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Abstract. In this paper we obtain an effective Nullstellensatz using quantitative
considerations of the classical duality theory in complete intersections. Let k be an
infinite perfect field and let f4,..., f,_,€k[X,,..., X, ] be a regular sequence with
d:= max;deg f;. Denote by A the polynomial ring k[ X ¢, ..., X,] and by B the factor
ring k[X,,...., X, 1/(f1,---, f._,); assume that the canonical morphism A— B is
injective and integral and that the Jacobian determinant A with respect to the
variables X, , ,..., X, 1s not a zero divisor in B. Let finally ce B*:= Hom ,(B, A) be
the generator of B* associated to the regular sequence.

We show that for each polynomial f the inequality deg o( f) < d""(d + 1) holds
(f denotes the class of f in B and & is an upper bound for (n — r)d and deg f). For the
usual trace associated to the (free) extension A —, B we obtain a somewhat more
precise bound: deg Tr(f) < d"~ " deg f. From these bounds and Bertini’s theorem we
deduce an elementary proof of the following effective Nullstellensatz:let f,..., f. be
polynomials in k[X,..., X,] with degrees bounded by a constant d = 2; then
1e(fy,..., f,) if and only if there exist polynomials p,,..., p.ek[X,..., X,] with
degrees bounded by 4n(d + 1)”such that 1 = Zi 1, /;- In the particular cases when the
characteristic of the base field k is zero or d = 2 the sharper bound 4nd" is obtained.

Keywords: Complete intersection polynomial ideals, Trace theory, Bezout’s
inequality, Effective Nullstellensatz, Bertini’s theorem.

1 Introduction

Old ideas on trace theory and more generally duality theory coming from Jacobi,

Hermite and Sylvester play nowadays an important role for actual research in
Computer Algebra, both from the theoretical and the algorithmical points of view

(see e.g. [31, [81, [24], [27], [11], [1], [6]).
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In this sense the aim of this paper is to present new upper bound estimations for
the degrees of trace functions in complete intersections in order to obtain an
elementary proof of an effective Nullstellensatz.

Let k be an infinite perfect field with an algebraic closure denoted by k, & be
a radical complete intersection ideal of the polynomial ring k[ X ,,..., X,]. Denote
by B the factor ring k[ X ;, ..., X, ]/&, by V = Aj the affine variety defined by & and
assume that the canonical morphism A:=k[X,..., X,]— B is an integral mono-
morphism.

Under these conditions B is a finite free A-module and for any be B the element
Tr(b):= trace of the multiplication by b is a well defined polynomial of A4.

In Theorem 13 we show that for any fek[X,..., X,] the inequality

deg Tr(f) < deg(V) deg f

holds (where f is the class of f in B).

Let us now consider the dual module B*:= Hom ,(B, A) which has a simple
structure of B-module; moreover, with this structure B* is a free module of
rank 1.

Any regular sequence f,,..., f,_, which generates the ideal §& induces then
a basis o of B* called the trace assocmted 20 flseees fuch

This trace function — well known in Commutatlve Algebra (see e.g. [25,17]) -
appears also as an useful tool in Computer Algebra ([3,11,6]).

Let A be the Jacobian determinant of the regular sequence f,..., f,_, with
respect to the dependent variables X, ;,..., X, and assume that 4 is not a zero
divisor in B. Then for any fek[X,,..., X,] we obtain the following inequality
(Theorem 10 below):

dego(f) < deg(V)(1 + max{deg f,(n —r)d})

where d denotes an upper bound for the degrees of the polynomials f;(1 < j < n —7).
The strong hypothesis we require on A allows us to relate the trace functlon o to the
usual trace Tr and therefore to obtain the mentioned linear upper bound for
o (Lemma 9 and Theorem 10). If one doesn’t impose such a condition it is possible to
estimate the degree of a dual basis which leads to non linear bounds for o( f) of type
deg(V)°deg f with ¢ = 2 (see [11] and Remark 12 below).

However for many applications one can expect that by means of standard tricks
like Bertini’s theorem, suitable Noether position, deformation, etc., one may often
come down to our conditions. In this sense we present here an elementary proof of
an effective Nullstellensatz, following ideas analogous to [11].

Now k denotes an arbitrary field and k an algebraic closure of k.

Classical Hilbert Nullstellensatz states that a finite family of polynomials
fire-s fi€Kk[X4,..., X,] hasn’t a common zero in k" if and only if 1 belongs to the
ideal generated by f,,..., fiin k[X,..., X, ].

Let é(n, d) be the minimal integer which verifies: for any se N and for any family
of polynomials f,,..., f,ek[X,,..., X,] without common zeros in k" with total
degrees bounded by d, there exist polynomials p,,..., p,€k[X,,..., X,] such that
1= ijjfj and deg p; < (n, d).

Therefore an effective Nullstellensatz means to provide an upper bound for the
quantity é(n, d).
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The most precise bound obtained up to now is due to J. Kollar [18] (see also
[10]) and states that d(n,d) < max{3,d}"; moreover a well known example ([4])
shows that this bound is asymptotically optimal (see [26,2] for more details and
bibliography about effective Nullstellensitze).

Our trace inequalities and Bertini’s Theorem allow to obtain easily the general
estimation d(n,d) < 4n(d + 1)" (Theorem 17) and the upper bound 4nd” when the
characteristic of the ground field k is 0 (Theorem 19). Even if our method doesn’t give
the mentioned sharp results of [ 18] or [10], it leads to a slightly more precise bound
n2"*2instead of 3" for the particular case of polynomials of degree 2 (see Theorem 24
below). We have recently known that a similar bound was simultaneously obtained
by T. Dubé [9] by means of combinatorial tools.

The paper is organized as follows: in Sect. 3 we compute an upper bound for
integral dependence equations using Bezout inequality. We summarize in Sect. 4.2
all the elements of trace theory in complete intersection algebras we need here, which
are in fact borrowed from E. Kunz [19]. The upper bounds for the degrees of traces
are then given in Sect. 4.3 and finally Sect. 5 is devoted to effective Nullstellensitze.

2 Preliminaries

Let k be an infinite perfect field, k be an algebraic closure of k, X,..., X, be
indeterminates over k and k[ X ,,..., X,] be the polynomial ring with coefficients
from k. For each polynomial fek[X,..., X, ] we write deg f for its total degree (by
convention deg 0:= —1).

We denote by Af the affine space k" equipped with the Zariski topology.

For any polynomial ideal § < k[X,,..., X, ], we denote by V() (or simply V)
the affine variety of A; formed by the common zeros of all the polynomials which
belong to the ideal §.

Following [ 14] we define the (set-theoretical) degree of an algebraic affine variety
V < Ay as the sum of the degrees of its irreducible components. If W < A} is another
affine variety, Bezout Inequality states that deg(V n W) < deg(V)deg(W) (see
[14, Theorem 1] for an elementary proof).

We say that the variables X,..., X, are in Noether position with respect to the
polynomial ideal §& if there exists an index r, 0 <r <n, such that the canonical
morphismk[ X y,..., X, ]>k[X,..., X, ]/& is an integral monomorphism. In parti-
cular we have r = dim V.

A classical elementary result in Commutative Algebra states that for any
polynomialideal & there exist linear changes of coordinates providing new variables
which are in Noether position (see for example [237). If the ideal & is given by a finite
family of generators there exist several effective methods to compute linear changes
of coordinates which give new variables in Noether position (see [20, 7, 12]).

We recall that a polynomial sequence f4,..., f,_, in k[X,,..., X,] is called
a regular sequence if the following conditions are verified:

o 1¢(f1,..s fam))

e f,4 18 not a zero divisor in the ring k[ X,..., X, 1/(f1>..., fi), 1 Si<n—r.

Suppose now that the ideal & is generated by a regular sequence f,..., f,_, (in this
caser = dim V). Supposealso that X ,,. .., X, are in Noether position with respect to
Fandset A:i=k[X,,...,X,]and B:=k[X,,..., X, 1/
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Under these assumptions it is well known that B is a free A4-algebra (see for
instance [13, Lemma 3.3.1]). Moreover, as a consequence of Bezout Inequality, its
rank is bounded by ]—L. deg f; (see [13, Corollary 3.3.2]).

Unfortunately no single exponential bound for the degrees of the elements of any
basis of B is known up to now, even when precise estimations can be done if one
considers the localized integral extension K <, K[ X, (,..., X, 1/(f1>---> fu-,) Of
K-vector spaces (K denotes the fraction field of the integral domain A): there exists
a basis of elements with degrees bounded by d"~", obtainable by means of an
algorithm with sequential complexity of the same order (see [11, Proposition 2.4]).

3 A Bound for the Degree of Integral Dependence Equations

Let & be a radical ideal contained in k[ X, ..., X,] and V = A be the set of zeros of
%. Suppose that the variables X ,,..., X, are in Noether position with respect to the
ideal & and set A:=k[X,,...,X,]and B:=k[X,,..., X, 1/&.

Under these assumptions the following proposition allows to estimate degrees
for integral dependence equations (for related results see [7, 12, 13]).

Proposition 1. Let f be an element of the polynomialring k[ X ,,. .., X,,] and denote by
f its class in the factor ring B. Let T be a new variable, then there exists a monic
polynomial F e A[ T which verifies F(f) =0 and whose total degree is bounded by

deg(V)deg f.

Proof. First let us consider the case r = 0. Here the ring A coincides with the base
field k and then B is a finite dimensional k-vector space. Since § is a radical ideal we
have that dim, B=#(V)=deg(V). In particular for each feB the sequence
1, f. f%..., fo#V islinearly dependent; therefore there exists a polynomial Fek[T]
of degree bounded by deg(V) such that F(f) =0 and the proposition is proved.

Now we consider the case r > 0.

Let K be the quotient field of 4. We write B:= BQ,K, A:= A®,k and B:= B®,k.
From the integral inclusion A —, B we obtain (since k is flat) that the corresponding
morphism A —, Bis an integral extension too. This ring inclusion induces a projection
map n:V — A} defined as n(x,,...,x,):=(x;,...,%,). The Noether position as-
sumption implies that the map 7 is surjective.

Now we consider a new map ¢:V — AL defined as ¢(x):= (n(x), f(x)) where
X=X gy nes Xp)

Since the map ¢ is closed (the corresponding ring morphism is integral) the
image of V under ¢ is an algebraic variety W contained in A" ' of codimension 1 (i.e.
r-dimensional). Then there exists a squarefree polynomial Fek[Y,,..., Y, ] such
that W = {ye A;""; F(y) =0} (see [23, Ch. 1, §7, Prop.4]). In particular we have:

F(xi,...,x,, f(x))=0 forall x:=(xy,...,x,)eV. (1)
In order to finish the proof of the proposition it suffices to show that:

(i) the total degree of F is bounded by deg(V)deg f.

(i) F is monic in the variable Y, . ;.
(iii) F has coefficients in the ground field k¥ and F(X,,..., X,, f) belongs to the
ideal .
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e Proof of (i). Let F =F,... Fbe the decomposition of the squarefree polynomial
F in irreducible factors on k[Y,,..., Y,,,] and for each i, 1 i <s, let W, be the
irreducible hypersurface defined by the polynomial F;. In particular W = | J, W, and
deg F = deg(W) = ) deg(W)).

Let S < A;*! be an affine line such that the equalities #(W N S) = deg(W) and
#(W;nS) = deg(W,) for all 1 <i < s hold simultaneously (the genericity property in
the selection of the affine subspace which gives the degree and the equidimensionality
of the hypersurface W guarantee the existence of such a line S; moreover we can
assume that S is defined by r linear equations whose coeflicients belong to the base
field k).

Let 7,,...,7, be independent affine linear forms from k[Y,,...,Y,, ] whose
zeros define the line S. For each 1 < j<r, let o (1 <i<r+ 2) be elements of the
field k such that:

— D ) )
=0 Y+t Y o,

The genericity of S also allows to suppose without loss of generality (changing the
hyperplanes if necessary) that the coefficient (), is equal to 1 and that all the
remaining coefficients «¥) , are zero for j = 2.

Let us consider the algebraic set U < A defined by the equations:

(X, WXL )=0(X, L X)==¢(X,....X,)=0.

Let Z be an irreducible component of the algebraic variety V ~ U. The image of Z
by the map ¢ is an irreducible subvariety of Wn S and is therefore a single point
(recall that Wn S is 0-dimensional). Since the equality o(V A U) = Wn S holds we
obtain .

#WnS)=deg(VnU).
Now, applying Bezout Inequality one infers
deg(VnU) < deg(V)deg(U) < deg(V) deg f

(U is defined by one polynomial of degree deg f and r — 1 linear equations).
Therefore we have:

deg F =deg(W)=#(WnS)<deg(VnU) < deg(V)deg f
and assertion (i) is proved.

e Proof of (ii). From the definition of F we infer that any polynomial in
k[Yy,...,Y,.,;] which is zero over W must be divisible by F in the ring
k[Yla'--: K+1]-

Let
"ty 7 da [ ay=0

be an integral dependence relation for f over A.

Let Hek[Y;,..., Y, ;] be the polynomial Y™ , +b,_, Y™ '+ ---4+b,Y, ;+b,,
where b;:=a(Y,,..., Y,),0 < j<m— 1. Clearly we have that H(x,,...,x,, f(x))=0
holds for any point xe V. Thus H is zero over W and so F divides Hink[Y,,..., Y, ,].
Then F is also monic in the variable Y, , and (ii) is proved.
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o Proof of (iii). Suppose for the moment that the polynomial F has coefficients in
the base field k. From (1) and from the fact that & is a radical ideal we conclude that
F(X,,...,X,, f) belongs to &.

Therefore it suffices to prove that Fek[Y,,..., Y, {].

Since k is perfect one deduces that the extended ideal Fk[X,,..., X,] is radi-
cal too (see [21, Ch. 10, §7, Lemma 2]) and it is the ideal associated to the
variety V.

Now let us consider the element f as an element of the ring B”:= B’ ®, k (which is
a finite dimensional vector space over the field K':= k(X ,..., X,)).

Let 7, be the K'-endomorphism of B” induced by the multiplication by 7. We
assert that F(X,,..., X,, T) considered as an univariate polynomial in K'[ T] is the
minimal polynomial of the endomorphism #,.

In virtue of (1) let us observe that this polynomial annihilates #7,. Moreover, if
Gek[X,,...,X,, T] verifies G(X,,...,X,,n;)=0 we have that G(X,..., X,, f)
belongs to the ideal k[ X {,..., X, ] and then G(x4,..., x,, f(x)) is zero for all xe V.
This implies that F divides G and therefore F(X{,..., X,, T) is the minimal poly-
nomial of .

To finish the proof of (iii) let us consider the restriction of the endomorphism #
to B’. We deduce that the minimal polynomial F(X,,..., X,, T) belongs to the
subring K[T]nk[X4,..., X,, T]. Since the polynomial ring A is integrally closed it
follows that K[T1nk[X,,..., X,, T]1= A[T] (see [22]) and then F(X,,..., X,, T)
belongs to A[T7].

The proposition is completely proved. O

From the proof of Proposition 1 we deduce:

Corollary 2. Let f,,..., f,_, be aregular sequence in k[ X 1, ..., X, 1 which generates
aradical ideal § defining an algebraic variety V < AL. Suppose that X ,,..., X, are in
Noether position with respect to §. Denote by A thering k[ X {,..., X, ], by K the field
of rational functions k(X 4, ..., X,), by Bthe free A-algebrak[X,,..., X,]1/Gand by B’
the extended ring B® K. Let f be an element of the polynomial ring k[ X ,..., X ],
fitsclassin Band letn €End(B') be the morphism induced by the multiplication by f.
Then the minimal polynomial of 1, belongs to AL T and its total degree is bounded by

deg(V)deg f. U

4 Some Upper Bounds for the Degree of Traces

4.1 Notations and Assumptions

Throughout this section we shall maintain the following notations and assumptions:

e nand r are non-negative integers with 0 =r <n.

e k is an infinite perfect field and A is the polynomial ring k[ X 4,..., X, ].

e fi,..., fo_, is a polynomial regular sequence contained in k[X,,..., X,]
which generates an ideal §. The set of zeros of & in Ay is denoted by V and d is
an upper bound for the total degrees of the polynomials f;.

e B denotes the factor ring k[X,..., X, /& and the variables X ,,..., X, are
inNoether position with respect to & (i.e. the canonical morphism 4 — B is an
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integral monomorphism). For any polynomial fek[X,..., X, ] we denote by
fitsclassin B.
of;

e A denotes the determinant of the Jacobian matrix (———) and we
r+j/1<jsn—r

assume that A is not a zero divisor in B (therefore the Jacobian criterion implies
that & is a radical ideal).

e K denotes the fractlon field of 4 and B:=B® K. If Kisan algebralc closure
of K we write B:= B’ ®, K. Finally 4 and B denote the rings 4 ®,k and B®,k
respectively.

Let us observe that under these assumptions B is a reduced O-dimensional K-
algebra.

4.2 Basic General Trace Theory

The Definition of the Trace. We consider the ring B as an A-algebra and we denote
by B* the dual space Hom 4(B, A). The 4-module B* admits a natural structure of
B-module in the following way: for any pair (b, ) in B x B* the product b. f is the
A-linear application of B* defined by (b. f)(x):= p(bx), for each x in B.

Our assumptions about 4 and B allow to show that the B-modules B and B* are
isomorphic (see [ 19, Example F.19 and Corollary F.10]) and therefore B* can be
generated by a single element. A generator o of B* is called a trace of B over A.

Under our hypothesis we have the additional property that B is a finite free
A-module whose rank will be denoted by D. Fix for the moment a basis of this
module; each element b e B defines, by multiplication, a square matrix M,e A”*?. If
we denote by trace (M,) the trace of the matrix M,, the application b+—trace(M,)
defines (independently of the basis of B) an element of B* called the usual trace and
denoted by Tr.

Unfortunately the usual trace is not always a generator of B* (in other words the
usual trace is not necessarily a trace).

The Trace Associated to a Regular Sequence. Let us consider now the tensorial
product B® , B. This ring can be considered in a natural way as an 4-algebra and as
a B-bialgebra (with right and left multiplications).

Let y:B®,B— B be the morphism of A-algebras (or B-bialgebras) defined by
wb® b'):=bb'. Denote by J the kernel of p. It is easy to show that £ is the ideal
generated by all the elements b® 1 — 1 ® b, where b ranges over B (see for example
[15, Proposition 1.3]).

From the fact that Anngg, x(#7)(b® 1 — 1 ® b) = 0 for all be B, one infers that the
induced structures of right and left B-modules over Anngg x(#") coincide. In other
words, if Z b;® b belongs to AnnB® B(.% yand b is an element of the ring B we have:
Y.bb,@b;= Z b, ® bb;. Moreover it is possible to show that Annyg, 4(#") is a cyclic
B- module ([19, Corollary F.10]).

Let us consider the application @:B®, B —Hom ,(B*, B) defined by

@ (Z b;® bé)(ﬁ)i= 2 biB(b)),

where b;, b;e B and e B*.



360 J. Sabia, P. Solerno

From the freeness of Bit is easy to see that @ is an isomorphism and the image of
Anngg (A7) by @ is exactly Homg(B*, B).

For each generator I":=X_b, ®b], of the B-module Anngg 5(#') the element
@(I') is a generator of Homg(B*, B) and then there exists a uniquely determinated
oreB* such that @(I')(o,) = 1. One deduces immediately that ¢ is a trace for
B (which is called the trace associated to I").

From the definitions of @, I" and ¢, we have the following “trace formula” for all
bheB:

b=y o,bb,)b,. )

1smsM

In particular we observe that b, ..., b,, is a system of generators of the A-module B.
By means of the element I it is possible to obtain a relation between the trace ¢ ~and
the “usual trace” Tr; more precisely (see [19, Corollary F.12]):

wI)yop=Tr 3)

In terms of elements of B this formula says that for all be B the equality o {u(1")b) =
Tr(b) holds.

Let Y,.,,...,Y, be new indeterminates over k; for each polynomial
fek[X,,...,X,] wedenote by f® the element of the polynomial ring kK[ X ;,..., X,
Y. q..., Y, ]defined by fP:= f(X,,..., X,, Y, ,..., Y,). Hence we have the cano-
nical isomorphism of 4-algebras:

BRB=A[X, 1o X Yoitseos Yo d/(f1seeos fue S f2) 4)

If one considers each polynomial f{)— f; as a polynomial in the variables

Y, 1., Y, with coefficients in k[ X ;,..., X,] (1 =i<n—r), its Taylor expansion
around the point (X, , ,,..., X,) gives the relation:

fO—fi= Z ai{(Y,1;— X1 ))
Lsjsn—r
where a;;€k[X,,.... X, Y, ,,.... Y, 1=A[X,,....X,, Y y,.... Y] are poly-
nomials of total degree bounded by (n — r)d. Following [19, Corollary E.19 and
Example F.19] the class of det(a;;) modulo the ideal (f},..., f,_,, fT,..., f))
gives a generator of Annyg (4"} by means of the identification (4).
In other words we have (see also [11, §3.4]): .

Proposition 3. There exist polynomials a,,,c,, in k[X ,,..., X,] satisfying deg(a,,) +
deg(c,) = (n—r)d (1 =m = M) such that Zmd,n@c"m is a generator of Anngg 5(A)
and A=Y a,C,. O

Definition 4. The trace associated to the generator of Anngg (") introduced in
Proposition 3 will be called the trace associated to the regular sequence f,..., f,_,
and we will denote it by o,,.

Let us observe that in this case the relation (3) gives

A-c,=Tr. %)
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4.3 Upper Bounds for the Degree of Traces

This paragraph is enterely devoted to give some bounds for the degrees of traces
associated to the extension 4 <, B.

Let & be the extended ideal FK[X, . ;,..., X, ]; our assumptions on A guarantee
that %€ is a radical O-dimensional ideal (see [21 Ch. 10]). The rank of the A-module
B (denoted by D) is the dimension of the K-vector space B=K [X pitrees X1/ B¢
and therefore it is also the cardinality of the set {pe K"™"; f,(X,,..., X,, p) =
furX4,-.., X,, p) =0} (the set of zeros of F°).

Let p*,. .., p” be the different zeros of §*¢in K"~ " and for each point p, 1 i < D,
write (p%,..., p._,) for its coordinates in K"

Definition. Let g be an element of K[X,, .-, X,], we say that g distinguishes (or
separates) the points p', 1 S i< D, if for each pair of different points p’, p’ the values
g(p') and g(p’) are different too.

Notations. For any polynomial geK[X,  y,..., X,] we write m, and %, for the
minimal and the characteristic polynoniial of the endomorphlsm ngeEndK(B)
respectively (we recall that #, is the morphism induced by the multiplication by g).
Let us observe that if gek[X,..., X, ] then m  and % are univariate polynomials
with coefficients in A.

Proposition 5. Let g be an element of the ring K[X, . ,,..., X,] which distinguishes
the zeros of §°. Thenm,=Z,.

Proof. Letmy=T*+a,_;T°~' + - + 0, K[ T] be the minimal polynomial of 7.
It suffices to show that we have s 2 D (recall that D is the dimension of the K-vector
space B and therefore the degree of the characteristic polynomial of #7,).

The equality m,(#,) =0in Endg(B) says that the element m,(g) of the ring Bis0.In
other words the polynomial m (g)eK [(X,ri Xl belongs to the extended ideal
& and then m(g(p’ )= 0 for a]l 1<iZD. Thus the fact that g distinguishes the
points p 1mphes that g(p?),..., g( pD) are different roots of the univariate polynomial
m,. In particular we have the inequality D <. |

Combining Proposition 5 and Corollary 2 we obtain:

Corollary 6. Let g be a polynomial in k[X,,..., X,] which distinguishes the zeros of
the ideal §°c K[X,,,...,X,]. Then the total degree of %, is bounded by
deg(V)degyg. |

Remark. In [13, Lemma 3.3.3] the general bound deg %, <rdeg(V)*degy is ob-
tained without additional hypothesis on g.

The following proposition allows to modify non zero divisors of B by means of
a generic linear form in order to obtain “separability properties” with respect to the
zeros of the ideal °.

Proposition 7. Let gek[X4,..., X, ] such that its class g in B is not a zero divisor.
Then there exists a non-empty Zariski open set U < k"~ " * (depending on g) such that
for all B:=(B1>--s Bu—r+1)€U the induced linear affine form fp:=f, X, + -+
Bo— s X+ Buyi1€k[X, . ,..., X, ] verifies that £pg distinguishes the zeros of §°.
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Proof. Fix i, j, with 1 £i< j<£ D, and let us consider the following linear homo-
geneous equation in the variables 8,,..., B,_,,; with coefficients in K:

(ﬁlpll +oet ﬁn—rpi——r+ ﬂn—r+1)g(pi)_(ﬁ1p{ +ot ﬁn—rpi—r + ﬂn—r+1)g(pj): 0
(6)

Since g is not a zero divisor in B one deduces that g(p’) # 0 for all 1 <i < D. Hence,
taking also into account that the points p’ and p’ are-different we deduce that the
linear homogeneous equation (6) defines an hyperplane H;; of K" "' The inter-
section of this hyperplane with the affine space k" ~"*! determmes a proper linear
subspace of k" "*1. We define the set U < k""" as follows:

U:= kn—r+1\U(Hijmkn—r+1)'
iJ

Since k is an infinite field one infers that the set U is non-empty and its definition
guarantees that for any f in U the corresponding polynomial /g distinguishes the
zeros of the ideal §°. O

Corollary 8. Let gek[X,..., X, ]. Then deg(det(n,)) < deg(V)(1 + deg g).

Proof. The statement is obvious if g is a zero divisor. If this is not the case, follow-
ing Proposition 7 let /;ek[X,,,,..., X,] be a linear form such that the mor-
phism 7,, d1st1ngu1shes the zeros of '{ye Therefore Corollary 6 implies that the
total degree of the characteristic polynomial of 77,, is bounded by deg(V) deg(¢;9) =

deg(V)(1 + degg). The claimed upper bound is clear from the equality
det(”lzﬂg) = det(”llﬁ) det(n,). O

Notation Letgbea polynomial mk[X,,..., X,]suchthatitsclass ge Bis nota zero
divisor (in particular det(ng) is a non-zero element of the ring A) and let
X,=T +o,_, T ' +---+a,cA[T] be the characteristic polynomial of the
morphlsm 1,- We define a new polynomial g*€k[ X ,,..., X, ] which dependson g in
the following way:

gh=g¢"'+o 10" T+t ag o, V)
Observe that gg* + o, = Z,(g) is an element of the ideal §.
With these notations we have the following key lemma:

Lemma9. Let f and g be two polynomials in k[ X ,..., X, such that e B is not
a zero divisor. Then we have the inequality:

deg Tr(g* /) < deg(V)(1 + max {deg f, deg g}).
Proof. Let ay:=(—1)""1det(y,); from (7) we have §g* = a,.

Let T'be a new indeterminate and let ., = T°+ b, T° '+ ...+ b, T+b,c A[T]
be the characteristic polynomial of the morphism 7., considered as an element in

Endg(B’). Observe that Tr(g* f) = —b,,_ ;.

Fix for the moment an arbitrary element A of the base field k.
The polynomial %, (1a,) is an element of the polynomial ring A (because Z .,
belongs to A[ T and /laoeA)
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Set Q,:=det(4dy, — ;). Therefore we have the following equalities in the ring 4:
%‘g*f(}.ao) = det(laold — r’g*f) = det(llng*y - ng*f) =
= det(n,) det(4n, — 1) = det(y,,)Q, @)

Now let A,..., 4, be different elements of the infinite field k.
The relation (8) implies that the coefficients b, _4,..., b,, b, satisfy the following
(D + 1) x (D 4 1) linear system:

1 A4 e (Ayag)® b, det(n,:)Q,,
1 La, - (Aay) by |_[ det(n)Q;,
L Apiiag - (Api1a0)° 1 det(n,)Q;,.,

If we denote by Me AP *V*P*1) the matrix of this linear system we have that
det(M) = ag®* P2 T]._ (4;— 4;) and by Cramer’s rule one obtains

i>j
det(M)b,,_, =det(C),

where Ce AP Vx®P+1) g the following matrix:

1 214y (/11‘10)1)*2 det(”,g*)Qll (}“1“0)1)
1 Aya, e (4 ao)D -2 det(’?g*)sz (lzao)D
1 Apsiap - (dps 1ao)D_ 2 det(ng*)QlEMl (4p+ 1ao)D
Thus
bp_ ag®P* 2 n (4 — )=
i>j
1 )“1 MJ_2 sz ’111)
... aD-2 D
=aE)D(Dv1)/2)+ 1 det(ng*) det l:z /12. Q:Az '1‘2
1 j-D+1 lg;% Q;um /134—1

Taking into account that det(y,.) =(—a,)” "' we have:

1 )“1 '111)72 Qll ’111)
D-2 D
bD_ X l—[ (’li — /11') — (_ 1)D—1 det ’1'2 /12. Q‘/’Lz }..2 (9)
i>j : : a : . .
1 Apyy - ig;? an+1 }“1[))+1

This equality implies the estimation:
deg Tr(g* /) = deg by, < max{deg @, } = max {deg(det(Az, — 1,)}.

Fix an index i, 1 £i< D + 1. Corollary 8 implies that the following inequality is
satisfied:

deg Q;, = deg(det(4;n, —n,)) < deg(V)(1 + max{deg f, deg g}).
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Taking into account this inequality, from (9) one obtains:

deg Tr(g* f) = deg by_; <max{degQ, } <deg(V)(1 +max{deg f,degg})

and this concludes the proof of the lemma. 8|

This lemma allows us to estimate an upper bound for a trace associated to the
sequence f,..., f,_, (see Definition 4):

Theorem 10. Let o, B* be the trace associated to fi,...,f,—,; let g and f be

polynomials in k[ X ,,..., X, ] such that g€ B is not a zero divisor.—Then the following
inequality holds:

deg oA(Ef) <deg(V)(1 + max{deg f,deg g+ (n —r)d}).
In particular for any polynomial fek[X,..., X,] we have:
dego,(f) < deg(V)(1 + max{deg f,(n—r)d}).

Proof. Since Ais not a zero divisor in B (assumptions 4.1), from (5) and (7) we deduce
the relation in B*:

(A*A)-g,=A*Tr
Specializing this formula in Z;;feB one obtains:
0,(4*Ag* ) = Tr(4* g* ]).

By (7) we have that A*A belongs to the ring 4 and then the previous formula can be
rewritten as the following equality in the ring A:

A*Aa,(g*]) = Tr(4*g* ).
In particular we obtain the inequality
dego,(g* /) < deg Tr(A*g*]).
Taking into account that A* g* =(—1)***(Ag)* and applying Proposition 3 and
Lemma 9 we conclude that
deg Tr(4*g* ) < deg(V)(1 + max{deg f,deg g + (n —r)d})
and the theorem is proved. O

Remark 11. Combining Theorem 10 and Bezout Inequality we obtain:

dego,(g* /) < d" (1 + max{deg f,deg g + (n— rd}),

dego,(f) <d" "(1 + max{deg f,(n —r)d}).

Remark 12. 1n [8, Lemma 5.1] a different approach based essentially in theory of
residues allows to obtain the inequality

dego,(f)<deg f+(m—r)d(1+d""). (10)

Their method requires that the (dependent) variables X, ,,..., X, verify semimonical
integral equations (i.e. for each j, r + 1 £ j < n, there exists h;e A[ X ;] n § non zero
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such that degy h;=deg h;), it uses strongly the effective Nullstellensatz of [18] or
[10] and is proved only for fields of characteristic zero. But on the other hand our
assumption about the Jacobian doesn’t appear.

Let us observe the different nature of this bound with respect to the result of the
previous remark: in (10) the degree of the polynomial f appears in an additive form
and the remaining part is essentially of order d*" while our bound (Remark 11) is
multiplicative in deg f but the exponent of d is n — r + 1. Nevertheless our method is
also adaptable in order to obtain an upper bound of the same kind: if, like in [8], we
assume the existence of semimonical integral equations it is easy to show that every
polynomial fek[X,,..., X,] can be represented modulo by a polynomial f’ such
that degy, . x f'Sdegf and degy . x f <deg(V); therefore using the A-
linearity of ¢, one obtains:

.....

dega,(f) = dego,(f') < deg f + deg(V)(1 + deg(V)) Sdeg f +d" "(1 +d"").

The assumption on semimonical integral equations is unavoidable (see Remark 14
below).

Lemma 9 provides also an upper bound for the usual trace: taking the constant
1 as the polynomial g we have deg Tr(f) < deg(V)(1 + deg f). Nevertheless a some-
what more precise upper bound is easily obtainable from Corollary 2 (see also [13,

Lemma 3.3.3]).

Theorem 13. Let f be a polynomialink[ X ,,..., X ] and let [ beits class in thering B.
Then deg Tr(f) < deg(V) deg f. In particular deg Tr(f) < d* "deg f.

Proof. Letm,=T°*+a,_, T~ ' + --- + a,e A[T] be the minimal polynomial of the
morphism# ;e Endg(B’). In virtue of Corollary 2 the total degree of m, is bounded by
deg(V)deg f.

Letm,=]] 12i<s9 be the decomposition of m, in irreducible factors on K[T]. By
Gauss Lemma one deduces that all the polynomials Q; are monic and their
coefficients are elements of the ring 4 of degrees bounded by deg(V)deg f.

Foreachindex j, 1 £ j < J, denote by d; the degree of Q; and by f; the coefficient
of the monomial 7%~ " in Q; (in particular deg f; < deg(V)deg f).

Let Z,=T"+by_;T? ' +--- +b, be the characteristic polynomial of 7.
Therefore %, =m, HJ.Q;?J' where e,,..., e, are non-negative integers.

By comparison of coefficients one deduces:

—Tr(f) =by, =0, t Z (ej - l)ﬂj'
{7e;#0}
Therefore deg Tr(f) < deg(V)deg f. O
Remark 14. The following very simple example shows that the upper bound of

Theorem 13 is optimal:let de N, A:= C[X], B:= C[X, YJ(Y — X?). Then Tr(Y") =
Tr(X*) = X%,

5 On Effective Nullstellensiitze

In this section we apply the inequalities obtained in the previous paragraph in order
to prove a quantitative version of the Hilbert Nullstellensatz.
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5.1 The Complete Intersection Case

5.1.1 Assumptions. We follow essentially the notations introduced in Sect. 4. We
denote by k an arbitrary field; since the statement of effective Nullstellensiize
doesn’t depend on algebraic extensions of k, we may however suppose without loss
of generality that k is algebraically closed.

Let r be an integer, 0=<r <n—1. We assume that f,,...,f,_, is a regular
sequence contained in k[ X ;,..., X, ]. Let d be an upper bound for the degrees of all
polynomials f;, 1< j<n—r.

For each j, r<j<n—1, let §; be the ideal generated by Jioos fup A=
k[X,,...,X;] and B;:= k[X,,..., X,1/&; Suppose that the canonical morphism
Aj;— B;is an integral monomorphism and that the Jacobian A; is not a zero divisor
in B;. We write £, for the kernel of the application y;:B;®, B;~ B; introduced in
42 and aP,c¥ek[X,,...,X,] are such that ) a% ®¢cY is the generator of
Anny o 5 (#;) defined in Proposition 3. Its associated trace will be denoted by o;.

5.1.2 A Division Lemma. Under the previous assumptions we have the following
division lemma (see [18, 7, 3, 26] for more precise bounds):

Lemma 15. Let f be a polynomial in the ideal §,. Then there exist polynomials
Piseeos Puy i k[X,..., X,] such that:

L fz_n_i:pifi

o degp, <d" "(3n—3r—2)+d" " 'max{deg f,d} (1ZiZn-—r).

Proof. We shall construct recursively polynomials p,_,,Pp—y—15---s P1€K[X 5., X,]
such that for any index j, r < j < n— 1, the following properties are verified:

(1) the polynomial f —p,_, f,_, ~ - — p,-;f,—; belongs to the ideal &;, , (where
&, denotes the zero ideal),
(I) the polynomial p,_; can be written in the form

N LGt G+
Pa-j=2%5 " Vag™?
m

where aU™ ! are the polynomials which appear in Proposition 3 and «Y* " are
polynomials in the ring 4; ., ; which degrees are uniformly bounded by a constant §;
defined by:

A" (n—r—1)+d""'max{deg f,d}+ Y d"TQRn—r—s)+1)+d 7!
1<s<j-r
’ (1)

We start the recursive procedure at j =r.
Since the polynomial f belongs to the ideal §,, there exists a polynomial
hek[X,,..., X,] such that:

f=hf,_, mod§,,,. (12)
We define p,_,:= Y 6, (hes " D)ak ™.

First we observg that the trace formula (2) implies that p,_, — h belongsto &, . ;-
So p,_, satisfies (I).
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The element f,_, is not a zero divisor in the ring B, ., so, following (7), we can
define the polynomials f* .ek[X,,...,X,] and a€Ad, , in such a way that
* fo,—ois an element of the ideal &,.,. Multiplying the equality (12) by

*_, we obtain:
*—rfEah mOd grﬁ-l‘
Thus the polynomial identity

(xpn‘r = Z O-r+ l(f:—rf5£:1+ 1))a£l";+ b
m

holds.

Observe that o divides the polynomials o, ,(f*_,fé** ) whose degrees are
uniformly bounded by d" "~ *(1+(n—r—1)d + max{deg f,d}) = 4, (sce Remark 11).
Therefore defining

Ot(H—l)I—lO' +1( fc(r+1))
m o r
property (II) holds.

Let now j, r<j<n—1, be an index such that there exist polynomials
Pn—p>---» Py satisfying conditions (I) and (II). We are going to repeat mutatis
mutandis the same procedure used in the case j=r.

Since the polynomial g:= f —p,_,f,-,— - —Pp,-;f,-; belongs to the ideal
&;+1 (condition (I)) there exists a polynomial hek[X,..., X,] such that:
g=hf,_;-1 mod§;,,. (13)

The polynomial p,_ ;. ; is defined by:

Pajori= ZC’ L(Re+9)al+2),

The trace formula (2) implies that p,_;_, — h belongs to §;, ,. So condition (I) is
verified. Following (7) let us consider the polynomials f¥_; ,€k[X;,...,X,] and
acA;,,suchthat fF_ . f,_ ;1 —a€F;,.
From (13) we obtain:
* g=ah modg;,,.

n—j—1

Therefore
_ 7 (G20 G+ 2
0Py ;1= 0, 2(fF ;- GCn " D)ay 2.
m

holds in the polynomial ring k[ X, ..., X, ]. Taking into account that « divides the
polynomials 6, ,(f*_;_;4¢5" ») we define:

. 1 - .
ar(rll+2):=& ,~+z(f2‘_j_1gcf,’,”’)-

In order to show that p,_;_, satisfies condition (II) it suffices to prove that the
degrees of the polynomials oY/ " are bounded by ¢, ;.

First we observe that deg oc(’ *? is bounded by deg o, ,(fF ;_ ,gcl”?) for each
index m.



368 J. Sabia, P. Solerno

From the definition of the polynomial g we have:

dego—j+2(f_f—j—1g_c_£rj;+2))=deg0j+2<f:c—j—1fér(r{+2) an j—1Pn- lfnlESiJrz))

J
<max{degaj+2(fn j— 1fC(J+2) dego—]+2<z n—j— 1pn lfn~15£r11+2)>} (14)

Remark 11 implies:
dego’j+2(ff~j71f5g+2))
<d"72(1 + max{deg f +deg ey, deg f, ; ,+(n1—j—2)d})
Sd"I (14 (n—j—2)d + max{d,deg f}).

In order to bound the remainder part of (14), we use condition (II) to replace each
polynomial p,_,r<I1<j

dego-1+2<z fe, 1<Za(z+1)a(z+1)>f cU”))
< max{dego,. (¥, ,alValt VF,_zu+2)}.
lm'

Taking into account that the polynomials ¢’ V) are elements of the ring 4, , and
therefore are in A4;, , we obtain:

max{degaj+2( f* i alrgliug  au+an)

= max {degalV +dega,, ,(f* , a4 Vf,_ it M)}

n—j—1

From Remark 11 and condition (II) for [ we deduce:
degaf," " +deg O-j+2(f_:<—j—1d£rll'+ 1)]7n_155’1;+2)) S&+dTITA 1+ 2n—1—j—2)d).

Summarizing the inequalities above we have that dega*? is bounded by the
expression:

max {d”"j"z(l +(n—j—2)d + max{d,deg f}),

max {8, +d" 21 + (2n—1—j —2)d}}}.

r<l<j
From the definition of §; (11) it is clear that:
d" 771+ (n—j—2)d + max{d,deg f}) < §,.
Then
degal*? <max {6, +d" 7 72(1 4+ (2n—1—j—2)d)}. (15)

rsisj
On the other hand a simple computation shows that:

So1=6,+2d" " n—1—1 a2 (16)
and therefore

Si+d 1+ Cn—1—j—Qd) <5, +d" 21+ 2(n— 11— 1)d) =4, ,.
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Replacing in (15) we conclude:

degoli*? <max {6, ,} =6, ;.
| #9459

Thus, this recursive method produces polynomials p4,...,p,_, in k[X4,..., X,]

which verify:

/=Y o

e for every index i, 1 £i<n—rv, the inequality degp;<0,_;+(F—1)d£J,_,
holds (see condition (II) and (16)).

In order to finish the proof of the lemma it suffices to estimate an upper bound for
Sp_1:

S, =d""(n—r—1)+d" " *max{deg f,d}
+ Y A& R—r—s)+1)+1

1<sgn—1—r
=d""(n—r—1)+d""'max{deg f,d}+ > d""Q2m-r—s+1)
1<sZn—r

<d""n—r—1)+d" " 'max{deg f,d} +2n—r)—1) Y a7

1<sZn—r
<d""(n—r—1)+d" " 'max{deg f,d} + 2n—r)— D(d" " —1)
<d""3n—3r—2)+d"""'max {deg f,d}.
Thus the lemma follows. O

Now we are able to prove the following particular quantitative version of the
Noullstellensatz:

Lemma 16. Let seN,0<s<n+1, f,,..., f; be polynomials in k[ X ,,..., X, such
that f,..., f._, verify the assumptions 51.1 for ri=n—s+1 and such that
Le(fy,.--, f;)- Let d be an upper bound for the degrees of the polynomials f;, 1 < j <.
Then there exist polynomials py,...,p,in k[X,..., X,] verifying:

o 1= Z pifi
i=1

o degp, <dnd" (1 LiZs).

Proof. Firstsupposes < n+ 1. Taking into account that in the first step of the proof
of Lemma 15 we didn’t use the fact that the ideal is generated by a regular sequence
we obtain 1 =} p;f; where deg p; < 3sd* <4nd"(1 <j <3s).

Now assume s =n+ 1. As f,,..., f, 1s a regular sequence these polynomials generate
a0-dimensional ideal &, and theclass of f,,, , is a unit in the factor ring k[ X ;,..., X, 1/
&o- In other words, there exists a polynomial p, ., €k[X,,...,X,] such that
1 _pn+1fn+1e%0'

Formula (2) and Proposition 3 in the case A=k and B=k[X,,..., X, 1/&,
imply that there exist polynomials a,€k[X,,..., X,] (1 £m < M) with degrees
bounded by nd such that for any polynomial g one can find 4,,..., 4, in the field
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k satisfying:
M
g— Z /lmame %0'
m=1
Therefore, without loss of generality we can suppose that deg p, .., < nd.
Finally applying Lemma 15 to the polynomial f:=1—p,_ , f, ., which belongs

to the ideal §, and has degree bounded by (n + 1)d we obtain polynomials p,,..., p,
such that:

n+t1
- Z pfi=1
i=1
—degp, <d"Bn—2)+d" " '(n+ 1)d < 4nd". =

5.2 The General Case

Now our goal is to obtain an effective Nullstellensatz in a general context. For this
purpose we repeat the arguments applied in [ 13] in order to prepare our list of input
polynomials.

Let fi,..., f,€k[X,..., X, ] such that Le(fy,..., f,) and let d:=max,{deg f;}.
Set p:=(n+ 1)s. We consider the family of polynomials

gl:=f17"‘=gs::fsﬁgs+1:=xlfl""’gs+n::xnfl""5g(n+1)s—n+1

=X o0 = G 1) = XS

Let us observe that the degrees of g, ..., g, are bounded by d + 1 and that g,,..., g
generate the trivial ideal of k[ X,..., X, ]

For any index j, 1 £j <, let U= {xeAj; f;(x) # 0} and let ‘I’j:Uj—aAﬁ_l be
the morphism of affine varieties defined by

<gl(x) gi-1(x) gj11(%) gp(x)>
F0777 fi0 7 fix) 77 fi(x)

P

Y (x):=

J

for xeU ..

By cojnstruction, ¥;is unramified (the associated ring morphism is a localization
inclusion, see [15, Ch. I, 2.2.i]) and the Zariski closure of its image is an irreducible
subvariety of A7 © of dimension n. The finite family (U;), .., forms an open
covering of Af. Let f7,..., f,,, be a family of generic k-linear combinations of
gi1s---> 9, The degrees of the polynomials f*,..., /7., are bounded by d + 1 and
they generate the trivial ideal of k[ X,..., X, ].

Nowfixr,0 <r<n—1 Weanalyzetheideal (f',..., f7_,) by means of Bertini’s
theorem and the geometric properties of the morphism ¥, 1 <j<s.

Let us for the moment fix j, 1 £j < s. First observe thatforeacht, 1 <t<n+1,

the rational function Ji is a generic affine k-linear combination of ﬂ,.,.,@_—l,
/i f; f;
9ix1  9» We use Bertini’s Theorem in the version of Jouanolou [16, Corollaire

PRy
6.71]. Applied to our context it has the following form: the fact that ¥; is an
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unramified morphism from the irreducible smooth affine variety U; to the affine
space AL having an n-dimensional image and being defined by the rational
g gi-1 9j+1 9
A f,. B/

functions =

implies that any set of at most n generic affine

linear combinations of 2* g} j],” defines a (nonempty) smooth affine
subvariety of U; and generates a proper) radical ideal of the fraction ring
/! Ay Juer

k[X,,...,X,];, Thus the rational functions define a smooth sub-

o
variety of U; of dimension r and generate a radlcal ideal of k[X,,..., X, ]y, (Infact
the variety 1s irreducible and the ideal is primefor 1 £r<n—1 )

Since the U}, for 1 £ j<s, form an open covering of A; we conclude that the
subvariety of Af defined by f7,,..., f _, is smooth and of dimension r, and that the
ideal (f",..., f,_,)isradical forevery 0 < r < n — 1.(We call an eventually reducible
closed subvariety of Aj smooth if it is equidimensional and all its local rings are
regular.) In particular f7,..., f;, form a regular sequence of k[ X {,..., X, ].

From these arguments one deduces that the sequence f7,..., [, f7 ., satisfies
the assumptions of Lemma 16 (moreover each Jacobian A; is a unit in the corres-
ponding factor ring B;) and that degf’;<d + 1 for all j.

Applying now Lemma 16 we obtain:

Theorem 17. Let f,,..., f,ek[X,,...,X,] be polynomials of degree bounded by
d such that 1e(fy,..., f,). Then there exist polynomials p,,...,p,ek[X,...,X,]
which verify:

=ipf

o degp; <4n(d+ 1) (1Si<n+1). o

5.2.1 The Case of Characteristic Zero. When the characteristic of the ground field is
zero, the unramified condition can be avoided (see [16, Corollaire 6.7]) and the
previous argument can be simplified. First we need a well known result concerning
generic linear combinations:

Proposition 18. Let k be an infinite field, f,,..., f,ek[X,,..., X,] be polynomials
such that 1e(fy,..., f,). Then there exist teN, t <n, and k-linear combinations
G1s--->Gs+ 1 Of the polynomials f; such that:

g 16(91:""gt+1)’
® JisoosGj—15G+10- -+ Gr11 IS a regular sequence, for all index j, 1 <j<t+ 1.

Proof. Let t be the minimal integer such that there exist k-linear combinations
S5 [ fieq of the polynomials fi,..., f, verifying:

—le(fysees fiva)

., /7 is a regular sequence (in particular t < n).
It is easy to see that ¢ is positive and well defined (see for example [5, Theorem 14]).

Foreachvectora:=(a,,..., a)ek' wedefineg™:=o, f, + --- + o, f1 + f, ;. Clearly
1e(f",..-, [}, g"®) (there are no common zeros) and g™ is a 11near combination of
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f1,-.., s Tt suffices to show that there exists an adequate « such that f7,..., f’;_,,
fir1s---s f1,g® is a regular sequence for all j, S j<t.

Fix j, 1 £j £t, and denote by V® < Aj the variety defined by the polynomials
f’l,...,f}_l,f}r},.‘_,f;’g(oo. .

From the minimality of ¢ we deduce that V® +# ¢f and since the variety
W defined by f7,..., -1, f+1,---» f11s equidimensional (it is defined by a regular
sequence) we have:

n—(t—1H)<dim V@ <n—(t—2).

If dim V® =n —(t — 1) one infers that f%,..., f'_(, fi11,..-, [, 9@ is a regular
sequence. Let W= C, u---uC,, be the decomposition of W in irreducible com-
ponents. Since (f},..., f;) is a regular sequence, for each index i, 1 <i<m, there
exists x; € C; such that f'(x;) # 0. Now we take the coefficient «; in the non empty set
(we recall that k is infinite):

= fie1(x) .
K\ {—i—-«L, 1<i<m}.
1%
In particular we have g®(x,) # O for all i and therefore the strict inequality dim V® <

n—(t — 2) holds. O
Now we are able to state an effective Nullstellensatz for characteristic zero (see
also [4]).

Theorem 19. Let k be a field of characteristiczeroand let f ..., f,ek[X,,..., X,] be
polynomials of degree bounded by d such that 1e(f,,..., f,). Then there exist
polynomials py,...,p.ek[X4,..., X,] which verify:

o 1= Z pif;
i=1
o degp, <4dnd" (1<i<5s).

Proof. Without loss of generality, by means of generic linear combinations
(Proposition 18), we can suppose:

-sEn+1,
~f1seos fim15 fj415--+» fsis a regular sequence for all j, | S j <.

We finish the proof applying the same kind of arguments than in the proof of
Theorem 17 to the dominant regular morphisms ¥;: U;— A" defined by:

W (x):= (fl(x) fj— 1(x) fj+ 1(x) fs(x)>
! F00777 fix) 7 f0) T fi(%)
Let us observe that, since the characteristic of k is 0, we need no unramified

conditions (in particular no variable multiplications) and therefore the degrees don’t
increase. O

5.3 An Effective Nullstellensatz for Degree 2

In the particular case when all the polynomials are of degree bounded by 2, an
adequate version of Bertini’s Theorem allows us to obtain the sharper estimation
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degp; <n2" "2 in Theorem 17 for fields of characteristic distinct from 2. This bound,

obtained simultaneously and independently by T. Dubé [9], improves the upper
bound 3" given in [18] and [10}.

5.3.1 On Bertini’s Theorem for Degree 2. Let us suppose for the moment that k is an
algebraically closed field and that are given polynomials f,..., f.ek[X,..., X,]
such that f,,..., f,_, is a regular sequence and 1e(f,,..., f)

We denote by R the fraction ring k[ X y,..., X, ], by K its fractions field and by
X the affine scheme Spec(R). We consider the (regular and dominant) morphism
Y:X — A~ ! defined by the rational functions ¥ := f/fo- s Wy 1:= foe1/fs

Let teN, 1 £t <s— 1, be a fixed integer; denote by Z® < X x (A$) the closed
subscheme defined by the equations:

o+ Y ;=0 121y,
1gjss—1

(where (z,;) refers to the coordinates of (A})") and denote by 7: Z® — (A3) the second
projection.

Under these notations we have the following result (see [16, Prop. 6.8] and its
proof):

Theorem 20. The generic fiber of n is geometrically reduced if and only if the
differentials dyy,...,d,_ € Q% 1« generate a K-subspace of dimension at least t (or in

o .
terms of Jacobian matrices, the rank of 6_;!’(J> e K™ ¢~ Dis gt least t). O
i,Jj

i
This theorem allows us to show:

Lemma 21. Suppose that the characteristic of k is different from 2 and that deg f; < 2,
for all 1 £ j £ s. Therefore the generic fiber of 7 is geometrically reduced.

In order to prove Lemma 21 we need the following intermediate proposition:

Proposition 22. Let L be an arbitrary field of characteristic different from 2 and let
Riyeoishy b,y €L[X4,..., X,] be polynomials of degree bounded by 2 such that
hy,..., h,is aregular sequence and 1€(h,,...,h, ). Let Je (X,,..., X )n*D>x@+D)

oh;
be the matrix defined by Jii::(a—X].(l <igml<jS<n+4+Dand J,,, j=h(1<j<n+1).
Therefore J is invertible.

Proof. Withoutloss of generality we may suppose that Lis algebraically closed, that
h(0)=0foralll1 <i<n,andthath,, ,(0)#0.Letg,,...,9,,,€L[X,,...,X,,U]be
defined by the matricial product:

(Xls--'aanU)Jz(g17"-5gnagn+1) (17)

If ¢, and I, denote the homogeneous components of k; of degree 2 and 1 respec-
tively, we have g,=2q,+I,+ Uh,. Hence a simple computation gives for all i,
1<i<n+1:

_(U+1y U+2 U+2
LGRS ( ,.<U+lxl,...,U—Hxn>~hi(0)>+Uhi(O). (18)

Let S be the fraction ring L[X,..., X, Ul yw+2 and % < A}* ! be the Zariski
open set defined by S.
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We claim that g4, ..., g,, g, 1S 2 regular sequence in S.

From (18) it is clear that g,,..., g, is a regular sequence (since U + 1 and U + 2
are invertible elements of S and h,(0) =0, for 1 i< n).

Thus it is enough to show that the algebraic set of % defined by g,,..., g, IS
0-dimensional.

First, let us observe that if a point (o, v)e# < A} x A} is a common zero of

. v+2 . . .
g1s--+» 0,4+ then the point ﬁa,v1=m“ 1s a common zero of hy,..., h, in A} (in

particular there are only finitely many points §, , and they satisfy h,, (6, ,) # 0).
Now relation (18) for i = n+ 1 implies the equality

(v+ l)z(hn+ 1(:Ba,v) —hyi 1 (0) +v(v +2)h, 1 (0)=0

or equivalently:
hn+ l(ﬁtx,v)vz + 2h’n+ l(ﬂm,v)v + hn+ l(ﬁa,v) - hn+ 1(0) = 0

Hence there are finitely many (o, v) and therefore we only need to show that there
exists at least one of them.

For this purpose it suffices to verify that for a common zero f of hy,..., h
and —2 are not the unique solutions of the (quadratic) equation:

i A (B + 20, (B + By 1 (B) — By 1(0) =0
Obviously —1 cannot be a solution (h, . (0) #0). If —2 is a double root one infers
2h, .. ,(f) = 0, which is impossible since A, , , () # 0 and char (L) # 2.
Summarizing, ¢;,...,9,+.,; and X,,..., X,, U are two regular sequences in
S (recall that U isn’t a unit in S because 2 # Q).
Applying the Northcott-Wiebe principle (see for example [19, Corollary E.21])
to (17) we conclude that the ideal (X4, ..., X,, U) is the ideal quotient

{ZES; Zdet(‘])e(gh' Y+ 1)}
In particular det{J) # 0. |

-1

n»

Now we are able to give the proof of Lemma 21.

Proof of Lemma 21. As in the previous Proposition, let Je K”*1)*s be the matrix
defined by:

of;
-J. ==L 1<ign1<j<
I 6Xi’ =IShISISS

ij-
~Jyery=fp15j<s.

By means of elementary operations on J, it is easy to restate Theorem 20 as follows:
the generic fiber of m is geometrically reduced if and only if the rank of J is at least
t+1.

Thus it suffices to prove that J has maximal rank s. For the case s=n+ 1 this is
exactly the statement of Proposition 22 (where L:= k and h;:= f;).

If s < n+ 1 we can suppose without loss of generality that the variables X |,..., X,
are in Noether position with respect to the ideal (f|,..., f;_;). Then we apply
Proposition 22 to the base field L:= k(X ,..., X,,_,, ) and the polynomials f,,..., f;
(considered as elements of L[ X, _.,,...,X,])

nd)
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This concludes the proof of Lemma 21. O

Corollary 23. Let k be an infinite field of characteristic different from 2. Suppose that
Sis--, €k X1,..., X,] are polynomials of degree bounded by 2 which verify that
le(fy,.... fyandthat f,..., f;_1, fi41s-- ., foisaregular sequenceforall 1 < j<s.
Then there exist generic linear combinations f,..., f; of the polynomials f; such
that:

o le(fi,.... f)
o f,.... [_, is aregular sequence,
e (f,....fr_)isaradical ideal for allr,n—s+1<r<n—1.

Proof. Let f1,..., f;_, be generic linear combinations of the polynomials f,..., f..
According to Lemma 21 theideal (f",/f;,..., f/f;)isaradicalideal in k[ X ;.. ., X1y,
forallt,j1<t<s—1,1Lj<s.

Since 1€(f,..., f,) one deduces as in 5.2 that (f',..., f}) is a radical ideal of the

polynomial ring k{ X ,, ..., X, ] (moreover the fiber theorem implies that the typical

fiber of = has dimension n — ¢ and hence f7,..., f; is also a regular sequence).
Finally we add a last generic linear combination f7, , which verifies (f;,..., f;4{)

=(f/1»---,f;+1)andweputr:zn_t‘ 5

5.3.2 An Effective Nulistellensatz for Degree 2

Theorem 24. Let k be a field of characteristic different from 2 and let f,,..., f.€
k[X,,..., X,] be polynomials of degree at most 2 such that 1(f,..., f,). Then there
exist polynomials p,,...,p,ek[X,..., X,] which verify:

o l= Z p:f;
i=1

o degp, =n2""?(1£i<s)

Proof. Without loss of generality we may suppose that the field k is algebraically
closed. Proposition 18 allows us to assume that s<n+1, that f,,..., [ i1
fi+1,---» [ 1s a regular sequence for all j and therefore, by means of Corollary 23,
that (f,,..., f,_,) isaradical ideal foralln —s+ 1 <r<n—1.

Following [ 14, Lemma 1] we can choose the variables X ,,..., X, in such a way that
forallr,n—s+1=<r=<n—1, the following conditions hold:

—themorphism k[ X ,,..., X, ] ->k[X,,.... X,1/(f1>- .-, f,,—,) is injective and integral
(Noether position),

- the class of the Jacobian determinant of f4,..., f,_, with respect to the variables
X, 1., X, isnotazerodivisorin k[ X ,..., X, 1/ (f1,--s fu_))

Now we can apply Lemma 16. O
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