let V c A" be an algebraic variety. We adopt the usual notions of dimension and
degree of an affine algebraic variety, which we denote by\diand degV respectively.
For definitions see for instance the classic bo&tsafarevich(1977 1994 or Mumford
(1999. For a reducible vaety we follow Heintz (1983 Definition 1 and Remark 2)
defining its degree as the sum of the degrees of all its irreducible components. We
denote byl (V) C K[xy,..., Xs] the ideal of all polynomials vanishing o and by
K[V] = K[Xg, ..., Xn]/1 (V) the ring of coodinates ofV.

If 1 (V) isgenerated by polynomials, ..., fs we say thaV is snooth ata poinp € V
(or thatp € V is a rggular point ofV) if the Jaobian marix J := (3f;/3x; (p)) 1<j=s has

1<i<n

rankn — dimV. We also ay thatV is smooth if it is smooth at each of its points.
2.2. Generic projections

LetV c A" be an equidimensional algebraic variety of dimensiowith 0 < k < n.

For everyh = (hjj) osizn € (A™H*1 we define linear polynomialgn; e
1<j<k+1
K[X1, ..., Xn] @sth; == hoj + h1jX1 + -+ hnjXn, for j =1,...,k+ 1, and we denote

by 7, the linear map
7h s AN — ARt (X1, - Xn) > (Cngs s Lhy,y)- (1)

SetLp C A" for the linear variety defined ds, == {x € A" : €4, (X) =0, ..., lh,(X) =
0}, and letL? be the vector subspace associated With

LY :={x € A": h,(x) —ho1 =0, ..., €n; (X) — hox11 = 0}. )

Let G ¢ (A™1)K be a zariski dense open set whadements induce Noether positions
with respect to the variety (seeEisenbud1994 Theorem 13.3) and let

Uo:= (G x A™1) n {h e A™Hk L/ dimLy =n—k — 1}, (3)

which is a Zariski @nse open subset oi"1)k+1,

Fix h € Ug and consider the restriction of the map to the varietyV, whichwe call
hv If e Akt . Ak denotes the canonical projectign, . .., Xk+1) —> (X1, ..., Xk),
thenz o m v is a finite and surjeste mophism betweerV and AK (in fact, it is a
projection in Noether position as we suppdse& Up). In particular, by the theorem of
fibers (e.gShafarevich1994 Chapter I, Section 6.3)zn v has finite fibers and, therefore,
mh(V) c A¥t1is ak-equidimensional Zariski closed set. Then there exists a square-free
polynomial f, in k + 1 new ndeterninatesys, . . ., Yk+1 suchthat

(V) = {y € A" /fn(y) = 0). (4)

Sincernn v is a linear morphism, the inequality dég = degrznh(V) < degV holds (see
for instanceHeintz 1983 Lemma 2).
Specializingfy in £n,, ..., £h,,, We obtain a new polynomial

fi = fh(lny, oo bhgy) € KIX, - Xl (5)
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which belongs to the idedl (V) and verifies the following degree bound:
degfy < degV. (6)

In the next section, we will prove that for a smooth equidimensional va¥ietiheideal
I (V) can be generated by polynomials of the fofgh

3. Generatorsfor theideal of a smooth variety

In this section we prove the existence of “fegenerators of “low” degree for the ideal
of a smooth equidimensional affine variety. We maintain the notation introduced in the
previous section.

3.1. Cones and generic projections

We start vith an elementary review of affine camand wellknown basic properties
relaed to them (see alddarris 1992, which will enable us to state the conditions needed
in order that the polynomial§; defined in the previous subsection generate the idedl of
locally at the rgular points oiV.

LetC c A" be ak-dimensionairreducibleaffine variety and lep € A" be an arbitrary
point in the ambient-dimensional affine space. We define the cGpeassociated with the
varietyC with centerp as the Zariski closure iA" of the esefA(q—p)+p; 2 €K, qeCl

If p:=(p1,..., Pn), itiseasy to see thatthe |de|e(ICp) Cc K[xq, ..., Xplisa(x;— pi)-
homogeneous ideal; in particular, for every Cp ~ {p}, the stréght line defined byp
andq is completely cordined in the coné)p

Since he map(x q) — Ag—p)+ P is a dominant rarphism betweea! x C ande,
we infer thaiC,, is irreducible and din€, < dim(A'xC) = k+4-1. SinceC c Cp, we have
the inequalityk < dim 6p < k+ 1. Under certain conditions the equality d(ﬁb =k+1
holds:

Remark 1. Suppose that the variet¢ and the pointp satisfy one of the following
conditions:

(1) peC. , , , ,
(2) p € Cisaraular point ofC andC is not a linear variety.

Then dimCp = k + 1.

Proof. Let us suppose first thaondition 1 holds. Agp € Cp ~ C, we haveC & Cp and
so dimCp = k + 1.

Now assume that condition 2 holds and that d]m— k (or equivdently, C = Cp)
Since he ideall (Cp) is (xi — pi)-homogeneous, this is also true fofC) and so there
exist(x; — pi)-homogeneous polynomialg, ..., gs € K[Xy, ..., Xn] generating (C).

Let (3g1/9%;(p)) 1<i<s be the Jacobian matrof the systemgl, ...,0s in p, which

1<i<n
has rank exactlyn — k, as p is assumed to be aegular point of C. From the
homogeneity, if a polynomial, has degree at least 2, the associatemlv in the Jacobian
mattix (ag/ox1(p), ..., dq/dXn(p)) is identically zero. Therefore there must he- k

polynomials amongg;, ..., gs whose total degrees are exactly 1 and Erdinearly
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independent. Since di@ = k, we conclude that these polynomials of degree 1 generate
| (C) and therC is a linear variety, whichantradicts the assumption[]

From this remark we deduce the following result in terms of linear projections:

Remark 2. For anyp € A" satisfying one of thedllowing conditions:

(1) p¢C;or
(2) p € Cisaraular point,

there exists a Zaski denseopen subsetlp c C (ANt1k+1 gych that for everyh e Up c,
7Th_1(7'rh(p)) N ép = {p} holds, whererp : A" — AKtlis the linear map associated with
h defined in Q).

Proof. If C is a linear variety angh € C is an arbitrary point we také, ¢ as a product
G x A™1 whereG c (A™1)K is any open setantaining only Noether positions f@.
Therefore, without loss of generality we may assume fhahdC satisfy conditions (1)
or (2) ofRemark 1In paticular, dimCp = k 4 1.

LetUpc C (AM1k+1 he a zariski dense open set (dependingprsuch hat for
everyh € Uy ¢ the ring exterlsioﬂK[ehl, .. os ] = K[Cpl is injective and integral (a
Noether position for the con@y).

We claim thatUp, ¢ meets the requirements of the statement of the remattke i) c,
the associated linear magy, restricted to the con€p is onto and finite, which implies
thatnjl(nh(p)) N 6p is a finite set cordtining the pointp. On theother hand, a point
g € Cp, g # p, obeysmh(p) = mn(q) if andonly if g is a solution of the(x; — pj)-
homogeneous linear system

€n (X) = £hy (D), - oy Ehyy (X) = Lhyq (D).

This in turnAimpIies that any point of the straight line defined dpyand p (which is
contained irCp) is also a stution of this linear system and, therefore, Iiesﬂ,ﬁl(nh( p)) N

6,;, contradicting the fadhat this set is finite. It follows thazth_l(rrh(p)) N ép ={p}. O
Consider now &-equidimensional variety c A". From theprevious results we deduce:
Proposition 3. Let pe A" be such that g¢ V or p € V is a regular point. Then, there is
a Zariskidense open setc (AM1hk+L verifying:

(1) If p ¢ V, mh(p) ¢ mn(V) for every he Uy,

(2) If p e V isargular point,nh_l(nh(p)) NV = {p} for every he Up.
Proof. LetV = C1 U --- U Cgr bethe decomposition o¥ into irreducible components.
Observe thatp obeys one of the hypotheses Remark 2for each of the irreducible

componentE,, ..., Cr. Then, there exist Zariski dense open sbltgc,, ..., Upcg C
(AMhk+L a5 inRemark 2 DefineUp := Upc, N --- N Upcg. O

Suppose now thap € V is a regular point. Letg, ..., gs be a system of generators
of the ideall (V). Note hat dimV = k impliess > n — k. For eachh e (ANMt1h)k+1
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denote byJph € KG&HOXN the Jacobian matrix associated with the polynomials
01, ---,0s, ¢hys - - -, €ny At the pointp. Sincep is a regular point ofV, the set

Up = {h e (A" rank(Jp ) = n} 7)
is a Zariskidense open subset @f"1)k+1,
Definition 4. Let Ug be the Zariski open set defined i) ( For everyp € A" suchthat
p ¢ Vorp e Visa ragular point, consider a Zariski dense opendgtobeying the
condition stated irProposition 3We define a ariski dense open séf, C (A”“)kJrl
associated wittp as follows:

e If pe Visargular pointl/p := Up N Uy N Uo.

3.2. Existence of generators of low degrees

Let p € V be a regular point and I€fp(V) be the tangent space df at the point
p translated to the origi In other words, ifgs, ..., gs iS a system of generators of the
ideall (V), thenTp(V) is the kernel of the Jacobian matridg(gs, . . ., gs) € K>*" of the

polynomialsg (1 < | < s) in thepoint p. Leti, C (A”“)kJrl be the Zariski dense open
set intoduced inDefinition 4.

Lemmab. Let pe V be a rgular point and let he U/p. Thenmy(p) is a regular point of
mh(V). Moreover, the identity of local ring®p v = Ox,(p), = (v) holds.

Proof. Setq := nn(p), Z := 7n(V) and, forj = 1,....k+1,2j = £n; — £n; (p). Since
h € Up C Ug, thelinear maprh v : V — Z induces the integral ring inclusion

K[Z] = K[Z1, ..., Z1] € K[V], (8)
where, forj =1, ...,k + 1, Zj denotes the class &f in the ring of coordinateK[V]. In
particularK[V] is a finiteK[Z]-module. Set

o My == (2a, ..., Z, Z+1)K[Z] (the maximal ideal associated with) andOq,z =

K[Z]ong;

o M, for the maximal ideal op in the ringK[V] andOp v = K[V oy,

As O,y is a rgular ring andh € U, C U], Definition 4 and condition 7) imply
thatzy, ..., z« generate the aximal ideal of the local ringDp v, that is, MpOpv =
(z1, ..., Zk)Op,v. Ontheother hand, ag = mh v (P), we have thali, NK[Z] = Mg and
that the local ring inclusio®q,z C Op,v holds. Moreover, sinck € Uy, Proposition 3
staes thatnhf\l,(q) = {p} or equivalently, in the language of rings, tial;K[V] is a
M p-primary ideal. Then, we deduce that

MK[V] = Mp. 9)

Let S be the multiplicative closed s&® := K[Z] \ Mg and let us consideK[V] as a
K[Z]-module. We claim that thiollowing equality holds:

SK[V] = Opv. (10)
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The inclusionSK[V] C Op,v follows immediately from the definitions. On the
other hand, from identity 9) we infer that S"IK[V] is a local ring with maximal
ideal MpS—IK[V]. For everya € K[V] ~ 9Mp, we havea ¢ M,SIK[V], since
SN Mp = SN My = @. Herce, any fractions/a € Op v with § € K[V] and
a € K[V] ~ Mp belongs toS~K[V] becausex is aunit in the local ringS~tK[V].
ThereforeOpv C S 1K[V] and so claim 10) is proved.

Now, localizing the integral inclusior8 at the multiplicative setS, we deluce that
Op,v is a finite Oy, z-module. AsOp v /MqOp,v = K, Nakayama’s lemma implies that
Op,v is anOq,z-module with rank 1 and s@p v = Oqg,z. U

Corollary 6. Let p € V be a rgular point. For every he Up, the polynomial f :=
fh(lhys ..., €hey) € K[Xa, ..., Xn] is the equation of dypersurface W containing V
and smooth at p. The tangent spacg(Wh) is the sum F(V) + LY, where Lﬂ is the
subspace defined ifR).

Proof. From the definition of the polynomid;, it follows thatV C Wh. The tangent
spaceTp(Wh) is the kernel of the row matriX f*(p) which, using the chain rule, can be
written as
3l
Vi (p) = V fh(n(p)). (a—xij(p)>

1<j<k+1°

1<i<n
Observe thaV f'(p) # O, because rartbién; /9% (p)) = k + 1 (recall thath € Up C Uo)
andV fh(th(p)) # 0 aswp(p) is a regular point ofrp (V) (Lemma §. ThereforeW, is
smooth atp.

Moreover, since keith, /dx; (p)) = LY, the inclusionLy C Tp(Wh) holds and, from
the fact thatf e 1(V), we deluce thatTp(V) C Tp(Wh). Findly, observe that for
everyh € Up C Ug we haveT,(V) N L2 = {0} and, therefore, difTp(V) + Lﬂ) =
dimTp(V) + dim Lﬂ = k+ (n—-—k -1 = n-— 1. We conclude that the equality
Tp(Wh) = Tp(V) + L] holds. O

Now we shav that he ideall (V) is locally generated at each regular point\6fby
polynomials of low degrees.

Lemma?7. Let p € V be a rgular point, let I(V) be the ideal of the variety V and
let Op an be the local ring of the point p in the ambient spat® Set |, for the ideal
generated B the polynomials f where h uns over the open sét, (seeDefinition4).
Then I(V)Op an = 1p0p an. Moreover, the identity

| (V)Op’An = (fr;k(l), e, f:(n—k))op,A"
holds for every K, ..., h"0 ¢ 14, obeying \"_}(Tp(V) + Lﬂa)) =Tp(V).

Proof. As Up C (AMhk+1l is 3 Zariski dense open set, there exist vectors
h®,....h®0 e 24, suchthat Nf (Tp(V) + L) = Tp(V). This equdity and

Corollay 6 imply that, if f;‘(l)(l < | < n —Kk) are the polynomials defined i®), then

M= ker(V £, (p) = Tp(V).
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From elementary arguments for regular local rings (cf. for instalioaz 1985
Chapter VI, Proposition 1.5 avlumford, 197Q Lemma, p. 34), we infer that the identity
L(V)Opan = (f1g), -+ -s Fasig)Op.an holds. [

If the variety V is globally smooth (i.e. smooth at each of its poirteimma 7admits a
well knownglobal version (se&lumford, 197Q Theorem 1;Seidenberg 1975 Sedion 2
or Catanesgl992 Theorem 1.14):

Proposition 8. Let V ¢ A" be a smooth equidimensional variety. Then, the idg®)!

can be generated by the polynomial$, fwhere h uns over the open setgldefined

in (3). In particular, 1(V) can be generated by polynomials of total degree bounded
bydegV.

Proof. Let | C K[xg, ..., Xn] be the ideal generated by the polynomi#ls whereh
runs over the open sélp. Since fa everyp € V theopen sel/, is contained inUp, by
Lemma 7 theidentity | (V)Op an = 1Op an holds for any pointp € V. If g ¢ V, leth
be an element of the Zariski dense operiggtC Up (seeDefinition 4). By Proposition 3
we havern(q) ¢ mn(V) and sof(q) # 0. Hence] Og an = Og an = 1(V)Og an. From
the local-gbbal principle we deduck(V) = I.

The upper bound for the degrees of the generators is a consequefize afl

3.3. Existence of a few generators of low degree

The goal of this subsection is to refirieroposition 8in order to obtain, for any
k-equidimensional smooth variety, a “smdl” number of generators df(V) of degrees
bounded by dey (cf. Theorem 1(below).

First, we prove adchnical result which enables us to give a recursive proof of the main
theorem.

Lemma9. Let V c A" be a k-equidimensional smooth variety and letZZA" be an
equidimensional variety such that no irreducible component of Z is included in V. Then,
for any finite subsetpy, ..., pr} C V, there @ist kD, ... h(% ¢ Uq (see definition

(3)) such hat:

(1) The polynomials rf:‘(l),..., fr;k(n—k) generde the ideal I(V) locally at p, for
u = 1...,R, hatis, I(V)Op, an = (fh(l),..., h- k) Op,,an holds for
any point f.

(2) {x e A”/fhu)(x) =0,..., iy =0NnNVUZ)=VU Z',where Z = @ or

Z'isan eqU|d|mensi0naI variety wittim Z’ = dim Z — (n — k) and no irreducible
component contained in V. (In particular Z @ if dmZ < (n —k).)

Proof. Without loss of generality we will suppose# o (if Z = @ the agumentrunsin
a simlar way).

Following Definition 4, let us consider foru = 1,..., R the Zariskidense open
setZ/lpu c (A™HK+L For each irreducible componelﬁl of Z, let qc be a point
in C .V and consider the corresponding openiggt C (A”“)‘“rl also introduced
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in Definition 4 Let

R
h® e (M Up, N [ \Uae-
u=1 C

which is a Zariski @nse open subset b.

By Corollary 6, the polynomialf ;) defines a hypersurface containivighat is smooth
atpy, foru = 1,..., R. FurthermoreProposition 3mplies thatfr:‘(l) (qc) # O for every
irreducible componer@ of Z. Therdore

xe AV/fi,00=01N(VUZ)=VUZ,

whereZ; = @ or Z; is an equilimensional variety with dinZ; = dimZ — 1. Without
loss of generality we may assume ttat £ @ and no irreducible component @ is
contained inv.

Now, for each irreducible compone@tof Z3, letq. € C \ V. Leth@ e (AM1)k+!
be a point obeying the conditions

e @ e N tp, N Ne Uy and
o dimg (LY, + Tp, (V) N (L + Tp (V) =n—2foru=1,..., R

Observe thatisch an elemerit® exists because both conditions are given by belonging
to Zariski dense open sets.
With a similar argument tdhe above we deduce that

{x e A"/f(x) =0, fip(x) =0} N (VU 2Z)
={xeAV/f,(0=01N (VUZ)=VUZ,,

whereZ,; = @ or Z3 is an equilimensional variety with dinZ; = dimZ;—1 = dimzZ-2.
We may also assume that no irreducible componert,0is contained inV.

After applying this procedura—k times recursively in a similar way, we have elements

h®, ..., h0=0 ¢ NR 14, such that:

e Foru = 1,..., R dimg ﬂlnz’lk(Lﬂ(l) + Tp(V)) = n— (n — k) = k holds and
henceﬂ[‘z’lk(Lﬂ(l) +Tp, (V)) = Tp, (V) In paticular, byLemma 7 the polynomials
fows - fnw meet the first condition of the statement.

e There exists a decomposition

xe AV/fr,00=0,..., ffw() =0 N (VUZ)=VUZy,

whereZ,_x = @ or Zn_k is an equilimensional variety with dinZ,_x = dimzZ —
(n — k). TakingZ’ .= Z,_x we have the second condition of the statement.
This finishes the proof of the lemmall

Now we are able to prove the main result ostketion concening the number and degree
of generators of (V).

Theorem 10. Let V ¢ A" be a k-equidimensional smooth variety and set=mn(n —
k)(k+1). Then, there exist polynomialg f. .., fyy € K[Xy, ..., X,] with degrees bounded
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by degV such bhat 1(V) = (f1,..., fy). Moreover, for everyl < t < m, there gists

h® e (AMhkH such hat f = fhm

Proof. Without loss of generality, we may suppose<0k < n — 1, as the result is well
known fork = 0 (the so-cled “Shape lemma”; see e.Gox et al, 1998 Chapter 2,
Section 4, Exercise 16) and fer= n — 1 (wherel (V) is a principal ideal). We proceed
recursively, applying the previous lemma in each step.

Stepl. For each irreducible componentwfthoose an arbitrary point, and call these points
P1, ..., Pr- Applying Lemma 9to {ps, ..., pr} and the closed set := A", there exist
haD .. h@"=k)in Uy suchthat

o 1(V)Op,an = (fiay, .- f;(l(n 1)) Opy,an foru=1,..., R and

o {xe AN/fX (X)) =0,..., {1, (X) =0} =V UZi, whereZy = @ or Zy is an
equidimensional variety Wlth did; = n — (n — k) and no irreducible component
contained inv.

Let Y1 C V be the Zariski closed set consisting of those point¥ afhere the Jacobian
matix (df,y,/9%i) 1<1<n-« has rank at most—k — 1. From the Jacobian criterion (see e.g.

1<i<n

Kunz 1985 Chapter VI, Section 1, Proposition 1.5), the poipts. .., pr do not belong
to Y1. Then, dimY1 < k — 1. Furthermore, the polynomialgy,y, fi1z, -, flum)
generate the idedl(V) locally at any point lying inv ~ Yi.

Step2. Choosing one point in each irreducible componenfofve obtain a new finite set
{p1. ... Pr} C V. Now weapplyLemma Sto this set and the variety; given in Step

1 to obtain mw ekmentsh@? | ... h@M"=K) in Uy such that their associated polynomials
frens - frang € (V) verify:

o fh(Zl), ooy Fenoi) generate the ideal (V) locally at the pointsp, for u =
1,....,R;and

e {Xe€ A”/fhm) xX)=0,... h<2<n 0 X) =0tN (VUZy) =VUZy whereZ; = @
orZsisan equdimensional variety with diiZ; = dimZ; — (n—k) = n—2(n—Kk)
and no irreducible component contained/n

Moreover, from the definition of 1, we also have that

{x e An/f:(n) x)=0,..., rT(l(n-k)) X) = h(21) x)=0,. fﬁk(z(n—k» (x) =0}

equalsv U Z5.

LetY2 C V be the closed set consisting of those point¥dbr which the rank of the
Jacobian matrix of the polynomial’;, (j = 1,21 <| <n—k)isatmostn —k — 1.
From the definitions, it follows tha¥, C Yi1. Moreove, sincep;, ..., pr € Y1\ Y2
(for the polynomialsf * nej) generate the idedl(V) locally at these poirs), we deluce that
dimY2 <dimY; <k —-1andsadimYs <k — 2.

The procedure continues recursively in a similar way, and &fterl stepswe have
polynom|alsfhu,) el(V)forl<j<k+1,1<I| <n-ksuchthat:

e The setYkr1 C V where the Jacobian matriQGf;]“(“)/axi) associated with the
polynomials fh<,|>(1 <j=<k+211=<I=<n-k)hasrankat mosht —k — 1
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obeys dink;1 < dimV — (k + 1) and soYk;+1 = @. Therefore, the polynomials
frTU') (1< j=<k+11<l <n-k)generatd (V) locally at ary point of V.

e The following set-theoretical equality holds:
xe A"/fr () =01<j<k+11<l<n-k}=VUZy,

whereZy1 = @ or Zy41 is an equilimensional variety with diiZy+1 < n — (k +
1)(n — k) = k2 + k — kn = k(k + 1 — n). Since 0O< k < n — 1, we conclude that
Zy+1 = @ and then the set of common zeros of the polynomfgls, is exactly the
varietyV.

Hence, the polynomiald’;, with1 < j <k+ 1,1 <I| < n—kgenerate the idedl(V).
Inequality @) gives the upper bound for the degrees of the generatars.

4. Generatorsand the Chow form

In this section we show how the polynomialg defined in §) can be obtained by
means of suitable specializatiof the Chowform of the vaiety V (see alsdeidaberg
1975andCatanesgl992). This fact is cucial in order to constru@n agorithm with “low”
complexity bounds for the computation of generators for the ideal of a smooth variety (see
Section Shelow).

Let V c A" be ak-equidimensional affine variety (not necessarily smooth) and let
V c P" be its projective cleure. We have dind = dimV and degV = degV. Let Hjj,
withO <i <nand 1< j < k+1, be new indeterminates over the fi&dFor each index
j,setHj := (Hoj. ..., Hnj) and Ay, for the generic linear form

AHJ- = HojXo + HijX1 4+ - - - + HnjXn € K[Hy, ..., Hky1l[Xo, . . ., Xnl.

We dewote by F € K[Hy, ..., Hky1] the Chow brm of the projective variety/ (see
for instanceShafarevich(1977 Chapter 1, Sections 5 and 6) for the definition and basic
properties of this polynomial). We also say ttfats the Chow form of the affine variety.

We recall that the Chow fornF is a multihomogeneous polynomial of degree dégn
each group of variableld; and, up to scalar factors, it is the unique square-free polynomial
in K[Hy, ..., Hky1] with the following property:

F(hy,...,ht1) =0=V N {4n, =0,..., Ap,,, =0} # @ inP". (11)

SetD := degV ande := (1,0, ...,0) € K""1. The expansion ofF into powers of the
variableHgk41 is

F=FMH1....H.eHE, 1 +Co_1Hg, 1+ -+ Co, (12)
whereC| € K[H4, ..., Hk, Hiks1, ..., Hhkpal forO <1 < D — 1.

Remark 11. Since dimV N {xg = 0h) = k — 1, a generic projective linear subvari-
ety of codimensiork does not intersect/ N {xo = 0} and so, by propertyl(l), the
polynomial F(Hy, ..., Hk,e) € K[H4,..., Hk] is not the zero polynomial. Moreover,
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for (hy, ..., he) € (A™HK we haveF(hy, ..., hg, ) # 0 if andonly if the system
hixxtr+ - +hnxn=0,...,hikxs + -+ hpkxn =0, X0 =0 (13)
has no solutions iv.

Now, we define a condition on the vectdrg (A"t1)k+1 which ensures that the associated
polynomialsf,; can be obtained from the Chow form ¢t

Lemmal2. Let T be a new wdable and set

D =discrr F(H41,..., Hk, Hkr1 — Te) € K[Hy, ..., Hk1]
for the discriminant with respect to the variable T. Th@nis not the zergolynomial.
Proof. First, observe that from identitl ) andRemark 1lwe have

degr F(Hy, ..., Hk, Hky1 — Te) = D.

Then, in order to prove the lemma it suffices to show that for a suitable specialization
of the varables (Hi,...,Hks1) +—  (h1,...,hgy1) the univariate polynomial
F(hy,...,hg, herr — Te) has exactlyD many different roots.

Let (hy, ..., h) € (A™1K be such that

#(V N {en, =0, ..., ¢, =0}) =D. (14)

In other wordsth,, ..., £n, is a family of linear polynomials defining a linear variety
which intersect¥ in exactly deg/ many points. SeZ .=V N {¢h, =0, ..., £h =0} =
{Pq,...,Pp}.

Lethx 1 € A" be a vector such that the associated linear polynofpjal separates
thepoints of Z (i.e. tn,, (P) # £n,,,(Pj) fori # j). Then, there exidste K andp € V
solving the system

Zh]_(p) = Os M) th(p) = Os Z|"\k+:|_(p) :t

if andonly if t € {€n_,(P1),...,¢n.,(Pp)} and soln,(P1),...,¢tn,,(Pp) areD
different roots of the polynomiak(hs, ..., hy, hxs1 — Te).

Finally, let us observe that the polynomi&i(hs, ..., hk, hxs1 — Te) is not identically
zero due to 14) andRemark 11 The lanma follows. [

Definition 13. For anyk-equidimensional variety c A" we defire a Zari&i dense open
setllp C (AM1k+1 a5 follows:

e If Vis notalinear varietyfy := {h € (A" K1 /D(hy, ..., heye1) # 0},
e If Vis alinear variety (i.e. deg = 1),

Uo={he (A™H* L F(hy, ... he, @) #0} N {he (A< Go(h) 0},
whereGg € K[Hy, ..., Hks1] is the determinat of the matrix(Hij) ozi<k -

1<j<k+1

Let us observe that(hy, ..., hg, e) # 0 for everyh := (h1, ..., hxy1) € Up (if V is not
alinear variety the conditio® (hy, ..., hk+1) # 0 means that the univariate polynomial
F(hy, ..., hg, hepr — Te) has exactlyD simple oots inKK and in particular, byX2), its
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Igading coefficien{—1)P F(hy, ..., hk, €) is not zero). Hence, fon € Up we have that
V N {4, =0,..., 45 =0, % =0} = @ and thereforey N {Ah, =0, ..., 4n, = 0}
is a finite set irP". Moreover, it onsists okexadly D points, all of them lying inV, that is

#V N {&h, =0,..., L =0}) =degV.

It is not difficult to show (see for instand&ick et al,, 2001, Lemma 2.14 and Assumption
1.5) that under this last condition the canonical morphi§pdn,, ..., ¢h] — K[V]
becomes an integral and injective extension (geometrically, a Noether positign. fohis

implies thatth,, . . ., £n, are linearly independent polynomials.

Moreover, if V is not a linear variety, we also have that, . . ., ¢n,, £n,, are linearly
independent (otherwis&, = 0 would be a multiple root of F(hy, ..., hx, hxy1 — Te). If
V is a linear variety thdéinear independence df,,, . .., £n,,, follows from the condition
Go(h) # 0.

From the preious arguments we conclude that the operiget (A" 1)k+1 meets the
requirements for the open ddg defined in 8) of Section 2namely, Noether positions for
V and linear independence of the polynomials .. ., ¢n,. ). Hence:

Remark 14. For anyh € Ug, the maprhy : V — Akt1 is a finite mophism and then
there exists a square-free polynomfal e K[yz, ..., Yk+1] suchthatzp (V) = { f, = 0}
(seeSection 2.2

We devotahe remainingpart of this gction to showing that for anty € U the polynomial
fn can be obtained by suitable specialization of the variablgs . ., Hky1 of the Chow
form F (and so the same holds fdf").

Proposition 15. Let h:= (hy,...,hxr1) € Up and let i, ..., Yk+1 be new indetermi-
nates oveilk. Then f = F(hy — yie, ..., Nkr1 — Yk+1€).

Proof. Denote bygh .= F(h1 — vie, ..., hkt1 — Yk+18) € K[ya, ..., Yk+1]. First we
prove that the polynomialg, and f, have the same zeros it
Letq = (Q1, ..., 0k+1) € {&h = 0}. Thecondition§nh(q) = 0 means that the system

(ho1 — d1)Xo + h11x1 + - - - + hn1xn =0
: Do (15)
(Nok+1 — Gk+1)X0 + hakaXs + -+ + Pnkyaxn = 0
has a soltion in V. Any solution to (19) lying in V belongs in fact to the affine paxt,
since if (O : p1: --- : pn) € V is a solution to {5), thenit is also a solution of the
linear system13), which leads to a contdiction with the choice oh in L. Therdore,
there existsp := (p1,..., Pn) € V suchthat(1 : pp : --- : pp) IS a solution to
(19 and tws,q = mn(p). Conversely, ifq = wn(p) for somep € V, then he point
(1:p1:---: pn) € Visasolution to 15 andhence§nh(qy, . . ., gk+1) = 0.

Now, since f, andgh define set-theoretidlg the same variety in\kt?, it follows that
the wo polynomials have the same irreducible factors. On the other hand, the fact that
discrr F(hy, ..., hg, hgy1 — Te) # 0 implies that the polynomiakh(0,...,0, T) =
F(hy, ..., hg, herr — Te) has exactly del differentsimpleroots. Asfy is a qquare-free
polynomial, we conclude thagy, = f,, up to a scalar factor. [
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From the definition of the polynomial§’ (see b)) andProposition 15we deluce (see
alsoSeidenberg 1975 Sedion 2 andCatanesgl992 Proof of Theorem (1.14)(a)):

Corollary 16. Let F be the Chow form of the variety V and sete (1,0, ...0). Then,
for any he Up wehave f = F(hy — ¢ne, ..., hkp1 — €n,0). O

Now we are able to restaiéheorem 10n terms of theChow farm of V:

Corollary 17. Let V c A" be a k-equidimensional smooth variety and set=n(n —
K)(k+1). There exist iV, ..., h(™ ¢ (AM1)k+1 sych hat the ideal kV) is generated by
thepolynomials

FOP—e ve....hY —¢ve, ... FO™ -t me ....h™ ¢ me). O
M= b @ e =6y, @ M= Ey@ - M = Gy ©

5. Algorithmic computation of the generator set

In the fdlowing, we assume chék) = 0.

We present a probabilistic algorithm for the computation of a set of generators for the
ideal of a snooth equidimensional variety c A". From a given set of polynomials
definingV set-theoretically, the algorithm computes a familyiof- dimV)(dimV + 1)
polynomials of degrees bounded by dégvhich generatd (V). The aborithm is based
on the construction underlyingheorem 10and onCorollary 16. Our main reult is the
following:

Theorem 18. Let @i, ..., gs € K[Xy, ..., Xy] be polynomials of degrees bounded by d.
SetV:={xecA":g1(x) =0, ..., gs(x) = 0}. Assumethat V is smooth equidimensional
and0 <dimV <n-— 1

Then there is a probabilistic algorithm which computes, for ang (0, 1), a set of
(n —dimV)(1 + dimV) polynomials of degrees bounded dggV whichgenerdes the
ideal 1(V) with error probability bounded by. The input of the algorithm is the family
of defining polynomialsg. .., gs encoded by straight-line programs of length L and the
parametere, and its output is a family of straight-line programs of lengimd™) @ L
encoding the generators of the idealM). The werall complexity of the algorithm is
bounded by é1d™)°® log?([1/¢])L.

Although the complexity bounds stated Theorem 18are exponential in the input
parameters, we can provig@lynomialcomplexity bounds by introducing an additional
geometric parameter assatgd with the problem: thgeometric degre®f the input
polynomial system. This parameter appears naturally in the complexity estimates when
considering certain problems in computational algebraic geometry.

The geometric degree of a polynomial equation system, which is a suitable general-
ization of the geometric degree of a aatimensional system introduced @Giusti et al.
(1999, measures the degree of the varigetmccessively cut out by linear combi-
nations of the input polynomials. For a precise definition we refer the reader to
Jeonimo et al. (in press Section 3.4). For a system of polynomials m variables
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with degrees bounded by, the geometric degree is bounded by thez8(t number
d". Howewer, there are many situations in which it is much smaller than this upper
bound.

The introduction of this geometric degree in the complexity estimates enables us to
derive the ftlowing complexity result:

Theorem 19. Let V c A" be a k-equidimensional smooth variety with< k < n — 1.
Assume that V is the common zero locus of a system of polynomials. (gs €
K[x1, ..., Xn] of degrees bounded by d which can be encoded by straight-line programs of
length L. Lets be the gemetric degree of the system,g. ., gs.

Then there existn — dimV)(1 + dimV) polynomials of degrees bounded tggV
that generate the ideal(M) which canbe encoded by straight-line programs of length
s(nds)ODL.

In the following subsection we make precise the computational model and the data
structure we use. I8ection 5.2ve sketch the algorithm given gionimo et al.(in pres$

for the computation of Chow forms. Our algorithm is describe®action 5.3 The last

two subsectins of the paper are devoted to provifigeorems 1&nd19.

5.1. Algorithmic model

The algorithms we consider in this paper are described by arithmetic networks (see
von zur Gathen1986 over a base fieldK with chaK) = 0 which is assumed to
be effective (i.e. the @hmetic operations ahconparisons between elementslhare
realizable by algorithms). Aarithmetic network is represented by means of a directed
acyclic graph. The external nodes of the graph correspond to the input and output of the
algorithm. Each of the internal nodes of the graph is associated with one of the following
operations: an arithetic operation ink, a comprison between elements I (followed
by a selection of another node), or a random choice (of a digit O or 1).

We assume that the cost of each operation in the algorithm is 1 and so we define the
complexityof the algorithm as the number of internal nodes in its associated graph.

The algorithm we constructin the next subsection works (that is, it computes the desired
output) under certain geneitig conditions depending on pameters whose values are
chosen randomly. In this sense, we say that the algorittproisabilistic More piecisely,
probability is introduced bylwosing a random element with equidistributed probability
in a set{0, ..., N — 1} for a given pogive integerN, which isachieved by means of a
procedure that chooses the binary digits of the integer at random. Hence, the complexity
of this procedure i (log N), wherehere and in the following, log denotes logarithm in
base 2.

As a randomly chosen parameter may not satisfy the required genericity conditions, the
algorithm may produce a wrong answer or its execution may finish with an error message.
Anyway the probability that this happens caa made arbitrarily small: for each random
choice, there exists a hon-zero multivariate polynorrialich that everya with F(a) # 0
leads to a correct computation. Then, thieoe probability of choosing the parameter
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at random is estimated by the Zippel-Schwartz zero-testAggeel, 1979andSchwartz
1980 which sates that

ProhF(a) =0) < deTgF

if the coordinates of are chosen at random from the ¢@t..., N — 1}. This enables us
to estimate the error probability of the algorithm and to reduce it as much as desired by
choosingN big enough.

The objects our algorithm deals with are polynomials with coefficients.ifhe data
structure we adopt to represent them is 8imight-line programencoding. The input,
output and intermediate objects computed by our algorithm are polynomials codified by
(division-free) straight-line programs defined ovér Roughly speaking, a straight-line
program oveltK encoding a polynomiaf € K[xy, ..., Xn] iS @ pogram which enables
one to evaluate the polynomiélat any given point ifk". Each of the instructions in this
program is an addition, subtraction or multiplicationli&[xy, ..., Xn], or an addition or
multiplication by a scalar. The number of instructions in the program is calletetiggh
of the straight-line program. For a precise definition of straight-line program we refer the
reader taBurgisser et al(1997 Definition 4.2) (see alsbleintz and Schnorr1982.

Let us observe that from the vector of coefficients of a polynonfiat is easy to
obtain a straight-line program encodirfg The length of this straight-line program is
essentially the number of coefficients of the polynomial. Conversely, from a straight-line
program of lengthL encoding am-variate polynomialf and a positive integet which
is an upper bound for its degree, the usual representation of the polynomial as a vector of
coefficients can be computed by means of aigitéorward procedure (see, for instance,
Bilrgisser et a).1997 Lemma 21.25) withircomplexityd© ™ L.

This observation implies that our algorithm can be adapted so that it could be
applied even when the input family is represented by vectors of coefficients, and also
that the standard representation of thepotitby coefficients can be obtained with a
controlled increase in the complexity. However, the use of straight-line programs in the
intermediate computations of the algorithm is crucial in order to avoid an explosion of the
complexity.

Finally, we remark that ifkKk = C and the input of our algorithm is a family of
polynomials with coefficients in the field of rational numb&sencoded by straight-line
programs ovefQ, all of our computations can be performed in the base figldn this
case, the complexity model may be modifigdrbplacing the unit cost of each arithmetic
operation inQ by its cost as a binary operation (bit complexity model). This does not
change the single-exponential behavior of the complexity of our algorithm.

5.2. Computation of Chow forms

The main algorithmic tool we will use is the probabilistic algorithm for the computation
of the Chow form of an algebraic variety presentedl@onimo et al.(in pres3, which
we will descrbe here briefly for the sake of comprehensiveness of our main result and
convenience for the reader.
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The algorithm is based on a recursive application of a procedure which computes
the Chow brm of an equidimensional variey c A" from a particular description
(a geometric esolutior) of a zero-dnensional subvariety of W (the irtersection ofW
with a linear variety of compleentary dimension) with de¢y points and a family of
n — dimW polynomials which generate the ideal \bf at the points ofZ. The cucial
ingredient in this procedure is a product formula which enables one to represent the
Chow fam of W in terms of the Cbhw forms of zero-dimensional varieties obtained
by intersecting ofW with generic linear varieties. The Chow forms of these varieties
are computed directly from suitable approximations of their points, which in turn are
obtained by means of a symbolic version of Newton’s algorithm applied to the input
zero-dimensional subvariety &. This leads to an overall complexity polynomial in
n, degW and an upper bound for the degrees of the input polynomials, and linear in the
input length.

We descide the main algorithm in our particular setting, that is, for an affine
k-equidimensional variety’ ¢ A" given bys polynomial equations of degrees bounded
by d.

The first step consists in a preprocessing of the input data: the algorithnmtakdes- 1
random linear combinations of the input polynomials and a random linear change of
variables so thathe varetiesW, := V(qy, ..., qi)(1 <i < n — k) successively defined
by the new polynomialgs, . . ., qn—k+1 are equidimensional of dimension- i and their
defining equations generate their ideals locally at the points of conveniently chosen zero-
dimensional subvarieties. In additionj,_x = V U V', whereV' is ak-equidimensional
variety with no irreducible components containedMiign—k-+1)-

Then, the Chow forms of the varieti®g fori = 1, ..., n—k are computed recursively
by applying the above mentioned procedure and a direct computation of geometric
resolutions of zero-dimensional varieties from Chow forms. Finally, the algorithm recovers
the Chow brm of V as factor of the Chow form olV,_x = V U V' using the polynomial
On—k+1-

If the input polynomials are encoded by straight-line programs of lehgtimd D :=
max{degWi; 1 < i < n — k}, the afjorithm computes a straight-line program of length
s(nd D)L for the Chow form ofV, with error probability bounded by, within
complexity of ordess(nd D) log?([1/e])L.

We remak thatthe Bézout inequality implies thad < d". Moreover, if the random
choices made during the execution of the algorithm meet the required condifioiss,
bounded by the geometric degree of the input system.

5.3. Description of the algorithm

We sunmarize the algorithm underlying the proof ®@heorem 18in Algorithm 1
Therein, ChowFormn, d, g, k, €) is a procedure which computes, with error probability
bounded by, the Chow fam of thek-equidimensional variety defined iI" by the system
g of polynomials with degrees boundeddbyRandonga, b, N) denotes a subroutine which
sekctsa vectors ofb coordinates each by choosing randoraly integes from the set
{0,..., N —1}.
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Algorithm 1. Computing gnerators of an ideal

procedure Generator@, g, d, k, )

# nis the nunber of variables,

# 9= (01, ...,0s) is a system of dfining equations for a smooth

# equidimensional affine variety c A",

# dis an upper bound for the degrees of the polynonggaldl <i < s),
# k=dimV,

#ee€Q,0<e< 1.

# Theprocedure returng — k)(k + 1) polynomials generating(V) with
# error probalility bounded by «.

1. 7 := ChowFornin, d, g.k, 5);

2. N := [1/6]16(k + 1)(n — k)d2"((n — k¥ 1d"<+D 4 (k 4 1)d™);
3. for j from 1 to k+1 do

4 for | from 1 to n—k do

5. h(UD .= Rendomk + 1, n + 1, N);

6 fr;k(“) = f(hg_“) — Zhijl) e ..., h(kJJIF)l — Zh(kjjr)l e);

7. od;

8. od;
9. return(fr;;1<j<k+11<l<n-k

end

5.4. Probability estimates

We have shown iisection 3.3Lemma 9andTheorem 19thatifk := dimV, a ganeric
choice of(n — k)(k + 1) linear projections induces a system of generators of the ideal
I (V). Now we analyze more deeply this genericity in order to estimate the probability of
success of our algorithm, which is computedrfrdghe degrees of the polynomials giving
the genericity conditions by meanktbe Zippel-Schwartz zero-test.

Thus, we first obtain upper bounds for the degg of inequalities defining the open sets
appearing in our theoretical discussionS#ctons 3and4. We gathe these eimates in
the following remarksAs before, ve denote byH; (1 < j < k+ 1) avector ofn+ 1
variables(Hoj, . .., Hnj).

We begin with a characterization of the condition bne (A" 1k+1 \which ensires that
the diminating polynomialf;* can be obtained as a specialization of the Chow fori of
(seeCorollary 16 akove).

Remark 20. Let Uy C (A™1)kt1 pe the open set introduced Definition 13 Then,
Up can be defined agG # 0}, whereG € K[Hj,..., Hkr1] ~ {0} and deds <
2(k + 1)(degV)?.
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Proof. First we consider the case wh&his not a linear variety. ByDefinition 13 the
polynomialG can be taken as the discriminadt:= discr (Hsy, ..., Hk, Hky1 — Te),
whereF is the Chow form ofV ande .= (1,0, ..., 0) is the first vector of the canonical
basis of K™, The degree bound fo6 is a direct consequence of the definition of
discriminant and the degree estimates for the Chow form.

If V is a linear variety, letGg € K[H4,..., Hkr1] be the determinant of the
matix (Hij) o<i<x and letF be the Chow form ofV. Then, the polynomialG =
1<j<k+1

Go F(Hg, ..., Hk, e obeyddp = {G #0}anddeds < 2k+1. O

The following remark deals with the open sets giving the condition of regularity of a
hypersurfacg f* = 0} at a fixed point oV (seeCorollary 6 alove).

Remark 21. Let p € V and letU] be the dense open subset(af'*1)k+1 defined in 7).
Then, there exists a Zariski dense opendgt C Ug obeying the condition stated in
Proposition 3which can be defined d& # 0}, whereG € K[Hy, ..., Hk+1] ~ {0} and
degG < 2(k + 1)(degV)? + k.

Proof. Falowing the proof of Proposition 3theopen set; is defined atlp = (¢ Up,c,
where the intersection runs over the irreducible compon€énté V and eachJ, c is a
Zariski dense open set giving the condition stateBRé@mark 2

Let C be an irreducible component d. Without loss of generality we suppose that
C is not a linear variety (the case of a linear vari€tys similar). The proof oRemark 2
implies that anyopen set containing only Noether positions for the cé\}p,emeets the
required condition. Taking into account that d&g < degC (see for instancddarris
1992 Examplel8.16), we conclude bitrick et al. (2001, Lemma 2.14) that there exists
a polynomial Gc € K[Hy, ..., Hky1] with degGe < 2(k + 1)(degC)? suchthat
Gc(h) # 0 implies h induces a Noether position for the coﬁg. Write G1 = [[¢ Ge.
Observe that deG1 < 2(k + 1) 3 (degC)? < 2(k + 1)(degV)?.

On the othehand, anyn x n non-zero minor of the Jacobian matidy 4 associated
with a system of generators &fV) and the linear forms induced by the vectdr :=
(H1, ..., Hy) defines a polynomia, of degreek in the vector variable$d, such hat
Ga(h) # Oimpliesh € U,

We takeUp = {G1G2 #0}. O

With the same arguments it is easy to show:

Remark 22. Let q € A" ~ V. Then, there exists a non-zero polynomial <
K[Hy, ..., Hks1l, with degG < 2(k + 1)(degV)?, such hatUq = {G # 0} is a Zariski
dense open $t obeying the condition dProposition 3

Finally, we consider an additional technical condition in order to ensure that the constructed
polynomials generate the idelalV) locally at a given point of the variety (séemma 7.

Remark 23. Let p € V and letU, be a dense open subset GA"thHk+l as
in Definiton 4 There eists a Zariskidense open sefp, c (AM1)k+D(—k
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such trat for every (h™,....h") e G, N Up)" X the following identity
holds:

(N (To(V) + L) = Tp(V).
=1

Moreover, the open sefj, can be defined ag, = {Gp # 0}, whereGp €
KH®,...,H™ W] and deg5, < (n — k)(k + 1). (Here, eacH—| () denotes a vector
(H(') é'ﬁl) WhereH(') is a vecor of n 4+ 1 variabes forevery I< j <k +1.)

Proof. Since dimTp(V) = k and Tp(V) € N 1k(Tp(V) + Lh(l)) for any choice
of vectorsh®, ..., h(k it suffices to con5|der an open s@p such trat for every
(h®, ... hO"= k>) €Gp N (up)" K, dim O (Tp(V) + LO)) = k holds.

Let{v1, ..., v} be aK-basis ofTp(V). For 1< | < n —k, if h") € Uy, Tp(V) + LO

hO)
is the(n — 1)-dimensional subspace K" defined by the equation

.m0 " 0 _
where, for every 1< j < k+ 1, Eo(l) = h('-)xl + e+ h('-)xn and M(') denotes the

(k x k)-minor obtained by deleting thpth column of the matrix¢° 0 (v), € K K+D,

We oonsiderthe linear equation®, . .., $n_k constructed ags, . .., gn—k but repacing
h@, ..., h("k with vectors of variablesi @, ..., H—K),

By eIementary linear algebra arguments |t |s not difficult to prove the existence of a
vector(h®, ..., h"=K)y such trat dim)/"_. (Tp(V)+L ) = kholds. Hence, the matrix
of coefficients of the linear system given by , Pn_k has aln—Kk) x (n—Kk) non-zero
minor G,. We takeGp = {Gp # 0} and the Iemmafollows. O

Now we are ready to prove an analog of the technieahma 9including probability
estimates.

LemmaZ24. Let V c A" be a k-equidimensional smooth variety and lgt.f., fs €
I (V) be polynomials with degrees boundedd®gV such hat:

o {f1 =0,...,fs = 0} = VUZ, where Zc A" is either the empty set or an
equidimensional variety with no irreducible components included in V;
o (f1,..., f5)Opan = 1(V)Opan for every p € V Y, where Y is an

equidimensional subvariety of V.

Let N e N. Then choosing the coordinates of vectof& h. .., h"=K ¢ (AM1)k+1 from
the set{0, ..., N — 1} at random, the following cortions hold with error probability
bounded by
2(k+1)(n—k)
N

(1) Foreachl <1 < n—kthepolynomial f;, is well defined (in the sense $étion 2)
and it can be computed from the Chow form of V a€anollary 16.

((degV)%(1 + degY + (degV)") + (n — k) degY) :
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@) {fiy =0...., {y =01 N (VUZ) =VUZ' where Z C A" is either the empty
sd or an equidimensional variety witdim Z’ = dim Z — (n — k) and no irreducible
componentsincludedin V.

3) (fy,..., fs, fr;"(l), f;‘(nfk))(’)p,An = 1 (V)Opan for every pe V \ Y’, where
Y’ is either the empty set or an equidimensional subvariety of V diithY’ =
dimY — 1landdegY’ < (n — k) deqY) degV.

Proof. The proof follows closely the proof dfemma 9 Without loss of generality we
may assume thatl is sufficiently big that the stated error probability is less than 1.

Let Uy be the open set introduced Definition 13 which, due toRemark 20 is the
complement of a hypersurface of degree bounded by

80 == 2(k + 1)(degV)?. (16)

Without loss of generality we may assume tNatt @. Take a point in each irreducible
component ofY and denote these points @s, ..., pr. For 1 < u < R, letUp, be a
Zariski dense open set as Remark 21 and lett; == (;Up,. SinceR < degy,
Remark 2limplies that4; is the coomplement of a hypersurface of degree bounded by

81 := (2(k + 1)(degV)? + k) degy. (17)
LetGp, € KIH®D, ..., H™ ] (1 < u < R) be the polynomials with
degGp, < (n—k(k+1) (18)
introduced inRemark 23
Let1 <r < n— k and assume that we have vectbf¥, ..., h"—D ¢ (AM+1k+1
obeying:

() h®D, ... h=D ey N Uy,
(i) Gp,(h®, ... , A=V HO  HOK) = 0oforeveryl<u <R,
(i) {f1=0,...,fs=0,f3, =0,..., f5, ;) =0} =V U Z_1, whereZ,_ is either
the empty set or an equidimensional variety with &im1 = dimZ — (r — 1) and
no irreducible components includedvh

(Forr = 1, takingZp := Z, it isimmediate that the above conditions hold.)

Suppose tha¥Z,_1 # @. For each irreducible component @f _1, choose a point not
lying in V and call these pointsy, ..., qm . For 1 < j < my, let Ug; be the Zriski
dense open set given Remark 22and let), = ﬂT;l Ug; . Taking into account that
degZ,_1 < (degV)" (see the Bzout inequality stated ieintzand Schnorr(1982
Proposition 2.3)), it follows tha; is the cmmplement of a hypersurface of degree bounded
by

Dr == 2(k + 1)(degV)?degZ, _1 < 2(k + 1)(degV)>*™". (19)

If Z,_1 = @, we define), := (AMT1hk+1,
Forl<u < R, let G(pru) e K[H®] < {0} be a non-zero coefficient of the expansion
of the polynomialGp, (h®, ..., h"=D H®_ - H®O=K) with respect to the variables
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of the groupsH D ..., HOW_ Let W, = NR (G # 0} that, from (18), is the
complement of a hypersurface of degree bounded by

E = (n— k) (k + 1) degY. (20)
Observe that under conditions (i), (i) and (iii) the fact thélt € Up N 2L N Vr N W,
ensures thaBp, (h®D, ..., hO HFD 40Ky = 0 for every 1< u < R, and

{f1=0,...,fs=0,f} =0,.... f5 =0} =V UZ,

where Z; is either empty or anauidimensional variety of dimension difg_1 — 1 =
dim Z — r with no irreducible components includedih

From (16), (17), (19) and @0), it follows by the Zippel-Schwartz zero-test that choosing
the mordinates oh™ e (A™1)k+1 at random from the sé0, . .., N — 1}, theprobability
thath®™ e Up N U1 N Vr N W, provided that conditions (i), (i) and (iii) hold is at least

1
Pr Zl—ﬁ(30+51+Dr+Er)

>1-— %(Z(k + 1)(degV)?(1 + degY + (degV)™
+ ((n—=k)(k+ 1) + k) degY).

Then, if we choose the coordinatesd? , ..., h% at random from the sé0, ..., N —
1}, the onditions

(@) h®, ... . h" R e iy N Uy,

(b) (WD, ... h™0) e MR (Gp, #0),

©{fi=0...1f=0"fy =0.. 1, =0 =VUZ, whereZ is either
the empty set or an eqilimensional variety of dimension digh— (n — k) with no
irreducible components includedVf

hold with probability at least
n—k 1
[[Pr=z1- @K+ D - k)(degV)?(1 + degY + (degV)"
r=1
+ (M —=k((n—=k)(k+ 1) + k) degY)
2k+D(n—-k)

>1-— #((degV)z(l + degY + (degV)") + (n — k) degY).

Observe that condition (a) intips condition 1 of the lemma b@orollary 16, and that (c)
is condition 2. It remains to prove that condition 3 holds.

First, we observe that (a) and (b) imply thdﬁ(l), f[-T(n—k))Opu-,An = 1(V)Op, an
for every 1 < u < R (seeLemma 7and Remarks 21and 23). Let 7 be the Jacobian
matrix of the systemf ), ..., f .. From the previous equality of ideals, for each point
pu (1 < u < R), there eists a(n — k) x (n — k)-minor M, of 7 suchthat M (py) # O.
Therefore, for any generic matri@ € Q"*", the first principal (n — k) x (n — k)-minor
M of the matrixJ - Q satisfiesM (py) # O forevery 1<u < R.

SetY' .=Y n {M = 0}. Note hat degM) < (n — k) degV and then, by the &out
inequality (sedHeintz 1983 Theorem 1), dey’ < degY deg.M) < (n—k) degY degV.
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Furthemore, by the construction 0¥, Y’ is either the empty set or an equidimensional
variety of dimension dimy’ = dimY — 1.

Takep e VN Y'. If pe V \Y,theidentity of ideals in condition 3 of the lemma holds
by the hypotheses. Otherwis®(p) # 0, which imgies that( fr:‘(l), fﬁ(n—k))op,A" =
I (V)Op,an and, in particular, that condition 3 holds[]

Using theprevious lemma, we can deduce the following result (a versiorhebrem 10
with probability estimates) which allows us to control the error probability of our
algorithm:

Proposition 25. Let V ¢ A" be a smooth equidimensional variety with< dimV <
n — 1. Set k:= dimV and m:= (n — k)(k + 1). Then, for any N € N, choosing the
coordinates of vectors®, ..., h™ e (A™1)k+1 from the sef0, ..., N — 1} at random
we have:

(1) for everyl <t < m, thepolynomial f{, is well defined (in the sense Sedion 2)
and it can be computed from the Chow form of V a€arollary 16,

(2) (fi-T(l)v ey f:(m)) = (V)
with error probability bounded by
8(k + 1)(n — k)(degV)?

N

Proof. We will use Lemma 24following the recursive arguments underlying the proof of
Theorem 10We mayassume thal is sufficiently big in order that the error probability
stated in the proposition is less than 1.

((n — k) (degV) ! + (k + 1)(degV)™M.

Step1. First, we applyLemma 24to the enpty family of polynomials (i.es = 0)
and the varietie = A" andY = V. S0, choosing the coordinates of— k vectors
haD . h@A0-k) ¢ (AM1k+1 5t random from the s€0, ..., N — 1}, we obtain, with
error probaility bounded by

2(k+1D(n—k)
gl = — "

N

polynomialsfﬁ(m, e, fr;k(l(n—k)) as inCorollary 16 suchthat

((degV)%(1 + degV + (degV)") + (n — k) degV),

. {f;‘(l) =0,..., f;‘(lm_k)) = 0} = V U Z3, whereZ; c A" is either the empty
set or an quidimensional variety with dird; = k and no irreducible components
included inV;

. (f[f(u)a cees fﬁ“(lm,k)))(’)p,An = 1 (V)Op an foreveryp € V \ Y1, whereYi is either
the empty set orra equidimensional subvariety of with dimY; = k — 1 and
degY: < (n — k)(degV)Z.

Assume nwv thatr < k and we have chosdtl) € (AM1H)k+1 (1< j<r, 1<l <n-k)
sieh that the associated polynomiafsz,) € |1 (V) obey:

o oy = 0o fiaoig = O iy = 0 fiiiy = 0} = VU Z,,
whereZ, c A" is either the empty set or an equidimensional variety with din=
n —r(n — k) and no irreducible components includedin
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. (f,;k(11>,-~-, fr:‘(lm_k)),..., fr;"(,l),..., fr;k(r(n—k)))op,A” = 1(V)Op an for everyp €
V N\ Y;, whereY; is either the empty set or an edunensional subvariety of with
dimY; =k —r and degr; < (n — k)" (degV)"+1.
Step r+ 1. We applyLemma 24to the family f1;, (1 < j <r,1 <| < n—k) and
the varietiesZ, andY; defined above. Then, choosing at random the coordinates-dt
vectorsh(+DD - "h({@+D(-K) ¢ (AM1)k+1 from the sef0, ..., N—1}, the fdlowing
conditions hold with error probability bounded by

2(k+1D(n—k)
N
+ =k (degv) ) :

Ery1 = ((degV)*(1+ (n — k)" (degV)" 1 + (degV)™)

(1) forevery 1< | < n —k, the polynomialf ., is well defined (n the sese of
Section 2 and itcan be computed from the Chow forméfas inCorollary 16;

(2) {fr;k(ll) = 0, PR f;lk(l(n_’k)) : O, ceey f[;k((r+1)1) = 0, ey ff‘i(”rl)(_”jk)) = O} = VUZ.r+1, .
where Z, 1 c A" is either the empty set or an equidimensional variety with
dimZ; ;1 = n— (r +1)(n — k) and no irreducible components includedvn

) (Fays - Famis -+ friesnns -« friesnno)Op.an = 1(V)Op an for every
p € V \ Yi+1, WhereY, 1 Is either the empty set or ageidimensional subvariety
of V withdimY; ;1 = k —r — 1 anddegY; .1 < (n — k)" t1(degV)" +2.

Observe that aftek + 1 stepspoth vareties Zx,1 andYyy1 appearing in conditions (2)
and (3) respectively must be the empty set. Hence, a random choice-ok)(k + 1)
vectors in(A"1Hk+1 with coordinates in(0, ..., N — 1} yields, with probability at least
P = ]'['r‘j(l — &), a fanily of (n — k)(k + 1) polynomials associated with the Chow
form of V as inCorollary 16, whose set of common zeros\sand that generate(V).

The probabilityP can be estimated &3 > 1 — Zf“ er, that is,

_2k+ D -k

P>1 N ((degV)*((k + 1)(1 + (degV)™)
k+1 k+1
+ > (n—k""t(degv)") Y (n— k)" (degV)").
r=1 r=1

Taking into account thaEfzo a’ < 2aK for everya > 2, the @asumption O< k < n—1
implies that

4k + 1)(n — k)(degV)?
B N
+ (N — kK degV)* ! + (k + 1)(degV)")
8(k + 1)(n — k)(degV)?
B N
and the proposition follows. [

P>1 ((n — k*(degv)<+?

>1 ((n — K 1 (degV)*! + (k + 1)(degV)"),
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5.5. The complexity of the algorithm

We devotethis subsection to the complexity analysis of the algorithm described in
Section 5.3
First, we prove our main complexity result:

Proof of Theorem 18. The first step of the algorithm consists in the computation of the
Chow fam of V from the given polynomialgy, ..., gs definingV. This is done with
error probaility bounded bys/2 by means oftte algorithm described ideionimo et al.

(in pres3, which computes a straight-line program of length boundeds(mg™)° L
encoding the Chow form of within complexitys(nd™)°® log?([1/e7)L.

Let N = [1/e]16(k + 1)(n — k)d2'((n — k)**+1dn&+D 1 (k + 1)d™). Then, the
procedure chooses randomly the coordinate®of k) (k + 1) vectorsh(D e (Ant+1yk+1
forl<j<k+11<l| <n-k,fromthe sef0,..., N — 1}. The compleity of this
step is bounded b ((n — k)(k + 1)%(n + 1) log N) = O(n*(log[1/¢] + n?logd)) (see
Section 5.1

Finally, provided that the polynomial computed in the first step is the Chow form of
V, the algorithm obtains with error probability boundedd®2 straght-line programs of
length s(nd™ DL encoding the polynomialg’;,, (1 < j <k+1,1<1 <n—k
by specialiing as inCorollary 16 the Chow brm of V using the coordinates &!") (see
Proposition 25and observe that dag < d"). This step does not modify the order of
complexity.

The complexity of the whole algorithm is boundeddind™) @ log?([1/¢])L and its
error probability is at most. O

Remark 26. Observe that the first step Afgorithm 1can be performed by any algorithm
computing Chow forms of equidimensional varieties. For instance, applying the algorithm
described inJeonimo et al.(20071), which urike that of Jelonimo et al.(in pres$ is a
deterministic algorithm, we would obtain a slightly better upper bound for the total
complexity in Theorem 18 s(nd")°™@ log([1/¢])L. However, the sbroutine we use
enables us to obtain complexity bounds in terms of a more intrinsic parameter (see
Theorem 1%

Proof of Theorem 19. The complexity of the algorithm presented Ieonimo et al.

(in pres$ for the mmputation of the Chow form of a variety, as well astie length of

the output straight-line program can be estimated using the geometric degree of the given
system of definig equations forV.

This implies straightforwardly that the complexity of our algorithm and the length of
their output straight-line programs can also be estimated in terms of the geometric legree
of the input polynomial equation systegm, . . ., gs € K[Xy, ..., Xp]: if all the parameters
chosen at random during the execution of the algorithm satisfy the required genericity
conditions, the algorithm finishes, producing a system of generatdr@/0f within time
s(nds)°® log?([1/e])L, where, as befored is an upper bound for the degree of the
polynomialsg; andL is a bound for the length of the input straight-line programs. The
polynomials computed by the algorithms are encoded by straight-line programs of length
s(nd$)ODL. O
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