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Abstract. In this paper we obtain an effective Nullstellensatz using quantitative 
considerations of the classical duality theory in complete intersections. Let k be an 
infinite perfect field and let f l  . . . .  , f , _ r e k [ X  1 . . . . .  X ,]  be a regular sequence with 
d: = maxj deg fj. Denote by A the polynomial ring k IX 1 . . . . .  Xr] and by B the factor 
ring k [ X D . . . , X , ] / ( f l , . . . , f , _ r ) ;  assume that the canonical morphism A ~ B  is 
injective and integral and that the Jacobian determinant A with respect to the 
variables Xr+ 1 . . . . .  X, is not a zero divisor in B. Let finally aEB*:= HomA(B, A) be 
the generator of B* associated to the regular sequence. 

We show that for each polynomial f the inequality deg ~(f) =< d"-r(6 + 1) holds 
( f  denotes the class o f f  in B and 6 is an upper bound for (n - r)d and deg f).  For the 
usual trace associated to the (free) extension A c_~ B we obtain a somewhat more 
precise bound: deg Tr(f)  =< d"- r deg f. From these bounds and Bertini's theorem we 
deduce an elementary proof of the following effective Nullstellensatz: let f l  . . . .  , fs be 
polynomials in k[X1, . . . ,  X ,]  with degrees bounded by a constant d => 2; then 
1 e ( f l , . . - ,  fs) if and only if there exist polynomials Pl . . . .  , ps~k[X1, . . . ,  X ,]  with 
degrees bounded by 4n(d + 1)n such that 1 = ~,iPifi. In the particular cases when the 
characteristic of the base field k is zero or d = 2 the sharper bound 4nd" is obtained. 

Keywords: Complete intersection polynomial ideals, Trace theory, Bezout's 
inequality, Effective Nullstellensatz, Bertini's theorem. 

1 Introduction 

Old ideas on trace theory and more generally duality theory coming from Jacobi, 
Hermite and Sylvester play nowadays an important r61e for actual research in 
Computer Algebra, both from the theoretical and the algorithmical points of view 
(see e.g. [3], [8], [24], [27], [11], [1], [6]). 
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In this sense the aim of this paper is to present new upper bound estimations for 
the degrees of trace functions in complete intersections in order to obtain an 
elementary proof of an effective Nullstellensatz. 

Let k be an infinite perfect field with an algebraic closure denoted by k, ~ be 
a radical complete intersection ideal of the polynomial ring k [X  1 . . . . .  X,].  Denote 
by B the factor ring k[X~, . . . ,  X ,] /~ ,  by V ~ ~-~ the affine variety defined by ~ and 
assume that the canonical morphism A:= k[X~, . . . ,  X,J -~ B is an integral mono- 
morphism. 

Under these conditions B is a finite free A-module and for any b~B the element 
Tr(b):= trace of the multiplication by b is a well defined polynomial of A. 

In Theorem 13 we show that for any f ~ k [ X ~  . . . .  , X,J the inequality 

deg Tr ( f )  < deg(V) deg f 

holds (where f is the class of f in B). 
Let us now consider the dual module B*:= HomA(B,A ) which has a simple 

structure of B-module; moreover, with this structure B* is a free module of 
rank 1. 

Any regular sequence f l  . . . . .  f , - r  which generates the ideal ~ induces then 
a basis o- of B* called the trace associated to f l , . . . ,  f , - r .  

This trace function - well known in Commutative Algebra (see e.g. [25, 17]) - 
appears also as an useful tool in Computer Algebra ([3, 11, 6]). 

Let A be the Jacobian determinant of the regular sequence f~ , . . . ,  f,_~ with 
respect to the dependent variables X~+ 1,.. . ,  X,  and assume that zi is not a zero 
divisor in B. Then for any f e k [ X 1 , . . . ,  X,J we obtain the following inequality 
(Theorem 10 below): 

deg o-(f) < deg(V)(1 + max {deg f ,  (n - r)d}) 

where d denotes an upper bound for the degrees of the polynomials f j  (1 __< j < n - r). 
The strong hypothesis we require on A allows us to relate the trace function ~ to the 
usual trace Tr and therefore to obtain the mentioned linear upper bound for 
a (Lemma 9 and Theorem 10). If one doesn't impose such a condition it is possible to 
estimate the degree of a dual basis which leads to non linear bounds for o-(f) of type 
deg(V)Cdeg f with c > 2 (see [11] and Remark 12 below). 

However for many applications one can expect that by means of standard tricks 
like Bertini's theorem, suitable Noether position, deformation, etc., one may often 
come down to our conditions. In this sense we present here an elementary proof of 
an effective Nullstellensatz, following ideas analogous to [11]. 

Now k denotes an arbitrary field and k an algebraic closure of k. 
Classical Hilbert Nullstellensatz states that a finite family of polynomials 

f l , . . . ,  fs ~ k IX1, . . . ,  X,J hasn't a common zero in ~:" if and only if 1 belongs to the 
ideal generated by f l , . . . ,  fs in k [ X  1 . . . . .  X,]. 

Let 6(n, d) be the minimal integer which verifies: for any s e N and for any family 
of polynomials f l  . . . . .  f~ek[X~ . . . . .  X, ]  without common zeros in k" with total 
degrees bounded by d, there exist polynomials p~,.. . ,  Ps ~ k IX1, . . . ,  Xn] such that 
1 = ~jpj f~ and deg p~ < 6(n, d). 

Therefore an effective Nullstellensatz means to provide an upper bound for the 
quantity 6(n, d). 
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The most precise bound obtained up to now is due to J. Kollfir [181 (see also 
[10]) and states that 6(n, d)=< max{3, d}"; moreover a well known example ([4]) 
shows that this bound is asymptotically optimal (see [26, 21 for more details and 
bibliography about effective Nullstellensiitze). 

Our trace inequalities and Bertini's Theorem allow to obtain easily the general 
estimation 6(n ,d )<  4n(d + 1)" (Theorem 17) and the upper bound 4nd" when the 
characteristic of the ground field k is 0 (Theorem 19). Even if our method doesn't give 
the mentioned sharp results of [18] or [101, it leads to a slightly more precise bound 
n2" + 2 instead of 3" for the particular case of polynomials of degree 2 (see Theorem 24 
below). We have recently known that a similar bound was simultaneously obtained 
by T. Dub6 [91 by means of combinatorial tools. 

The paper is organized as follows: in Sect. 3 we compute an upper bound for 
integral dependence equations using Bezout inequality. We summarize in Sect. 4.2 
all the elements of trace theory in complete intersection algebras we need here, which 
are in fact borrowed from E. Kunz [19]. The upper bounds for the degrees of traces 
are then given in Sect. 4.3 and finally Sect. 5 is devoted to effective Nullstellens~itze. 

2 Prel iminaries 

Let k be an infinite perfect field, k be an algebraic closure of k, X 1 . . . . .  X, be 
indeterminates over k and k [ X ~  . . . .  , X,]  be the polynomial ring with coefficients 
from k. For each polynomial f ~ k [X~ . . . .  , X,]  we write deg f for its total degree (by 
convention deg 0:= - 1). 

We denote by A~ the affine space k" equipped with the Zariski topology. 
For any polynomial ideal ~ c k [ X D . . .  , X , ] ,  we denote by V(~) (or simply V) 

the affine variety o f / ~  formed by the common zeros of all the polynomials which 
belong to the ideal 5. 

Following [141 we define the (set-theoretical) degree of an algebraic affine variety 
V c / ~  as the sum of the degrees of its irreducible components. If W c / ~  is another 
affine variety, Bezout Inequality states that d e g ( V ~ W ) < d e g ( V ) d e g ( W )  (see 
[14, Theorem 1] for an elementary proof). 

We say that the variables X~ . . . . .  X, are in No e ther  posi t ion with respect to the 
polynomial ideal ~ if there exists an index r, 0 _< r _< n, such that the canonical 
morphism k[  X 1 . . . . .  Xr]  ~ k [  X 1 ,  . . . , X , ] / ~  is an integral monomorphism. In parti- 
cular we have r = dim V. 

A classical elementary result in Commutative Algebra states that for any 
polynomial ideal ~ there exist linear changes of coordinates providing new variables 
which are in Noether position (see for example [23]). If the ideal ~? is given by a finite 
family of generators there exist several effective methods to compute linear changes 
of coordinates which give new variables in Noether position (see [20, 7, 12]). 

We recall that a polynomial sequence f l , . . . , f , _ r  in k [ X  1 . . . . .  X,]  is called 
a regular sequence if the following conditions are verified: 

�9 l r  . . . . .  f . _ r )  
�9 fi+ 1 is not a zero divisor in the ring k [ X  1 . . . . .  X , ] / ( f l  . . . . .  f l) ,  1 < i < n - r. 

Suppose now that the ideal ~ is generated by a regular sequence f l  . . . . .  f,_~ (in this 
case r = dim V). Suppose also that X1 . . . .  , X, are in Noether position with respect to 

and set A:= k [ X 1 , . . . ,  X r l  and B:= k[X 1 . . . . .  Xn]/q~. 
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Under these assumptions it is well known that B is a free A-algebra (see for 
instance [13, Lemma 3.3.1]). Moreover, as a consequence of Bezout Inequality, its 
rank is bounded by l~j deg f j  (see [13, Corollary 3.3.2]). 

Unfortunately no single exponential bound for the degrees of the elements of any 
basis of B is known up to now, even when precise estimations can be done if one 
considers the localized integral extension K c--~K[X~+ 1 . . . . .  X , l / ( f  l , . . . ,  f , -~) of 
K-vector spaces (K denotes the fraction field of the integral domain A): there exists 
a basis of elements with degrees bounded by d "-~, obtainable by means of an 
algorithm with sequential complexity of the same order (see [11, Proposition 2.4]). 

3 A Bound for the Degree of Integral Dependence Equations 

Let 8 be a radical ideal contained in k[Xz . . . . .  X,]  and V ~ A~ be the set of zeros of 
5. Suppose that the variables X1, . . . ,  X, are in Noether position with respect to the 
ideal ~ and set A:= k[Xa . . . . .  Xr and B:= k[Xx , . . . ,  X,]/Fj. 

Under these assumptions the following proposition allows to estimate degrees 
for integral dependence equations (for related results see [7, 12, 13]). 

Proposition 1. Let f be an element of the polynomial rin9 k [ X ~ . . . . .  X ,]  and denote by 
its class in the factor ring B. Let T be a new variable, then there exists a monic 

polynomial F ~A[T] which verifies F ( f ) =  0 and whose total degree is bounded by 
deg(V) de9 f.  

Proof. First let us consider the case r = 0. Here the ring A coincides with the base 
field k and then B is a finite dimensional k-vector space. Since ~ is a radical ideal we 
have that d i m k B = # ( V ) = d e g ( V  ). In particular for each f e B  the sequence 
1, ~ f2  . . . . .  fdegV is linearly dependent; therefore there exists a polynomial F e k IT] 
of degree bounded by deg(V) such that F(f )  = 0 and the proposition is proved. 

Now we consider the case r > 0. 
Let K be the quotient field of A. We write B':= B @A K, A:= A | ~ and/~:= B | k. 

From the integral inclusion A ~ B we obtain (since k is flat) that the corresponding 
morphism A ~ / ~ i s  an integral extension too. This ring inclusion induces a projection 
map n:V~N~, defined as 7r(xl, . . . ,x,):=(x 1 . . . . .  xr). The Noether position as- 
sumption implies that the map rc is surjective. 

T1 ~ r + l  Now we consider a new map cp: v--* ~ defined as ~0(x):= (~(x), f (x))  where 
X: = ( x l , . . .  ,xn). 

Since the map cp is closed (the corresponding ring morphism is integral) the 
image of V under cp is an algebraic variety Wcontained in N~,+ 1 of codimension 1 (i.e. 
r-dimensional). Then there exists a squarefree polynomial F c k. [ I11 . . . . .  Yr + 1 ] such 
that W =  {yeA~+~; F(y) = 0} (see [23, Ch. I, w Prop.4]). In particular we have: 

F(x 1 . . . . .  xr, f ( x ) )=O for all x := ( x l , . . . , x , ) ~ V .  (1) 

In order to finish the proof of the proposition it suffices to show that: 

(i) the total degree of F is bounded by deg(V)deg f. 
(ii) F is monic in the variable Yr + 1- 

(iii) F has coefficients in the ground field k and F(X a . . . . .  Xr, f )  belongs to the 
ideal 5- 
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�9 Proof of (i). Let F = F 1 . . .  F s be the decomposition of the squarefree polynomial 
F in irreducible factors on k[Y1 . . . .  , IT,+ 1] and for each i, 1 < i < s, let W/be the 
irreducible hypersurface defined by the polynomial F i. In particular W = U i w  i and 
deg F = deg(W) = ~,i deg(W~). 

Let S c A~+l be an affine line such that the equalities # ( W ~ S )  = deg(W) and 
#(W i n S) = deg(W 3 for all 1 < i < s hold simultaneously (the genericity property in 
the selection of the affine subspace which gives the degree and the equidimensionality 
of the hypersurface W guarantee the existence of such a line S; moreover we can 
assume that S is defined by r linear equations whose coefficients belong to the base 
field k). 

Let dt . . . . .  fr be independent affine linear forms from k[Y~ . . . . .  I7,+1] whose 
zeros define the line S. For  each 1 < j < r, let el j) (1 < i _< r + 2) be elements of the 
field k such that: 

r = o~(J) Y1 + ' "  4- .(J) y, + 1 -~- ~'(j) 
- -  ~ r + l  ~ r + 2 "  

The genericity of S also allows to suppose without loss of generality (changing the 
hyperplanes if necessary) that the coefficient ~(1) is equal to 1 and that all the r + l  
remaining coefficients ~,-u)+ 1 are zero for j => 2. 

Let us consider the algebraic set U c ~ defined by the equations: 

d~(XD... ,  X,, f )  = g ~ 2 ( X l , . . . ,  Xr) . . . . .  ~r(Xl . . . . .  Xr)  = O. 

Let Z be an irreducible component of the algebraic variety V c~ U. The image of Z 
by the map go is an irreducible subvariety of W n S  and is therefore a single point 
(recall that W n  S is 0-dimensional). Since the equality go(Vc~ U) = Wc~ S holds we 
obtain 

# ( W n  S) < deg(Vc~ U). 

Now, applying Bezout Inequality one infers 

deg(V~ U) < deg(V)deg(U) < deg(V)deg f 

(U is defined by one polynomial of degree deg f and r - 1 linear equations). 
Therefore we have: 

deg F = deg(W) = #(W(~ S) < deg(V c~ U) < deg(V)deg f 

and assertion (i) is proved. 

�9 Proof of (ii). From the definition 
k[Y1 . . . . .  Y,+i] which is zero over 
k[Yi .. . .  , Y,+i]" 

Let 

f " + a  m ~ f " - l  + . . . + a l f  + a o = O  

of F we infer that any polynomial in 
W must be divisible by F in the ring 

be an integral dependence relation for f over A. 
Let H e k [ Y  1 . . . .  , Yr+ i] be the polynomial Yr"+ 1 + b,,_ ~ grm+i 1 + ' - -  -I- b~ Y,+ i + bo, 

where b j := aj(Y i . . . . .  Y,), 0 __< j < m - 1. Clearly we have that H(x 1 . . . . .  x,, f (x))  = 0 
holds for any point x e V. Thus H is zero over W and so F divides H in k[ Yi, - - �9 I1, + 1]. 
Then F is also monic in the variable I1,+ 1 and (ii) is proved. 
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�9 Proof of (iii). Suppose for the moment that the polynomial F has coefficients in 
the base field k. From (1) and from the fact that ~ is a radical ideal we conclude that 
F(X1, . . . ,  X, ,  f )  belongs to 5. 

Therefore it suffices to prove that F e k [ Y  1 . . . . .  Y,+ 1]. 
Since k is perfect one deduces that the extended ideal ~k[Xx, . . . ,  X,]  is radi- 

cal too (see [21, Ch. 10, w Lemma2])  and it is the ideal associated to the 
variety V. 

Now let us consider the element j7 as an element of the ring B":= B' | ~ (which is 
a finite dimensional vector space over the field K':= r:(X1,..., X,)). 

Let riy be the K'-endomorphism of B" induced by the multiplication by j~ We 
assert that F(X 1 ..... , X, ,  T) considered as an univariate polynomial in K'[T]  is the 
minimal polynomial of the endomorphism ris" 

In virtue of (1) let us observe that this polynomial annihilates ri;. Moreover, if 
Ge k[XD. . . ,  X,, r ]  verifies G(X1, . . . ,  X, ,  rif) -- 0 we have that G(X 1 . . . . .  X r, f )  
belongs to the ideal ~k[X1, . . . ,  X,]  and then G(xl , . . . ,  x,, f (x))  is zero for all xe  V. 
This implies that F divides G and therefore F(X  1 . . . .  , X, ,  T) is the minimal poly- 
nomial of riI" 

To finish the proof of (iii) let us consider the restriction of the endomorphism ri~ 
to B'. We deduce that the minimal polynomial F(X  1,. . . ,  X, ,  T) belongs to the 
subring K I T ]  c~ k[XL, . . .  , X, ,  T]. Since the polynomial ring A is integrally closed it 
follows that K I T ]  c~ k [ X  1 . . . . .  X, ,  r ]  = A I r ]  (see [22]) and then F ( X  1 . . . . .  Xr ,  T) 
belongs to A[T].  

The proposition is completely proved. [] 

From the proof of Proposition 1 we deduce: 

Corollary 2. Let f l . . . . .  f , _ ,  be a regular sequence in k [ X1 , . . . ,  X , ]  which generates 
a radical ideal ~ defining an algebraic variety V c A~. Suppose that X 1 . . . . .  X ,  are in 
Noether position with respect to 5. Denote by A the ring kEX 1 . . . . .  X,],  by K the field 
of rational functions k( X 1 . . . . .  X,), by B the free A-algebra k [ X 1 . . . . .  X,]/q~ and by B' 
the extended ring B | K. Let f be an element of the polynomial ring k [ X  1 . . . . .  Xn], 
y its class in B and let rig e Endr( B' ) be the morphism induced by the multiplication by 
Then the minimal polynomial of rid belongs to A IT] and its total degree is bounded by 
deg(V) deg f .  [] 

4 Some Upper Bounds for the Degree of Traces 

4.1 Notations and Assumptions 

Throughout this section we shall maintain the following notations and assumptions: 

�9 n and r are non-negative integers with 0 < r < n. 
�9 k is an infinite perfect field and A is the polynomial ring k[Xx . . . . .  X,].  
�9 fx . . . . .  f ,_ r  is a polynomial regular sequence contained in k[X1, . .  . , X , ]  

which generates an ideal 5. The set of zeros of ~ in A~ is denoted by V and d is 
an upper bound for the total degrees of the polynomials fi- 

�9 B denotes the factor ring k [ X  1 . . . . .  X , ] / ~  and the variables X1, . . . ,  X, are 
inNoether position with respect to ~ (i.e. the canonical morphism A ~ B is an 
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integral monomorphism). For any polynomial f e k [X1,. -., X,]  we denote by 
f its class in B. 

�9 A denotes the determinant of the Jacobian matrix and we 
\ ~Xr+  j / 1  <j<n - r  

assume that A is not a zero divisor in B (therefore the Jacobian criterion implies 
that ~ is a radical ideal). 

�9 K denotes the fraction field of A and B':= B | K. I f / (  is an algebraic closure 
of K we write B:= B' | Finally .4 and/~ denote the rings A | ~ and B | ~ 
respectively. 

Let us observe that under these assumptions /~ is a reduced 0-dimensional/(-  
algebra. 

4.2 Basic General Trace Theory 

The Definition oj"the Trace. We consider the ring B as an A-algebra and we denote 
by B* the dual space HonoA(B , A). The A-module B* admits a natural structure of 
B-module in the following way: for any pair (b, fl) in B x B* the product b. fl is the 
A-linear application of B* defined by (b. fl)(x):= fl(bx), for each x in B. 

Our assumptions about A and B allow to show that the B-modules B and B* are 
isomorphic (see [19, Example F.19 and Corollary F.10]) and therefore B* can be 
generated by a single element. A generator a of B* is called a trace of B over A. 

Under our hypothesis we have the additional property that B is a finite free 
A-module whose rank will be denoted by D. Fix for the moment a basis of this 
module; each element b ~ B defines, by multiplication, a square matrix M b ~ A D • D. If 
we denote by trace (Mb) the trace of the matrix Mb, the application b~--~trace(Mb) 
defines (independently of the basis of B) an element of B* called the usual trace and 
denoted by Tr. 

Unfortunately the usual trace is not always a generator of B* (in other words the 
usual trace is not necessarily a trace). 

The Trace Associated to a Regular Sequence. Let us consider now the tensorial 
product B | This ring can be considered in a natural way as an A-algebra and as 
a B-bialgebra (with right and left multiplications). 

Let #:B | B ~ B be the morphism of A-algebras (or B-bialgebras) defined by 
I~(b | b'):= bb'. Denote by ~ the kernel of #. It is easy to show that ~ is the ideal 
generated by all the elements b | 1 - 1 | b, where b ranges over B (see for example 
[15, Proposition 1.3]). 

From the fact that AnnB| | 1 - 1 | b) = 0 for all beB, one infers that the 
induced structures of right and left B-modules over AnnR| ) coincide. In other 
words, i f~ ib  i | b' i belongs to Anns|162 ~) and b is an element of the ring B we have: 
~ibbl | b' i = ~ibi | bb I. Moreover it is possible to show that AnnB| ) is a cyclic 
B-module ([19, Corollary F. 10]). 

Let us consider the application �9 :B | HomA(B*, B) defined by 

where bi, b'ieB and fleB*. 
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From the freeness of B it is easy to see that �9 is an isomorphism and the image of 
AnnB| ) by �9 is exactly HomB(B*, B). 

For  each generator F : =  Xmb m | b" of the B-module AnnB,AB(X" ) the element 
oo(F) is a generator of HomB(B*, B) and then there exists a uniquely determinated 
a r e B *  such that # ( F ) ( a r )  = 1. One deduces immediately that ar  is a trace for 
B (which is called the trace associated to F) .  

From the definitions of ~b, F and ar  we have the following "trace formula" for all 
beB:  

b= ~, ar(bb'm)b,,. (2) 
l <_m<_M 

In particular we observe that b~,. . . ,  b M is a system of generators of the A-module B. 
By means of the element F it is possible to obtain a relation between the trace a rand  
the "usual trace" Tr; more precisely (see [19, Corollary F.12]): 

# ( F ) . a  r = Tr (3) 

In terms of elements of B this formula says that for all b e B the equality ar(l~(F)b ) = 
Tr(b) holds. 

Let Yr+~, . . . ,Y ,  be new indeterminates over k; for each polynomial 
f e k [ X ~  . . . . .  X , ]  we denote by f ( n  the element of the polynomial ring k [ X  1 . . . . .  X , ,  
Y~+ i , - - . ,  Y,] defined by f(Y):= f ( X  1 . . . . .  Xr, Y~+ i , . . . ,  Y,). Hence we have the cano- 
nical isomorphism of A-algebras: 

, Y (Y) (Y) B |  . . . .  , ] / ( f i  . . . . .  f,--r, f l  . . . . .  f , - -J"  (4) 

If one considers each polynomial f l  r ) -  f~ as a polynomial in the variables 
I1,+ 1 . . . . .  Y, with coefficients in k [ X 1 , . . . ,  X , ]  (1 < i < n - r), its Taylor expansion 
around the point (Xr+ 1 . . . . .  X,) gives the relation: 

f~Y)-- f i  = Z au(Yr+J-- Xr+J) 
l <j<n-r 

where a i f i k [ X 1 , . . . , X  ., Yr+i,--., Y,] = A [ X r + i  . . . . .  X,, Y~+i . . . . .  Y,] are poly- 
nomials of total degree bounded by (n - r)d. Following [19, Corollary E.19 and 
Example F.193 the class of det(a~j) modulo the ideal ' , J l , " ' , J n - r ,  J1 ( f  f e(Y),'",Jn-r!'['(Y) ~ 
gives a generator of AnnB| by means of the identification (4). 

In other words we have (see also [11, w �9 

Propos i t ion  3. There exist polynomials a m, c m in k[  X i . . . .  , X , ]  satisfyin9 deg(am) + 
deg(c,,) < ( n -  r)d (1 < m < M)  such that ~mglm| G, is a generator o f  AnnR| 
and A = ~m am6'~" [] 

Def in i t ion  4. The trace associated to the generator of AnnB| ) introduced in 
Proposition 3 will be called the trace associated to the regular sequence f l . . . . .  f . - r  
and we will denote it by a a. 

Let us observe that in this case the relation (3) gives 

A . ~  = Tr. (5) 
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4.3 Upper Bounds for the Degree of Traces 

This paragraph is enterely devoted to give some bounds for the degrees of traces 
associated to the extension A ~ B. 

Let ~e be the extended ideal ~/([X~ + 1 . . . . .  X,]; our assumptions on A guarantee 
that ~e is a radical 0-dimensional ideal (see [-21, Ch. 10]). The rank of the A-module 
B (denoted by D) is the dimension of the/s  space/~ = / ( [X~+ 1 . . . . .  X , ] / ~  ~ 
and therefore it is also the cardinality of the set {p e K"-~; fa(X~ . . . . .  X, ,  p) . . . . .  
f , _ , ( X  1, . . . .  X,, p) = 0} (the set of zeros of ~e). 

Let pl . . . . .  pD be the different zeros of ~e in/s and for each point if, 1 < i < D, 
write (P/l, i . . . ,  p,_~) for its coordinates in K "-". 

Definition. Let g be an element of/([X~+ 1,. . . ,  X,] ,  we say that g distinguishes (or 
separates) the points if, 1 _< i _< D, if for each pair of different points if, pJ the values 
g(ff) and g(pJ) are different too. 

Notations. For any polynomial geK[X~+ 1,.--, X, ]  we write m o and 5~g for the 
minimal and the characteristic polynomial of the endomorphism ~/oeEnd/~(/~) 
respectively (we recall that qg is the morphism induced by the multiplication by ~). 
Let us observe that if g e k IX 1 . . . .  , X , ]  then m, and Y'0 are univariate polynomials 
with coefficients in A. 

Proposition 5. Let g be an element of the ring/([-Xr+ a . . . . .  X , ]  which distinguishes 
the zeros of q~e. Then mg = ~rg. 

Proof. Let rag:= T ~ + ~s- l TS- 1 + ... + ao ~ / ( I T ]  be the minimal polynomial oft/g. 
It suffices to show that we have s _-_ D (recall that D is the dimension of the K-vector 
space/~ and therefore the degree of the characteristic polynomial of ~/0)- 

The equality mg01g) -- 0 in Endg(/~) says that the element mg(~) of the ring/~ is 0. In 
other words the polynomial mg(g)~K[Xr+ 1,..-, X,]  belongs to the extended ideal 
~e and then mg(g(pi)) = 0 for all 1 _< i _< D. Thus the fact that g distinguishes the 
points pi implies that g(pl) . . . .  , g(pD) are different roots of the univariate polynomial 
mg. In particular we have the inequality D < s. []  

Combining Proposition 5 and Corollary 2 we obtain: 

Corollary 6. Let g be a polynomial in k [ X  1 . . . .  , X , ]  which distinguishes the zeros of 
the ideal ~ e c / ( [ X ~ +  1 . . . . .  X ,] .  Then the total degree of YF o is bounded by 
deg(V) deg g. []  

Remark. In [13, Lemma 3.3.31 the general bound degX o < r deg(V)Zdegg is ob- 
tained without additional hypothesis on g. 

The following proposition allows to modify non zero divisors of B by means of 
a generic linear form in order to obtain "separability properties" with respect to the 
zeros of the ideal ~e. 

Proposition 7. Let g ~ k [ X  1 . . . .  , X , ]  such that its class ~ in B is not a zero divisor. 
Then there exists a non-empty Zariski open set U c k "-~+ l (depending on g) such that 
for all fl:=(fl~ . . . . .  fl,_~+ l)e U the induced linear affine form ~fl:= f i l  X r +  l -~- . . .  -~- 
fl,_ ~X, + ft,_ ~ + 1 ~ k [ X~ + 1 . . . .  , X , ]  verifies that f pg distinguishes the zeros of ~e. 



362 J. Sabia, P. Solern6 

Proof. Fix i, j, with 1 < i < j < D, and let us consider the following linear homo- 
geneous equation in the variables fll . . . .  , ft, r+ 1 with coefficients in/r 

i i 
(fllp  + '  + fl.-rp.-  + l) (p ) - (fl ip{ + ' + fl.- pJ.-r + Og(p j) = o 

(6) 

Since 0 is not a zero divisor in B one deduces that g(p i) # 0 for all 1 < i _< D. Hence, 
taking also into account that the points pi and pJ are different we deduce that the 
linear homogeneous equation (6) defines an hyperplane Hij of /~"- r+  1. The inter- 
section of this hyperplane with the affine space k "-~+ 1 determines a proper linear 
subspace of k "-~+ 1. We define the set U =~ k "-r+ 1 as follows: 

U:=- k"-r+ l \ U (Hijnk"-~+ l). 
i , j  

Since k is an infinite field one infers that the set U is non-empty and its definition 
guarantees that for any fi in U the corresponding polynomial #~g distinguishes the 
zeros of the ideal ~ e .  [] 

Corollary 8. Let g ~ k [ X D . . . ,  X,].  Then deg(det(t/o)) __< deg(V)(1 + deg g). 

Proof. The statement is obvious if g is a zero divisor. If this is not the case, follow- 
ing Proposition 7 let #p6k[X,+ 1 . . . . .  X, ]  be a linear form such that the mor- 
phism t/~eg distinguishes the zeros of ~e. Therefore Corollary 6 implies that the 
total degree of the characteristic polynomial of ~/t~o is bounded by deg(V) deg(E~g) -- 
deg(V)( l+degg) .  The claimed upper bound is clear from the equality 
det(tb~g ) --- det(t/~) det(qg). [] 

Notation Let g be a polynomial in k[X 1 . . . . .  X, ]  such that its class 0 e B is not a zero 
divisor (in particular det(~g) is a non-zero element of the ring A) and let 
~Yo = Ts + c~_1T~-I + ... + ~o~A[T ] be the characteristic polynomial of the 
morphism t/0. We define a new polynomial g*ek[X1 , . . . ,  X,]  which depends on g in 
the following way: 

g s  2 . . .  
g*:= g~ 1 + ~ _  t + -}- ~2g -'}- ~1. (7) 

Observe that gg* + ao = fo(g) is an element of the ideal 5. 

With these notations we have the following key lemma: 

Lemma 9. Let f and g be two polynomials in k[X  1 . . . . .  X,]  such that ~jEB is not 
a zero divisor. Then we have the inequality: 

deg Tr (g*f )  < deg(V)(1 + max {deg f ,  deg g}). 

Proof. Let ao:= ( -  1) 0+ 1 det(t/0); from (7) we have Og* = ao. 

Let T be a new indeterminate and let fo*s = TD + b,  _ 1 T ~  1 + . . .  + b~ T + b o ~A IT]  
be the characteristic polynomial of the morphism t/o, s considered as an element in 
EndK(B' ). Observe that Tr (g*f )  = --bD_ 1. 

Fix for the moment an arbitrary element 2 of the base field k. 
The polynomial ~ro,i(2ao) is an element of the polynomial ring A (because ~rg,r 

belongs to A[T]  and 2ao~A ). 
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Set Qz:= det(2t/g - t/f). Therefore we have the following equalities in the ring A: 

Xg*f(2ao) = det(2aoId - t/g'f) = det(2t/o*o - t/o*f)= 

= det(t/o,)det(2t/o - t/f) = det(t/g,)Q a (8) 

Now let 21 . . . . .  2,+ a be different elements of the infinite field k. 
The relation (8) implies that the coefficients b D_ ~ . . . .  , b 1, bo satisfy the following 

(D + 1) x (D + 1) linear system: 

1 21% ..- (21ao) D 

1 2D+la o ( 2 0 + ; % ) 0 /  

b!) det(t/o,)Qa, 
det (t/.. ~ J .  

det(t/o~)Q~,+l/ 

If we denote by M ~ A  (D+ I)x(D+ I) the matrix of this linear system we have that 
det(m) = aS (~ 1)/2 iJ i>j(2i_ 2j) and by Cramer's rule one obtains 

det(m)bD- 1 = det(C), 

where C e A (D + 1) • (D + 1) is the following matrix: 

i I 21% ... (21ao) D-2 det(t/o,)Qzl (21ao) D 
22.a o ... (22ao) D-2  det(~g,)Qa= (22 .ao) D 

' , '  

2D+la o ... (2o+1%) 9 . 2  det(t/,,)Qz,+, (2D+lao) D 

bD - laoD(D+ 1)/2 1~ (2i -- 2 j ) =  
i>j 

1 21 ... 2;  -2 2;  \ 

! 5 ' . .  / 
D'-2 1 2D+ 1 -.. 2D+ 1 Q*.+I 2 ~ + 1 /  

= a(D(D- 1)/2)+ 1 det (~o,) de t  

Thus 

Taking into account that det(t/9, ) = ( - a o )  D- 1 we have: 

bD-1 1 ~  ( 2 i  - -  2 j )  = ( - -  1) D-  1 det 
i> j  

This equality implies the estimation: 

1 A1 . . .  /~1D 2 ~ 21D 

{ 2.2 ..."" 2f. -2. Q.~ 2.~. J (9) 

deg Tr(g* f )  = deg b 0_1 <= max {deg Qz, } = max {deg(det(2?lg - t/y)) }. 

Fix an index i, 1 < i _< D + 1. Corollary 8 implies that the following inequality is 
satisfied: 

deg Qz, = deg(det(2it/g - t/y)) --< deg(V)(1 + max {deg f, deg g}). 
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Taking into account this inequality, from (9) one obtains: 

deg Tr(g*f) = deg bo_: < max {deg Q~} < deg(V)(1 + max{deg f,  deg g}) 
i 

and this concludes the proof of the 1emma. [] 

This lemma allows us to estimate an upper bound for a trace associated to the 
sequence f l  . . . .  , f , _ ,  (see Definition 4): 

Theorem 10. Let aaGB* be the trace associated to f l , . . . , f , - , ;  let g and f be 
polynomials in k[X1, . . . ,  X,]  such that O G B is not a zero divisor. Then the following 
inequality holds: 

deg aa(9*f) < deg(V)(1 + max{deg f,  deg g + (n - r)d}). 

In particular for any polynomial f e k [ X : , . . . ,  X ,]  we have: 

deg a a(f) < deg(V)(1 + max {deg f ,  (n - r)d} ). 

Proof. Since dis  not a zero divisor in B (assumptions 4.1), from (5) and (7) we deduce 
the relation in B*: 

(A*zl)'a a = A*'Tr 

Specializing this formula in g ' f e B  one obtains: 

aA(A*Ag* f )  = Tr(A* 9* f). 

By (7) we have that A*z] belongs to the ring A and then the previous formula can be 
rewritten as the following equality in the ring A: 

A*Aa~(9* f )  = Tr(A* g ' f ) .  

In particular we obtain the inequality 

deg a a(g* f )  <= deg Tr( A * g* f). 

Taking into account that A* 9" = ( -  1) D+ I(Ag) * and applying Proposition 3 and 
Lemma 9 we conclude that 

degTr(A*9*f)  <= deg(V)(1 + max{deg f,  deg g + (n - r)d}) 

and the theorem is proved. [] 

Remark 11. Combining Theorem 10 and Bezout Inequality we obtain: 

deg aa(g*f) _-< d"-'(1 + max {deg f,  deg 9 + (n - r)d} ), 

deg an(f) <__ d"-'(1 + max{deg f ,  (n - r)d}). 

Remark 12. In [8, Lemma 5.1] a different approach based essentially in theory of 
residues allows to obtain the inequality 

deg aA(f) <---- deg f + (n -- r)d"(1 + d" -'). (10) 

Their method requires that the (dependent) variables X, + : . . . . .  X,  verify semimonical 
integral equations (i.e. for each j, r + 1 ___ j ____ n, there exists h f iA[X j ]  c~ ~ non zero 
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such that degxjh j = deg hi), it uses strongly the effective Nullstellensatz of [18] or 
[10] and is proved only for fields of characteristic zero. But on the other hand our 
assumption about the Jacobian doesn't appear. 

Let us observe the different nature of this bound with respect to the result of the 
previous remark: in (10) the degree of the polynomial f appears in an additive form 
and the remaining part is essentially of order d 2" while our bound (Remark 11) is 
multiplicative in deg f but the exponent ofd is n - r + 1. Nevertheless our method is 
also adaptable in order to obtain an upper bound of the same kind: if, like in [8], we 
assume the existence of semimonical integral equations it is easy to show that every 
polynomial f ~  k [XD. . . ,  X,]  can be represented modulo ~ by a polynomial f '  such 
that deg x ...... x , f ' - -<deg f  and degx, + ...... x , f '  <deg(V); therefore using the A- 
linearity of a4 one obtains: 

deg aa(f) = deg aa( f '  ) < deg f + deg(V)(1 + deg(V)) < deg f + d"-'(1 + d"-r). 

The assumption on semimonical integral equations is unavoidable (see Remark 14 
below). 

Lemma 9 provides also an upper bound for the usual trace: taking the constant 
1 as the polynomial g we have deg Tr(f)  < deg(V)(l + deg f) .  Nevertheless a some- 
what more precise upper bound is easily obtainable from Corollary 2 (see also [13, 
Lemma 3.3.3]). 

Theorem 13. Let f be a polynomial in k IX 1 . . . . .  X , ]  and let f be its class in the tin9 B. 
Then deg Tr(f)  < deg(V) deg f .  In particular deg Tr(f)  < d "-" deg f. 

Proof. Let m I = T S + a s_ 1 TS- 1 + "'" + ao ~ A [ T] be the minimal polynomial of the 
morphism t / i t  EndK(B' ). In virtue of Corollary 2 the total degree of my is bounded by 
deg(V) deg f .  

Let m- = V[ < Q. be the decomposition of m- in irreducible factors on K[T] .  By 
J i l l  < j = J  J J 

Gauss Lem~a  one deduces that all the polynomials Qj are monic and their 
coefficients are elements of the ring A of degrees bounded by deg(V)deg f.  

For each index j, 1 < j < J, denote by dj the degree of Qj and by fij the coefficient 
of the monomial T d'- ~ in Q~ (in particular deg/~j < deg(V) deg f).  

Let Y's = T"  + b D_ 1 TDz ~ + "'" + bo be the characteristic polynomial of t/$. 
Therefore •$ = m s I-IjQ~' where el . . . . .  ej are non-negative integers. 

By comparison of coefficients one deduces: 

- T r ( f ) = b  D l = a ~ _ ~ +  ~ ( e j -1 )E-  
{j;e~ # o} 

Therefore deg Tr(f)  < deg(V) deg f .  [] 

Remark 14. The following very simple example shows that the upper bound of 
Theorem 13 is optimal: let d~ N, A:= C[X], B:= C[X, Y]/(Y -- Xd). Then Tr(Y t) = 
Tr(X at) = X dt. 

5 On Effective Nullstellensiitze 

In this section we apply the inequalities obtained in the previous paragraph in order 
to prove a quantitative version of the Hilbert Nullstellensatz. 
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5.1 The Complete Intersection Case 

5.1.1 Assumptions. We follow essentially the notations introduced in Sect. 4. We 
denote by k an arbitrary field; since the statement of effective Nullstellensiitze 
doesn't depend on algebraic extensions of k, we may however suppose without loss 
of generality that k is algebraically closed. 

Let r be an integer, 0 _ r  _ < n - 1 .  We assume that f~ . . . . .  f , _ r  is a regular 
sequence contained in k[X~ . . . .  , X,] .  Let d be an upper bound for the degrees of all 
polynomials fj,  1 __< j < n - r. 

For  each j, r __< j ___< n -  1, let ~j be the ideal generated by f l  . . . . .  f ,_j,  Aj:= 
k[X~ . . . . .  Xj] and Bj:= k[X~ .. . . .  X,]/~j. Suppose that the canonical morphism 
A j ~  Bj is an integral monomorphism and that the Jacobian Aj is not a zero divisor 
in Bj. We write J'fj for the kernel of the application/lj: Bj | Bj ~ Bj introduced in 
4.2 and ~m "~(j),~mr(j)=brg~'~t-~̀a,'" ",Xn] are such that ~'ma~ ) |  is the generator of 
AnnBj| defined in Proposition 3. Its associated trace will be denoted by aj. 

5.1.2 A Division Lemma. Under the previous assumptions we have the following 
division lemma (see [18, 7, 3, 26] for more precise bounds): 

Lemma 15. Let f be a polynomial in the ideal ~ .  Then there exist polynomials 
PI,..., Pn-r in k[X1, . . . ,  X, ]  such that: 

n - - r  

�9 f = ~ Pifi 
i = 1  

�9 degp i<d" -~(3n-3r -2 )+d" - r - lmax{deg f ,  d} (1 <_iNn-r) .  

Proof. We shall construct recursively polynomials p, _ ,  p, _ ~ _ 1,..., p ~ e k IX 1 . . . . .  X, ] 
such that for any index j, r < j < n - 1, the following properties are verified: 

(I) the polynomial f - p,_~f,_~ . . . . .  p ,_~f ,_j  belongs to the ideal ~i+ 1 (where 
5 ,  denotes the zero ideal), 

(II) the polynomial p,_j  can be written in the form 

( j + l )  ( j + l )  
Pn-j = E O~m am 

m 

1) O+l) where a~ + are the polynomials which appear in Proposition 3 and ~m are 
polynomials in the ring Aj + 1 which degrees are uniformly bounded by a constant cij 
defined by: 

d " - r ( n - r - 1 ) + d " - r - l m a x { d e g f ,  d}+ ~ d" - r - s (2 (n - r - s )+  l )+d  ~-j-1 
l <=s<=j--r 

(11) 

We start the recursive procedure at j = r. 
Since the polynomial f belongs to the ideal ~r, there exists a polynomial 

h~k[X 1 . . . .  , X, ]  such that: 

f= -h f , _ ,  mod ~+1 .  (12) 
t ~ ( r +  l) ( r+ l )  We define p,_r := ~o-r+lVO~ m )am 

m 

First we observe that the trace formula (2) implies that p,_ ~ - h belongs to Jr  + 1- 
So p,_r satisfies (I). 
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The element f . - r  is not a zero divisor in the ring Br+ ~ so, following (7), we can 
define the polynomials f * _ ~ k [ X  1 . . . . .  X , ]  and eeA~+ 1 in such a way that 
f , _ , f ,  ,-c~ is an element of the ideal ~r+~. Multiplying the equality (12) by 
f*_~ we obtain: 

f * _ J - c t h  mod ~ + 1 .  

Thus the polynomial identity 

( ~* ~ ( r +  1)] ,~(r + 1) 
O ~ P n - r = Z t T r + l ~ , J n - r J  m ?~m 

?n 

holds. 
Observe t h a t ,  divides the polynomials o- t 7,  7~t~+ 1)~ whose degrees are r+ l k J n - - r J L ' m  ! 

uniformly bounded by d ~-~- a (1 + (n - r - 1)d + max {deg f ,  d} ) = 6r (see Remark 11). 
Therefore defining 

( z ( r + l ) : : l  O- i F *  ~.x(r+l)~ 
m (Z r + l t d n - r d ~ m  / 

property (II) holds. 
Let now j, r < j < n -  1, be an index such that there exist polynomials 

p . _ . . . . , p . _ j  satisfying conditions (I) and (II). We are going to repeat mutatis 
mutandis the same procedure used in the case j = r. 

Since the polynomial 9 :=  f - p . _ r f . _ ~  . . . . .  p._jf._~ belongs to the ideal 
~j+ 1 (condition (I)) there exists a polynomial he k[X 1 . . . .  , X . ]  such that: 

9 - h f . _ j _  1 mod ~j+2. (13) 

The polynomial p._j_ 1 is defined by: 

{ ~ ( j  + 2)]r~( j + 2) 
P n - j - I ~ Z O ' j + 2 V ~ m  /~m " 

m 

The trace formula (2) implies that p._j_ 1 - h  belongs to ~j+ z. So condition (I) is 
verified. Following (7) let us consider the polynomials f*  j_ 1 ek[X1 . . . . .  X , ]  and 

, 
o~EAj+ 2 such that f n - j - l f n - j - 1  - -  ~E~j+2" 

From (13) we obtain: 

Therefore 

f*_j_lg-o~h m o d ~ j +  2. 

[ ~* r~tw(j + 2)],q(j + 2) 
O ~ P n - j - l  ~ 2 t T j + 2 ~ J n - j - l ~ m  /~m  " 

nl 

holds in the polynomial ring k[X 1 . . . . .  X,] .  Taking into account that ~ divides the 
polynomials o-j+ 2 ( f* - j -10c~  + 2)) we define: 

~(j+ 2 ) .  1 O" --* z~,~(j + 2)] 
" " c~ J + z ( f " - J - l ~ m  J" 

In order to show that p ,_ j  1 satisfies condition (II) it suffices to prove that the 
degrees of the polynomials ~ +  2) are bounded by 6j+ 1. 

t" ~* .,5,~(J + 2)] for each First we observe that deg cd~ + 2) is bounded by deg o-j+ 2 w , - j -  1 u~,, 
index m. 
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F r o m  the definition of the polynomial  g we have: 

tT* ,~,x(J+ 2h = ( -  - " ~U+2)~ deg,~ dega]+2 f * - i - , f c ~  + z ) -  2., ~* ~ T ~j+2kJn- - j - - l~4~m 7 t ! = r J n  j 1Un--lJn l m ) 

= (7 --* - -- - ( j +  2) (T* ~(J+2)) ,deg  fn  j-xPn tf,-tCm (14) < m a x  deg(r j+2tJn- j - lJ  m j + 2  
l =  

Remark  11 implies: 

dega~+z ( f . _ j  1J~m~'~(J+ 2)h! 

=< d" - J -2 ( l  + max{deg f + degc~ +2), deg f , _ j _  1 + (n - j  - 2)d}) 

< d"-J-2(1 + (n - j  - 2)d + max{d, deg f}) .  

In order  to bound  the remainder  par t  of (14), we use condit ion (II) to replace each 
polynomial  p,_ l, r < l < j: 

degcr]+2 f , , -# - l t~ . , ,  ~,,,, .]~,,,-t~,,, ] 

<max{dego- j+  ~T* ~(z+l)d(t+l)T ~u+ = 2 t d n - - j  1 m' m' dn--l t 'm 2) )} .  
t,ra" 

(t + i) Taking into account  that  the polynomials  ~,n' are elements of the ring At + 1 and 
therefore are in As+ 2 we obtain: 

max  {deg o- tT* ~((/+ 1)d(t+ 1) T .~(J+ j + 2 t J n - - j - - 1  m' m" J n - l ~ m  2) )}  
l,rn" 

( t + l )  - - ,  ~ ( t +  1) T , ~ ( j + 2 ) ~ t  =max{deg~m'  +deg~r ]+2( f ,  ] 1~,~ ' J,-t '~,, n .  
1.m' 

F r o m  Remark  11 and condit ion (II) for 1 we deduce: 

,~(t+l)~ 7 u + 2 h < 6 z + d . - j - Z ( l + ( 2 n _ l _ j  2)d). deg c~ m ,(t + i) + deg ~r]+ z(f*_ j_ 1~,,, Jn_t~m 7= 

Summarizing the inequalities above we have that  degc~  +z) is bounded  by the 
expression: 

max {d " - j -  2(1 + (n - j  - 2)d + max {d, deg f}) ,  

max {fit + d" -J -2(  1 + (2n - l - j  - 2 )d )}  ~. 
r<_I<_# ) 

F r o m  the definition of ~j (11) it is clear that: 

d"-J-2(1 + (n - j  - 2)d + max {d, deg f } )  __< ~ .  

Then  

deg c~ +2) = max {~ + d"-J-z(1 + (2n - l - j  - 2)d)}. (15) 
r<t<<_i 

On the other  hand  a simple computa t ion  shows that: 

6t+ ~ = ~t + 2d"-~- ~(n - l - 1) + d " - t - z  (16) 
and therefore 

(~t Jr- d n - j  2(1 JF (2n -- l - j  -- 2)d) < 6 t + d"- t -z (1  + 2(n - l - 1)d) = fit+ 1. 
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Replacing in (15) we conclude: 

d e g ~  +2) __< max  {~l+i} = 6j+i .  
r < l < j  

Thus,  this recursive me thod  produces  polynomials  Pl . . . . .  Pn-r in k[X~ . . . . .  Xn] 
which verify: 

n r 

�9 f = ~ Pifi 
i = 1  

�9 for every index i, 1 < _ i N n - r ,  the inequali ty d e g p i < 6 , _ i + ( i - 1 ) d < g ) , _  a 
holds (see condi t ion (II) and (16)). 

In  order  to finish the p roof  of  the l e m m a  it suffices to est imate an upper  bound  for 

(~n- 1: 

( ~ n -  1 = d n  - r (  n - -  r - -  1) -t- d n r 1 m a x  {deg f ,  d} 

+ Z d" ~-s(2(n-  r -  s) + 1) + 1 
l <=s<=n-1 r 

= d  n - ~ ( n - r - 1 ) + d ' - r - ~ m a x { d e g f , d } +  ~" d n ~ ~ ( 2 ( n - r - s ) + l )  
l <=s<n--r 

__<d ~ - ~ ( n - r - 1 ) + d "  ~ - t m a x { d e g f ,  d } + ( 2 ( n _ r ) _ l )  ~ d"-~-s  
l < s < n - - r  

G d"-r(n - r - 1) + d " - r -  1 max  {deg f ,  d} + (2(n - r) - 1)(d"-" - l) 

< d"-r(3n - 3r - 2) + d " - r -  1 max  {deg f ,  d}. 

Thus  the l e m m a  follows. [ ]  

N o w  we are able to prove  the following par t icular  quant i ta t ive  Version of the 
Nullstellensatz: 

L e m m a  16. Let s e N, 0 <_ s <_ n + 1, f l . . . . .  f s be polynomials in k [ X 1 . . . . .  X , ]  such 
that f D . . . , f s - 1  verify the assumptions 5.1.1 for r : =  n -  s + 1 and such that 
1 e ( f l  . . . . .  fs). Let d be an upper bound for the degrees of the polynomials f j ,  1 <=j <= s. 
Then there exist polynomials Pl . . . .  , Ps in k [ X D . . . ,  X , ]  verifying: 

�9 1 = ~ Pifi 
i = 1  

�9 deg Pi <= 4nd" (1 __< i __< s). 

Proof. First  suppose  s < n + 1. Tak ing  into account  that  in the first step of the p roof  
of L e m m a  15 we didn ' t  use the fact tha t  the ideal is generated by a regular  sequence 
we obta in  1 = ~ p j f j  where degp j  < 3sd ~ < 4ndn(1 =<j < s). 

N o w  assume s = n + 1. As f l  . . . . .  f ,  is a regular sequence these polynomials  generate 
a 0-dimensional ideal 3o and the class o f f ,  + 1 is a unit in the factor ring k [XI . . . . .  X , ] /  
3o- In other  words,  there exists a po lynomia l  p , + ~ e k [ X a , . . . , X , ]  such that  
1 - p , + l f , + l e 3 o .  

F o r m u l a  (2) and Propos i t ion  3 in the case A = k and B = k [ X ~  . . . . .  X , ] / 3 o  
imply tha t  there exist po lynomials  amek[X 1 . . . . .  X , ]  (1 _<m_< M) with degrees 
bounded  by nd such that  for any  po lynomia l  g one can find 21 , . . . ,  2M in the field 
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k satisfying: 
M 

g -  , ma E 0. 
m = l  

Therefore, without loss of generality we can suppose that deg p , +  ~ < nd. 

Finally applying Lemma 15 to the polynomial f : =  1 - p,+ i f , +  1 which belongs 
to the ideal ~o and has degree bounded by (n + 1)d we obtain polynomials p l , . . . ,  p, 
such that: 

n + l  

- ~ ,  p , f ,  = 1 
i = l  

- deg p~ < d"(3n - 2) + d"- 1 (n "~- 1)d < 4nd". [ ]  

5.2 The General Case 

Now our goal is to obtain an effective Nullstellensatz in a general context. For  this 
purpose we repeat the arguments applied in [ 13] in order to prepare our list of input 
polynomials. 

Let f l  . . . .  , f ~ k [ X  1 . . . . .  X . ]  such that 1 ~( f l  . . . . .  f~) and let d:= maxj{deg fi}" 
Set p :=  (n + 1)s. We consider the family of polynomials 

gl := f l  . . . . .  gs:= fs, g~+ 1 := x l f l  . . . . .  g~+,:= x , f l , " ' ,  g(,+ 1)~-,+ 1 

:= x l f ~ , . . . ,  gp = g(,+ 1)s:= x,f~. 

Let us observe that the degrees ofg~ . . . . .  go are bounded by d + 1 and that g~ . . . .  , gp 
generate the trivial ideal of k [ X D . . . ,  X ,] .  

For any index j, 1 < j < s, let U / =  {x ~ A-~; f j (x)  # 0} and let T j :Uj  ~ A~ -1 be 
the morphism of affine varieties defined by 

\ f j (x)  . . . . .  f j (x)  ' f j (x)  . . . .  ' f j (x)  J 

for x e Uj. 
By construction, Tj  is unramified (the associated ring morphism is a localization 

inclusion, see [ 15, Ch. I, 2.2.i]) and the Zariski closure of its image is an irreducible 
�9 p - - 1  . . 

subvarlety of A~ of dimension n. The finite family (Uj)~<=j<=s forms an open 
covering of A~. Let f ] , . . . ,  f'n+ 1 be a family of generic k-linear combinations of 
g l , . . . ,  gp. The degrees of the polynomials f ' l , - - - ,  f',+ 1 are bounded by d + 1 and 
they generate the trivial ideal of k[X~ . . . . .  X , ] .  

" ' ' 7  r b N ~  O < - r < - n - l . W e a n a l y z e t h e i d e a l ( f ' l ,  f , - r )  y means of Bertini's 
theorem and the geometric properties of the morphism Tj, 1 __< j __< s. 

Let us for the moment fix j, 1 __<j =< s. First observe that for each t, 1 _< t _< n + 1, 

f', g j-1 the rational function ~ is a generic affine k-linear combination of g-A . . 
f j ,  - ,  , 

g j+ 1 g-e We use Bertini's Theorem in the version of Jouanolou [16, Corollaire 
f j  . . . . .  fj" 

6.7]. Applied to our context it has the following form: the fact that huj is an 
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unramified morphism from the irreducible smooth affine variety Uj to the affine 
space A~ -1 having an n-dimensional image and being defined by the rational 

functions - - , . . . ,  gl g J-~,  gj+ ~,...,--gP implies that any set of at most n generic affine 
fj fj 

gJ- ~ gJ+ 1 .. go defines a (nonempty) smooth affine linear combinations 
o f j j  . . . . .  f j  , f j  , . , f j  

subvariety of Ui and generates a (proper) radical ideal of the fraction ring 

fl," f"-~ define a smooth sub- k [ X  1 . . . . .  X,]yj. Thus the rational functions -~j . . . .  f j  

variety of Uj of dimension r and generate a radical ideal of k [ X  1 . . . .  , X , ] z ;  (In fact 
the variety is irreducible and the ideal is prime for 1 _< r _< n - 1.) 

Since the U j, for 1 __< j ____ s, form an open covering of A~ we conclude that the 
subvariety of N~ defined by f 'x . . . .  , f ' ,_~ is smooth and of dimension r, and that the 
ideal (f'l . . . . .  f ' ,_ ~) is radical for every 0 _< r _< n - 1. (We call an eventually reducible 
closed subvariety of A~ smooth if it is equidimensional and all its local rings are 
regular.) In particular f'~ . . . . .  f ' ,  form a regular sequence of k[X1  . . . . .  X , ] .  

From these arguments one deduces that the sequence f ' l  . . . .  , f ' , ,  f ' ,+ ~ satisfies 
the assumptions of Lemma 16 (moreover each Jacobian Aj is a unit in the corres- 
ponding factor ring B j) and that degf)  ____ d + 1 for all j. 

Applying now Lemma 16 we obtain: 

Theorem 17. Let  f l , ' " ,  fsek[X1 . . . .  ,X , ]  be polynomials of  degree bounded by 
d such that 1 e ( f l  . . . .  , f~). Then there exist polynomials P l , . . . ,  P ~ e k [ X 1 , . . . ,  X , ]  
which verify: 

�9 1 = ~, Pifi  
i = 1  

�9 degp~<=4n(d+ 1)'(1 <_i<_n+ 1). [] 

5.2.1 The Case of  Characteristic Zero. When the characteristic of the ground field is 
zero, the unramified condition can be avoided (see [16, Corollaire 6.7]) and the 
previous argument can be simplified. First we need a well known result concerning 
generic linear combinations: 

P r o p o s i t i o n  18. Let  k be an infinite field, f l , . - . ,  f s ~ k [ X 1  . . . .  , X , ]  be polynomials 
such that l ~ ( f  1 . . . . .  f~). Then there exist t~[N, t<= n, and k-linear combinations 
g D . . . ,  gt+ 1 o f  the polynomials f i  such that: 

�9 1E(ga . . . . .  gt+  1), 
�9 gl . . . . .  9 j -  1, g~+ 1 , ' " ,  9t+ 1 is a regular sequence, for  all index j, 1 < j < t + 1. 

Proof. Let t be the minimal integer such that there exist k-linear combinations 
f ]  . . . . .  fit, ft+ 1 of the polynomials f l  . . . . .  f~ verifying: 

- 1 e ( f ' l  . . . .  , f ' t+  a), 
- f ' l  . . . . .  f't is a regular sequence (in particular t < n). 

It is easy to see that t is positive and well defined (see for example [5, Theorem 14]). 

For each vector ~:= (cq,... ,  ~t)~k' we define 9r cqf '  1 + . . .  + ~tf'~ + fit+ 1. Clearly 
1 z ( f ' l , . . .  , f~, gr (there are no common zeros) and 9(') is a linear combination of 
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f l  . . . . .  f~. I t  suffices to show tha t  there exists an adequate  e such that  f ' l  . . . . .  f ) -  1, 
! ! f j+ 1 . . . . .  f t ,  g(~) is a regular  sequence for all j, 1 < j < t. 

Fix j, 1 < j < t, and denote  by V (~) = A~, the variety defined by the polynomials  

f '  f '  f '  f ' ,  g(~) 1 ~ ' " ,  j - l ,  j + l ~ ' ' ' , d t  " 

F r o m  the minimal i ty  of t we deduce that  V ~) r ~ and since the variety 
! ! 

W defined by  f l , . . . ,  f j -  l, f j+ 1 . . . . .  f't is equidimensional  (it is defined by a regular 
sequence) we have: 

n - (t - 1) < dim V (~) < n - (t - 2). 

! t If  d im V r = n - (t - 1) one infers that  f~ ,  . . . ,  f j -  1, f j +  1, .--,  Jt,~f' "r is a regular  
sequence. Let  W = C~ w. . .  w C,, be the decompos i t ion  of W in irreducible com- 
ponents.  Since ( f ' l , . . . ,  fit) is a regular sequence, for each index i, 1 < i < m, there 
exists x~ e C~ such tha t  f~(x~) ~ O. N o w  we take the coefficient ~j in the non  empty  set 
(we recall tha t  k is infinite): 

k \ {  - f+~(x i ) "  1 - < i < m } .  
f~(xi) ' 

In par t icular  we have g(~)(x 0 r 0 for all i and therefore the strict inequali ty dim V ~) < 
n - (t - 2) holds. [ ]  

N o w  we are able to state an effective Nullstellensatz for characterist ic zero (see 
also [4]). 

Theorem 19. Let k be afield of characteristic zero and let f l , . . . ,  f~ ~ k IX  1 . . . . .  X,]  be 
polynomials of degree bounded by d such that l ~ ( f l , . . . , f ~  ). Then there exist 
polynomials Pl . . . . .  p~ ~ k IX1, . . . ,  X,]  which verify: 

�9 1 = ~ Pifi 
i = 1  

�9 deg Pi <= 4nd" (1 < i < s). 

Proof. Withou t  loss of generality, by means  of generic linear combina t ions  
(Proposi t ion  18), we can suppose: 

s__<n+l ,  
- f l  . . . . .  f j -  1, fj+ 1,... ,  f~ is a regular  sequence for all j, 1 < j < s. 

We finish the p roo f  applying the same kind of a rguments  than  in the p roof  of 
The o rem 17 to the dominan t  regular  morph i sms  ~ :  U j--+ A~, -1 defined by: 

\ f j(x) . . . . .  f j(x) ' f j(x) . . . . .  f j(x) J 

Let us observe that,  since the characterist ic of  k is 0, we need no unramif ied 
condit ions (in par t icular  no variable multiplications) and therefore the degrees don ' t  
increase. [ ]  

5.3 An Effective NulIstellensatz for Degree 2 

In  the par t icular  case when all the polynomials  are of degree bounded  by  2, an 
adequate  version of Bertini 's T h e o r e m  allows us to obta in  the sharper  es t imat ion 
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deg pj < n2" + 2 in Theorem 17 for fields of characteristic distinct from 2. This bound, 
obtained simultaneously and independently by T. Dub6 [9], improves the upper 
bound 3" given in [18] and [10]. 

5.3.1 On Bertini's Theorem for Degree 2. Let us suppose for the moment that k is an 
algebraically closed field and that are given polynomials f2 . . . . .  fs  e k [X 2 . . . .  , X , ]  
such that f l  . . . . .  f s -  1 is a regular sequence and 1 e (f2 . . . . .  fs). 

We denote by R the fraction ring k[X 1 . . . . .  X,]r by K its fractions field and by 
X the attine scheme Spec(R). We consider the (regular and dominant) morphism 
~ :  X ~ A~- 1 defined by the rational functions ~O 1 := f l / f~ , . . . ,  ~ -  1 := f~- 1/fr  

Let t e N, 1 < t _< s - 1, be a fixed integer; denote by Z (t) c X • (A~) t the closed 
subscheme defined by the equations: 

Zto + ~ z u ~  = 0 l <_ l < t, 
2 <j<=s-- i 

(where (zu) refers to the coordinates of ( A J )  and denote by r~: Z (~ ~ (A~)t the second 
projection. 

Under these notations we have the following result (see [16, Prop. 6.8] and its 
proof): 

Theorem 20. The generic fiber of n is geometrically reduced if and only if the 
differentials d~ 2, . . . , d ~ _  2 e Q ~/k generate a K-subspace of dimension at least t (or in 

terms of Jacobian matrices, the rank of ~ ~Xi/i,j is at least t). [] 

This theorem allows us to show: 

Lemma 21. Suppose that the characteristic of k is different from 2 and that deg f i <= 2, 
for all 1 <= j <= s. Therefore the generic fiber of 7z is geometrically reduced. 

In order to prove Lemma 21 we need the following intermediate proposition: 

Proposition 22. Let L be an arbitrary field of characteristic different from 2 and let 
h I . . . . .  h,, h,+2~L[X 1 . . . . .  X , ]  be polynomials of degree bounded by 2 such that 
h i . . . . .  h, is a regular sequence and 1 e(h 1 . . . . .  h,+ 2). Let J e L ( X 2 , . . . ,  X.) ("+ 2)• 2) 

Ohj 
be thematrixdefinedby Ju:= ~ (1 <i<n, 1 < j <= n + 1) and J,+ ld:= hi(1 =<j < n+  1). 

Therefore J is invertible. 

Proof. Without loss ofgenerality we may suppose that L is algebraically closed, that 
h~(0) = 0 for all 1 < i < n, and that h,+ 2(0) # 0. Let g~,... ,  g,+ 1 eL[Xa . . . . .  X , ,  U] be 
defined by the matricial product: 

(Xa . . . . .  X,, U) J = (g2 . . . .  , g,, g,+ 2) (17) 

If q~ and l~ denote the homogeneous components of h~ of degree 2 and 1 respec- 
tively, we have g~ = 2q~ + I i + Uh~. Hence a simple computation gives for all i, 
l < i < n + l :  

( U + I )  2 h~ U + I  "} 9' -  ( U + 2 )  ~ X a  . . . . .  -hi(O ) + Uh~(O). (18) 

Let S be the fraction ring L [ X t , . . .  , X , ,  U](u+ 1)(u+ 2) and ~//c ~[+ 2 be the Zariski 
open set defined by S. 
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We claim that  ga . . . . .  g,, g,+ 1 is a regular  sequence in S. 
F r o m  (18) it is clear that  g l , . . - ,  g,  is a regular  sequence (since U + 1 and U + 2 

are invertible elements of S and h~(0) = 0, for 1 < i _< n). 
Thus  it is enough to show tha t  the algebraic set of q /de f ined  by gl . . . . .  g,+ 1 is 

0-dimensional.  
First, let us observe tha t  if a point  ( ~ , v ) e q / c / ~  x ~ is a c o m m o n  zero of 

v + 2  
01 . . . . .  g ,+ l  then the p o i n t / ~ ' ~ : - v  + 1 ~ is a c o m m o n  zero of h 1 . . . . .  h, in ~ (in 

par t icular  there are only finitely m a n y  points /~,~ and  they satisfy h,+ l ( / ~ , j  # 0). 
N o w  relat ion (18) for i = n + 1 implies the equali ty 

(v + 1)2(h.+ l ( / ~ , j  - h.+ 1(0)) + v(v + 2)h.+ 1(0) = 0 

or equivalently: 

h,+ l ( ~ , j v  2 + 2h,+ l(/~,,jv + h,+ l(fl~,J - h,+ l(0) = 0. 

Hence  there are finitely m a n y  (~, v) and therefore we only need to show that  there 
exists at least one of them. 

Fo r  this purpose  it suffices to verify that  for a c o m m o n  zero fl of h i , . . . ,  h,, - 1 
and - 2  are not  the unique solutions of the (quadratic) equation: 

h,+ l(/~)v 2 + 2h,+ l(fl)v + h,+ l(fi) - h,+ 1(0) = O. 

Obvious ly  - 1 cannot  be a solution (h,+ 1(0) # 0). If - 2  is a double  root  one infers 
2h, + 1 (/~) = 0, which is impossible  since h, + 1 (fl) v a 0 and char  (L) # 2. 

Summariz ing,  gl . . . . .  g ,+ l  and X 1 , . . . , X , , U  are two regular  sequences in 
S (recall that  U isn't  a unit  in S because 2 # 0). 

Applying the Nor thco t t -Wiebe  principle (see for example  [19, Corol la ry  E.21]) 
to (17) we conclude that  the ideal ( X I , . . . ,  X, ,  U) is the ideal quot ient  

{zeS; z det( J )e (g l  . . . . .  g,+ 1)}. 

In  par t icular  de t (J )  r 0. [ ]  

N o w  we are able to give the p roof  of  L e m m a  21. 

Proof of  Lemma 21. As in the previous Proposi t ion,  let J e K  ~"+ 1)• be the matr ix  
defined by: 

-Ji f i=c3Xi,  1< i <n,  1 <=j<=s, 

- J ,+ l ,S :=  fs, 1 <=j<--_s. 

By means  of e lementary  opera t ions  on J,  it is easy to restate Theo rem 20 as follows: 
the generic fiber of  ~ is geometrically reduced if and only if  the rank of J is at least 
t + l .  

Thus  it suffices to prove  that  J has maximal  rank  s. Fo r  the case s = n + 1 this is 
exactly the s ta tement  of Propos i t ion  22 (where L: = k and  hfi= fj). 

I f s  < n + 1 we can suppose without  loss of generality that  the variables X 1 . . . .  , X ,  
are in Noe the r  posi t ion with respect  to the ideal ( f l , - - . , f ~  1). Then  we apply  
Proposi t ion 22 to the base field L : =  k (Xx , . . . ,  X,_~+ a) and the polynomials  f l  . . . .  , fs 
(considered as elements of L [ X , _  ~ + 2 . . . . .  X,]) .  
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This  concludes  the p r o o f  of  L e m m a  21. [] 

Coro l la ry  23. Let  k be an infinite field o f  characteristic different f rom 2. Suppose that 
f l . . . . .  f ,  e k [ X 1  . . . . .  X , ]  are polynomials o f  degree bounded by 2 which verify that 
1 e ( f  I . . . . .  fs) and that f l  . . . . .  f j -  1, f j  + 1 . . . . .  f s  is a regular sequence for  all j, 1 < j < s. 
Then there exist  generic linear combinations f ' l  . . . . .  f's o f  the polynomials f j such 
that: 

! t 

�9 l e ( f ~ , . . . ,  f~), 
�9 f ' l , ' " ,  f ' s -  1 is a regular sequence, 

t t 

�9 ( f l , - - ' ,  f , - , )  is a radical ideal for  all r, n - s + 1 < r <_ n - 1. 

Proof. L e t f '  1 . . . . .  f ' _ l b e g e n e r i c l i n e a r c o m b i n a t i o n s o f t h e p o l y n o m i a l s f l , . . . , f ~ .  
According  to L e m m a  21 the ideal ( f x / f j  . . . .  , f ; / f i )  is a radical  ideal in k [ X  1 . . . . .  X , ] f j  
for all t , j ,  1 <_ t < _ s -  1, 1 <=j<=s. 

Since 1 e ( f  I . . . . .  fs) one deduces  as in 5.2 tha t  ( f ' l  . . . . .  f ; )  is a rad ica l  ideal  of  the 
p o l y n o m i a l  r ing k I X 1 , . . . ,  X , ]  (moreover  the  fiber theorem implies  tha t  the typical  
f iber of  rc has d imens ion  n - t and  hence f ' l , - . . ,  f~ is also a regular  sequence). 

F ina l ly  we add  a last generic l inear combina t ion  f ' t  + 1 which verifies ( f l  . . . .  , f t  + 1) 
= ( f ' l  . . . . .  f ; +  1) and  we pu t  r : =  n - t. [ ]  

5.3.2 An  Effective Nul ls te l lensatz  for Degree  2 

Theorem 24. Let  k be a f e l d  of  characteristic different f rom 2 and let f l , - . . ,  f~e  
k[  X 1 . . . . .  Xn] be polynomials o f  degree at most 2 such that 1 e ( f  1 . . . . .  f~). Then there 
exist  polynomials P l , . . . ,  ps e k [ X1 . . . . .  X , ]  which verify: 

�9 1 = i Pifi 
i = 1  

�9 degp i  < n2 "+2 (1 < i < s). 

Proof. W i t h o u t  loss of  genera l i ty  we m a y  suppose  tha t  the field k is a lgebra ica l ly  
closed. P r o p o s i t i o n  18 al lows us to assume tha t  s =  n +  1, tha t  f l  . . . . .  f j  1, 
f j+  1 , . - . ,  fs  is a regula r  sequence for all j and  therefore,  by  means  of Coro l l a ry  23, 
tha t  ( f l  . . . . .  f~ - r )  is a rad ica l  ideal  for all n - s + 1 _< r < n - 1. 

Fo l l owing  [14, L e m m a  1] we can choose  the var iables  X 1 . . . . .  X ,  in such a way  tha t  
for all r, n - s + 1 _< r _< n - 1, the fol lowing condi t ions  hold:  

- the m o r p h i s m  k [ X  1 . . . . .  Xr]  ~ k [ X t , . . . ,  X , ] / ( f l  . . . . .  f~-r)  is injective and integral  
(Noe the r  posi t ion),  
- t h e  class of  the J acob ian  de t e rminan t  of  f l  . . . .  , f , _ ,  with respect  to the var iables  
X~+ j . . . . .  X ,  is not  a zero divisor  in k [ X  1 . . . . .  X~] / ( f l  . . . . .  f ,  r). 

N o w  we can app ly  L e m m a  16. [ ]  
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