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Abstract. The main result of this paper can be stated as follows: let V c R"  be a 
compact semialgebraic set given by a boolean combination of inequalities involving 
only polynomials whose number and degrees are bounded by some D > 1. Let F, 
Ge~,[XI . . . . .  X , ]  be polynomials with deg F, deg G < D inducing on V continuous 
semialgebraic functions f ,g: V ~ R .  Assume that the zeros of f are contained in 
the zeros of 9. Then the following effective JLojasiewicz inequality is true: there 
exists an universal constant cl EDq and a positive constant c2~F-, (depending on 
V, f ,  9) such that ]g(x)lO°"" < C 2"If(x)] for all x E V. This result is generalized to 
arbitrary given compact semialgebraic sets V and arbitrary continuous functions 
f ,  9: V ~ R .  An effective global Eojasiewicz inequality on the minimal distance of 
solutions of polynomial inequalities systems and an effective Finiteness Theorem 
(with admissible complexity bounds) for open and closed semialgebraic sets are 
derived. 

Keywords: Eojasiewicz inequalities, Real algebraic geometry, Computer  algebra, 
Complexity 

I. Introduction 

In the present paper we consider different versions of the well-known Lojasiewicz- 
Inequality in semialgebraic geometry both from a quantitative and an algorithmic 
point of view. 

Our main result is the following (see Theorem 3 (ii) below): let V be a compact 
semialgebraic subset of ~ "  defined by a boolean combination of inequalities 
involving only polynomials whose number and degrees are bounded by some D > 1. 
Let further F, G~IR[X 1 . . . . .  X,]  be polynomials with deg F, deg G < D inducing on 
V continuous semialgebraic functions f ,9: V ~ R .  Assume that the zeros of f are 
contained in the zeros of 9. Then there exists an universal constant c l~Bq and a 
positive constant c2~lR, depending on V , f  and 9, such that for all x e V  the 
inequality ]9(x)]DC'" < c2]f(x)] holds. If all polynomials involved in the definition 
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of V and F, G have integer coefficients of maximum modulus l, then c 2 may be 

chosen as c2 := l °~1"2 where 61 is a suitable universal constant. 
An inequality of type Ig(x)lN < c 2 " l f ( x ) l  for all x ~ V  is called a Zojasiewicz- 

Inequality, N is called its exponent. If furthermore N is given explicitely as a 
function of D and n, we say that our ~Eojasiewicz-Inequality is effective, stressing 
its quantitative algebraic nature. 

It is wickedly known (although it seems not to be published) that it is possible 
to show an effective Eojasiewicz-Inequality with an exponent which is polynomial 
in D but doubly exponential in n. One obtains this result as a consequence of"fast" 
cylindric algebraic decomposition (see [2], [ 12] or [4]) by a somewhat lengthy but 
rather straightforward proof. 

In our effective ,Eojasiewicz-Inequality the exponent is polynomial in D but 
only single exponential in n. 

This quantitative improvement is due to recent progress in computational 
commutative algebra, namely the effective (Hilberts-) Nullstellensatz with single 
exponential bounds (see e.g. [3] and the references given there). One of the 
algorithmical consequences of this result is a new and more efficient quantifier 
elimination procedure for real closed fields (see I-7, 8]) on which our efficient 
Zojasiewicz-Inequality is based. Apart from this we follow the general lines of the 
proof of the "classical"/~ojasiewicz-Inequality (without any bound) of 1-1] taking 
care of subtle details concerning the estimates. 

We would like to stress here the fact that our bound on the exponent 
in the Lojasiewicz-Inequality is asymptotically optimal by the following example 
essentially due to M611er-Mora, Lazard, Masser, Philippon and many others 
(see e.g. [10]): consider the compact semialgebraic set V:={(xx . . . . .  x .)~R";  
x z + ..- + x.2 =< 1 } and the polynomials F :=  (X2 - X~) 2 + -.. + (X. - X. D_ 1) 2 + X.  2 
and G:= X~ + - . .  + X, z, which induce on V continuous semialgebraic functions 
f , o : V ~ R ,  f and 9 have both only the origin as zero. For u ~R  positive and 
sufficiently small the point x(u):= (u, u ° . . . . .  Up.-1) lies in the closed ball V and we 
have: 

f ( x (u ) )=  u 2D"-~ and 9(x (u ) )  = Ix(u)l  z ~ u z. 

Thus any J£ojasiewicz-Inequality Io(x)l N < c2 If(x)] implies u 2u < c2u 2D"-1 for all 
positive and sufficiently small u ~R. Therefore we obtain N > D"- 1 for the exponent 
of any J~ojasiewicz-Inequality for V, f and 9. 

We give also an adequate generalization of the mentioned effective,~ojasiewicz- 
Inequality to arbitrary given compact semialgebraic sets V and arbitrary continuous 
semialgebraic functions f ,  9 :V  ~ R (see Theorem 3(i) below). As an application of 
this result we obtain an effective (and algorithmic) Finiteness Theorem for any 
open semialgebraic set S of R"  given as before (Theorem 9 and Remark 10 below): 
we find in admissible time (i.e. in sequential time D "°"J and parallel time 
(nlogzD) °"))  a representation of S by basic open sets which involve only 
polynomials whose number and degrees are bounded by D °~"~). (An analogous fact 
is true for closed semialgebraic sets.) This result simplifies the treatment of many 
computational problems dealing with open or closed semialgebraic sets within the 
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complexity class of admissible algorithms since it allows the algorithmical reduction 
to basic (open or closed) semialgebraic sets. 

In Theorem 7 below we prove for closed basic semialgebraic sets a "global" 
effective ,Eojasiewicz-Inequality with single exponential bounds. This result is of 
some use in approximatively solving of polynomial inequalities systems because it 
gives some a priori information where a solution of such a system can be found 
if there is any. An analogous result (with more precise bounds) in the context of 
algebraically closed fields equipped by an absolute value was independently 
obtained in [-9]. 

I I .  P r e l i m i n a r i e s  

Throughout this paper we fix a real closed field R and a subring A of R (for 
example R:= IR and A:= Z). 

We consider R n, n = 0, 1 . . . .  as a topological space equipped with the euclidean 
topology. Let x :=  (xl . . . . .  x,) and y :=  (Yl . . . . .  y,) be two points of R", we write 

Ix - y l : =  ~ / ( x ,  - y~)2  + . . .  + ( x .  - y . ) 2  

for their euclidean distance. If r >0 ,  is a positive element of R we write 
B(x, r):= {yeR"; ]x -- yl < r} for the open ball of radius r centered at x. 

Ifx, yeR, we denote by [x, y],(x, y), [x, y),(x, y] the closed, open and half open 
intervals with boundaries x and y. 

A semialoebraic subset of R" (over A) is a set definable by a boolean combination 
of equalities and inequalities involving polynomials from A [X~ . . . . .  X, ]  (X1 . . . . .  X,  
are indeterminates-variables-over R). 

Let VcR" ,  W c R "  be semialgebraic sets and f:V--+W a map. We call f 
semialgebraic if its graph is a semialgebraic subset of R "+m. 

The image of a semialgebraic set by a semialgebraic function is semialgebraic 
too. This fact is called the Tarski Seidenber# Principle (see [-1], Theorem 2.2.1). 

The Tarski Seidenberg Principle can also be stated in terms of logics: let £P 
be the elementary language of real closed fields with constants from A, we call two 
formulas of L#, in the same free variables XI . . . . .  X,,  equivalent (with respect to 
5 °) if they define the same semialgebraic subset of R". The Tarski Seidenberg 
Principle says that for each formula q~e5 ° there exists ~eS~, equivalent to q~ and 
without quantifiers (see [1] Sects. 2.2 and 5.2); in other words, if • is a formula 
in Y,  with n free variables, the subset V of R" defined by 

V:= {xeR"; x satisfies q~} 
is a semialgebraic set. 

We define now the parameters which are involved in our subsequent quantitative 
estimations: 

- if ~ c A[X~ . . . . .  X, ]  is a finite set of polynomials we write: 

d e g ( ~ ) : =  ~ deg f 
fE~- 

~ ( ~ ) : =  max {deg f ;  f e Y }  
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(deg f denotes the total degree of f )  

[absolute of all coefficients ~ / ( i f) := max ~ of values the 
the polynomials in ~ J 

- for each formula t o e ~  built up by atomic formulas involving a finite set o~e of 
polynomials of A[X1 . . . .  ,X,] ,  we write 

I toI := length of to 

deg (to):= deg (~e )  

/(to):= l (~e)  

- i f  the formula toeL~ ° is a prenex formula (i.e. all its quantifiers occur at the 
beginning of to) we define: 

a(to):= the number of alternating blocks of quantifiers of tO. 

In order to define the notion of algorithm, we use the concept of arithmetical 
network over A (see [5]); the number of nodes and the depth of the associated 
graph will be the sequential and the parallel complexity respectively. 

With this notions we can state our main tool, an effective version of 
Tarski-Seidenberg Principle: 

T h e o r e m  1. Let to be a prenex formula in the elementary language ~ of real closed 
fields with constant in A. Let n be its number of variables, D:= deg (to) and a:= a(to), 
It  is possible to compute in sequential time D"°<"~.[to[ °tl) and in parallel time 
n°ta)'(logzD)°tl) +(lOgEltol)°tl) a quantifier free formula ff~ equivalent to to. 
Moreover, there exists an universal constant c e N  (independent of to) such that 
the formula if) satisfies the following: 

- d e g ( ~ )  < D "°" 

--  l(t~) < l(to) °"°° 

In particular, when a = 1, we have more precise bounds: 

- a ( q ) )  < O c." 

- l(~)) < l(to) D°". 

Proof. [7,8]; see also [11]. • 

III. Eo jas i ewicz  Inequal i t ies  

Notation. Let V = R ~ be a semialgebraic set and f :  V ~ R a semialgebraic function, 
we write Z ( f ) :=  {x~ V; f ( x ) =  0}. 

L e m m a  2. Let V = R ~ be a non empty and closed semialgebraic set defined by a prenex 
formula t oe ~ .  Let f , g : V ~ R  be two continuous semialgebraic functions which 
satisfy Z ( f )  c Z(g) and let to1, cI)2~2~ be prenex formulas describing the graphs 
o f f  and g respectively. Let ~ ~ ,  uo~ ~2 c A [ X  1 . . . .  ,X , ] ,  D:= max {deg(to), 
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deg(~l), deg(~2)} and a:= max {a(@),a(~l),a(~2)}. Then there exists a constant 
cl ~nq (independent of V, f and g) such that: 

(i) if a > O, the function ~t: V-~ R defined by 

O(x)M'" if x C Z ( f )  
o~(x)~= 

{ [O f(x) if x ~ Z ( f )  

is a continuous semialgebraic function. 
(ii) / fa  = 0 (i.e. if cI), cI) 1 and q)2 are quantifier free formulas), the function ~: V--* R 
defined by 

I g(x)D . . . .  

e(x):= f (x )  if x C Z ( f )  

0 if x ~ Z ( f )  

is a continuous semialgebraic function. 

Proof. Our proof follows the line of that of [1] Proposition 2.6.4 and we treat 
only (ii) since (i) can be shown in an analogous way. Without loss of generality we 
may suppose that g ~ 0 (i.e. g is not identically zero). 

1. For each x e V  and u~R we denote by V(x,u) the following bounded and closed 
semialgebraic subset of R": 

V(x, u):= B(x, 1) c~ {ye v; u. Ig(y) l = 1 }. 

(Observe that 9 ~ 0  implies the existence of an element (x,u)eR "+1 such that 
V(x, u) ~ ~.) 

We shall consider the following formula ~OeS: 

O(X)/x (I Y - XI z < 1) ^ O(Y) ^ q~z(Y, T)/x ( ( U . T )  2 = 1)/x (U > 0) 

(with X:= (X 1 . . . . .  X,) and Y:= (Y1 . . . . .  i1,)). 
q,, is a quantifier free formula in the 2n + 2 variables X, Y, T, U with deg (q,,) = O(D). 
A point (x, y, t, u) e R2" + 2 verifies ~O if and only if y e V(x, u) and g(y) = t. 

2. We shall also consider the semialgebraic function v: V x R--+R defined by: 

/ ~  1 
ax ; yeV(x ,u )  if V(x,u)¢~2~ v(x, u):= 

if g(x, u) = f25 

(Observe that g(y)# 0 implies f ( y ) ¢  0 for all y~ V(x, u)). 
Let OeL/be the formula: 

(3Y)(~T)(3W)(tp(X, Y, T, U)/x  q91(g , W)/,, [WI 'Z  < 1) 

(where Z and W are two new variables). 



6 P. Solern6 

Note that for (x, u )eR  "+ 1 satisfying V(x, u) ~ ~ ,  the formula 0(x, u, Z) describes 
the half line ( -  0% v(x, u)] c R. Obviously deg (/9) = O(D). 

3. Applying Theorem 1 to the formula/9, one obtains a new quantifier free formula 
i in the n + 2  variables X,  U,Z ,  which is equivalent to 0 and which satisfies 
o(i) < D c'". (Here the constant c e N  is independent of 0.) 

We may assume that g is a disjunction of formulas which have the following 
form: 

(*) h i (X,  U , Z ) > 0 ^  .-. ^hk(X, U , Z ) > O A h k + , ( X  , U , Z ) = 0 A  .-. ^ hs(X, U , Z ) = 0  

where hi . . . . .  hs are polynomials of A[X,  . . . . .  X,, U, Z]  and where k ranges between 
0 and s. (Note that the formula (,) contains no strict inequality if k = 0 and no 
equality if k = s.) 

4. Let be given x e V  and suppose first that V ( x , u ) #  ~ for some ueR.  According 
to (2) and (3), the formula if(x, u, Z) describes the half line ( -  0% v(x, u)]. Therefore 
i contains at least one conjunction of type (*) such that the following formula (in 
the only free variable Z): 

h l ( x , u ,Z )> O ^ ... A hk(x ,u ,Z)>O A hk+ I (X ,u ,Z)=O A ... A h~(x,u,Z) = 0 

is consistent (i.e. satisfiable in R) and contains an equality. Thus there exists an 
index j (k < j  < s) for which: 

- hi(x, u, Z)  ~ 0 in R [Z] 

-- hi(x, u, v(x, u)) = O. 

Let ~'(x) c R[U,  Z] be the set of polynomials which appear in i(x, U, Z). Applying 
cylindrical algebraicdecomposition to ~ ( x )  in order to remove the variable Z (see 
for example [1] Theorem 2.3.1) one concludes that there exists an element f l (x)eR 
such that one of the following conditions is satisfied: 

a) V ( x , u ) = ~  V u > f i ( x )  
b) V(x, u) 4: ~ Vu > fl(x). 

Moreover in the case b), for all u > fl(x), the same conjunction of type (,) in 
0(x, u, Z): 

h l ( x , u ,Z )>O ^ "'" ^ hk(x ,u ,Z)>O ^ hk+ l ( x , u , Z ) = O  ^ ... ^ h~(x,u,Z) = 0  

is consistent and the same index j (k < j  < s) verifies the conditions: 

- h~(x, u, Z )  ~ 0 for all u > fl(x) 

- hi(x, u, v(x, u)) = 0 for all u > fl(x). 

In the case that V(x, u) = ~ for all u~R we put fi(x):= 1. 

5. For each x ~ V  we define a polynomial hEA[X~ . . . . .  X , ,  U ,Z]  (depending on 
the point x) as: 

h:= Z if for all ueR ,  V (x ,u )=  ~ or if a) in (4) is satisfied. 

h:= h~(X~ . . . . .  X , ,  U ,Z )  if b) in (4) is satisfied. 
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The polynomial  h just defined verifies: 

- h(x, u, Z) -~ 0 for all u > fl(x) 

- h(x, u, v(x, u)) = 0 for all u > fl(x) 

- -  deg h < a(O) < D c'". 

F rom the construction of fl(x) and from the fact that  v(x, u) is a root  of h(x, u, Z), 
we conclude now that 

]v(x,u)l<7(x).u p° for all u>fl(x) 

where 7(x)~R is a positive constant depending on x and where P0 (which also 
depends on x) is a natural  number  bounded by deg h < a(ff). 

Without  loss of generality we may assume fl(x) > 1 for all x~ V. Thus we obtain 

[v(x,u)l < 7(x)'u ~l°) for all u > fl(x). 

6. Let p:=a(ff)+ 1. We observe that p < D  .... where c l e N  is a constant  not  
depending on V, f ,  g- 

We claim that the semialgebraic function e: V-* R defined by: 

( g(X)p if xCZ( f )  

: ~ ( x ) : = / f ( x )  if x e Z ( f )  

is a cont inuous function. 
To prove this, it is enough to analyze the continuity of c¢ in a point  xEZ(f) .  

Let e > 0 and 0 < 6 < 1 be two elements of R such that  Ig(y) l < rain fl(xo), 

for all yeB(xo,6)n  V. ( 1 9 ~ 1 )  
Consider yeB(xo,6)n(V\Z(g)) .  We obtain that yEB x o, and thus 

(;,,) 1 < V Xo,  
If(Y)l = 

From 

one deduces: 

1 ) I 1  I ~(~) 
v XO,~g~y)l < 7(Xo)" g(y) (see (5)) 

Ig(y)l ~¢°> <?(Xo) for all y~B(xo,6)n(V\Z(g))  
If(y)l 

This implies I~(Y) I < ~ for all yeB(xo,  6) c~ (V\Z(g)). 
In the case yeZ(g)  we have e(y) = O. • 

F rom this lemma it is easy to deduce the following "Jcojasiewicz Inequality": 

Theorem 3. Let V ~ R q be a non empty, closed and bounded semialgebraic set defined 
by a prenex formula ~ESf  . Let f ,  g: V - ,  R be two continuous semialgebraic functions 
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which satisfy Z ( f )  c Z(g) and let • 1, (1) 2 ~.~q~ be formulas describing the graphs o f f  
and g respectively. Let n, D, a be defined as in Lemma 2. Then there exists an universal 
constant c 1 ~ I  (not depending on V, f and g) and a positive element c26Fx ( depending 
from them) such that: 

(i) if a > 0, Ig(x)] Dnc'~ < c2"[f(x)[ for all x~V.  
(ii) i f a  = 0 (i.e. if 0,  • 1 and • 2 are quantifier free formulas): 

Ig(x)l ° .... < c2"lf(x)l for all x eV .  

In the case A:= Z, R:= R,  and/fl:= max {l(O), 1(O1), l(O2) }, we can choose c 2 = 1 °n''° 

in (i) and c2 = l °~ .... in (ii). (Here cl ~Bq is an universal constant). 

Proof. We consider only the case a = 0 (the case a > 0 can be treated in an 
analogous way). 

We observe that the hypothesis of Lemma 2 are verified. Let ~ : V ~ R  be 
the semialgebraic functions whose continuity is asserted in the lemma. Since V 
is a closed and bounded semialgebraic set, • takes a maximum there (see [1] 
Theorem 2.5.8). Thus we have 

Ig(x)[ ° .... <c2"lf(x)l  for all x e V  (c2:~-~-max{Im(x)l;xEV}). 

Finally in order to obtain the asserted estimation for c2 in the case A := 7 /and  
R:=  R we consider the following formula ~e&e: 

(3X)(BW)(3T)(O,(X, W) ^ 02(X,  T) ^ (T2°C""> (U" W) z) ^ (W z > O) ^ (U > 0)) 

where X : =  (X 1 . . . . .  Xn). 
~P is a formula in n + 2 quantified variables (X1 , . . . ,Xn ,  W, T) and one free 

variable U, which describes the semialgebraic interval [0,c2] c R. Note that 
deg (~u) = O(D .... ) and l (~)  < 1. 

Applying Theorem 1 to the prenex formula ~v, one concludes that there exists 
a polynomial h~Z[U]  such that: 

- h ~ 0  and d e g h = D  °(~2) 

- l ( h )  = I ° ° ~  

- h(c2) = 0. 

Since c2 is a root of the polynomial h one infers now easily that there exists an 

universal constant ?~e~,l, not depending on V, f and g such that c2 < l °~'"~. • 

Remark 4. Theorem 1 and the proof of Theorem 3 show that in the case of an 
arbitrary real closed field it is possible to compute the bound c 2 by means of an 
algorithm which runs in sequential time D"°~°"(I O] + ] Oll + [02 ]) and parallel time 
n°(a)'(log2 D) °0) + (log2(I OI + IOll + IO2 I)) °~" for a > 0, and D ~°~'~ (sequential 
time), (n'log2D) °(1) (parallel time) for a = 0. 

Lemma 5. Let V ~ R q be a non empty and closed semialgebraic set defined by a 
prenex formula 0 ~  ~ and let f : V ~ R be a continuous semialgebraic function whose 
graph is given by a prenex formula 0 1 E ~ .  Let ~ u ~ , ~ A [ X 1  . . . . .  X,]~ 
D:= max{deg(O),deg(O1)}, a :=  max{a(O),a(O0}.  Then there exists an universal 
constant c 1 ~ I  (not depending on V and f )  and a positive element c2~R (depending 
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from them) such that: 
(i) / fa  > 0: [f(x)l < c2"(1 + Ixl) °°°'° for all x~V.  

(ii) / fa  = 0 (i.e. • and ¢91 are quantifier free formulas) 

If(x)l <c2"(1 + Ixl) ° .... for all x~V.  

In the case A:= 7Z, R:= R , / f  h=  max {l(~), l(~1)}, we can choose c 2 = l °°''° in (i) 
D~I .n 

and c2 = l , where (x ~ 1  is an universal constant. 

Proof. Our arguments are similar from the ones used in Lemma 2 and are based 
in [1] Proposition 2.6.2. 

Again we consider only the case a = 0. 

1. For each ueR,  we define: 

V(u):= {xeV; Ixl = u} 

V(u) c R" is a bounded and closed semialgebraic set. 
Let ~ 65e  be the formula in the n +  1 free variables X:=(X1 . . . . .  X,), U, 

defined by: 

~e: a~(x) A (IXl  2 = U 2) A (U _-> 0) 

It is clear that deg (~ )  = O(D) and that V(u) ~ ~ holds if and only if u satisfies 
the formula (3X) (~ (X ,  U)). 

2. Let v:R o R  be the following semialgebraic function: 

v(u) :={Oax{ l f ( x ) l ; xEV(u)}  ifif V(u)V(u)¢~= 

(Note that this function is well defined by means of I l l  Theorem 2.5.8.) We consider 
the following formula 0: 

( 3 x ) o w ) ( q ' ( x ,  u) ^ ~ l ( x ,  w)  ^ w 2 > z ~) 

Obviously deg (0) = O(D). 
Applying Theorem 1 to O, one obtains a quantifier free formula O, equivalent to 

0 in the variables U, Z with a(O)= D .... (cxeN is an universal constant). 
We may assume that the formula Ois a disjunction of formulas which have the 

following form: 

(**) h~(U,Z)>O ^ ... A hk(U,Z)>O A h k + l ( U , Z ) = O  A . . .  A hs(U,Z ) = 0  

where h~ . . . . .  hseA[U, Z] and k ranges between 0 and s. 

3. We fix ueR.  Thus the formula 0(u, Z) defines a semialgebraic subset of R: either 
the empty set (in case V(u )=~) ,  or the closed interval [-v(u) ,v(u)]  (in case 
V(u) # f25). Therefore, i f u e R  verifies V(u) ¢ ~ ,  there is in Oat least one conjunction 
of type (**) such that the formula (in the only free variable Z): 

h l (u ,Z)>O A ... A hk(u,Z)>O A hk+l(u,Z)=O A ... A hs(u,Z)=O 

is consistent and contains an equality. Thus there exists an index j (k < j  < s) for 
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which 

- hj(u, Z) ~ 0 

- degzhj(u, Z) > 1 

- hi(u, v(u)) = O. 

4. Applying cylindrical algebraic decomposition to the polynomial set . ~ 0 c  
A [ U , Z ]  in order to remove the variable Z (cf. [1] Theorem 2.3.1. or [4]) one 
deduces that there exists an element t i e r  such that one of the following conditions 
is satisfied: 

a) V(u) = ~ for all u >/3. 
b) V(u) ~ ~ for all u >/3. 
Moreover, in case b) for all u >/3 the same conjunction of type (**)in ff(U,Z) 

is consistent and the same index j (k < j  < s) verifies the conditions: 

- hi(u, Z) ~ 0 
- degz hi(u, Z) > 1 

- hi(u, v(u)) = 0 

5. We define a polynomial h~A[ U,Z]  as: 

for all u>/3  

for all u> /3  

for all u >/3. 

h : = Z  if a) occurs in (4) or, 
h:= hj if b) occurs in (4). 

In both cases the polynomial h verifies: 

- h ( u , Z ) - ~ O  forall  u > f l  

- degzh(u, Z) > 1 for all u >/3 

- h(u, v(u)) = 0 for all u >/3 

- deg h < deg hj < a(ff) = D ... .  . 

From the construction (by cylindrical algebraic decomposition) of fl and the 
fact that v(u) is a root of h(u, Z), we infer that there exists a positive constant kl eR 
such that: 

(***) Iv(u)l < kl lul p with p < degh < D el"n, for all u > fl. 

Let k2:= max { I f(x) l; x ~ Vand I xl < fl}. (Observe that [ 1] Theorem 2.5.8 guarantees 
that k 2 is well defined). 

We denote by c2:= max {kl ,k2}.  Thus we obtain: 

- i f  x e V  and Ixl_-<fl: I f ( x ) l ~ _ k 2 < c 2 < = c 2 ( l + l x l )  p 

- i f  x e V  and Ixl=>/3: ] f ( x ) l < m a x { l f ( y ) l ; y e V ( l x l ) }  

= v(Ixl)< kx.lxl p (by (***)), and finally If(x)l < c2(1 + Ixl) p. 

We conclude that If(x)l < c2"(1 + Ixl) ° .... for all xeV .  

6. In the case A : = I ,  R : = R  it is possible to found the values of k~ and k~ in 
order to compute c2. For kl we observe that it suffices to bound the real roots of 
the polynomial h(u, Z) for arbitrary high values u > ft. From Theorem 1 one infers 
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deg h < D .... and l(h) < l(ff) = l °"". The constant fl comes from the elimination of 
one variable by cylindrical decomposition applied to ~ and this procedure 
increases only polynomially the degrees. Finally for k2 we apply again Theorem 1 
to estimate an upper bound for max { I f (x ) l ;x  < fl}; for this purpose we consider 
the following formula ~0: 

(3x ) (qw) ( (q ) l (X ,  W)) A (W E > T z) A (T > 0) A (IX[ 2 < f12)) 

in the only free variable T. ~0 describes the closed interval [0, k2] c R. Clearly 
deg (q0 = O(D) and l(~o) = l D°~"'. From Theorem 1 above we conclude that k 2 can 
be chosen as l °°~"~. • 

Remark 6. The proof of Lemma 5 gives an algorithm to compute effectively a 
bound for the constant c2; the algorithm runs within the same time limits as in 
Remark 4. 

Definition. Let V c R" be a closed semialgebraic set and let x~R"  be an arbitrary 
point. We denote by d(x, V) the usual euclidean distance between x and V, i.e. 
d(x, V):= min {Ix - y l; Y ~ V}. (Note that this minimum exists by [ 1 ] Theorem 2.5.8.) 

Now we are able to state another Eojasiewicz-type inequality: 

Theorem 7. Let f l  . . . . .  f s ~ A [ X 1  . . . . .  X,],  D:= ~ degf i ,  V:= {x~R";f l (x)>=O i=1 
A ... ^ fk(X) > 0 ^ fk+l(X) = 0 ^ "" ^ fs(x) = 0} and assume that V is non empty. 
Then, there exist constants c l~ lq  (not depending on the f i) ,  m~lq  and a positive 
c26R (both depending on the f i) such that 

d(x,V)"<=cz.m<=ax {[f,(x)[}.(1 +lxl) °°<' for all xeR" ,  

where m < D "<'. 

In the case A:= Z, R:= IR, if l:= l ( { f  l . . . . . .  /~}) we can choose c2:= l M' ( g l e n  
is an universal constant). 

Proof. Let ~eL,  ° be the following formula which describes V: 

f l (X)  ~ 0 A - . -  A f k ( X ) > O  ^ f k + l ( X ) = O  ^ ... ^ fs(X) = 0. 

We have deg(O) = O and a(q)) = 0 (X:= (X 1 . . . .  ,X,)). 
We consider the following functions f ,  g: R" ~ R: 

s(x):=,/E s (x) 
l<=i<_s 

g(x):= d(x, V). 

f and g are continuous semialgebraic functions satisfying Z ( f )  c Z(g). 
The graphs of f and g can be described by the following formulas q~l and q~2: 

~l:Q W2- 21<_i<_ s S 2 ( X ) = O )  ^ ( W > O )  

q~e:(qY)(VY')(7 q)(Y') v (q~(Y) A ( I X -  y[z = r 2)/x ( T > 0 )  ^ ([X - y,]2 __> T2)) 

(Y:= (Y, . . . . .  Y.), Y':= (Yi . . . . .  Y',)). 
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We have deg(~i) = O(D) (i = 1,2), a(~x) = 0 and a(~2) = 2. 
Applying Lemma 2 to the functions f and g we deduce that there exist k: e~l  

(not depending on the fi) and a natural number m < D "~' (depending from them) 
such that the function ~t:R"---,R: 

(o(x)" 
~ ( x ) : = ~ f ( x )  if x C Z ( f )  

if x e Z ( f )  

is continuous. 
The graph of ~ can be described by the following formula q~3: 

(3W)(3T)(cI),(X, W) ^ cI)z(X, T) ^ (((T m-  U W = 0 )  ^ (W >0)) v ( W = 0  ^ U = 0))), 

which verifies deg (q)3)= O(D) and a (~3 )=  3. 
By Lemma 5 applied to the function a we obtain that there exist a consistent 

kz~lq (not depending on the fi)  and a positive constant k3~R (depending from 
them) such that 

k2 
[0t(x)l < k3"(1 + Ix]) o" for all xeR". 

Thus, 

d(x, V) m < ka'f(x) '(1 + Ixl) °"k2 for all x e R  n. 

Putting c2:= D.k 3 and c1:= max {kl, k2 } we conclude: 
nk2 cl 

d(x, V) m < ka'f(x)(1 + Ixl) ° < c2" max {Ifi(x)[}'(1 + Ixl) °° , 
- -  l < i <  s 

for all x e R  ~, with m < D "cl. 
Finally, when A : = 7 / a n d  R : = R ,  the asserted bound for c 2 can be deduced 

from Lemma 5 taking into account l(q~3) < l 2. • 

Remark 8. Remark 6 and the proof of Theorem 7 show that there exists an 
algorithm which computes the constant c2 with sequential complexity D "°~1~ and 
parallel complexity (n.log 2 D) °0). 

IV. An Effective Finiteness Theorem 

In this section we are going to apply the results of the last paragraph in order to 
obtain an effective representation theorem for open and for closed semialgebraic 
sets. 

The qualitative part of this result (not involving any bounds) is also known as 
"Finiteness Theorem" (see [1] Theorem 2.7.1.). 

Theorem 9. Let S c R" be an open (resp. closed) semialgebraic set given by a 
quantifier free formula qg~.q ~. Then there exists a decomposition of S: 

N 

S =  U s j  
j = l  
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where each S i is an open (resp. closed) semialgebraic set of  the form: 

Si :=  {xeR"; f l j ( x )  > 0 A -.. A f~jj(X) > 0} 

(resp. Si := {xeR" ; f x j ( x )  > 0 A ..- A f~jt(X) > 0}) 

where the f u  are polynomials of  A [ X  1 . . . . .  X,](1  < i <= s t, 1 < j  < N). Moreover for 
O : =  deg(O) we have: 

- deg f i t  = O°t"~)( 1 < i < s~, 1 =<j < N) 

- -  N < D (resp. N = D °t"")) 

-- ~ deg f ij = D°t~3~(resp • D°t"')) • 
i,i 

Proof. We treat here only the case of an open set following the arguments  of  the 
proof  of [1] Theorem 2.7.1 (the case of closed sets is obtained taking complements). 

N 

Let O =  V • ° be the disjunctive form of O, where each • u) is a formula of  type: 
j=l  

h 1 > 0  ^ ... ^ h k > 0  ^ hk+l = 0  ^ .." ^ h s = 0 ,  

with h r e A [ X 1 , . . . , X , ] ,  O < r  < s, O< k <_s. 
We may assume that 0 < k < s. (The case k = s is obvious and, if k = 0, we add 

one inequality hk +a + 1 > 0). 
Let us fix j (1 < j < N), and let S ' c  S be the semialgebraic set described by 

We define: 
k 

f : =  ~ h 2 and g : =  I J ( h r + ] h r [ ) .  
r = k + l  r 1 

Both are continuous semialgebraic functions defined on R". 
Let V c R" be the closed semialgebraic set R"\S,  described by the formula 

q~:= -10 .  
By [6] Lemma 1, one infers that q~ can be chosen (eliminating superfluous 

conjunctions) in such a way that deg (~o) < D 4". 
Let • 1, O2e5¢ be the following formulas, which define the graphs of f l v  and 

o fg lv :  
• 1 :(W - f ( X )  = O)/x ~o(X) 

02:(q~(X)^ U - 2  k h r (X)=O A h l ( X ) > O A ' " ^ h k ( X ) > O )  

k 

v V (q~(X) ^ ( u  = o) ^ (h~(X) ~ 0)). 
r - - 1  

( x : =  ( x l  . . . . .  x .)) .  
We have D °~"~ = max {deg(O 1), deg(O 2), deg(q0 }. 

Since Z ( f ) c ~ V c Z ( 9 ) c ~ V  we can apply Lemma 2 (ii) to f l v , g l v .  Thus the 
semialgebraic function ct: V ~ R: 

( g(x)o ..... 

ct(x):= f ( x )  if x e V \ Z ( f )  is cont inuous (clEhq). 

0 if x ~ V c ~ Z ( f )  
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The  g raph  of ~ c an  be descr ibed by  the fo l lowing quan t i f i e r  free fo rmula  (JD 3 ] 

2 k. h,(X) - Z ' f ( X )  = 0 ^ h t (X  ) > 0 ^ ... A hk(X) > 0 ^ q)(X) 

k 

v V (q)(S) ^ Z = 0 ^ h,(X) < 0). 
r = l  

W e  have d e g ( ~ a ) =  D °tn2). 
F r o m  L e m m a  5 we conc lude  tha t  I~(x)l _-< c2"(1 + Ix12) °°~~3 for all  xeV .  (Here 

c' 1Elq is a n  un iversa l  c o n s t a n t  a n d  c2 a posi t ive e l emen t  of R). 
F o r  j = 1 . . . . .  N we cons ide r  the  fo l lowing o p e n  semia lgebra ic  sets: 

Sf i={x~Rn;e2f (x) ( l+lx l2)°4n3<(2k~=lh, (x) )~q~2 ^ h l ( x ) > O  ^ - - .  ^ h k ( x ) > O } .  

N 

Clear ly  S' c Sj a n d  Sj c~ V = ~ ,  whence  S' c S j c  S. Therefore  S = ~ Sj where each 

S i is defined on ly  by  (strict) inequal i t ies .  • J= 

Remark 10. By m e a n s  of  T h e o r e m  1 it is poss ib le  to descr ibe effectively the 
cons i s ten t  c o n j u n c t i o n s  a p p e a r i n g  in  the  fo rmu la  q~. C o m b i n i n g  this  with R e m a r k  6 

one  can  cons t ruc t  the set of  p o l y n o m i a l s  {f~} a n d  c o n j u n c t i o n s  def ining each S i 
in  sequent ia l  t ime D ~°m a n d  in  para l le l  t ime (n log2 D) °m.  
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