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1 Homogeneous Bezout Theorem by deformation techniques

1.1 Notations

Let K be a field and let K be an algebraic closure of K, let n be a natural number, x0, . . . , xn a
set of indeterminates over K and d1, . . . , dn positive integers.
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For any non negative integer d we denote by Λd the set of non negative integer vectors α :=
(α0, . . . , αn), such that |α| = d, where |α| denotes the vector size α0 + · · ·+αn. We have #(Λd) =(
n+ d

n

)
.

Let A(i)
α be new indeterminates, where α runs on the set Λdi

and 1 ≤ i ≤ n.

For the sake of simplicity we introduce the following notations:

• X := (x0, . . . , xn),

• Xα := xα0
0 xα1

1 . . . xαn
n ,

• A(i) := (A(i)
α )α∈Λdi

,

• A := (A(i))1≤i≤n,

• N :=
n∑

i=1

(
n+ di

n

)
,

• An := An
K

(the affine space over K) and Pn := Pn
K

(the projective space over K).

Let us consider generic homogeneous polynomial F1, . . . , Fn ∈ K[A][X] of total degrees (in the
variables X) respectively d1, . . . , dn, defined as

Fi :=
∑

α∈Λdi

A(i)
α Xα, with 1 ≤ i ≤ n.

1.2 Homogeneous generic Bezout Theorem

Interpreting the variables A in the polynomials Fi introduced above as coefficients lying in a ground
field K(A), the zeros of these polynomials define a 0-dimensional K(A)-variety V ⊂ Pn

K(A)
.

The classical Bezout Theorem for generic homogeneous polynomials states that the cardinality (or
degree) of the variety V is exactly the product d1 . . . dn.
In this section we will show how this well known theorem may be obtained by means of a simple
deformation procedure.

First let us observe that the genericity of the polynomials Fi implies that V does not contain points
lying in the infinity-hyperplane {x0 = 0}. Therefore, V may be considered as an affine variety
contained in An

K(A)
, defined by generic n-variate polynomials f1, . . . , fn ∈ K[A][x1, . . . , xn], where

fi := Fi(1, x1, . . . , xn), for i = 1, . . . , n.

On the other hand one may also consider the polynomials fi as polynomials in all the variables
A and x1, . . . , xn, defining a N -dimensional K-variety V ⊂ AN × An (the so called “incidence
variety”).
Denote by π : V → AN the canonical projection π(a, x) := a. This morphism is dominating (i.e.
the Zariski closure of its image is AN ) and induces the canonical ring inclusion K[A] ↪→ K[V],
where K[V] := K[A][x1, . . . , xn]/(f1, . . . , fn) is the ring of coordinates of the affine variety V.
For any index i, 1 ≤ i ≤ n, consider those variables A(i)

α where α verifies that there exists an index
j 6= 0, i such that xj divides Xα.
Running the index i between 1 and n, these variables generate a monomial prime ideal ℘ ⊂ K[A]
which verifies:

Fi ≡ Gi(x0, xi) mod ℘, (1)
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where Gi ∈ K[A][x0, x1] is a generic homogeneous polynomial of degree di involving only the
variables x0 and xi and its coefficients are independent variables which don’t belong to the prime
ideal ℘.

Let Z ⊂ AN be the algebraic variety (in fact, a linear subspace) defined by the ideal ℘.

With these assumptions and notations the morphism π is generically finite in a Zariski neighbour-
hood of the fiber π−1(Z). This is a consequence of the following algebraic fact:

Lemma 1 The canonical monomorphism K[A]℘ ↪→ K[A]℘[x1, . . . , xn]/(f1, . . . , fn) is an integral
ring extension.

Proof. Consider the “triangular” sequence of homogeneous polynomials R(i)
j ∈ K[A,X], with

0 ≤ i ≤ n− 1 and i+ 1 ≤ j ≤ n, recursively defined as follows:

• R
(0)
j := Fj , for j = 1, . . . , n

• R
(1)
j := Resx1(R

(0)
1 , R

(0)
j ), for j = 2, . . . , n.

• R
(i)
j := Resxi

(R(i−1)
i , R

(i−1)
j ), for 2 ≤ i ≤ n− 1 and j = i+ 1, . . . , n.

From elementary properties of the resultant we conclude that each R(i)
j is a homogeneous polyno-

mial in K[A][x0, xi+1, . . . , xn] which belongs to the ideal (F1, . . . , Fn). In particular R(n−1)
n belongs

to (F1, . . . , Fn) ∩K[A][x0, xn].
Moreover, taking into account the matricial construction and the homogeneity of the resultant, from
the modular relation (1), it follows by a straightforward recursive argument that the coefficient of
the only monomial pure in xj appearing in R(j−1)

j is an invertible element of the local ring K[A]℘,
for j = 1, . . . , n.
In particular, the polynomial R(n−1)

n (1, xn) gives an integral dependence equation for the class of
xn in the ring K[A]℘[x1, . . . , xn]/(f1, . . . , fn) over the ring K[A]℘.
Clearly this procedure may be applied mutatis mutandis in order to provide integral dependence
equations for the class of any variable xi, i = 1, . . . , n, modulo the ideal (f1, . . . , fn)K[A]℘[x1, . . . , xn],
and so the lemma follows.

Denote by L the fraction field of the integral domain K[A]/℘ (or equivalently the residue field of
the local ring K[A]℘) and set gi := Gi(1, xi) (see formula (1) for the definition of the polynomials
Gi).
Since each polynomials gi is a generic polynomial of degree di, we conclude

dimL L[x1, . . . , xn]/(g1, . . . , gn) = d1 . . . dn. (2)

Corollary 2 The ring K[A]℘[x1, . . . , xn]/(f1, . . . , fn) is a free K[A]℘-module with rank d1 . . . dn.

Proof. The freeness follows directly from [2, Corollary 18.17], as well as from the proof of [6,
Prop.2] (in fact we may also show that the ring extension is monogenerated).
The computation of the rank is an immediate consequence of the preservation of the rank of free
modules under tensorial product: if we denote O for the local ring K[A]℘, tensoring by O/℘ we
have

rankOO[x1, . . . , xn]/(f1, . . . , fn) = rankO/℘O[x1, . . . , xn]/℘+ (f1, . . . , fn).

The corollary follows from (2) since O/℘ = L and fi ≡ gi mod ℘.

With these notations we deduce:
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Theorem 3 (Generic homogeneous Bezout Theorem)

#(V ) = d1 . . . dn.

Proof. Since the ideal (f1, . . . fn) ⊂ K[A][x1, . . . , xn] is a radical ideal, in order to compute the
number of points of V it suffices to calculate the dimension of K(A)[x1, . . . , xn]/(f1, . . . fn) as a
K(A)-vector space.
In fact this vector space is a localization of the algebra K[A]℘[x1, . . . , xn]/(f1, . . . , fn) on the
multiplicative set K[A]℘ \ {0} and then, from the previous corollary, we have:

dimK(A)K(A)[x1, . . . , xn]/(f1, . . . , fn) = rankK[A]℘K[A]℘[x1, . . . , xn]/(f1, . . . , fn) =

= d1 . . . dn.

The previous algebraic arguments may be easily translated to a more geometrical frame.
The closed subvariety Z ⊂ AN defined by the ideal ℘ verifies that the projection π : V → AN is
a finite morphism locally in a Zariski neighbourhood of π−1(Z) (Lemma 1). Moreover, the fiber
of a generic point of Z is 0-dimensional and its cardinality is equal to the cardinality of the fiber
over a generic point of AN . In other words, the typical fiber of a point lying in the closed set Z
has the same cardinality d1 . . . dn than the typical fiber of the morphism π (Theorem 3).

The freeness stated in Corollary 2 may be interpreted as a flat deformation of the typical fiber over
Z onto the typical fiber of a generic point of AN .

1.3 Algorithmic resolution of generic systems

In this section we show how the deformation introduced above is closely related with an algorithm
for the resolution of generic polynomial equation systems by means of a Newton procedure (see
also [14]).

We maintain the same notations introduced in the previous sections.

For every coefficient selection a ∈ AN , the fiber π−1(a) is geometrically described by the equations:

f1(a, x) = 0, . . . , fn(a, x) = 0. (3)

Corollary 2 and Theorem 3 state that for a point a generically chosen in the proper closed set Z
or in the whole ambient space AN , the equation system (3) has exactly d1 . . . dn different solutions
in An.

Definition 4 A point a ∈ AN is called a lifting point for the generic system {f1 = 0, . . . , fn = 0}
if the following two conditions are fulfilled:

1. The fiber π−1(a) is finite and consists in d1 . . . dn many points (in other words the fiber has
maximal -or typical- cardinality).

2. The point a is not a ramification point of π, namely the Jacobian matrix
( ∂fi

∂xj
(a, x)

)
1≤i,j≤n

is invertible for any point (a, x) lying in the fiber π−1(a).

Example 5 Let us observe that a point a ∈ AN with maximal fiber is a lifting point if and only if
the fiber π−1(a) is reduced (or equivalently non singular) in the scheme language. In particular, a
generic point a ∈ AN is a lifting point for π (see also [14]).
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Example 6 A similar observation holds for a generic point of the closed proper irreducible subset
Z ⊂ AN . Moreover, a point a ∈ Z is a lifting point for π if and only if condition (1) of Definition
4 is satisfied. In order to prove this, consider a point a ∈ Z such that #π−1(a) = d1 . . . dn. Since
a ∈ Z, this fiber consists in the zeros of the the univariate polynomials in separated variables
G1(a, 1, x1), . . . , Gn(a, 1, xn) (see formula (1) for the definition of the polynomials Gi). Since
degxi

Gi(a, 1, xi) is bounded by di for all i = 1, . . . , n, we infer that each polynomial Gi(a, 1, xi) is
square-free of degree exactly di. Then the Jacobian matrix is a diagonal invertible matrix for any
point (a, x) in π−1(a).

Example 7 Suppose that the characteristic of the ground field K is 0. Let a ∈ AN be the point
associated to the coefficients of the homogeneous polynomials

xd1
1 − xd1

0 , x
d2
2 − xd2

0 , . . . , x
dn
n − xdn

0 . (4)

Let us observe that the point a belongs to the subvariety Z.
If we denote Gm the group of the m-th roots of the unity we have π−1(a) = Gd1 × · · · × Gdn

. In
particular #π−1(a) = d1 . . . dn and so Example 6 implies that the point a is a lifting point for π.

It is well known that the lifting points play a main role as start points in order to approximate
solutions (in the numerical case) or to deformate continuously solutions (in the symbolic or seminu-
merical case) by means of suitable Newton procedures.
In fact the arguments to find generic resolutions of parametrized systems of [14] (see also [7] or
[11]), slightly modified, allow to show that the solutions of any particular instance

f1(b, x) = 0, . . . , fn(b, x) = 0 (5)

having exactly d1 . . . dn many solutions can be obtained algorithmically by a homotopic deformation
of the solutions of the system (3) defined by a lifting point a at start point.

In our case, we are able to show a more precise result: suppose that the particular instance (5)
defines a positive dimensional set having exactly s many isolated solutions (the 0-dimensional
components), with s ≥ 0. The proof of [6, Prop.1] shows that s is bounded by the cardinal of the
0-dimensional typical fiber, d1 . . . dn in our situation.
We construct an algorithm which computes a solution set of the system (5) of certain cardinality
t, with s ≤ t ≤ d1 . . . dn, containing all the isolated solutions.

The construction of the algorithm may be sketched as follows:

• The first main step consists in compute a generic resolution following closely [14]. We take
a “simple” fixed lifting point a ∈ Z ⊂ AN (for instance the lifting point considered in
Example 7) and a generic linear form L ∈ K[x1, . . . , Xn]. Applying a truncated Newton
approximation operator and a probabilistic version of Padé approximants, we compute the
minimal polynomial P ∈ K(A)[T ] (where T denotes a new indeterminate) of the class of L
in K(A)[x1, . . . , xn]/(f1, . . . , fn) over the field K(A).

• Let b ∈ AN be the coefficient point associated to the particular instance (5). A carefull
evaluation of the coefficients of P in the point b (using a L’Hopital-like argument to avoid
eventual indeterminations), allows to compute a new non zero polynomial P (b) ∈ K[T ] such
that P (b)(L(z)) = 0 for all isolated solution z of (5).

• Finally, since the constructions in the previous steps depend polynomially on the coefficients
of the generic linear form L, a well-known argument based on the chain rule for the derivatives
of a composition (see for instance [5]) gives a geometric description of a finite solution set of
the system (5) containing all the isolated points z.
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Since these arguments will be described carefully in a very similar context in Section 3 (for the
bihomogeneous case), we omit here the details and the complexity estimations of this procedure.
The precise result is summarized in the following:

Theorem 8 Homogeneous resolution....

2 Flat deformations and bihomogeneous Bezout Theorem

2.1 Some notations

Let K be a field and let K be an algebraic closure of K.
Let n,m ∈ N and denote by K [x0, . . . , xn, y0, . . . , ym] the polynomial ring in the indeterminates
x0, . . . , xn, y0, . . . , ym. For the sake of simplicity we write X := (x0, . . . , xn) and Y := (y0, . . . , ym).
For each e, d ∈ N0 we denote by Λd,e ⊂ Nn+1

0 × Nm+1
0 the set defined as follows: (α, β) ∈ Λd,e if

and only if |α| = d and |β| = e (where |α| := α0 + · · ·+ αn and |β| := β0 + · · ·+ βm).

Let us consider a finite sequence (d1, e1) , . . . , (dn+m, en+m) in N0×N0 and introduce
∑n+m

i=1 ] (Λdi,ei)
many new indeterminates over K[x0, . . . , xn, y0, . . . , ym] which will be denoted by A

(i)
αβ , where

1 ≤ i ≤ n+m and (α, β) ∈ Λdi,ei . Finally denote by A :=
(
A

(i)
αβ

)
1≤i≤n+m

(α,β)∈Λdi,ei

.

In other words, if we consider the polynomials F1, . . . , Fn+m ∈ K[A][x0, . . . , xn, y0, . . . , ym] defined
as

Fi :=
∑

(α,β)∈Λdi,ei

A
(i)
αβX

αY β , i = 1, . . . , n+m

(Xα and Y β are the standard notations for the monomials xα0
0 . . . xαn

n and yβ0
0 . . . yβm

m respectively),
they are K-generic bihomogeneous polynomials such that degX (Fi) = di and degY (Fi) = ei.
In particular, the polynomials F1, . . . , Fn+m are a regular sequence of K[A][x0, . . . , xn, y0, . . . , ym]
and define a reduced 0-dimensional subvariety V of the product space Pn

K(A)
× Pm

K(A)
where K(A)

is an algebraic closure of the field K(A).

The classical Multihomogeneous Bezout Theorem (which follows from the intersection theory for
divisors) states that deg(V ) =

∑
dj1 . . . djn

ek1 . . . ekm
, where the sum is taken over all that indices

satisfying the conditions

• 1 ≤ j1 < · · · < jn ≤ n+m

• 1 ≤ k1 < · · · < km ≤ n+m

• {j1, . . . , jn} ∩ {k1, . . . , km} = ∅

The following sections are devoted to show how this result can be obtained by means of an ele-
mentary flat deformation.

2.2 The deformation

Following the notations introduced above, let us fix an index i, 1 ≤ i ≤ n+m.

Denote by A(i) the set of the indeterminates
(
A

(i)
αβ

)
(α,β)∈Λdi,ei

(in other words the “coefficient

indeterminates” occurring in the polynomial Fi).

Finally we call Ni :=
(
n+ di

n

)
and Mi =

(
m+ ei

m

)
.
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Consider the morphism µ : ANi

K
× AMi

K
→ ANiMi

K
defined as(

(bα)|α|=di
, (cβ)|β|=ei

)
7→ (bαcβ)|α|=di

|β|=ei

.

Roughly speaking, the image of µ describe all the possible specialisations of the variables A(i) such
that the corresponding generic polynomial Fi becomes a variable-separated reducible polynomial.
More precisely:

Remark 9 A point
(
a(i)
)
∈ ANiMi

K
belongs to Im (µ) if and only if

Fi

(
a(i), X, Y

)
=
( ∑
|α|=di

bαX
α
)( ∑

|β|=ei

cβY
β
)

for suitable (bα) ∈ ANi

K
and (cβ) ∈ AMi

K
.

Moreover we have:

Proposition 10 The image µ
(
ANi

K
× AMi

K

)
is a closed affine algebraic variety Zi given by the

(homogeneous) prime ideal ℘i ⊂ K[A(i)] generated by the elements A(i)
αβA

(i)
α′β′ − A

(i)
α′βA

(i)
αβ′ where

(α, β) and (α′, β′) run over all the pairs in Λdi,ei
. �

We write A(i) for the class of the coordinate functions of the affine ring K[A(i)] modulo the ideal
℘i. Then we have:

Proposition 11 Fix a multi-index β0 ∈ Nm+1
0 such that |β0| = ei. Then the elements A(i)

αβ0
∈

K[A(i)] (where α ∈ Nn+1
0 runs over all the multi-indices with |α| = di) are algebraically independent

over K.

Proof. Suppose that there exists a polynomial relation Q with coefficients in K such that

Q
(
A

(i)
αβ0

)
∈ ℘i. Therefore we have a formula of the type

Q
(
A

(i)
αβ0

)
=

∑
α1,β1,α2,β2

Pα1β1α2β2

(
A

(i)
α1β1

A
(i)
α2β2

−A
(i)
α2β1

A
(i)
α1β2

)
with Pα1β1α2β2 ∈ K[A(i)].
As the elements A(i) are algebraically independent over K, we can specialise A(i)

αβ 7−→ 0 for all
β 6= β0 and we conclude that

Q
(
A

(i)
αβ0

)
=
∑

α1,α2

P̃α1β0α2β0

(
A

(i)
α1β0

A
(i)
α2β0

−A
(i)
α2β0

A
(i)
α1β0

)
= 0.

Since the elements A(i)
αβ0

are algebraically independent over K we deduce Q = 0.

We may also consider the point A(i) as a point with NiMi many coordinates.
From this point of view, A(i) is the generic point of the irreducible variety Zi (in the van der
Waerden’s sense) and verifies the equations defining ℘i.

Let us observe that Proposition 11 implies that A(i)
αβ 6= 0 for all (α, β) ∈ Λdi,ei

. Therefore we have:
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Remark 12 Fix a pair (α0, β0) ∈ Λdi,ei
. Then the identity

Fi

(
A(i), X, Y

)
=

 ∑
|α|=di

A
(i)
αβ0

Xα

 ∑
|β|=ei

A
(i)
α0β

A
(i)
α0β0

Y β

 (6)

holds in K(A(i))[X,Y ].

Definition 13 For any index i, 1 ≤ i ≤ n+m, we fix a multi-index (α0, β0) ∈ Λdi,ei . We define
the following polynomials in K[A(i)][X,Y ]:

Φ(X)
i :=

∑
|α|=di

A
(i)
αβ0

Xα and Φ(Y )
i :=

∑
|β|=ei

A
(i)
α0βY

β.

From the formula (6) we observe that the identity

A
(i)
α0β0

Fi

(
A(i), X, Y

)
= Φ(X)

i Φ(Y )
i (7)

holds in K[A(i)][X,Y ].

Notation 14 Let ℘ be the ideal in K [A] defined as ℘:=℘1 + · · ·+ ℘n+m. Clearly the ideal ℘ is a
prime ideal defining the irreducible variety Z := Z1 × · · · × Zn+m ⊂ AN1M1 × · · · × ANn+mMn+m .
Denote by F an algebraic closure of the field K(A), the quotient field of the coordinate ring of Z.

Using this notation, from Proposition 11 we deduce:

Lemma 15 The polynomials Φ(X)
1 , . . . ,Φ(X)

n+m ∈ K[A][X] are generic (the same holds for the poly-
nomials Φ(Y )

1 , . . . ,Φ(Y )
n+m ∈ K[A][Y ]).

Proof. From Proposition 11 the coefficients of the polynomials Φ(X)
j are algebraically independent

over K. Therefore all the coefficients of the polynomials Φ(X)
1 , . . . ,Φ(X)

n+m form an algebraically free
family.

Corollary 16 Let 1 ≤ j1 < j2 < · · · < jn ≤ n+m, and 1 ≤ k1 < k2 < · · · < km ≤ n+m be such
that {j1, j2, · · · , jn} ∩ {k1, k2, · · · , km} = ∅. Then:

1.
{

Φ(X)
j1

, . . . ,Φ(X)
jn

,Φ(Y )
k1

, . . . ,Φ(Y )
km

}
is a regular sequence in F[X,Y ].

2. No point at the hyperplane of infinity is contained in the varieties defined by these polynomials.
More precisely: {

Φ(X)
j1

= 0, . . . ,Φ(X)
jn

= 0
}
∩ {x0 = 0} = ∅{

Φ(Y )
k1

= 0, . . . ,Φ(Y )
km

= 0
}
∩ {y0 = 0} = ∅.

3. The ideal
(
Φ(X)

j1
, . . . ,Φ(X)

jn
,Φ(Y )

k1
, . . . ,Φ(Y )

km

)
⊂ F[X,Y ] is a radical homogeneous ideal defining

a 0-dimensional smooth projective variety of degree dj1 · · · djn
ek1 · · · ekm

.

Proof. Since the polynomials Φ(X)
j1

, . . . ,Φ(X)
jn

(respectively the polynomials Φ(Y )
k1

, . . . ,Φ(Y )
km

) involve
only the variables X (respectively the variables Y ) the three items follow directly from Lemma 15.

For each 1 ≤ i ≤ n+m we denote by ϕ(X)
i and ϕ(Y )

i the affinized of the homogeneous polynomials
Φ(X)

i and Φ(Y )
i putting x0 = 1 and y0 = 1 respectively.
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Corollary 17 The ideal
(
ϕ

(X)
1 ϕ

(Y )
1 , . . . , ϕ

(X)
n+mϕ

(Y )
n+m

)
⊂ K(A) [x1, . . . , xn, y1, . . . , ym] is a 0-dimensional

smooth (radical) ideal.

Proof. LetM⊂ K(A) [x1, . . . , xn, y1, . . . , ym] be a prime ideal containing
(
ϕ

(X)
1 ϕ

(Y )
1 , . . . , ϕ

(X)
n+mϕ

(Y )
n+m

)
.

From Corollary 16 we conclude that M is a maximal ideal.
Denote by J the Jacobian determinant of the polynomials ϕ(X)

i ϕ
(Y )
i with respect to the variables

x1, . . . , xn, y1, . . . , ym. From the Jacobian criterion (see for instance [10, Theorem 30.3]), it suffices
to show that J /∈M.
If M denotes a maximal ideal in F[x, y] such that M ∩ K(A)[x, y] = M, there exists a point
p ∈ An+m

F such that M is the maximal ideal associated to p.
In particular ϕ(X)

i (p)ϕ(Y )
i (p) = 0 for all index i = 1, . . . n+m.

From Lemma 15 and Corollary 16 we infer that there exist well defined indices j1 < · · · < jn and
k1 < · · · < km verifying

• {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.

• ϕ
(X)
jl

(p) = 0 and ϕ(Y )
kt

(p) = 0 for all 1 ≤ l ≤ n, 1 ≤ t ≤ m.

• ϕ
(X)
kt

(p) 6= 0 and ϕ(Y )
jl

(p) 6= 0 for all 1 ≤ l ≤ n, 1 ≤ t ≤ m.

Therefore, computing J(p) we obtain that

J(p) = ±
m∏

t=1

ϕ
(X)
kt

(p)
n∏

l=1

ϕ
(Y )
jl

(p) det

(
∂ϕ

(X)
jl

∂xs

)
1≤l,s≤n

det

(
∂ϕ

(Y )
kt

∂yq

)
1≤t,q≤m

is different from zero, since the ideal
(
Φ(X)

j1
, . . . ,Φ(X)

jn
,Φ(Y )

k1
, . . . ,Φ(Y )

km

)
defines a smooth 0-dimensional

variety containing p, and so J /∈M.

2.3 The flatness of the deformation

2.3.1 Constructing some semimonical bihomogeneous equations

Lemma 18 Let ℘ ⊂ K[A] be the prime ideal defined in Notation 14. There exist homogeneous
polynomials R1, . . . , Rn ∈ K[A]℘[X] such that the conditions

1. Rj ∈ K[A]℘[x0, xj ],

2. deg(Rj) = degxj
(Rj) and Rj is monic in xj ,

3. for any q = 0, . . . ,m and for any t ∈ N sufficiently large, the polynomial yt
qRj belongs to the

ideal (F1, . . . , Fn+m)K[A]℘[X,Y ] modulo ℘K[A]℘[X,Y ],

hold for any j = 1, . . . , n.

Proof. From Lemma 15, we have that, for any choice of indices 1 ≤ j1 < j2 < · · · < jn ≤ n+m,
the polynomials Φ(X)

j1
, . . . ,Φ(X)

jn
∈ K[A][X] define a 0-dimensional variety in Pn

F .
The Shape Lemma for finite projective varieties and the second assertion of Corollary 16 imply
that, for any j = 1, . . . , n, there exists an homogeneous polynomial R̃j ∈ K(A)[x0, xj ] (depending
on the choice of the indices j1, . . . , jn) such that

• degxj

(
R̃j

)
= degX

(
R̃j

)
and R̃j is monic in xj .

• R̃j belongs to the ideal generated by Φ(X)
j1

, . . . ,Φ(X)
jn

in K(A)[X].
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If we fix the index j, the product
∏
R̃j (where the product is taken over all possible choices of the

indices ji) is a homogeneous polynomial in K(A)[x0, xj ] which verifies:

• degxj

(∏
R̃j

)
= degX

(∏
R̃j

)
and

∏
R̃j is monic in xj .

•
∏
R̃j belongs to the ideal

⋂(
Φ(X)

j1
, . . . ,Φ(X)

jn

)
in K(A)[X], in particular∏

R̃j ∈
⋂(

Φ(X)
j1

, . . . ,Φ(X)
jn

,Φ(Y )
k1

, . . . ,Φ(Y )
km

)
, (8)

where the intersection is taken over all those sequences 1 ≤ j1 < j2 < · · · < jn ≤ n + m,
1 ≤ k1 < k2 < · · · < km ≤ n+m such that {j1, j2, · · · , jn} ∩ {k1, k2, · · · , km} = ∅.

According to Formula (7) and Lemma 15, we have that the ideals⋂(
Φ(X)

j1
, . . . ,Φ(X)

jn
,Φ(Y )

k1
, . . . ,Φ(Y )

km

)
and (F1, . . . , Fn+m)

define the same zeros in Pn
F ×Pm

F and then the relation (8) implies, by means of Corollaries 16 and
17, that there exists t0 ∈ N such that, for any q = 0, . . . ,m the polynomial yt0

q x
t0
j

∏
R̃j belongs to

the ideal (F1, . . . , Fn+m)K(A)[X,Y ].
We take the polynomial Rj as any lifting of xt0

j

∏
R̃j to the ring K[A]℘ [X,Y ] (in fact one lifts

only the coefficients).

Since the role of the variables X and Y may be interchanged we deduce also

Lemma 19 There exist homogeneous polynomials S1, . . . , Sm ∈ K[A]℘[Y ] such that the conditions

1. Sk ∈ K[A]℘[y0, yk],

2. deg(Sk) = degyk
(Sk) and Sk is monic in yk,

3. for any ` = 0, . . . , n and for any t ∈ N sufficiently large, the polynomial xt
`Sk belongs to the

ideal (F1, . . . , Fn+m)K[A]℘[X,Y ] modulo ℘K[A]℘[X,Y ],

hold for any k = 1, . . . ,m. �

Let us observe that from the proof of Lemma 18 we may suppose without loss of generality that
all the polynomials Rj have the same degree r and also that the polynomials Sk have the same
degree s.
Fix now an exponent t, and indices q and j, 0 ≤ q ≤ m, 1 ≤ j ≤ n. The third condition of Lemma
18 may be rewritten as follows: there exists Pqj ∈ ℘K[A]℘[X,Y ] such that

yt
qRj + Pqj ∈ (F1, . . . , Fn+m)K[A]℘[X,Y ].

Since the ideal (F1, . . . , Fn+m) is bihomogeneous we can suppose that Pqj is also bihomogeneous
with bidegree (r, t).
Analogously, for each `, k, 0 ≤ ` ≤ n, 1 ≤ k ≤ m, we have

xt
`Sk + P ′`k ∈ (F1, . . . , Fn+m)K[A]℘[X,Y ]

with P ′`k ∈ ℘K[A]℘[X,Y ] bihomogeneous of bidegree (t, s).

Notation 20 Fix an exponent t sufficiently large. For each choice of indices q, j, `, k we denote

Rqj := yt
qRj + Pqj and S`k := xt

`Sk + P ′`k

Observe that both bihomogeneous polynomials belong to the ideal (F1, . . . , Fn+m)K[A]℘[X,Y ] and
have bidegree (r, t) and (t, s) respectively.
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2.3.2 Elimination of variables

The goal of this section is to show a recursive procedure which allows to eliminate variables of the
polynomials Rqj and S`k, in order to find integral dependence equations.

Notation 21 For any q, q = 0, . . . ,m, we define a family of polynomials R
(`)
qj in K[A]℘[X,Y ] as

follows:

R
(0)
qj := Rqj for j = 1, . . . , n

R
(`)
qj := Resx`

(
R

(`−1)
q` ,R

(`−1)
qj

)
for ` = 1, . . . , n− 1 and j = `+ 1, . . . , n.

Lemma 22 Fix indices q, `, j, such that 0 ≤ q ≤ m, 0 ≤ ` ≤ n− 1, `+ 1 ≤ j ≤ n. Then:

1. R
(`)
qj ∈ (F1, . . . , Fn+m)K[A]℘[X,Y ] ∩K[A]℘[x0, x`+1, . . . , xn, Y ].

2. There exist positive integers a, b (depending on q, `, j) such that:

(a) R
(`)
qj is a bihomogeneous polynomial in K[A]℘[x0, x`+1, . . . , xn, Y ] of bidegree (ra, b).

(b) R
(`)
qj ≡ yb

qR
a
j (x0, xj) mod ℘ and the leading coefficient of R

(`)
qj (viewed as a polynomial

in the variable xj) is yb
q + w where w ∈ ℘K[A]℘[Y ].

Proof. The proof is by recursion in `.
For ` = 0 the assertions follow from Lemma 18 and Notation 20.
Now suppose ` ≥ 1. Assertion 1. is a direct consequence of the inductive hypothesis and the fact
that the resultant belongs to the ideal generated by the involved polynomials.
Since the resultant of bihomogeneous polynomials is also bihomogeneous (see for example [8, Ch.4,
§4, pg.155] or [16, Ch. 1, Thm. 10.9]) we have Assertion 2.(a).
For the last statement, assume that R

(`−1)
q` ≡ yb1

q R
a1
` (x0, x`) and R

(`−1)
qj ≡ yb2

q R
a2
j (x0, xj) modulo

℘. Then R
(`)
qj ≡ yb1D+b2a1r

q Ra2a1r
j (x0, xj) mod℘, where D = degx`

(R(`−1)
qj ). Take a := a2a1r and

b := b1D + b2a1r.

After the n−1 recursive steps, we obtain a family of polynomials R
(n−1)
qn for q = 0, . . . ,m depending

only on the variables x0, xn, Y .

The next reduction step consists in the elimination of the variables x1, . . . , xn−1 in the polynomials
S`k.

Notation 23 We define a family of polynomials S
(`)
0k in K[A]℘[X,Y ] as follows:

S
(0)
0k := S0k for k = 1, . . . ,m

S
(`)
0k := Resx`

(
R

(`−1)
k` ,S

(`−1)
0k

)
for ` = 1, . . . , n and k = 1, . . . , n.

With similar arguments as in the proof of Lemma 22 we obtain:

Lemma 24 Fix indices `, k, such that 0 ≤ ` ≤ n, 1 ≤ k ≤ m. Then:

1. S
(`)
0k ∈ (F1, . . . , Fn+m)K[A]℘[X,Y ] ∩K[A]℘[x0, x`+1, . . . , xn, Y ].

2. There exist positive integers a, b, c (depending on `, k) such that:

(a) S
(`)
0k is a bihomogeneous polynomial in K[A]℘[x0, x`+1, . . . , xn, Y ] of bidegree (a, b+ sc).

11



(b) S
(`)
0k ≡ xa

0y
b
kS

c
k (y0, yk) mod ℘ and the leading coefficient of S

(`)
0k (viewed as a polynomial

in the variable yk) is xa
0 + w where w ∈ ℘K[A]℘[x0, x`+1, . . . , xn].�

Finally we proceed to eliminate step-by-step the variables y1, . . . , ym−1:

Notation 25 We define a family of polynomials Q
(`)
k with ` = 0, . . . ,m − 1 in K[A]℘[X,Y ] as

follows:

Q
(0)
k := S

(n)
0k for k = 1, . . . ,m

Q
(`)
k := Resy`

(
Q

(`−1)
` ,Q

(`−1)
k

)
for ` = 1, . . . ,m− 1 and k = `+ 1, . . . ,m.

After (m − 1) many steps we obtain a single polynomial Q
(m−1)
m ∈ K[A]℘[x0, y0, ym] with the

following properties:

Proposition 26 There exists a, b, c ∈ N such that

1. Q
(m−1)
m is bihomogeneous of bi-degree (b, a+ sc) where s := degSm.

2. Q
(m−1)
m ∈ (F1, . . . , Fn+m)K[A]℘[X,Y ] ∩K[A]℘[x0, y0, ym].

3. Q
(m−1)
m ≡ ya

mx
b
0S

c
m (y0, ym) mod ℘ and then the main coefficient of Q

(m−1)
m (viewed as a

polynomial in the variable ym) is xb
0 + w where w ∈ ℘K[A]℘[x0] is homogeneous of degree b.

�

Notation 27 For each i = 1, . . . , n+m denote by fi the affinized with respect the variables x0, y0
of the bihomogeneous polynomial Fi; in other words:

fi := Fi (1, x1, . . . , xn, 1, y1, . . . , ym) .

Proposition 26 allows us to prove the main result of this Section which is the flatness of our
deformation.

Theorem 28 The standard morphism

K[A]℘ ↪→ K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m)

is an integral ring extension.

Proof. Since the role of ym is equivalent to the role of any other variable yk or xj , k = 1, . . . ,m,
j = 1, . . . , n, it suffices to show that ym is integral over K[A]℘.
After Proposition 26, consider the polynomial P := Q

(m−1)
m (1, 1, T ) ∈ K[A]℘[T ]. The leading coef-

ficient of this polynomial is 1+w(1) (item 3 of Proposition 26), which is invertible in K[A]℘ because
w(1) ∈ ℘K[A]℘. From item 2 of the same Proposition, we have that P (ym) belongs to the ideal
(f1, . . . , fn+m)K[A]℘[x1, . . . , xn, y1, . . . , ym] and therefore, the polynomial P defines an integral de-
pendence equation of the class of ym in the affine ring K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m)
over the local ring K[A]℘.

2.4 Bihomogeneous Bezout Theorem

2.4.1 The degree of a special fiber

We start recalling briefly some notations introduced in the previous sections.
Let F1, . . . , Fn+m ∈ K[A][X,Y ] be generic bihomogeneous polynomials with degX(Fi) = di and
degY (Fi) = ei for i = 1, . . . , n + m, and let f1, . . . , fn+m be the corresponding dehomogeneized
polynomials putting x0 = 1 and y0 = 1.
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Denote Ni =
(
n+ di

n

)
, Mi =

(
m+ ei

m

)
and N :=

∑n+m
i=1 NiMi.

Consider the variety

V :=
{
(a, x, y) ∈ AN × An × Am/fi (a, x, y) = 0, i = 1, . . . , n+m

}
and the projection π : V → AN defined as π(a, x, y) = a.
Let Z ⊂ AN be the closed affine variety associated to the prime ideal ℘ ⊂ K[A] (see Notation 14).
The goal of this section is the computation of the degree of the fiber of Z under π.

Let us consider the integral ring extension of Theorem 28.
Tensoring this extension with the residual field K[A]℘/℘K[A]℘ (in fact, the fraction field of K[A]/℘
denoted as K(A) in Subsection 2.2), we have the canonical inclusion

K
(
A
)
↪→ K

(
A
)
[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) .

Let F be an algebraic closure of K(A) and let Φ(X)
i and Φ(Y )

i ∈ K[A][X,Y ] be the polynomials
introduced in Definition 13.
Clearly we have:

dimK(A)K
(
A
)
[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) = dimF F[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) .

On the other hand, if ϕ(X)
i and ϕ

(Y )
i denote the affinized of Φ(X)

i and Φ(Y )
i putting x0 = 1 and

y0 = 1 respectively, from Formula (7) we deduce:

K(A)[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) = K(A)[x1, . . . , xn, y1, . . . , ym]/(ϕ(X)
1 ϕ

(Y )
1 , . . . , ϕ

(X)
n+mϕ

(Y )
n+m).

From Corollaries 16 and 17 it follows that (ϕ(X)
1 ϕ

(Y )
1 , . . . , ϕ

(X)
n+mϕ

(Y )
n+m) is a radical 0-dimensional

ideal and

dimK(A)K(A)[x1, . . . , xn, y1, . . . , ym]/(ϕ(X)
1 ϕ

(Y )
1 , . . . , ϕ

(X)
n+mϕ

(Y )
n+m) =

∑
dj1 · · · djn

ek1 · · · ekm
,

where the sum is taken over all choices of indices satisfying 1 ≤ j1 < · · · < jn ≤ n+m, 1 ≤ k1 <
· · · < km ≤ n+m and {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.
Therefore we conclude that

dimK(A)K
(
A
)
[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) =

∑
dj1 · · · djnek1 · · · ekm . (9)

From the geometric point of view, Formula (9) says that the degree of π−1(Z) is
∑
dj1 · · · djnek1 · · · ekm .

2.4.2 Passing from the fiber degree to the generic degree

Denote by V := {F1 = 0, . . . , Fn+m = 0} ⊂ Pn
K(A)

× Pm
K(A)

.

In this section we compute the degree of the variety V from the degree of the fiber π−1(Z).

Let us consider again the integral extension:

K[A]℘ ↪→ K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) .

Theorem 29 (Bihomogeneous Bezout Theorem) The ring

K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m)
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is a K[A]℘-finite free module of rank equal to
∑
dj1 · · · djn

ek1 · · · ekm
. In particular tensoring with

the fraction field K(A) we have

dimK(A)K(A)[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) =
∑

dj1 · · · djn
ek1 · · · ekm

.

Therefore, since (F1, . . . , Fn+m) ⊂ K[A][X,Y ] is a prime ideal with no points at infinity, if V :=
{F1 = 0, . . . , Fn+m = 0} ⊂ Pn

K(A)
× Pm

K(A)
we have that

deg(V ) =
∑

dj1 · · · djn
ek1 · · · ekm

.

Moreover, if σ ∈ K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) verifies that
{
1, σ, . . . , σD

}
is a

K(A)-basis of K(A)[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m), then
{
1, σ, . . . , σD

}
is a K[A]℘-basis

of K[A]℘[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m).

Proof. The proof follows closely [6, Proof of Prop. 2].
Set O := K[A]℘ and M := ℘K[A]℘ its maximal ideal. Observe that O/M = K(A).
The ringO/M[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) is a semilocal reduced ring over a field (Corol-
lary 17), and then from the shape lemma there exists an element (a “primitive element”, which in
fact may be taken as aK-linear combination of the variables) σ ∈ O[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m)
such that

O/M[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) = O/M [σ] , (10)

where σ denotes the class of σ modulo M.
Moreover, we have also that dimO/MO/M [σ] coincides with the degree of the minimal integral
dependence equation of σ over O (recall that O is integrally closed) and also with the quantity∑
dj1 · · · djnek1 · · · ekm in virtue of (9).

In particular we have that O [σ] ⊂ O[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) is a free O-module and

rankOO [σ] =
∑

dj1 · · · djnek1 · · · ekm .

In order to conclude the proof it is enough to show thatO[σ] = O[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m).
This fact is an easy consequence of Nakayama’s Lemma: Let us consider the exact sequence of
finitely generated O-modules

0 → O [σ] i→ O[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) → Coker (i) → 0. (11)

Tensoring with the residual field O/M (which is right-exact) we obtain:

O/M [σ] → O/M[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m) → Coker (i) /MCoker (i) → 0.

Thus, from the identity (10), one infers that Coker (i) /MCoker (i) = 0 and then, by Nakayama’s
Lemma, Coker (i) = 0 and so the exact sequence (11) says that

O [σ] = O[x1, . . . , xn, y1, . . . , ym]/ (f1, . . . , fn+m)

and the Theorem is proved.

Corollary 30 Let V ⊂ AN × An × Am be the variety

V :=
{
(a, x, y) ∈ AN × An × Am/fi (a, x, y) = 0, i = 1, . . . , n+m

}
.

Then
deg(V) ≤

∑
(dj1 + 1) . . . (djn

+ 1)(ek1 + 1) . . . (ekm
+ 1),

where the sum runs over all choices of indices j1, . . . , jn, k1, . . . , km such that 1 ≤ j1 < · · · < jn ≤
n+m, 1 ≤ k1 < · · · < km ≤ n+m and {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.
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Proof. Let L1, . . . , LN be linear polynomials in K[A, x, y] such that W0 := V ∩{L1 = 0, . . . , LN =
0} is a finite algebraic set and

#W0 = deg(V). (12)

We may decompose each polynomial Lu, u = 1, . . . , N , as a sum Lu = L
(A)
u + L

(x,y)
u , where L(A)

u

is a linear form involving only the variables A, and L(x,y)
u is a linear polynomial involving only the

variables x and y.
From the genericity on the choice of the polynomials Lu verifying (12), we may suppose without
loss of generality that the square N ×N -matrix determined by the coefficients of the linear forms
L

(A)
u is a regular matrix; hence the relations Lu = 0, u = 1, ..., N , allow to replace the variables

A
(i)
αβ by linear polynomials in K[x, y] in the equations f1, . . . , fn+m, and so, the zero dimensional

variety W0 can be defined by n+m many polynomials that we call h1, . . . , hn+m.
Observe that degx(hi) and degy(hi) are bounded by di + 1 and ei + 1 respectively, for any index
i = 1, . . . , n+m.
Let us consider generic bihomogeneous polynomials G1, . . . , Gn+m ∈ K[B,X, Y ] of bi-degree (di +
1, ei + 1) for i = 1, . . . n+m, where B denotes a new set of indeterminate coefficients. Denote by
g1, . . . , gn+m the corresponding affinized polynomials (putting x0 = 1 and y0 = 1).
The polynomials h1, . . . , hn+m may be seen as specialisations of the polynomials gi evaluating the
coefficients B in adequate elements of K (depending on the coefficients of the linear polynomials
L1, . . . , LN ).
If M denotes the number of all the new variables B, let W ⊂ AM ×An ×Am be the algebraic set
defined by the equations

g1(b, x, y) = 0, . . . , gn+m(b, x, y) = 0

and let π̂ : W → AM be the canonical projection on the M first coordinates (more precisely,
π̂(b, x, y) := b).
From Theorem 21, applied to the polynomial family g1, . . . , gn+m, we have the equality:

dimK(B)K(B)[x, y]/(g1, . . . , gn+m) =
∑

(dj1 + 1) . . . (djn
+ 1)(ek1 + 1) . . . (ekm

+ 1), (13)

where the sum is taken over all choices of indices j1, . . . , jn, k1, . . . , km such that 1 ≤ j1 < · · · <
jn ≤ n+m, 1 ≤ k1 < · · · < km ≤ n+m and {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.
On the other hand, since W is a M -dimensional irreducible algebraic variety and π̂ is a dominant
morphism, Proposition 1 of [6] implies that for any b ∈ AM such that π̂−1(b) is finite, the relation

]π̂−1(b) ≤ [k(W) : K(B)] = dimK(B)K(B)[x, y]/(g1, . . . , gn+m) (14)

holds.
Now, if we consider an element b0 ∈ AM such that π̂−1(b0) = W0 (clearly such an element exists),
from (12), (14) and (13) we conclude

deg(V) = ]W0 = ]π̂−1(b0) ≤ dimK(B)K(B)[x, y]/(g1, . . . , gn+m) =

=
∑

(dj1 + 1) . . . (djn
+ 1)(ek1 + 1) . . . (ekm

+ 1)

and the corollary follows.

2.5 Certain special fibers

Let F1, . . . , Fn+m ∈ K[A][X,Y ] be generic bihomogeneous polynomials with degX(Fi) = di and
degY (Fi) = ei for i = 1, . . . , n + m, and let f1, . . . , fn+m be the corresponding dehomogeneized
polynomials putting x0 = 1 and y0 = 1. We denote x := (x1, . . . , xn) and y := (y1, . . . , yn).

Denote Ni =
(
n+ di

n

)
, Mi =

(
m+ ei

m

)
and N :=

∑n+m
i=1 NiMi.
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Consider the variety

V :=
{
(a, x, y) ∈ AN × An × Am/fi (a, x, y) = 0, i = 1, . . . , n+m

}
and the projection π : V → AN defined as π(a, x, y) = a.
Let Z ⊂ AN be the closed affine variety associated to the prime ideal ℘ ⊂ K[A] (see Notation 14).
For each a ∈ AN , we write Va ⊂ An+m for the algebraic variety

Va := {(x, y) ∈ An+m/f1(a, x, y) = 0, . . . , fn+m(a, x, y) = 0}

and J(a, x, y) for the Jacobian of the polynomials f1(a, x, y), . . . , fn+m(a, x, y) with respect to the
variables x and y.
The purpose of this section is to show the following theorem:

Theorem 31 Let a ∈ Z be a point such that π−1(a) is a 0-dimensional variety whose cardinal
is
∑
dj1 . . . djn

ek1 . . . ekm
(the existence of such points follows from Section 2.4). Then, for any

(p, q) ∈ Va we have J(a, p, q) 6= 0.
In other words, the points a ∈ Z with fiber of maximal cardinality are unramified for π.

Proof. Since a ∈ Z, for each index i = 1, . . . , n+m, the polynomial fi(a, x, y) may be decomposed
in the following way:

fi(a, x, y) = ψ
(x)
i ψ

(y)
i , (15)

where ψ(x)
i ∈ K[x], ψ(y)

i ∈ K[y] with degψ(x)
i ≤ di and degψ(y)

i ≤ ei (see Remark 9, Proposition
10 and Notation 14).
For any choice of indices j1 < · · · < jn, k1 < · · · < km such that {j1, . . . , jn} ∩ {k1, . . . , km} = ∅
we denote

Va,j1,...,jn,k1,...,km
:=
{

(x, y) ∈ An+m / ψ
(x)
j1

(x) = 0, . . . , ψ(x)
jn

(x) = 0, ψ(y)
k1

(y) = 0, . . . , ψ(y)
km

(y) = 0
}
.

We have the disjoint decomposition

Va =
⋃

j1,...,jn
k1,...,km

Va,j1,...,jn,k1,...,km
. (16)

Moreover, as Va is a 0-dimensional variety, for each (p, q) ∈ Va there exist unique j1, . . . , jn, k1, . . . , km

such that ψ(x)
jl

(p) = 0 for l = 1, . . . , n and ψ(y)
kt

(q) = 0 for t = 1, . . . ,m.
Thus we conclude

Claim 1. If (j1, . . . , jn, k1, . . . , km) 6= (j′1, . . . , j
′
n, k

′
1, . . . , k

′
m), (p, q) ∈ Va,j1,...,jn,k1,...,km and (p′, q′) ∈

Va,j′
1,...,j′

n,k′
1,...,k′

m
, then p 6= p′ and q 6= q′.

In particular, if (p, q) ∈ Va,j1,...,jn,k1,...,km then ψ(x)
kl

(p) 6= 0 for every l = 1, . . . ,m and analogously

ψ
(y)
jt

(q) 6= 0 for every t = 1, . . . , n.

From the affine Bezout inequality (cf. [6, Th. 1]), for each choice of indices j1 < · · · < jn,
k1 < · · · < km such that {j1, . . . , jn} ∩ {k1, . . . , km} = ∅,

deg (Va,j1,...,jn,k1,...,km
) ≤ degψ(x)

j1
. . .degψ(x)

jn
degψ(y)

k1
. . .degψ(y)

km
≤

≤ dj1 · · · djn
ek1 · · · ekm

.

On the other hand, from the hypothesis on the cardinality of π−1(a) and the decomposition (16),
we have ∑

j1,...,jn
k1,...,km

dj1 · · · djnek1 · · · ekm = deg π−1(a) =
∑

j1,...,jn
k1,...,km

deg (Va,j1,...,jn,k1,...,km) .
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Combining both formulas, we deduce that

deg (Va,j1,...,jn,k1,...,km) = dj1 · · · djnek1 · · · ekm . (17)

for each choice of indices j1, . . . , jn, k1, . . . , km such that {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.

Now if we denote
Hj1,...,jn

:=
{
p ∈ An/ψ

(x)
jl

(p) = 0, l = 1, . . . , n
}

and
Zk1,...,km

:=
{
q ∈ Am/ψ

(y)
kt

(q) = 0, t = 1, . . . ,m
}
,

the previous remarks imply that

Hj1,...,jn
× Zk1,...,km

= Va,j1,...,jn,k1,...,km
.

From (17) and Bezout inequality, the following relations hold:

dj1 · · · djn
ek1 · · · ekm

= deg (Va,j1,...,jn,k1,...,km
) = deg (Hj1,...,jn

× Zk1,...,km
) =

= deg (Hj1,...,jn
) deg (Zk1,...,km

) ≤ (dj1 · · · djn
) (ek1 · · · ekm

)

and then
degHj1,...,jn

= dj1 · · · djn
and degZk1,...,km

= ek1 · · · ekm
. (18)

Claim 2. Let (j1, . . . , jn, k1, . . . , km) be a sequence of indices as above. Then, the ideals (ψ(x)
j1
, . . . , ψ

(x)
jn

) ⊂
K[x] and (ψ(y)

k1
, . . . , ψ

(y)
km

) ⊂ K[y] are radical ideals.

Proof of the claim: By means of (18) we have

dimK K[x]/
√

(ψ(x)
j1
, . . . , ψ

(x)
jn

) = degHj1,...,jn
= dj1 · · · djn

(19)

On the other hand, from [1, Theorem 17],

dimK K [x] /(ψ(x)
j1
, . . . , ψ

(x)
jn

) ≤ dj1 · · · djn
. (20)

Since dimK K[x]/
√

(ψ(x)
j1
, . . . , ψ

(x)
jn

) ≤ dimK K [x] /(ψ(x)
j1
, . . . , ψ

(x)
jn

), from (19) and (20) we obtain:

dimK K[x]/
√

(ψ(x)
j1
, . . . , ψ

(x)
jn

) = dimK K [x] /(ψ(x)
j1
, . . . , ψ

(x)
jn

) = dj1 · · · djn

and so (ψ(x)
j1
, . . . , ψ

(x)
jn

) =
√

(ψ(x)
j1
, . . . , ψ

(x)
jn

). This finishes the proof of Claim 2.

In order to conclude the proof of the theorem, let (p, q) ∈ Va. From the factorisation (15), it follows
that the Jacobian matrix of the polynomials fi(a, x, y) in the point (p, q) has the following form:

|(
ψ

(y)
i (q)

∂ψ
(x)
i

∂xj
(p)

)
1≤i≤n+m

1≤j≤n

|

(
ψ

(x)
i (p)

∂ψ
(y)
i

∂yk
(q)

)
1≤i≤n+m
1≤k≤m

|

 .

The point (p, q) belongs to exactly one of the varieties Va,j1,...,jn,k1,...,km (see Claim 1). Without loss
of generality we may suppose that {j1, . . . , jn} = {1, . . . , n} and {k1, . . . , km} = {n+1, . . . , n+m}.
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Then

J(a, p, q) =
n∏

i=1

ψ
(y)
i (q)

n+m∏
i=n+1

ψ
(x)
i (p) det



(
∂ψ

(x)
i

∂xj
(p)

)
1≤i,j≤n

0

0

(
∂ψ

(y)
i

∂yk
(q)

)
n+1≤i≤n+m

1≤k≤m

 =

=
n∏

i=1

ψ
(y)
i (q)

n+m∏
i=n+1

ψ
(x)
i (p) det

(
∂ψ

(x)
i

∂xj
(p)

)
1≤i,j≤n

det

(
∂ψ

(y)
i

∂yk
(q)

)
n+1≤i≤n+m

1≤k≤m

.

By Claim 1 the first two factors are different from zero and by Claim 2 the last two factors are
also non-zero. This finishes the proof of the theorem.

3 Algorithmic resolution of bihomogeneous polynomial sys-
tems

3.1 On Padé approximants

Let L be an arbitrary field and let Z1, . . . , Zn be indeterminates over L; let η be a point of Ln.
We denote by L[[Z − η]] the ring of multivariate formal power series in the variables Z :=
(Z1, . . . , Zn) developed around the point η with coefficients in L.

Lemma 32 Let Φ ∈ L[[Z − η]] be a formal power series and δ be a positive integer. Suppose that
there exist polynomials P,Q ∈ L[Z] verifying the following items:

1. Φ = P/Q

2. degP,degQ ≤ δ

3. Q(η) 6= 0.

Suppose also that there exists a slp of length L which evaluates the first 3δ homogeneous components
of Φ (homogeneous in Z − η).
Then there exists a probabilistic algorithm which computes a slp of length O(δ3(δ4 +L)) evaluating
polynomials P0, Q0 ∈ L[Z] with degrees bounded by δ such that Φ = P0/Q0 and Q0(η) 6= 0 within
complexity of order O(δ3(δ4 + L)).

Proof. Let P,Q ∈ L[Z] verifying the hypotheses of the Lemma; since Q(η) 6= 0, without loss of
generality we may suppose that P and Q verifies

QΦ = P and Q(η) = 1. (21)

We consider the (Z − η)-homogeneous decomposition of the polynomials P , Q and the series Φ

P :=
δ∑

i=0

pi, Q :=
δ∑

i=0

qi and Φ :=
∞∑

i=0

ϕi,

where the pi’s, the qi’s and the ϕi’s are polynomials (Z − η)-homogeneous of degree i. From the
hypothesis Q(η) = 1, we have q0 = 1.
Let T be a new variable and consider the new series in L[Z][[T ]]

Ψ :=
∞∑

i=0

ϕi T
i
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and the polynomials in L[Z][T ]

p :=
δ∑

i=0

pi T
i and q :=

δ∑
i=0

qi T
i.

From the relation (21) we deduce the identity

qΨ = p and q(0) = 1. (22)

Let us observe that a polynomial Q ∈ L[Z] of minimal degree satisfying (21) induces a polynomial
q ∈ L[Z][T ] of minimal degree satisfying (22) and conversely.
Let pmin, qmin ∈ L[Z][T ] be polynomials satisfying (22) such that qmin has minimal degree. Set
δ0 := deg qmin, δ1 := deg pmin. The existence of a numerator P ∈ L[Z] and a denominator Q ∈ L[Z]
for Φ with degrees bounded by δ implies δ0, δ1 ≤ δ. It is easy to see that pmin and qmin are uniquely
determined and that they are also the polynomial pair (p, q) verifying (22) with q of minimal degree,
even if polynomials in L(Z)[T ] are considered.
Fix k ≥ δ0, and assume that q and p are polynomials in L(Z)[T ] satisfying equality (22) such that
deg q = k, deg p = δ1 + k − δ0 ≤ δ + k and q(0) = 1 (take for example, p := (T + 1)k−δ0 · pmin,
q := (T + 1)k−δ0qmin).
Then, equality (22) induces the following relations involving the coefficients of p, q and Ψ (where
pi := 0 for i > deg p)

p0 = ϕ0

p1 = ϕ1 + ϕ0 q1
...

pδ+k = ϕδ+k + ϕδ+k−1 q1 + · · ·+ ϕδ qk (∗)
0 = ϕδ+k+1 + ϕδ+k q1 + · · ·+ ϕδ+1 qk

...
0 = ϕδ+2k + ϕδ+2k−1 q1 + · · ·+ ϕδ+k qk

The converse also holds, more precisely:

Claim 1: Consider (∗) as a linear equation system in the unknowns p0, . . . , pδ+k, q1, . . . , qk. Any
solution of this system in the field L(Z) produces two polynomials p̃, q̃ ∈ L(Z)[T ] of degrees bounded
by δ + k and k respectively, verifying q̃Ψ = p̃.

Proof of the claim: Let
(p̃0, . . . , p̃δ+k, q̃1, . . . , q̃k) ∈ L(Z)δ+2k+1

be a solution of the system (∗) and let

p̃ :=
∑

i

p̃iT
i and q̃ := 1 +

∑
i

q̃iT
i

be the associated polynomials in L(Z)[T ].
Let Θ =

∑
i θiT

i ∈ L(Z)[[T ]] be the formal power series whose coefficients are defined as

θi :=

{
ϕi for i = 0, . . . , δ + 2k

−
∑k

j=1 θi−j q̃j for i > δ + 2k

From the definition of the series Θ, it follows immediately that

q̃Θ = p̃. (23)
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Then, it suffices to show that Ψ = Θ.
As the first δ + 2k + 1 coefficients of the series Ψ and Θ coincide, there exists a polynomial
H ∈ L(Z)[T ] of degree bounded by δ + 2k and series Ψ̃, Θ̃ ∈ L(Z)[[T ]] of order at least δ + 2k + 1
such that

Ψ = H + Ψ̃ and Θ = H + Θ̃.

Multiplying relations (22) and (23) by q̃ and q respectively, we deduce the identities:

q̃ p = q̃ q H + q̃ q Ψ̃
q p̃ = q q̃ H + q q̃ Θ̃

and hence
q̃ p− q p̃ = q q̃ (Ψ̃− Θ̃).

Then (recall that the orders of Ψ̃ and Θ̃ are at least δ+ 2k+ 1) we conclude that T δ+2k+1 divides
q̃ p − q p̃. Since deg p,deg p̃ ≤ δ + k and deg q,deg q̃ ≤ k, we infer that q̃ p = q p̃ and so, Ψ = Θ.
This finishes the proof of the claim.

Let us consider now the following linear system over the field L(Z):
ϕδ+k ϕδ+k−1 . . . ϕδ+1

ϕδ+k+1 ϕδ+k . . . ϕδ+2

. . . . . . . . . . . .
ϕδ+2k−1 ϕδ+2k−2 . . . ϕδ+k


 q1

...
qk

 =

 −ϕδ+k+1

...
−ϕδ+2k

 . (24)

Note that this linear system consists in the last k equations of the system (∗).
Moreover, using the first δ + k equalities in (∗), we can obtain the vector (p0, . . . , pδ+k) from a
solution (q1, . . . , qk) of (24).
Therefore, the existence of a solution for (∗) is equivalent to the existence of a solution for (24).

Summarizing:

Claim 2: Let p :=
∑δ+k

i=0 piT
i and q := 1+

∑k
i=1 qiT

i be polynomials in L(Z)[T ] of degrees bounded
by δ + k and k respectively. The the following assertions are equivalent:

(a) qΨ = p.

(b) (q1, . . . , qk) is a solution for the system (24) over the field L(Z)[T ] and, for i = 0, . . . , δ + k,
pi =

∑min{i,k}
j=0 ϕi−j qj.

By Claim 2, as δ0 is the degree of the minimal denominator qmin, the system (24) has a unique
solution for k := δ0.
On the other hand, for k > δ0, there exists an infinite family of polynomials q, p such that deg q = k,
deg p ≤ δ + k, q(0) = 1 and qΨ = p (namely, q := h · qmin and p := h · pmin, where h ∈ L(Z)[T ] is
a polynomial of degree k − δ0 such that h(0) = 1)
Therefore Claim 2 implies that for k > δ0 the linear system (24) has an infinite solution set.
In particular, we have

δ0 = max{1 ≤ k ≤ δ : det(Ak) 6= 0},

where Ak denotes the k × k-matrix of the system (24).
Moreover, the coefficients of qmin can be obtained by solving (24) for k = δ0.
Finally, taking into account that deg pmin ≤ δ, it follows that the coefficients of pmin can be
computed as pi :=

∑i
j=0 ϕi−jqj for i = 0, . . . , δ.

Now is quite simple to describe an algorithm computing the polynomials P0 andQ0 of the statement
of the lemma.
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1. The first task consists in determining δ0 := max{1 ≤ k ≤ δ : det(Ak) 6= 0}, which is the
degree of the minimal denominator q.

Set k := δ and proceed as follows:

(a) Compute a slp of length O(k4 + L) which evaluates det(Ak) ∈ L[Z].

(b) Choose randomly a point a0 ∈ Ln and evaluate det(Ak)(a0).

(c) If det(Ak)(a0) = 0, set k := k − 1. Otherwise, δ0 := k.

The complexity of this step is of order O(δ5).

Let us observe that det(Aδ0) is a (Z − η)-homogeneous polynomial of degree δ0(δ + δ0).

2. Solve the linear system (24) for k := δ0.

(a) Since det(Aδ0) 6= 0 the solution may be obtained by Cramer’s Rule :

det(Aδ0)

 q1
...
qδ0

 = adj(Aδ0)

 −ϕδ+δ0+1

...
−ϕδ+2δ0

 =:

 q̃1
...
q̃δ0

 .

The complexity of this procedure is of orderO(δ40), the polynomials q̃0 := det(Aδ0), q̃1, . . . , q̃k0

are given by slp’s of length O(δ40 + L) and their degrees are bounded by δ0(δ + δ0).

(b) For each 1 ≤ i ≤ δ0 compute the coefficient qi ∈ L[Z] of q as the quotient of the exact
division of q̃i with q̃0.
For this purpose we can apply the procedure of avoiding of divisions given in [15] (see
also [9]), taking into account that a point a0 ∈ Ln such that q̃0(a0) 6= 0 is known.
Since deg qi ≤ δ, this can be done in time O(δ3(δ4 + L)).

3. A slp evaluating the coefficients of the polynomial p can be obtained by means of the equations
p0 = ϕ0, p1 = ϕ1 + ϕ0 q1, . . . , pδ = ϕδ + ϕδ−1 q1 + · · ·+ ϕ0 qδ, where qi = 0 for i > δ0. The
length of this slp is bounded by O(δ3(δ4 + L)).

4. Take P0 :=
δ∑

i=0

pi and Q0 :=
δ∑

i=0

qi.

The polynomials P0 and Q0 are given by a slp of length O(δ3(δ4 + L)).

Summarizing, the total complexity of the algorithm is bounded by O(δ3(δ4 + L)) and the Lemma
is proved.

3.2 Algorithmic resolution in the generic case

We recall the notations introduced in Section 2.1.
Let K be a field and let K be an algebraic closure of K.
Let n,m ∈ N and let x0, . . . , xn, y0, . . . , ym indeterminates over K. We will denote X :=
(x0, . . . , xn), Y := (y0, . . . , ym), x := (x1, . . . , xn) and y := (y1, . . . , ym).
For each d, e ∈ N0 set

Λd,e = {(α, β) ∈ Nn+1
0 × Nm+1

0 : |α| = d, |β| = e}.

Let (d1, e1), . . . , (dn+m, en+m) ∈ N0 × N0. For each 1 ≤ i ≤ n + m we introduce a set of new
indeterminates A(i) := (A(i)

αβ)(α,β)∈Λdi,ei
associated to the monomials XαY β of bidegree (di, ei).

We will denote A = (A(i))1≤i≤n+m.

21



Set

Ni :=
(
di + n

n

)
, Mi :=

(
ei +m

m

)
and N :=

n+m∑
i=1

NiMi.

For each i, 1 ≤ i ≤ n+m, let Fi ∈ K[A][X,Y ] be the bihomogeneous polynomial

Fi :=
∑

(α,β)∈Λdi,ei

A
(i)
αβ XαY β .

From Theorem 29 the polynomials F1, . . . , Fn+m define a zero-dimensional variety V ⊂ Pn
K(A)

×
Pm

K(A)
, with no points at infinity, of degree

D :=
∑

dj1 . . . djn
ek1 . . . ekm

,

where the sum runs over all choices of indices 1 ≤ j1 < · · · < jn ≤ n+m, 1 ≤ k1 < · · · < km ≤ n+m,
with {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.
For each i, 1 ≤ i ≤ n+m, we denote fi ∈ K[A][x, y] to the affinized polynomial

fi := Fi(1, x1, . . . , xn, 1, y1, . . . , ym).

The polynomials f1, . . . , fn+m define the zero-dimensional variety V ⊂ An+m

K(A)
of degree D.

Let V ⊂ AN × An × Am be the variety

V :=
{
(a, x, y) ∈ AN × An × Am/fi (a, x, y) = 0, i = 1, . . . , n+m

}
.

Corollary 30 says that the degree of V is bounded by

∆ :=
∑

(dj1 + 1) . . . (djn
+ 1)(ek1 + 1) . . . (ekm

+ 1).

where the sum runs over all choices of indices j1, . . . , jn, k1, . . . , km such that 1 ≤ j1 < · · · < jn ≤
n+m, 1 ≤ k1 < · · · < km ≤ n+m and {j1, . . . , jn} ∩ {k1, . . . , km} = ∅.

The goal of this section is the computation of minimal polynomials for linear forms which separate
the points of V .
More precisely:
Let L ∈ K[x, y] be a linear form which separates the points of the variety V and let P ∈ K(A)[T ]
be the monic minimal polynomial of the class of L with respect to the canonical extension K(A) ↪→
K(A)[x, y]/(f1, . . . , fn+m).

Remark 33 It is well known that the degree of P as a polynomial in the variable T is exactly
D (because L separates the points of the variety V ) and that P can be written as

∑D
i=0 ΦiT

i ∈
K(A)[T ], where each of the coefficients Φi may be decomposed as a quotient Pi/Qi with degPi ≤ ∆
and degQi ≤ ∆ (see for instance [13, Prop. 1] or [14, Prop.1]).

The main result of this section is the following:

Theorem 34 Let L ∈ K[x, y] be a linear form which separates the points of the variety V and
let P :=

∑D
i=0 ΦiT

i ∈ K(A)[T ] be the minimal polynomial of the class of L with respect to the
canonical extension K(A) ↪→ K(A)[x, y]/(f1, . . . , fn+m).
There exists a probabilistic algorithm which, for each i, 0 ≤ i ≤ D, produces a straight-line program
of length O(∆5(∆2 + log(∆)d2(n + m)7N D2)) computing polynomials Pi, Qi ∈ K[A] such that
Φi = Pi/Qi. The algorithm runs in time O(D∆5(∆2 + log(∆)d2(n+m)7N D2)).

The following subsections are devoted to prove Theorem 34.
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3.2.1 Choosing a lifting point

We will choose a lifting point a ∈ KN in such a way that the polynomials fi(a, x, y) have nice fac-
torisation properties, namely all these polynomials can be decomposed as a product of independent
linear factors.

Take a family of elements ξ(x)
ir ∈ K for 1 ≤ i ≤ n+m and 1 ≤ r ≤ di, such that ξ(x)

ir 6= ξ
(x)
i′r′ if i 6= i′

or r 6= r′.
For each ξ(x)

ir let us consider the associated linear form in the variables x:

L
(x)
ir := 1 + ξ

(x)
ir x1 + (ξ(x)

ir )2x2 + · · ·+ (ξ(x)
ir )nxn.

The hypothesis on the choice of the elements ξ(x)
ir implies that every subset of n many linear forms

L
(x)
ir is a K-linearly independent set.

Analogously we define linear forms in the variables y as follows: let ξ(y)
is ∈ K, for 1 ≤ i ≤ n +m

and 1 ≤ s ≤ ei), be a family of elements such that ξ(y)
is 6= ξ

(y)
i′s′ if i 6= i′ or s 6= s′, and for any index

i and any index s with 1 ≤ s ≤ ei let L(y)
is ∈ K[y] be the linear form defined as

L
(y)
is = 1 + ξ

(y)
is y1 + (ξ(y)

is )2y2 + · · ·+ (ξ(y)
is )mym.

We also have that any subset of m linear forms L(y)
is is K-linearly independent.

For each index i, 1 ≤ i ≤ n+m, denote by a(i) ∈ KNi the vector of coefficients of the polynomial∏
1≤r≤di

L
(x)
ir

∏
1≤s≤ei

L
(y)
is ,

in a certain prefixed monomial order (for instance the lexicographic order).
Observe that this polynomial has bidegree (di, ei) and then we have the identity:

fi(a(i), x, y) =
∏

1≤r≤di

L
(x)
ir

∏
1≤s≤ei

L
(y)
is .

We take as the lifting point, the point a := (a(1), . . . , a(n+m)) ∈ KN .

Each vector a(i) may be computed from the elements ξ(x)
ir and ξ

(y)
is in a straightforward way as

follows:

First let us observe that the coefficients of a product of a n-variate polynomial of degree k with a
n-variate polynomial of degree 1 (both given in dense form) can be computed in time bounded by
(2n+ 1)

(
n+k+1

n

)
in the obvious way (using (n+ 1)

(
n+k

n

)
multiplications and n

(
n+k+1

n

)
additions).

Therefore the computation of the coefficients of polynomial ϕ(x)
i :=

∏
1≤r≤di

L
(x)
ir runs in time

(2n+ 1)
di−1∑
r=1

(
n+ r + 1

n

)

which may be bounded by (2n+ 1)di

(
n+di

n

)
.

Similarly the coefficients of ϕ(y)
i :=

∏
1≤s≤ei

L
(y)
is can be obtained in time (2m+ 1)ei

(
m+ei

m

)
.

Then the computation of the vector a(i) (namely, the coefficients of the product ϕ(x)
i ϕ

(y)
i ) runs in

time bounded by

(2n+ 1)di

(
n+ di

n

)
+ (2m+ 1)ei

(
m+ ei

m

)
+
(
n+ di

n

)(
m+ ei

m

)
.
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Hence the lifting point a ∈ KN may be computed in time

n+m∑
i=1

(2n+ 1)di

(
n+ di

n

)
+ (2m+ 1)ei

(
m+ ei

m

)
+
(
n+ di

n

)(
m+ ei

m

)
.

If we denote d := max1≤i≤n+m{di + ei}, we may easily estimate this number by O((n+m)dN).

Summarizing we have:

Remark 35 The lifting point a ∈ KN can be computed in time O((n + m)dN), where N :=∑n+m
i=1

(
n+di

n

)(
m+ei

m

)
and d := max1≤i≤n+m{di + ei}.

3.2.2 Solving a split Vandermonde system

From the choice of the coefficient vector (or lifting point) a ∈ KN in the previous section, each
polynomial fi(a(i), x, y) is a product of linear forms, and then the solutions of the system

f1(a, x, y) = 0, . . . , fn+m(a, x, y) = 0 (25)

are exactly the solutions of the linear systems

L1 t1 = 0, . . . , Ln+m tn+m
= 0,

where, for each 1 ≤ i ≤ n + m, we have Liti
= L

(x)
iri

or Liti
= L

(y)
isi

, for some 1 ≤ ri ≤ di or
1 ≤ si ≤ ei.
Moreover, since these linear forms are of type

1 + ξ x1 + ξ2 x2 + · · ·+ ξn xn = 0 or 1 + ξ y1 + ξ2 y2 + · · ·+ ξm ym = 0

for different constants ξ, we conclude that the solutions of the system (25) are the solutions of the
linear systems

L
(x)
j1 rj1

= 0, . . . , L(x)
jn rjn

= 0, L(y)
k1 sk1

= 0, . . . , L(y)
km skm

= 0 (26)

where 1 ≤ j1 < · · · < jn ≤ n+m, 1 ≤ k1 < · · · < km ≤ n+m and {j1, . . . , jn} ∩ {k1, . . . , km} = ∅,
and also 1 ≤ rji ≤ dji for all 1 ≤ i ≤ n and 1 ≤ skl

≤ ekl
for all 1 ≤ l ≤ m.

Let us observe that there are D many of these linear systems (where D is the Bezout number∑
dj1 . . . djn

ek1 . . . ekm
) and each of them has a unique solution (the associated matrix is regular

since it is a two-block Vandermonde and each block corresponds to a family of different elements
of K).

Therefore in order to solve the system (25) it suffices to choose a sequence of indices as in formula
(26) and find the solutions γ(x) ∈ Kn and γ(y) ∈ Km of the linear systems

L
(x)
j1 rj1

= 0, . . . , L(x)
jn rjn

= 0

and
L

(y)
k1 sk1

= 0, . . . , L(y)
km skm

= 0

respectively.
The coordinates of γ(x) and γ(y) can be computed using Cramer’s rule in time O(n4) and O(m4)
respectively.

Summarizing:

Remark 36 Let a ∈ KN be the lifting point constructed in the previous section. Then, the solu-
tions of the system

f1(a, x, y) = 0, . . . , fn+m(a, x, y) = 0

may be obtained in time O((n4 +m4)D).

24



3.2.3 Computing generic solutions by Newton algorithm

The goal of this section is to compute (starting from the solutions (γ(x), γ(y)) computed above)
suitable power series representing approximations of the generic solutions in K(A)

n+m
of the

system
f1(A, x, y) = 0, . . . , fn+m(A, x, y) = 0. (27)

Let a ∈ KN be the lifting point introduced in section 3.2.1, Va ⊂ Kn+m denotes the algebraic
finite set defined by the system (25) and γ1, . . . , γD the points of Va computed in section 3.2.2.
For the sake of simplicity we denote by F the polynomial vector (f1, . . . , fn+m) ∈ K[A, x, y]n+m.
Let DF ∈ K[A, x, y](n+m)×(n+m) be the Jacobian matrix of the vector F with respect to the
variables x and y:

DF :=
(
∂fi

∂xj
| ∂fi

∂yk

)
1≤i≤n+m

1≤j≤n, 1≤k≤m
,

and let J ∈ K[A, x, y] be the determinant of the matrix DF .
The choice of the lifting point a ∈ KN and Theorem 31 imply that for any γj , 1 ≤ j ≤ D, we have

J(a, γj) 6= 0.

Therefore by [7, Lemma 3] one deduces that, for any index j, 1 ≤ j ≤ D, there exists a well defined
power series vector

Γj = (Γj1, . . . ,Γj n+m) ∈ K[[A− a]]n+m

verifying:

• f1(Γj) = 0, . . . , fn+m(Γj) = 0

• Γj(a) := (Γj1(a), . . . ,Γj n+m(a)) = γj

Moreover the quoted result also gives a way to approximate these power series vectors Γj :

Let us consider the Newton operator associated to the system F

NF (x, y)t := (x, y)t −DF (x, y)−1 · F (x, y)t,

where t denotes transposition.
For each point γj ∈ Va, we define a recursive sequence of (n + m)-tuples of rational functions
Γ(κ)

j := (Γ(κ)
j1 , . . . ,Γ

(κ)
j n+m)(κ ∈ N0) as follows:

Γ(0)
j := γj

Γ(κ)
j := NF (Γ(κ−1)

j ) κ ∈ N

Any coordinate function Γ(κ)
ji (1 ≤ i ≤ n+m) of Γ(κ)

j can be interpreted as a formal power series
in K[[A − a]]. In this way, for each index i, 1 ≤ i ≤ n + m, the sequence of rational functions
(Γ(κ)

ji )κ∈N0 converges to a series Γji ∈ K[[A− a]] (in fact the i-th coordinate of Γj).

More precisely, for each κ ∈ N, the series Γ(κ)
ji approximates Γji with precision 2κ, in other words,

Γ(κ)
ji ≡ Γji mod(A− a)2

κ

.
We will choose the number of iterations κ so that we get suitable approximations to each of the
power series Γji.

This approximation procedure can be performed algorithmically as follows:
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1. Fix κ ∈ N. Applying the algorithm of [4, Lemma 30], we obtain a straight-line program
which encodes the numerators and a single denominator for the κ-th iteration of the Newton
operator; more precisely, we obtain polynomials

g1, . . . , gn, gn+1, . . . , gn+m, h ∈ K[A, x, y]

such that
N

(κ)
F (x, y) =

(g1
h
, . . . ,

gn

h
,
gn+1

h
, . . . ,

gn+m

h

)
.

2. By simple evaluation of the polynomials gi and h in the points γj (1 ≤ j ≤ D), we obtain
straight-line programs for the numerator and the denominator of each of the rational functions
Γ(κ)

ji (1 ≤ j ≤ D, 1 ≤ i ≤ n+m).

From the complexity bounds stated in [4, Lemma 30], and taking into account that the polynomials
f1, . . . , fn+m ∈ K[A, x, y] can be evaluated in the obvious way by means of a slp of length O(N),
we obtain the following estimate for the complexity of the procedure described above:

Remark 37 Denote by d := max1≤i≤n+m{di + ei}. Let κ ∈ N and, for every 1 ≤ j ≤ D, let Γ(κ)
j

be the 2κ-approximation of the solution series vector Γj associated to the fiber solution γj as above.
Then, for each 1 ≤ j ≤ D,

Γ(κ)
j =

(
g1(A, γj)
h(A, γj)

, . . . ,
gn(A, γj)
h(A, γj)

,
gn+1(A, γj)
h(A, γj)

, . . . ,
gn+m(A, γj)
h(A, γj)

)
∈ K(A)n+m,

where gi (1 ≤ i ≤ n + m) and h are polynomials in K[A, x, y] which can be obtained in time
O(κ d2(n+m)7N) as explained above and given by a slp of length of the same order.

3.2.4 Approximating the minimal polynomial of L

Let L := u0+u1x1+ · · ·+unxn +un+1y1+ · · ·+un+mym ∈ K[x, y] be a linear form which separates
the points of the 0-dimensional variety V ⊂ An+m

K(A)
.

We will compute the coefficients (with respect to a new variable U) of a polynomial P̃ ∈ K[A,U ]
which approximates the minimal polynomial P of the linear form L.

Since V = {Γ1, . . . ,ΓD} ⊂ An+m

K(A)
(see Section 3.2.3) and we assume that L separates these points,

the minimal polynomial P of L is exactly the product
∏D

j=1(U − L(Γj)).
We approximate the coefficients of P by means of the coefficients of another polynomial which
is constructed in a similar way, but having as roots the elements L(Γ(κ)

j ) (which can be seen as
approximations of the roots of P ).
Let us consider the following polynomials in K[A] (see Section 3.2.3 for the notations):

Gj(A) := u0 h(γj) + u1 g1(γj) + · · ·+ un+m gn+m(γj) for j = 1, . . . , D (28)

Hj(A) := h(γj) for j = 1, . . . , D (29)

H(A) :=
D∏

j=1

Hj(A) (30)

Let P̃ ∈ K[A,U ] be the polynomial defined as:

P̃ :=
D∏

j=1

U − L(Γ(κ)
j ) =

1
H(A)

D∏
j=1

(Hj(A)U −Gj(A)) (31)
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Observe that, for each 0 ≤ i ≤ D, the coefficient of the monomial U i in the polynomial P̃ is a
rational function Ψi/H ∈ K(A) (where Ψi ∈ K[A]).

Since for the lifting point a ∈ KN constructed in Section 3.2.1 we have thatH(a) =
D∏

j=1

h(a, γj) 6= 0,

these rational functions Ψi/H can be interpreted as elements of the power series ringK[[A−a]] and,
from the definition of the polynomial P̃ , it follows that, for each 0 ≤ i ≤ D, Ψi/H approximates
with precision 2κ the corresponding coefficient Φi ∈ K[[A− a]] of the monomial U i in the minimal
polynomial P of the linear form L. In this sense, we will say that P̃ approximates P with precision
2κ.

The numerators Ψ0, . . . ,ΨD can be obtained as the coefficients of the polynomial H(A)P̃ (A,U)
with respect to the variable U by an interpolation procedure, while the denominator H can be
obtained from its definition (30).

Now we estimate the complexity of these computations, assuming that the lifting point a ∈ Kn

and all the points γj (1 ≤ j ≤ D) lying on its fiber are known:
First let us observe that, for each 1 ≤ j ≤ D, from Remark 37, the polynomials Hj(A) and
Gj(A) can be encoded by straight-line programs of length O(κ d2(n+m)7N) which are computed
straightforward from the definitions (29) and (28).
Then, using these straight-line programs and the definitions (30) and (31), we obtain straight-line
programs of length O(κ d2(n+m)7N D) encoding the polynomials H(A)P̃ (A,U) and H(A).
The complexity of these steps is of order O(κ d2(n+m)7N D).
Finally, the coefficients Ψ0, . . . ,ΨD of H(A)P̃ (A,U) are computed by interpolation with respect to
the variable U (see for instance [12, Prop. 3.1.1]), which involves the resolution of a linear system
whose associated matrix is a Vandermonde square (D+1)× (D+1)-matrix. Then, the complexity
of this last step is of order O(κ d2(n+m)7N D2 +D4), which is also the complexity of the whole
procedure, and the length of the slp representation obtained for the polynomials Ψ0, . . .ΨD is
bounded by O(κ d2(n+m)7N D2).

Summarizing:

Remark 38 Let a ∈ KN be the lifting point constructed in section 3.2.1 and let κ ∈ N. Assume
that the D solutions of the system (25) are given. Then, the procedure described above produces a
straight-line program of length O(κ d2 (n+m)7ND2) which computes the numerators Ψ0, . . . ,ΨD ∈
K[A] and the denominator H ∈ K[A] of the coefficients of a polynomial P̃ ∈ K(A)[U ] which
approximates the minimal polynomial P ∈ K(A)[U ] with precision 2κ. The sequential complexity
of this procedure is of order O(κ d2 (n+m)7ND2 +D4).

3.2.5 Computing the minimal polynomial of L

In order to finish the proof of Theorem 34, in this Section we compute numerators and denominators
which represent the coefficients of the minimal polynomial P ∈ K(A)[U ] of L with respect to
the variable U , from the coefficients of a suitable approximation P̃ ∈ K(A)[U ] of this minimal
polynomial.

For every 0 ≤ i ≤ D, let Φi ∈ K[[A− a]] be the coefficient of the monomial U i in the expansion of
P ∈ K(A)[U ]. By Remark 33, each of the series Φi (0 ≤ i ≤ D) is a quotient of two polynomials
belonging to the ring K[A] whose total degrees are bounded by ∆. Therefore, Lemma 32 (Padé
approximants) enables us to compute, from the homogeneous components of Φi of degrees bounded
by 3∆, polynomials Pi, Qi ∈ K[A] with degPi and degQi bounded by ∆, such that Φi = Pi/Qi.
We obtain the required homogeneous components of the coefficients of P from the ones of the
corresponding coefficients of a polynomial P̃ which approximates P with precision 3∆.
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So, we fix κ := dlog(3∆)e and we assume that a straight-line program which computes numerators
Ψ0, . . . ,ΨD ∈ K[A] and a denominator H ∈ K[A] of the coefficients of the polynomial P̃ defined
in (31) is given.

The procedure runs as follows:

For i = 0, . . . , D:

1. Compute the homogeneous components of degrees bounded by 3∆ for the series Ψi/H ∈
K[[A − a]]. (Let us observe that these components coincide with the corresponding ones of
the series Φi.)

2. Apply Lemma 32 in order to obtain polynomials Pi, Qi ∈ K[A] with degPi,degQi ≤ ∆,
Qi(a) = 1 and Pi/Qi = Φi.

Now we estimate its complexity:
Denote by L the length of a slp which evaluates the input polynomials Ψ0, . . . ,ΨD and the poly-
nomial H.
Fix i, 0 ≤ i ≤ D.
Following the arguments given in [15] as well as the complexity estimate for the computation of
homogeneous components of a polynomial given by a slp (see for instance [9]), we deduce that the
first step of the procedure can be done in time L′ := O(∆2(∆+L)) and produces a slp of the same
order for the homogeneous components it computes.
Then, by Lemma 32, the computation of the polynomials Pi andQi takesO(∆3(∆4+L′)) additional
operations and each of these polynomials is encoded by a slp of length of the same order.

Therefore, we have:

Remark 39 Let notations and assumptions be as before. Assume that a straight-line program of
length L which evaluates the numerators Ψ0, . . . ,ΨD and the denominator H of the coefficients
of the approximating polynomial P̃ ∈ K(A)[U ] is given. Then, the procedure above computes in
time O(D∆5(∆2 + L)), a numerator Pi and a denominator Qi of degrees bounded by ∆ for each
coefficient Φi (0 ≤ i ≤ D) of the minimal polynomial P . Each of the polynomials Pi, Qi is encoded
by means of a slp of length O(∆5(∆2 + L)).

We are now ready to prove Theorem 34:

Proof of Theorem 34. The probabilistic algorithm underlying the proof of the Theorem is
obtained combining the procedures described from section 3.2.1 up to this section. Observe that
we take κ := dlog(3∆)e to obtained the desired approximation level.
In order to finish the proof, it suffices to consider the complexity estimations stated in Remarks
35, 36, 38 and 39, which imply that the algorithm runs in time:

O((n+m)dN) + O((n4 +m4)D) + O(log(∆) d2(n+m)7N) +
+O(log(∆) d2(n+m)7N D2 +D4) + O(D∆5(∆2 + log(∆)d2(n+m)7N D2)).

Taking into account that D4 ≤ D∆7 this sum may be estimated by

O(D∆5(∆2 + log(∆)d2(n+m)7N D2)) = O(D∆7 + ∆5 log(∆)d2(n+m)7N D3).

The length of the straight-line program encoding the polynomials Pi and Qi (0 ≤ i ≤ D) which
represent the coefficients of the polynomial P follows in the same way from Remarks 38 and 39. �
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3.3 Description of the isolated points of a bihomogeneous polynomial
system

We briefly recall the notations introduced in the previous sections.
Let f1, . . . , fn+m ∈ K[A, x, y] be the affinized polynomials which become from the generic biho-
mogeneous polynomials F1, . . . , Fn+m ∈ K[A,X, Y ], where A denotes the variable-coefficients.
Consider the parameters

di := degx(fi), 1 ≤ i ≤ n+m,

ei := degy(fi), 1 ≤ i ≤ n+m,

d := max {di + ei / 1 ≤ i ≤ n+m},

Ni :=
(
di + n

n

)(
ei +m

m

)
, 1 ≤ i ≤ n+m

N :=
n+m∑
i=1

Ni,

D :=
∑

dj1 . . . djnek1 . . . ekm ,

∆ :=
∑

(dj1 + 1) . . . (djn
+ 1)(ek1 + 1) . . . (ekm

+ 1),

and the varieties

V : = {(a, x, y) ∈ AN × An × Am / f1(a, x, y) = 0, . . . , fn+m(a, x, y) = 0}
V : = {(x, y) ∈ An+m

K(A)
/ f1(x, y) = 0, . . . , fn+m(x, y) = 0}.

From Theorem 29 and [6], we know that D is the degree of V or equivalently, the degree of the
generic fiber of the projection morphism π : V → AN defined as π(a, x, y) := a.
From Corollary 30, ∆ is an upper bound for deg(V).

3.3.1 Passing from the generic system to a specific system

For each 1 ≤ i ≤ n+m let bi ∈ KNi , and set b := (b1, . . . , bn+m) ∈ KN .
The vector b induces a particular instance of our generic bihomogeneous polynomial system: the
specific system obtained from the generic one

f1(A, x, y) = 0, . . . , fn+m(A, x, y) = 0

by the evaluation
A(i) 7→ bi, for i = 1, . . . , n+m.

Denote by Vb ⊂ An+m the variety defined by this specific system, namely

Vb := {(x, y) ∈ An × Am : f1(b1, x, y) = 0, . . . , fn+m(bn+m, x, y) = 0}. (32)

The goal of this section is to obtain, for each linear form L ∈ K[x, y] which separates the points of
the variety V ⊂ An+m

K(A)
, a univariate polynomial P (b)

L (U) ∈ K[U ], depending on the point b, such

that P (b)
L (L) ∈ K[x, y] is a non zero polynomial which vanishes in all the isolated points of Vb.

More precisely, with the notations introduced above, we will prove the following:

Theorem 40 Let L be a linear form in K[x, y] which separates the points of the generic variety
V ⊂ An+m

K(A)
. Then, there exists a probabilistic algorithm which computes a non zero polynomial

P
(b)
L ∈ K[U ] with degU (P (b)

L ) ≤ D such that P (b)
L (L) ∈ K[x, y] vanishes in every isolated point of

Vb. The algorithm runs in time O(D3∆6(∆2 + log(∆)d2(n+m)7N D2)).
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The polynomial P (b)
L will be obtained from the minimal polynomial of L computed by means of

Theorem 34.
First, we show how to compute for any separating linear form L, a non zero polynomial PL ∈
K[A,U ] such that PL(A,L) belongs to the ideal (f1, . . . , fn+m) ⊂ K[A, x, y].

Let L be a linear form in K[x, y] and let ΦL : V → AN × A be the morphism

ΦL(a, x, y) := (a, L(x, y)). (33)

Since V is a N -dimensional irreducible variety and π is a dominant morphism, we observe that the
Zariski closure of Im(ΦL) ⊂ AN ×A is an algebraic irreducible variety of codimension 1, and then,
it is defined by a square-free polynomial QL ∈ K[A,U ] (where U denotes a new variable).
Moreover, since (f1, . . . , fn+m) is a prime ideal inK[A][x, y] andQL(a, L(x, y)) = 0 for all (a, x, y) ∈
V, we deduce:

degU (QL) > 0 and QL(A,L(x, y)) ∈ (f1, . . . , fn+m)K[A][x, y]. (34)

Now suppose that L separates the points of the variety V ⊂ An+m

K(A)
.

Let P (A,U) ∈ K(A)[U ] be the minimal polynomial of L in the algebraic extension

K(A) ↪→ K(A)[x, y]/(f1, . . . , fn+m).

Hence P (A,L) ∈ K(A)[x, y] belongs to the ideal (f1, . . . , fn+m)K(A)[x, y]. If h(A) ∈ K[A] is
any polynomial such that h(A)P (A,U) is a polynomial in K[A,U ], there exists a denominator
s(A) ∈ K[A]−{0} such that s(A)h(A)P (A,L) belongs to the ideal (f1, . . . , fn+m)K[A, x, y], which
is a prime ideal. Since this ideal does not contain any non zero polynomial in K[A], we deduce
that h(A)P (A,L) also belongs to the ideal (f1, . . . , fn+m)K[A, x, y].
In particular h(A)P (A,L) vanishes in every point in V and so, h(A)P (A,U) vanishes over Im(ΦL).
Then h(A)P (A,U) is a multiple of QL in K[A,U ], and this fact holds for any h ∈ K[A] such that
h(A)P (A,U) ∈ K[A,U ].
On the other hand, from (34) we have that QL is a non zero polynomial in K[A][U ] such that
the class of QL(A,L(x, y)) in K(A)[x, y]/(f1, . . . , fn+m) is zero, so QL(A,U) gives an algebraic
equation for the class of L over K(A) and therefore P (A,U) divides QL(A,U) in K(A)[U ].
From section 3.2.5 and the previous arguments we conclude that D = degU (P ) = degU (QL) and
both polynomials differ in a multiple in K(A).

Applying the algorithm underlying Theorem 34, we are able to compute polynomials Pi, Qi ∈ K[A],
i = 0, . . . , D, such that deg(Pi) ≤ ∆, deg(Qi) ≤ ∆ and P =

∑D
i=0(

Pi

Qi
)U i (each quotient Pi/Qi

represents a power series Φi ∈ K[[A− a]] for the lifting point a ∈ KN chosen in section 3.2.1).

Let us consider the polynomial PL ∈ K[A,U ] defined as

PL :=
D∑

i=0

(
Pi

∏
0≤j≤D

j 6=i

Qj

)
U i. (35)

Observe that PL = P
D∏

i=0

Qi and so, it is obtained from P by a trivial elimination of denominators.

Then, the polynomials PL and QL differ in a multiple in K[A,U ]. Since degU (PL) = degU (QL),
this multiple lies in K[A] and therefore, as we have observed above for any K[A]-multiple of P
belonging to K[A,U ],

PL(A,L) ∈ (f1, . . . , fn+m) in K[A, x, y]. (36)
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For each 0 ≤ i ≤ D denote
PL i := Pi

∏
0≤j≤D

j 6=i

Qj (37)

the coefficients of PL considered as a polynomial in the variable U . The coefficients PL 0, PL 1, . . . PL D

are polynomials in K[A] whose degrees are bounded by ∆D.
Observe that the leading coefficient of PL viewed as a polynomial in the variable U is

PL D =
D−1∏
j=0

Qj (38)

as P is monic in U because it is a minimal polynomial, and then PL D(a) 6= 0 for the lifting point
a ∈ KN (recall that, by construction, Qj(a) 6= 0 for every 0 ≤ j ≤ D).
In particular, the polynomial PL(a, U) is not the zero polynomial in the ring K[U ].

We estimate the complexity for the computation of (the dense encoding of) PL:

Denote L0 := ∆5(∆2 + log(∆) d2(n+m)7N D2).
For every index i, 0 ≤ i ≤ D, Theorem 34 states that the polynomials Pi, Qi ∈ K[A] can be
evaluated by a slp of length O(L0) and these slp’s are constructed in time O(DL0).
Hence formula (37) implies that each of the coefficients PLi (0 ≤ i ≤ D) can be encoded by a slp
of length O(DL0 +D), and all these slp’s can be constructed within complexity O(DL0 +D2).
From the definition of L0, it follows that these quantities may also be written as O(DL0) and then
we have:

Remark 41 For each index i, 0 ≤ i ≤ D, the coefficient PLi ∈ K[A] of the polynomial PL =∑D
i=0 PLi U

i can be encoded by a slp of length O(D∆5(∆2 + log(∆) d2(n+m)7N D2)).
All these slp’s can be constructed by means of an algorithm with similar running time order.

We are now ready to prove the main result of this section.

Proof. (Proof of Theorem 40.) Let notations and assumptions be as before.
From condition (36) we have that PL(A,L) belongs to the ideal (f1, . . . , fn+m)K[A, x, y] and then
(by simple evaluation)

PL(b, L) ∈ (f1(b, x, y), . . . , fn+m(b, x, y))K[x, y]. (39)

If PL(b, U) ∈ K[U ] is not the zero polynomial there is nothing to do: we take

P
(b)
L := PL(b, U) ∈ K[U ]

and, from (39), we have that PL(b, L) = 0 over Vb; in particular, it vanishes over all the isolated
points of Vb.

Now let us suppose that the polynomial PL(b, U) is identically zero.

Let t be a new variable and consider the polynomial

P̃ := PL(b+ t(a− b), U) = P̃D(t)UD + · · ·+ P̃1(t)U + P̃0(t) ∈ K[t, U ],

where a ∈ KN denotes the lifting point chosen in section 3.2.1.
With these notations, the condition “PL(b, U) is identically zero” is equivalent to P̃i(0) = 0 for
every i = 0, . . . , D.
Set r := max {k ∈ N : tk divides P̃i for every 0 ≤ i ≤ D}.
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Observe that r ≥ 1 because PL(b, U) ≡ 0. On the other hand, the leading coefficient P̃D(t) is
exactly PL D(b + t(a − b)) =

∏
0≤j≤D−1

Qj(b + t(a − b)) (see (38)) and then, it is not zero as a

polynomial in t, that is f <∞, as P̃D(1) =
∏

0≤j≤D−1

Qj(a) 6= 0.

Moreover, as degA PL ≤ D∆, the inequality 1 ≤ r ≤ D∆ holds.

We can write
P̃ = tr (p̃DU

D + p̃D−1U
D−1 + · · ·+ p̃0)

for suitable p̃j ∈ K[t], 0 ≤ j ≤ D, such that there exists j verifying p̃j(0) 6= 0.

Claim: Set p̃ := p̃DU
D + p̃D−1U

D−1 + · · ·+ p̃0 ∈ K[t, U ]. The polynomial p̃(0, L) ∈ K[x, y] vanishes
in all the isolated points of Vb.

Proof of the claim: For each 1 ≤ i ≤ n+m let

f̃i := fi(b+ t(a− b), x, y) ∈ K[t, x, y]. (40)

From the construction of the polynomials PL and P̃ it follows immediately from (36) that

P̃ (t, L) = trp̃(t, L) ∈ (f̃1, . . . , f̃n+m) in K[t, x, y]. (41)

Let = :=
√

(f̃1, . . . , f̃n+m) ⊂ K[t, x, y] be the nilradical of the ideal (f̃1, . . . , f̃n+m) and let
s⋂

k=1

℘k

be the primary irredundant decomposition of =. In particular, each ℘k is a prime ideal of K[t, x, y]
and ℘k 6⊂ ℘k′ if k 6= k′.

From (41) we have that trp̃(t, L) ∈ =, and p̃(t, L) belongs to the prime ideal ℘k for all those indices
k such that t /∈ ℘k. In other words:

p̃(t, L) ∈
⋂

1≤k≤s
t/∈℘k

℘k. (42)

In order to prove that p̃(0, L) vanishes in the isolated points of Vb, we start observing the following
identity which is a straightforward consequence of (32) and (40):

{(t, x, y) ∈ A1 × An+m / f̃1 = 0, . . . , f̃n+m = 0, t = 0} = {0} × Vb.

Let ξ ∈ Vb be an isolated point. Then (0, ξ) is an isolated point of {0} × Vb.
For k = 1, . . . , s, denote V (℘k) ⊂ A1 × An+m the irreducible algebraic set defined by the zeros
of the prime ideal ℘k. Then, from the primary decomposition of =, it follows that {(t, x, y) ∈

A1 × An+m / f̃1 = 0, . . . , f̃n+m = 0} =
s⋃

k=1

V (℘k) and, therefore,

{(t, x, y) ∈ A1 × An+m / f̃1 = 0, . . . , f̃n+m = 0, t = 0} =
s⋃

k=1

(
V (℘k) ∩ {t = 0}

)
.

In particular, for the considered isolated point ξ, there exists at least one index k0, 1 ≤ k0 ≤ s,
such that

(0, ξ) ∈ V (℘k0) ∩ {t = 0}. (43)

Since the algebraic varieties V (℘k) (1 ≤ k ≤ s) are the irreducible components of the algebraic set
{(t, x, y) ∈ A1 × An+m / f̃1 = 0, . . . , f̃n+m = 0}, which is defined by (n+m)-many equations in a
(n+m+ 1)-dimensional ambient space, we conclude that dim(V (℘k)) ≥ 1 for all k = 1, . . . , s.
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Therefore, if t ∈ ℘k (or equivalently, if V (℘k) ⊂ {t = 0}), we infer that V (℘k)∩{t = 0} = V (℘k) is
irreducible of dimension at least one and then it does not contain any isolated point. In particular,
t ∈ ℘k implies (0, ξ) /∈ V (℘k).
Hence, condition (43) implies that t /∈ ℘k0 , and so, by (42), p̃(t, L) ∈ ℘k0 . Again by (43) we
conclude that p̃(0, L(ξ)) = 0.
This finishes the proof of the Claim.

We define
P

(b)
L := p̃(0) = p̃D(0)UD + · · ·+ p̃1(0)U + p̃0(0).

From the construction of p̃, it follows that P (b)
L ∈ K[U ] is a non-zero polynomial and, by the

previous Claim, this polynomial vanishes in all the isolated points of Vb.

The algorithm computing the polynomial P (b)
L runs in the following way:

1. Evaluate the indeterminate coefficients A in the vector b in the coefficients PL 0, PL 1, . . . , PL D

of the polynomial PL.

2. If PL j(b) 6= 0 for some 0 ≤ j ≤ D, take P (b)
L (U) := PL(b, U).

3. If PL j(b) = 0 for every 0 ≤ j ≤ D, consider the polynomial P̃ (t, U) := PL(b+ t(a− b), U).

Let P̃0, . . . , P̃D ∈ K[t] be the coefficients of P̃ as a polynomial in the variable U (in other
words, P̃j = PLj(b+ t(a− b)).

4. Compute r := max{k : tk divides P̃j for every 0 ≤ j ≤ D} as follows:

For each j = 0, . . . , D

(a) Compute the coefficients of the polynomial P̃j =
∑D∆

k=0 P̃jkt
k.

(b) Set kj := min{k : P̃jk 6= 0}.

Take r := min{kj : j = 0, . . . , D}.

5. Set P (b)
L (U) :=

∑D
j=0 P̃jr U

j .

In order to finish the proof of the theorem we estimate the complexity of the algorithm:

For the sake of simplicity denote by L := D∆5(∆2+log(∆)d2(n+m)7N D2), namely the complexity
time order required for the construction of the coefficients of the polynomial P and the length order
of the slp’s encoding each coefficient of the polynomial PL (see Remark 41).

The computations in steps 1 and 2 can be done within complexity O(DL), as they involve the
specialisation of D polynomials given by slp’s of length O(L) each.
For every 0 ≤ j ≤ D, a slp encoding of the coefficient P̃j considered in step 3 is obtained from the
slp encoding the corresponding coefficient PLj by evaluation in the vector b+ t(a− b), which does
not modify the slp length order. This step does not increase the order of complexity.
To estimate the complexity of the last step, let us observe that for each index j, deg P̃j ≤
degA(PL) ≤ D∆ (see (35)), and P̃j is given by a slp of length O(L). Then, we may obtain
all the coefficients of the polynomials P̃j (0 ≤ j ≤ D) in time O(D2∆L + (D∆)4) by means of a
standard interpolation procedure.
The comparisons needed to determine r do not change the complexity order.
Finally, step 5 does not modify the complexity either, as the polynomial defined can be constructed
with O(D) operations from the coefficients P̃jr which have been computed in the previous step.

From the definition of L and the inequality D ≤ ∆, we have that the complexity of the whole
algorithm may be estimated as O(D2∆L) = O(D3∆6(∆2 + log(∆)d2(n+m)7N D2)).

This finishes the proof of the theorem.
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Remark 42 If Vb is a zero dimensional variety containing exactly D many points and the linear
form L separates the points of Vb, then the roots of P (b)

L are exactly L(ξ) with ξ ∈ Vb.

3.3.2 Describing the isolated points of a specific system

Let b ∈ AN as in the previous section and denote

Vb := {(x, y) ∈ An+m / f1(b, x, y) = 0, . . . , fn+m(b, x, y) = 0}

the solution of the particular instance of the generic bihomogeneous system obtained by the eval-
uation A 7→ b.
This section is devoted to compute the geometric resolution of a 0-dimensional variety contained
in Vb and containing the set of the isolated points of the variety Vb (see also [3] or [9]).
For this purpose we combine the construction of linear forms which separates isolated points of
a given algebraic variety (following [9]) with the algorithm described in Theorem 40 in order to
obtain an adequate generic family of linear forms L and in some sense their minimal polynomials
over the isolated points of Vb.
Finally we apply the well-known trick based on the chain rule producing the geometric resolution
(see for instance [5, Section 3.3]).

We start observing that there exist sufficiently many K-linear forms which separate the points of
the generic 0-dimensional algebraic variety V ⊂ An+m

K(A)
:

Remark 43 The K-genericity of the coefficients of the equations defining V is preserved by any K-
linear change of coordinates in Kn and/or in Km. Then, if (λ1, . . . , λn) ∈ Kn, (λn+1, . . . , λn+m) ∈
Km are arbitrary non-zero vectors, the linear form

L :=
n∑

i=1

λixi +
n+m∑

i=n+1

λiyi−n

separates the points of V (if we suppose the contrary, none K-linear form involving at least one
variable xi and at least one variable yj separates the points of V , but there exists a non-empty
Zariski open subset of Kn+m of separating linear forms).

Consider the following linear forms:

zk := xk + y1, k = 1, . . . , n. (44)

zk := yk−n − x1 k = n+ 1, . . . , n+m.

Clearly these new variables are linearly independent and then they define a system of coordinates
in Kn+m or K(A)

n+m
.

¿From the previous Remark, all linear form zk separates the points of the variety V .
Therefore we may apply Theorem 40 for L := zk an so we obtain an univariate polynomial non zero
polynomial P (b)

zk ∈ K[U ] such that P (b)
zk (zk) ∈ K[x, y] vanishes in all isolated point of Vb. Moreover,

without modify the complexity order of Theorem 40, we also may suppose that the univariate
polynomial P (b)

zk is square-free.

Let T := (T1, . . . Tn+m) be new indeterminates over K(A) (in particular also indeterminates over
K).
For every k = 1, . . . n+m, denote by ẑk the following linear form in K[T1, . . . , Tn+m][x, y]:

ẑk := T1z1 + · · ·+ Tk−1zk−1 + Tk+1zk+1 + · · ·+ Tn+mzn+m.

Again Remark 43 implies that the linear forms ẑk separate the points of V for any vector (t1, . . . , tn+m)
lying in a suitable Zariski non-empty open subset U = {H(T1, . . . , Tn+m) 6= 0} ⊂ Kn+m.
Moreover, a polynomial H may be explicitly given:
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• if n,m > 1 take H := T2Tn+2(Tn+1 + · · ·+ Tn+m − T1)(T1 + · · ·+ Tn + Tn+1).

• if n > 1, m = 1 take H := T2(T1 − Tn+1)
∏n+1

i=1 (T1 + · · ·+ Ti−1 + Ti+1 + · · ·+ Tn+1).

• if n = 1, m > 1 take H := T1(T1 +T2)(T2 + · · ·+Tm+1)
∏m+1

i=2 (T2 + · · ·+Ti−1 +Ti+1 + · · ·+
Tm+1 − T1).

• if n = m = 1 take H := T1T2.

Following the construction of the minimal polynomial P of Theorem 34, observe that if the sepa-
rating linear form L is a linear combination of the variables x, y, then the polynomial P depends
also polynomially on the coefficients of L, because P is the product

∏D
j=1(U − L(Γj)), where Γj

are the points of V (see Section 3.2.4).
In particular, since the variables zk and the linear forms ẑk are linear combinations of the variables
x, y, for each index k we have that P depends polynomially in T (where P denotes the minimal
polynomial of the linear forms zk or ẑk over V ).
Therefore, if τ := (t1, . . . , tm+n) ∈ U , the minimal polynomial associated to the linear form ẑk(τ)
over V is well defined and it is obtained especializing the vector T in τ in the minimal polynomial
of the generic form ẑk over V .

Now, following the procedure described in Section 3.3.1, it is easy to construct in adequate running
time a non-zero polynomial H ′ ∈ K[T1, . . . , Tm+n] such that for any τ := (t1, . . . , tn+m) ∈ Kn+m \
{H ′ = 0} ⊂ U , the polynomial P (b)

ẑk(τ) ∈ K[U ] constructed in Theorem 40, is square-free and
depends polynomially in τ .

Following [9, Lemma 25 and Prop. 27], it is possible to construct in addmisible time from the
generic linear forms zk and ẑk, k = 1, . . . , n+m a new non zero polynomial H̃ ∈ K[T1, . . . , Tn+m]
such that for any τ = (t1, . . . , tn+m) ∈ Kn+m \ {H̃ = 0} the following conditions are fullfiled:

• the linear form Lτ :=
∑n

i=1 tixi +
∑n+m

i=n+1 tiyi−n separates the isolated points of Vb.

• the polynomial P (b)
Lτ

∈ K[U ] depends polynomially on τ , it is square-free and vanishes in
Lτ (q) for all isolated point q ∈ Vb (in other word PLτ

(τ, Lτ (q)) = 0 for all isolated point
q ∈ Vb ).

Let us consider now the polynomial P (b)
LT

∈ K[T ][U ], where LT := T1x1+· · ·+Tnxn+Tn+1y1+· · ·+
Tn+mym. Denote by I ⊂ K[x, y] the 0-dimensional ideal of the isolated points of Vb. Therefore
the previous arguments implies that

PLT
(LT (x, y)) ∈ IK[T ] eH [x, y], (45)

where K[T ] eH denotes the ring of coordinates of the open Kn+m \ {H̃ = 0}.
Taking in (45) the derivative with respect to the variable Ti, i = 1, . . . , n+m (see for instance [5,
Section 3.3]) and replacing the variables T in an arbitrary but fixed vector τ such that H̃(τ) 6= 0,
we obtain a Kronecker parametric description of a finite set containing the isolated points of Vb

(shape lemma): 

ρ(U)x1 = v1(τ, U)
...

...
...

ρ(U)xn = vn(τ, U)
ρ(U)y1 = vn+1(τ, U)

...
...

...
ρ(U)ym = vn+m(τ, U)

PLτ
(U) = 0

, (46)
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where degU (vi) < degU (PLτ ) and ρ(U) :=
∂PLT

∂U
(τ, U). Observe that since PLT

(τ, U) is square

free we have ρ(U) and PLT
(τ, U) relatively prime in K[U ].

Finally, in order to avoid those points (x, y) verifying relations (46) but lying outside the algebraic
set Vb, we replace the condition PLτ

(U) = 0 by a new polynomial equation Q(U) = 0, where
Q ∈ K[U ] is constructed as follows:

1. Recall that for all i, 1 ≤ i ≤ n + m, we denote di := degx(fi), ei := degy(fi) and d :=

max{di + ei / 1 ≤ i ≤ n+m}. Therefore, for any index i, ρdfi(b,
v1
ρ
, . . . ,

vn+m

ρ
) belongs to

the polynomial ring K[U ].

2. Let Q be the GCD in K[U ] of the polynomials ρdfi(b,
v1
ρ
, . . . ,

vn+m

ρ
), 1 ≤ i ≤ n + m, and

the polynomial PLτ
.

Observe that Q and ρ are relatively prime polynomials in K[U ].

Hence

Wb :=
{(v1(u)

ρ(u)
, . . . ,

vn+m(u)
ρ(u)

)
with Q(u) = 0

}
is a 0-dimensional variety defined by a Kronecker (or uniparametric) parametrisation and satisfy-
ing :

• Wb ⊆ Vb.

• All the isolated points of Vb belong to Wb.
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[3] M. Giusti, J. Heintz, La détermination des points isolés et de la dimension d’une variété algébrique
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