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Abs t rac t .  Let F be a unimodular r • s matrix with entries being 
n-variate polynomials over an infinite field K. Denote by deg(F) the 
maximum of the degrees of the entries of F and let d = 1 + deg(F). We 
describe an algorithm which computes a unimodular 8 x s matrix M 
with deg(M) = (rd)~ such that F M  = [It, 0], where [L, 0] denotes 
the r x s matrix obtained by adding to the r x r unit matrix I r s  - r 
zero columns. 

We present the algorithm as an arithmetic network with inputs from 
K, and we count field operations and comparisons as unit cost. 

The sequential complexity of our algorithm amounts to 
s~176176 field operations and comparisons in K whereas its 
parallel complexity is O( n4r 4 log2( srd) ). 

The complexity bounds and the degree bound for deg(M) mentioned 
above are optimal in order. Our algorithm is inspired by Suslin's proof 
of Serre's Conjecture. 
Key  words.  Serre's Conjecture, Quillen-Suslin Theorem, effective Null- 
stellensatz, linear equation systems over polynomial rings, complexity. 
Sub jec t  classifications. 68C25. 

1. I n t r o d u c t i o n  

In this paper we consider Suslin's approach (see Lain 1978, Chapter III, w 
to solve Serre's Conjecture under a quantitative algebraic and algorithmic per- 
spective. 

By "Serre's Conjecture" we mean the following statement: 

Any locally trivial algebraic vector bundle over an afflne space is 
(globally) trivial. 
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(However, in his historical paper (FAC: Serre 1955) J. P. Serre was only pointing 
out that no example was known of a nontrivial algebraic vector bundle over an 
affine space.) 

In FAC locally trivial algebraic vector bundles are interpreted as ~ocatly free 
coherent sheaves. This sheaf-theoretical interpretation of vector bundles allows 
us to reformulate Serre's Conjecture in the following purely algebraic way: 

Let K be a field and R = K [ X I , . . . , X n ]  the polynomial ring in ~he 
in&terminates X I , . . . ,  X~ over K.  Any finitely generated projec- 
tive R-module is free. 

In view of a theorem due to Serre (see Lam 1978, Chapter II, Theorem 5.8) 
this form of Serre's Conjecture can be reduced to the following statement in 
terms of linear algebra over the polynomial ring R: 

Let F C R Txs be a unimodular r x s matrix. :/'here exists a unimod- 
ular square matrix M E R ~xs such that F M  = [I,, 0], where [L, 0] 
denotes the r x s matrix obtained by adding to the r x r unit matrix 
I~ s - r  zero columns. 

Quillen and Suslin proved in 1976 independently by different methods this 
last statement, thus answering Serre's Conjecture positively. (See Lain 1978 
and Kunz 1980 for a history of Serre's Conjecture, its motivations and appli- 
cations.) 

In the present article we consider Serre's Conjecture only in this ultimate 
form. From this point of view Serre's Conjecture represents a particular case of 
the more general problem of solving linear equation systems in the polynomial 
ring R. 

The quantitative algebraic and algorithmic aspects of this problem were first 
studied in 1926 in a pioneering paper of G. Hermann (1926) and reconsidered 
later in (Seidenberg 1974) and in numerous research articles on Gr6bner bases 
(see Buchberger 1985 and the references given there). 

The general problem of solving linear equation systems in polynomial rings 
is exponential space complete and involves necessarily doubly exponential (in 
the number of variables) degree bounds for the polynomials appearing in the 
solutions (see Mayr & Meyer 1982, Bayer & Stillman 1988). 

As a particular case let us consider the (general) representation problem for 
polynomial ideals: 

Given polynomials f ,  f l , . . . , f ~  E R = K [ X I , . . . , X ~ ]  such that 
f belongs to the ideal generated by f l , . . . , f s  (in symbols: f E 
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( f l , . . . ,  L)), we co,sider the problem of findi g a repre entatio  
o f f ,  f = m l f l  + ".. + m~f~, with m l , . . . , m s  in R.  

From (Mayr & Meyer 1982) it follows that m l , . . .  ,ms may have degrees 
not less than a lower bound which is doubly exponential in n. However, if 
f = 1, the corresponding triviality problem of finding a representation of 1 in 
R, 1 = rnlf~ + . . .  + rn~fs, admits a single exponential upper bound for the 
degrees of ml,  . . . .  m~. More precisely, the following effective Nullstellensatz is 
true: 

Let f a , . . . , f ,  E R = K [ X 1 , . . . , X n ] ,  d = m a x s { d e g ( f i ) }  , (where 

deg denotes total degree), and suppose that n > 1 and d >_ 3. Then 
1 E ( f l , . . . , f ~ )  i f  and only i f  there exist m l , . . . , r n ,  E R .such that 
1 = m~fl  + - . .  + rn~f~ with max{deg (ml f ; ) }  < d ~. 

l<i<s 

(See the original papers Brownawell 1987, Caniglia etal .  1989, Kolls 1988 
or the survey Teissier 1990 and the references given there. Elementary proofs 
of this theorem can be found in Fitchas & Galligo 1990, Philippon 1988 or 
Caniglia et al. 1990.) 

The condition 1 E ( fa , . . . , f~)  means that the row vector F = [f l , . . - , f~]  
E R 1• with polynomial entries f l , . . . , f ~  is unimodular. The Quillen-Suslin 
Theorem (Lain 1978, Chapter III, Theorem 1.8 and Remark 1.10) says that 
under these circumstances there exists a unimodular matrix M E R s• such 

that F M  = [1, 0 , . . . ,0 ] .  This implies that the first column " of M 

rrt s 
satisfies 1 = m l f l  + . . .  + m~f~. 

In particular Suslin's proof of this theorem yields such a unimodular matrix 
M, thus solving the triviality problem for ( f l , . . . ,  f~)- However, the degree and 
complexity bounds which can be derived revising this proof from an algorithmic 
point of view are very coarse (see Chaqui 1983 and Logar & Sturmfels 1992 for 
this approach). 

Using the fundamental ideas of Suslin's proof (see Lain 1978, Chapter III, 
w and applying the effective Nullstellensatz mentioned before, the authors of 
the present paper showed the following quantitative algebraic and algorithmic 
version of the Quillen-Suslin Theorem (Fitchas & Galligo 1990, Th~or~me 15): 

Let K be an infinite field, let f ~ , . . . , f ~  E R = K [ X ~ , . . . , X ~ ] ,  
d =  i -{- m ~ x { d e g ( f l ) } ,  and a s s u m e  that  F = [ f l , . . . , f ~ ]  E R '• is 

a unimodular row vector. Then there exists a square matrix M = 
[rnij] E R ~• such that: 
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(i) M is unimodular, 

(ii) F M  = [1, 0 , . . . ,  o] e R 

(iii) deg(M)= max {deg(rnij)} = d ~ and 
l<i,j<_s 

(iv) M is a product of O(n2s2d 2) matrices, 

elementary or having the form [ 
T 
0 

SL2(R). 

each of them being 
0 

I for' some T E 
Is-2 

A matrix fulfilling the properties ( i ) , . . . , ( i v )  can be comported in 
sequential time 84d O(n2) and in parallel time O(n 4 log 2 sd). 

The degree and complexity bounds (item (ii) and conclusion) specify the 
usual form of the Quillen-Suslin Theorem (items (i) and (ii)). The main feature 
of these bounds is that they are polynomial in s and d and "only" simply 
exponential in n. The order of these bounds cannot be improved as is shown 
by a well-known example due to Mora, Lazard, Masser and Philippon (see 
Brownawell 1987). 

It is now natural to ask whether the general solution of Serre's Conjecture 
(as introduced before) admits also single exponential degree and complexity 
bounds. In the present paper we answer this question affirmatively showing 
the following theorem which was already announced in (Caniglia et al. 1989) 
and (Fitchas & Galligo 1990): 

Let K be an infinite field, let R = K[Xa, . . . ,X ,~  1 and let F E R ~x* 
be a unimodular matriz with polynomial entries. Let d = l+deg(F) .  
Then there exists a square matrix M E R "• such that: 

(i) M is unimodular , 

(ii) F M  = [L,O] E R ~• 

(iii) deg(M)= (rd) ~ and 

(iv) M is a product of O(n2s~(rd) 2") matrices, each of them being 

SLT+I(R). 

A matrix M fulfilling the properties ( i ) , . . . , ( iv)  can be computed 
in sequential time s~176176 and in parallel time 
O(rt4r 4 log2(srd)) by an arithmetic network with entries from K. 
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(See von zur Gathen 1986 or Fitchas et al. 1990 for the notion of arithmetic 
network.)  

The reader should note that this result cannot be obtained just by iter- 
ating the quantitative algebraic and algorithmic version of the Quillen-Suslin 
Theorem we mentioned above (for this would imply bounds which are doubly 
exponential in r). 

We interpret our result as a particular but relevant case of the general 
problem of solving linear equation systems in the polynomial ring R having the 
property that it admits single exponential degree and complexity bounds. 

Finally let us observe that our result allows us to compute in single expo- 
nential (sequential) time a basis of a free R-module given as the kernel of a 
unimodular matrix over R (see Corollaries 3.2 and 3.4 below). 

2. P r e l i m i n a r i e s  

m 

NOTATION 2.1. Let K be an infinite field having an algebraic closureK and let 
= K [ X 1 , . . . ,  X~] be the polynomial ring in the n indeterminates X I , . . . ,  X~ 

over K. Let Q = [qij] be a polynomiM matrix with entries qq in R. We write: 

deg(Q) = max{deg(qij)). 

(//ere, as usual, deg denotes the total degree in X 1 , . . . ,  X~.)  
By  Qj we denote the j - th  column of Q. I f  Q has m columns, sometimes 

we will write [Q1,. . . ,  Qm]. More generally, if I = ( i l , . . . , i r )  is a sequence 
of natural numbers with 1 <_ il < . . .  < ir <_ rn, QI denotes the matrix 
Q I  = . . , Q i j .  

From now on we will fix a matrix F = [fij] E R rx~, where r _< s. Let 
d = 1 + deg(F).  We shall also denote by F the R-linear map 

g~-+ g tF 

where ~F is the s x r matrix obtained by transposing the r x s matrix F.  

REMAaK 2.2. The foJlowing conditions are equivalent: 

( i) F: R ~ --4 R ~ is an epimorphism. 

(ii) The ideal of R generated by all r x r subdeterminants of the matrix F is 
trivial (i.e,, it contains the unit 1 E R). 
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DEFINITION 2.3. The matrix F is called unimodular if  it fulfills the equivalent 
conditions (i) and (ii) of Remark 2.2. 

EXAMPLE 2.4. In case r = 1 the row matr ix  F = [ A , . . . , f ~ ]  E R I• is uni- 
modular if and only if the ideal (.[1,.. . ,  f~) is trivial. 

EXAMPLE 2.5. in case r = s the square matrix F E R sxS is unimoduiar if and 
only if the determinant of F (denoted by de t (F ) )  belongs to K \ {0}; i.e., if  
and only if F is invertible in R ~• 

NOTATION 2.6. IT denotes the r x r identity matrix,  f f  A and B are square 
matrices, then A �9 B denotes the block" diagonal matrix 

A 0 
o 

A square matrix is called elementary if it is equa~ to the identity ma.trix, ex- 
cept (eventually), for one nonzero entry outside the diagonal. S L y ( R )  is the 
submonoid of R ~xm consisting of all matrices T with det(T) = 1. 

REMARK 2.7. Let Z = [zij] E R ~x~ be an s x r matrix.  Then F Z  is an r x r 
matr ix  which satisfies 

d e t ( F Z )  = ~ de t (F , )  det((tZ)1), 
I 

where I runs through all sequences of natural numbers (il, . . .~ir) with 1 ~ 

il < . . .  < i~ _< s. This identi ty is called the Binet-Cauchy Formula. F'or a 
proof see (Gantmacher  1977, Chapter  I, w 

We shall use the following consequence of the Binet-Cauchy Formula: Let 
A = [aij] be the unimodular  s x s matr ix  

A = 

X~ 1 
X~ ! 

Xn ''" 

1 

Xn ! 
0 ''. ! 

"'. l j  
0 
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i.e,, 

{ X~ f o r i = j < _ r  
1 f o r j = i + l  

a l j=  1 f o r i = s , j = l  
0 in all other places. 

Let F '  = F A  and suppose that deg(det[Fl , . . . ,F~])  > deg(det(F1)) for all 
sequences of natural numbers I = ( i l , . . . , i f )  with 1 _< il < "'" < if _< s. 
Then deg(det [r ; , . . . ,F ' ] )  > deg(det(F~)) for all I # ( 1 , . . . , r ) .  Moreover 
deg(F')  _< d = 1 + deg(F).  We choose a product E of elementary matrices 
such that E permutes the columns of F in such a way that for /~  = F E  the 
following holds: 

deg(det ( [ f l , . . . , /~r ] )  ~ deg(det(~i))  for all I = ( i l , . . . , i r ) .  

Since K is infinite, we may assume, after a suitable linear change of variables, 
that the polynomial det( [F1, . . . ,  P~]) is monic in all indeterminates X a , . . . ,  Xn. 
Thus we see that replacing F by F E A  and performing a linear change of 
variables, we may make the following assumption. 

ASSUMPTION 2.8. D = det[F1, . . . ,  F~] is monic in all indeterminates X 1 , . . . ,  
X,~, and deg(det[F1, . . . ,  F~]) > deg(det(Fi)) for a11 sequences of natural num- 
bers I = ( i~ , . . . ,  if) with 1 < il < . . .  < ir <__ S and [ 7 s (1 , . . . ,  r). (Note that 
this procedure may change d into d + 1.) 

3. R e s u l t s  

THEOREM 3.1. Assume that F E R r• is unimodular. Then there exists a 
square matrix M E R s• such that: 

(i) M is unimodular, 

(i/) F M  = [L, o] e R ~• 

(i/i) deg(M) = (~d)~ and 

(iv) M is a product of O(n2s2(rd) 2n) matrices, each of them being elementary 
or having the form T | I . . . .  1 for some T E SL~+I(R). 

COROLLARY 3.2. Assume that F E R ~x~ is unimodular and let P C R ~ be 
the kernel of the epimorphism F: R* ---+ R ~. Let M C R sx~ be a square matrix 
satisfying properties (i), (ii), (iii) of Theorem 3.1. Then the last s - r columns 
M r + l , . . . ,  Ms of M form a basis of the free R-module P. In particular, P has 
an R-basis involving only polynomials of degree (rd) ~ 
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THEOREM 3.3. Assume that F C R rx~ is unimodular. Then a sq~a~'e matrix 
M ff R ~x~ satisfying properties ( i ) , . . . ,  (iv) of Theorem 3.1 can be computed 
by an arithmetic network with inputs from K in 

sequential time r~176176 

and 
parallel time O(n4r 4 log2(srd)). 

(See von zur Gathen 1986 or Fitchas et al. 1990 for the notion of arithmetic 
network.) 

COROLLARY 3.4. Assume that F C R rx~ is unimodutar. Then art R-basis of 
the k e r n e / P  of the epimorphism F: R ~ ~ R r involving only polynomials of 
degree (rd) ~ can be computed by an arithmetic network within the time 
bounds of Theorem 3.3. 

The proofs of Corollaries 3.2 and 3.4 from Theorems 3.1 and 3.3 are imme- 
diate (see Fitchas & Galligo 1990, Corollaire 14, for details). 

In the case that F is a unimodular row (i.e., r = 1) Theorems 3.I and 3.3 
correspond to (Fitchas & Galligo 1990, Th6or6me 15). 

Note that Theorem 3.3 implies a constructive solution of Serre's Conjecture 
(see also Chaqui 1983, Fitchas & Galligo 1990 and Logar & Sturmfels 1992). 

4, P r o o f  o f  T h e o r e m  3.1 

For the proof of Theorem 3.! it suffices to show the foilowing. 

PROPOSITION 4.1. Assume that F 6 R ~xs is unimodular. Then there exists a 
square matrix M E R "x~ such ~hat: 

( i ) M is unimodular, 

(ii) F M  = [ f i j (X l , . . .  ,Xn-1,  0)] (i.e., F M  is equal to the r • s matrix 
obtained by specializing the indeterminate X~ to zero in the matrix F),  

(iii) deg(M) = (rd) ~ and 

(iv) M is a product of O(ns2(rd)2n) matrices, each of them being eiementary 
of the form T | I . . . .  1 for some T E SLT+I(R). 
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Theorem 3.1 follows then by successively applying Proposition 4.1 to F 
equal to the matrices: 

[ f i j (X1, .  . . , Xn)], 
[ f i j ( X 1 , . . . ,  Xn_~, 0)], 

o,.. . ,  0)], 

[ f i j ( X 1 , 0 , . . . ,  0)]. 

(Here the reader should observe that specializing variables to 0 doesn't increase 
the degree of the polynomials involved and that unimodularity and Assump- 
tion 2.8 are preserved under this procedure. For details we refer to Lain 1978, 
Chapter III, w 

In Proposition 4.1 the indeterminate X~ plays a role different from the 
one played by X1 , . . . ,  X~_I. Thus it is convenient to introduce the following 
notation. 

NOTATION 4.2. (i) A = / ( [ X I , . . .  , Xn_l] , 

(ii) t = X,~ (thus A[t] = R),  

(iii) for alI q, b e R let q(b) = q ( X , , . . . , X , ~ _ I , b ) ,  

(iv) for any matr ix  Q = [qij] with entries q~j C R and for any b E R let 
Q(b)  = a n d  

(v) we write A '~-' for the (n - 1)-dimensional a n n e  space over]'(. 

PROCEDURE 4.3. Let us now sketch the main steps of the proof of Proposi- 
tion 4.1. 

Step 1. We construct a sequence of polynomials c , , . . . , C N  C A of degree 
bounded by (rd) 2 and with N _< (1 + rd) 2n, having the following properties: 

o 1 C (cl, . . . ,CN); i.e., the ideal of A generated by Cl,...,CN is trivial, 

o for each 1 < k < N there exists a nonsingular s x s matrix Ak with entries 
from If (in symbols: Ak E GLs(K)) such that 

ck = Rest(det[F1 (k),... ,  F~ (k)] , det [F1 (k),... , F ~  , F ~ ] )  

where Fltk),..., F~(k) are the columns of F (k) = FAk, and Rest denotes 
the resultant with respect to the indeterminate t. 
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S t e p  2. As a consequence of the effective Nullstellensatz (Fitchas & Galligo 
1990, Th6or~me 1) one obtains a representation 

t = alCl  ~, ' ' .  + aNCN with ak E A t  C R 

and with 
max {deg(akck)} < (rd) 2n + 1. 

I<k<N 

S t e p  3. For each 1 < k _< N we construct a unimodular matrix Mk E R ~• 
(in fact a product of (r + 1)(s - r - 1) elementary matrices and one matrix 
of the form T | I~_~_~, where T E SLr+I(R)) such that for bk = ~l<~,.<<_k ahch, 
bk-1 = El<h<k-1 ahCh and F (k) = FAk the following equality holds: 

F(k)(bk)Mk = F(k)(bk_~). 

For Ek = AkMkA~ -1 we therefore obtain F(bk)Ek = F(bk_l); Ek is unimodular, 
being a product of (r + 1)(r - s - 1) + 2s 2 elementary matrices and one matrix 
of the form T | I~_~_1, where T E SL~+I (R). Moreover we have 

deg(Ek) _< deg(Mk) _< rd(1 + rd)max{deg(bk), deg(bk_l)} = (rd) ~ 

S t e p  4. By Steps 2 and 3 we have 

F = F ( t ) =  F(bN), 
F(bN_,) = F(bN)EN, 

F(bk_l) = F(bk)Ek, 

F(O) = F(bo) = f (b l )E1.  

Thus M = r l l<k<N Ek fulfills properties ( i ) , . . . ,  (iv) of Proposition 4.~. 

The following two lemmas correspond to (Lam 1978, Chapter [II, Lemma 1.4 
and Theorem 1.5). Their particular form is due to the circumstance that we 
need for the proofs of Theorems 3.1 and 3.3 arguments which are almost con- 
structive and which involve only polynomials with controlled degrees. (See also 
Fitchas & Galligo 1990, Lemma 16 and Lemma 17 for the case where F is a 
unimodular row, i.e., r = 1.) 
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LEMMA 4.4. For each ( E A ~-1 there exists A E GL~(K) such that the fol- 
lowing ho ds: Let r '  . . . . . . .  r A ,  de t [F ; , .  , d e t [ F ; , .  , F;_I,' 
and c = Rest(D~, D'2), the resultant of D~ and D' 2 with respect to the indeter- 
minate t. Then r O. 

PROOF. Let 4 = (~ l , . . . , ( n -1 )  E A ~-1 be given; let K[Y] = K[yij; 1 <_ i , j  <_ 
s] be the polynomial ring in the s 2 new indeterminates Yu,- .- ,  Yss over K. By 
Y we denote the s • s matrix [Yij] with columns Y 1 , . . . ,  Ys. We write Y'  and 
Y" for the s • r matrices [Y~,. . . ,YT] and [Y1,.. . ,YT_1,Y~+I] respectively. 
Let F '  = F Y  E (R @K K[Y])T• 

From the Binet-Cauchy Formula (Remark 2.7) we see that: 

{ D~ = de t [F [ , . . . ,  F'] = E1 det(Fi)  det((tY')i) ,  and 

D~ = de t [F [ , . . . ,  F~_I~ *r = EIdet(FI)det(( tY")x) (4.1) 

where I runs through all sequences ( i l , . . . , i~ )  such that  1 < il < .-- < i~ _< s. 
Let c = c ( X , , . . . ,  X,~_I, Y) = Rest(D'~, D~) be the resultant of D~ and D~ 

with respect to the indeterminate t. 

Claim. c(~, Y) = c(4, , . . . ,  ~,~-1, Y) r 0. 

Proof of the Claim. By Assumption 2.8 we have degt(det[F~, . . . ,FT])  > 
degt(det(Fr)) for all sequences of natural numbers / = ( i l , . . . , iT )  with 1 _< 
il < .- .  < i~ _< s and I 7~ ( 1 , . . . , r )  (where deg t denotes degree in t). 
Furthermore de t [F1 , . . . ,  F~] is monic in t. Thus Proposition 4.1 implies that  
c(~, I / )  = C(~ l , . . . ,  ~n, Y) = Rest(D~ (4, t, Y ' ) ,  D ; ( ( ,  t, Y")). 

Suppose now that  c(~, Y) = 0. Then there exists p E If[t, Y] with degt(p) _> 
1 such that  p divides both D'a(~,t, Y') and D'2((,t , Y"). In particular we have 
p E Kit,  Y~ , . . . ,  YT-~]. Let q E Kit, Y'] such that  

pq = D'I = ~ det(F~((, t)) det((tY')~). (4.2) 
I 

Let ,7 C K[t][Y ~] be the ideal generated by all determinants det((tY')I).  ,7 is a 
homogeneous prime ideal. From (4.2) we see that  p and q must  be homogeneous 
in Y' and that  degy,(p) + degv,(q ) = r. The polynomial p doesn't  belong to 
,7 since it is homogeneous in Y' and independent from YT. Since D~ E ,.7" by 
(4.2) and `7 is prime, we conclude q E ff  and degy,(q ) > r. Thus degy,(p) = 0, 
i.e., p E K[t]. Now, again by (4.2), we see that  p divides all de t (F i ( ( , t ) ) .  
Remark 2.2 (ii) implies that  the ideal generated by all polynomials det(F~(4, t)) 
is trivial. Therefore p E K, which contradicts degt(p) >_ 1. This finishes the 
proof of the Claim. 
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Since K is infinite and since c({, Y) r 0 there exists A = [Aij] E [ i  ~• such 
that: 

o det A r 0, 

o det [)~ij]l<i,j<r r O, and 

o A) r 0. 

Taking into account Assumption 2.8 and (4.1) one verifies immediate[y that for 
this A the assertion of Lemma 4.4 is true. [] 

LEMMA 4.5. Let D~ = det[F~, . . . ,  F~] and D2 = det[F1, . . . ,  *~--1, ~+~]. Let 
c = Rest(D1,D2) be the resultant of D1 and D2 with respect to ~. Then 
for all b, b' C R such that b - b' (mod cR) there exists a unimodutar matrix 
M E R *x* satisfying: 

(i) F(b)M = F(b'), 

(ii) deg(M) __< rd(1 + 2rd) max{deg(b), deg(b')}, and 

(iii) M is a product of (r + 1)(s - r - 1) elementary matrices and one matrix 
of the form T | Is_r_l, where T E SL~+I(R). 

PROOF. Let g, h E 1~ such that 

c = gD1 + hD2. 

Without loss of generality we may assume that deg(g), deg(h), deg(c) < (rd) 2. 
Let b,b' C R be given with b - b '  E cR. There exists for each r + 2  <_ 

j _< s a column vector Gj E R ~• such that F j ( b ' ) - F j ( b )  = eG i. Let 
fl = max{deg(b),deg(b')}. Observe that deg(Gj) _< dfl. Since c doesn't de- 
pend on t we have c = g(b)Dl(b) + h(b)D2(b). Therefore Fj(b') - Fj(b) = 
Di(b)G~ + D2v(bW""j~j, where Gj' = g(b)Gj and G 5" = h(b)Gj. Observe that 
deg(G~), deg(Gj) _< (rd)2/3 + d/3. 

Let B1 = adj[Fl(b), . . . ,F~(b)] be the adjoint matrix of the r • s ma- 
trix [F~(b),...,F~(b)]. Similarly, let B2 be the adjoint of [Fl (b) , . . . ,F ,_ l (b) ,  
F~+,(b)]. Thus: 

D,(b)G} = [F~(b),..,,F~(b)](B1G~) 

and 
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From these equalities we conclude that  

f j(b t) - I~j(b) -~- gi l l (b)  + . . .  2v gr+lf;'r+l(b) 

for suitable polynomials g l , . . .  ,9T+1 E R of degree bounded by rd/3 + (rd)2/3. 
This holds for all 7" + 2 _< j < s. Therefore there exists a unimodnlar  matrix 
M '  such that: 

o F(b)M'  = [F l (b) , . . . ,  Fr+l(b), Fr+2(b'),..., F~(b')], 

o deg(M') _< + 

o M'  is a product  of (r + 1)(~ - r - 1) elementary matrices�9 

Let T be the (r + 1) x (r + 1) matrix defined by 

T =  ~adj[  F~(b) ... FT(b) Fr+,(b) I[ F~(b') ... Fr(b') F~+l(b') I o o . . . - h ( e )  , 

Since b =- b' (modeR)  and c = c(b) = c(b') it is easy to see that  T C 
R (r+a)x(~+a) and det(T) = 1. Therefore T E SL~+~(R), Moreover we have 
[Fl(b),..., r~+~(b)]T = [ r , ( b ' ) , . . . ,  F~+~(b')] and deg(T) _< 2(rd)2/3 + rd/3. One 
sees now easily that  M = M'(T  | I~_~_~) satisfies (i), (ii) and (iii). [] 

PROCEDURE 4.6. ( E n d  of  t h e  p r o o f  of  P r o p o s i t i o n  4.1) Since the proof 
of Proposition 4.1 (and Theorem 3.1) is straightforward linear algebra, we shall 
assume deg(F)  _> 2. Thus d >_ 3. 

S t e p  1. For each { E A n-1 choose A~ E GL,(K)  as in Lemma 4.4�9 Let 

F (e) = FAe, D~ ~) = det[Fl(~),. F~(g)], D~ e) = det[F} e), F~(~)I, E (~)1 and 
�9 " , " " �9 , - -  r + l J  

c~ = Rest(D~),D~e)). Thus c~({) # 0 and deg(c~) _< (rd) 2. 
The set {c~ : ~ E A n-I } is contained in the K-linear subspace V of A 

consisting of all polynomials in X 1 , . . . ,  X~_I of degree bounded by (rd) 2. Let 
{cl , . . . ,CN} C {ce : { E A n-l} be a basis of the /(-linear subspace of V 
generated by all ce. One verifies easily: 

(i) 1 C (cl , . . . ,CN),  i.e., the ideal of A generated by Cl, �9  N is trivial. 
Moreover we have max {deg(ck)} < (rd) 2. 

l<k.<N 

(ii) N < dim V_< (l + rd) 2". 
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(iii) For each 1 < k < N there exists Ak E G L , ( K )  such that 

ck = Rest (det [Fff ) , . . . ,Ff f ) ] ,  de t [Ff f ) , . . . ,  F~_k)a, F~(+~]) 

where F (k) = IF1 (k),. . �9 F~ (k)] = FAk. 

S t ep  2. From Step 1 (i) and from the effective Nullstellensatz (Fi~chas & 
Galligo 1990, Th6or~me 1) we conclude that there exists a representation 

and with 

t = alcl + ..~ + aNCN with ak E At  

max {deg(akck)} < (rd) 2~ + 1. 
l < k < N  

(Observe that d > 3.) 

S t eps  3 a n d  4. For I < k < N let 

bk = E ahCh~ 
l < h < k  

Since by construction 

= Res (det[f  

bk-1 = ~ ahch and F (k) = FAk. 
l < h < k - 1  

(see Step 1) and bk -- b~_! (mod ckR), we can apply Lemma 4.5 to this situation. 
Therefore there exists a unimodular matrix Mk E R ~• satisfying 

o F(k)(bk)M  = F(k)(bk_l),  

o deg(Mk) < rd(1 + 2rd)max{deg(bk) ,  deg(bk_,.)} = (rd) ~ (see Step 2), 
and 

o Mk is a product of (r + 1)(s - r - 1) elementary matrices and one matrix 
of the form T �9 I~_~-1, where T E SL~+~(R). 

For Ek = AkMkA~ -1 we obtain then F(bk)E~ = F(bk_l) .  

Finally M = [h<k<N Ek satisfies properties ( i ) , . . . ,  (iv) of Proposition 4.1. 
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5. P r o o f  of  T h e o r e m  3.3 

(i) Using parallelizable linear algebra over K (see Berkowitz 1984, Chistov 1985, 
Mulmuley 1986, the survey yon zur Gathen 1986 and interpolation techniques 
as described in Fitchas et al. 1990), one immediately deduces Theorem 3.3 if 
deg(F) = 1 (d = 2) or if s = 1. Therefore we shall suppose from now on that 
d >_ 3 and s _> 2. The case r = s follows in the same way just by inverting the 
matrix F.  Thus we shall also suppose that r < s. 

(ii) Theorem 3.1 follows from an iterated (n-fold) application of Proposi- 
tion 4.1 whose proof is almost algorithmic. Only Step 1 of this proof is noncon- 
structive (see Procedures 4.3 and 4.6). This step is based on Lemma 4.4. In 
the present section we are going to describe an algorithm which has as output 
data  a finite family (ak, 1 < k < N) of N = O((sr2d2) r) = (~d) ~ matrices 
Ak E G L , ( K )  such that for each ~ E A n-1 there exists 1 < k _< N with the 
following property: 

Let F (k) = [ F ( k ) , . . . , F  (k)] = FAk and 

ck Rest(det[F1 (k), , F  (k)] det[F~ k), , F~(_k)l, F (k) l '  
" " ' ~ " " " r + l J ) "  

Then ck(~) 5r 0 (see Lemma 4.4). Thus 1 E (c1, . . . ,  CN). 

Repeating now the arguments of the end of the proof of Proposition 4.1 (see 
Procedure 4.6), one obtains constructively a matrix M E R e• satisfying prop- 
erties (i), . . . ,  (iv) of Proposition 4.1. 

Applying this algorithmic version of Proposition 4.1 iteratively (n times), 
to eliminate successively the variables X n , . . . ,  X1, we obtain Theorem 3.3. 

We use the notation introduced in Notations 2.1, 2.6 and 4.2. We make 
also use of the following additional notation. 

N O T A T I O N  5.1. Let g, m,  p be natural numbers and let Q E R ex'~. 

(i) Assume f <_ m. For each sequence I = ( i l , . . . , i p )  such that 1 < il < 
�9 .. < ip <_ g, Q1 denotes the matrix [Qi l , . . . ,  Qip] (see Notation 2.1). 

(ii) Assume g > m. For each sequence I = ( i l , . . . , i r )  such that 1 <_ il < 
�9 .. < ip <_ f, Q1 denotes the p x m matrix whose rows are the rows 
il < . . .  < ip of  Q. 

(iii) We s imply  say that Q is unimodular i f  Q or tQ is unimodular in the sense 
of  Definition 2.3). 
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(iv) In the sequel I1 will denote the sequence [1 = ( 1 , . . . ,  r) and 12 ~' ~Be se- 

quence ]2 = (i~..., V -- I, r q- 1). 

ASSUMPTION 5.2. Following Assumption 2.8 we shd l  assume in the sequei 
that de t (Fh )  is monic in all variables and in particular in t, and that 
d e g d d e t ( F h ) )  = deg(de t (Fh)  ) > d e g ( d e t ( F J )  >_ degdde t (Fz) )  for all se- 
quences of natural numbers I = ( i l , . . . , i T )  with 1 <_ il < . . .  < iT < s and 
I #  I1. 

ASSUMPTION 5.3. For each ! < i < r we choose a finite set Ai C K \ {0} of 
cardinality 

( r + l ) d + l  fo r i  < r 
#(Ad = 2~(~ - ~)d  + 1 for i = , - .  

For each 1 < i < r -  ! we choose another finite set Bi C K \ {0} such that 
~r = rsd + 1. 

For each (a ; f i )  = ( a l , . . . , a ~ ;  f l l , . . . , f l ~ - l )  E I~I<i<T Ai x ~l<i<r-~ Bi we 
consider the following s x s mat r ix  : 

A(~;p) = 

1 
o~1 

Ctlfll  

0 0 0 0 ... 

OL 2 

Oz292 

~  

. . o  

0 
1 0 

Olr_ 1 1 
c~_lflT_l 0 

~ 1 9 ;  -~  ~29~  -3  . .  ~ r - 1 9 ~ - ~  0 

0 
1 

O~r 

S - - T - - ]  

O~ r 

~ 1 7 6  

. o .  

(5.3) 

Thus A(~;Z) = [Aij] 6 K ~xs is defined by 

i 

l{j = a~flj-j-1 

0 

i f i  : j 
i f j + l < _ i a n d j  < r - 1  
i f r + l < j < _ i  
if  i < j or i # j and j = r. 

Note that we ,have thus defined Ni = #(I]I</<T Ai x I]l</<r-1 B{) = O( (r2sd2) T) 
many matrices A(a;fl). 
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NOTATION 5.4. _For the sake of expository simplicity we choose a fixed order 
of the set of all pairs (a; fl) just introduced. Thus, i f  (a;/3) is the k-th pair in 
this order, we shall write A~ instead of A(~;~), where 1 <_ k <_ N = (O((r~sd~)*). 
We shall write also F (~) = FA~. 

LEMMA 5,5. Let 1 < i < r - 1 .  Thenforeach~ ~ A ~-~ thereexis ts l  < k < N 
F (~) {~ t~ such that (,,...,i)~s, ~ E (K'[t]) ~xi is unimodular. 

PROOF. 

Case i = 1. 
defined by 

We proceed by induction on i. 

For a E At and /3 E B~ we consider the column vector Q~r 

0_<j_<~-2 

Thus, if (a, a s , . . . , a T  ; /3, 32, . . . ,3T-1) is the k-th pair in our ordering, we 
have Oo~((, t) = F ~  ). Therefore it suffices to show the following. 

Claim. For each ( E A ~-~ there exist a E A1 and 3 E /71 such that Q~({ ,  t) 
is unimodular. 

Proof of the Claim. Assume that for some given ~ E A n-1 all column vectors 
Q ~ ( ( ,  t) with a E A1 and/? E B1 are not unimodular. Then, for each (a;/3) E 
A~ x B~ there exists a~;~ E K such that Q~(~,a, l~ ) = 0. For /3 E B~ let 
Q~ = IF1, ~0_<j_<~-2/~JFj+2]. Note that Q3 = [F1, a - ~ ( Q ~  - F~)] for any 
a E A ~ .  

Let us fix an element/3 E B1 for the moment. We consider the matrix 

[Qo, F2 , . . . ,  FT_I] E R T• 

We have 

det[Oz, F~ , . . . ,  FT_I] =/3r-2 det[F~, F~, F2 , . . . ,  Fr_~] 

+ ~ /3 j det[F1, Fj+2, F2 , . . . ,  V~-l]. 
r-l<j_~s--2 

Therefore Assumption 5.2 implies that det[Qo, F2 , . . . ,  t~r-1] i8 monic in t. Thus 
det[Qa, F 2 . . . ,  F~_1](4, t) r 0 and the Laplace expansion (see Gantmacher 1977, 
Chapter I, w along the two first columns of IOn, F2 , . . . ,  F~_I] shows that there 
exist two rows, say the il-th and the i2-th ones, such that det(Qo)(h,i2)({ , t) r 0. 

Now we observe the following: For any a E A1 our assumption on ~ says that 
Q~o({,%o) = 0 holds. Thus rank(Qa({,a~o)) = rank[F~({,%o), a - l ( Q ~ o -  
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F1)(~, a~ ) ]  _( 1, where "rank" denotes the rank of the corresponding matrix. 
Therefore we have det((Qm)(,1,;~)(r . ~ ) )  = 0 for all ~ ~ A1. 

Since # A, >_ 2d+  1 and deg(det((Qm)(il,i2)({,t)) <_ 2d ,we  conclude by the 
pigeonhole principle that there exist two different elements a l ,  a2 E A, such 
that aa = a~,m = ao2o. Thus 

0 =  Q ~ ( ~ , ~ m ) = v , ( ~ , a m ) + ~ x  Z /3Jyj+~(~,~), and 
o<_j<s-2 

0 = Q ~ ( ~ , a ~ )  = F,(~,am) + a~ ~ 9JFj+~(~,a~), 
o<_j<j-2 

where al  7~ a2 implies that FI((,  am) = 0 and ~o<i_<~-u/3iFJ((, am) = O. 
Now let s vary /3 over B1. For each/3 E B1 we choose an element a~ E K 

such that F~(~, am) = 0 and Eo<j<~-2/3JFj((, a~) = 0. Let ~ be the equivalence 
relation on B1 defined by 

[3,.~/3' ~ a~=a~,  for /3, /3'E B1. 

Note that Assumption 5.2 implies F~(~,t) 7! 0. On the other hand, we have 
deg(Fl(~, t)) < d. Therefore B1/"~, the set of residue classes of B~ modulo the 
equivalence relation --~, satisfies 

# ( B I / ~  ) < d. 

Taking into account that ~ B~ >_ (s - 2)d + ! we see again by the pigeonhole 
principle that there exists an element/~ C B1 such that #{/3 C B1 :/3 "~/3} >_ 
s - 1. We choose now pairwise different elements/3o, . . . , /3~-2 a_ B1 such that 
~) " fli ~/3j  for 0 _< i, j < s - 2. Let a = a& . . . . .  am.._ 2. We have 

Fl(~,a) = 0  and ~ J /3iFJ+2(~,a)=O for 0 < i < s - 2 .  
0 < j < ~ - 2  

J Since the Vandermonde matrix [/3i ]0_<i,j<,-2 is nonsingular, we conc]ude 

Fj+~(L ~) = 0 for all 0 ~ j < ~ - 2. 

This conclusion and F~(~,a) = 0 imply F ( ( , a )  = 0 which contradicts the 
unimodularity of F .  This finishes the proof of the Claim and settles the case 
i - - 1 .  

Case 1 < i (_ r - 1. Let ~ ~ An-I .  From the induction hypothesis we know 
_ _ v ( ~ )  ~ t~  that there exists 1 < k < N such that ~ (x,...,i-xDs, r is unimodular. For each 

pair (a;f l)  ~ Ai x Bi let Q~r be the r x i matrix 

r~(~) 
Q ~  = t~ (~,...,i-1), Fi + a ~_, /3JFj+i+~]. 

o<_j<~-i-1 
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Thus if the k-th pair in our ordering of 1-h<,'<~ Ai x ['[l<i<r-1 Bi has the form 

; 

we have by definition Q~o~ = F,(k) (1, . . . , i )"  
Suppose now that  the assertion of Lemma 5.5 is wrong for i. Then there 

exists for each (e;/3) E Ai x Bi an element a~ m E K such that  all i x i subdetermi- 
nants of Qom({, %m) are equal to zero, which implies that  rank(Q~m(~, aoz)) < 
i - 1 .  

Let us fix for the moment  an element/3 E Bi. Let 

~F (k) Qm = t (1,...,~-1), Fi, ~ ~iFj+i+,]. 
O~j<_s-i-1 

Since rank (Q~m(~, a~z)) _< i - 1, we have rank (Qp(~, a~z)) _< i for all a E Ai. 
Thus for each a E A~, a~ m E K is a common zero of all ( i +  1) x ( i +  1) 
subdeterminants  of Qz(~,t),  considered as elements of the polynomial ring 

:([6 
Now we are going to show that  at least one (i + 1) x (i + 1) subdeterminant  

of Qm(~, t) is different from zero. We consider the matrix [Qo, F~+I , . . . ,  Fr_l] E 
R ~• Since Ak has the lower triangular from (5.3), the multilinearity of the 
determinant  function and the Binet-Cauchy Formula (Remark 2.7) imply that  

det[Qm, Fi+~,..., F~_~] = /3  *-i- '  de t [F~, . . . ,  Fi, F~, Fi+~,..., F~_I] 

+ ~ cr det(Fz) 
Ir 

for some ci E K. By virtue of Assumption 5.2 this implies that  det[Q~, Fi+l, �9  
F~_~] is monic in t. Therefore det[Q~, F~+~. . . ,  Fr_t](~, t) r 0. The Laplace 
expansion of this determinant  along its (i + 1) first columns shows that  there 
exists a sequence I of i + 1 rows of Qm such that  det((Qm)x(~ , t)) 5r 0. Observe 
that  deg(det((Qm)~(~ ,t)))  < (i + 1)d and that  #A~ >_ (i + 1)d + 1. Thus 
there exist by the pigeonhole principle two different elements a l ,  a~ E Ai such 
that  a~ = a ~  = a~  m. Since by the induction hypothesis F (k) ~ t) is ( 1 , . . . , i - 1 )  \ ~, ' 

unimodular  we conclude that  rank(F~!..,i_,)({, am) ) = i -  1. On the other hand 
F(k) /e, a (~,...,i-~)~ m) is a submatrix of Q~(~,a~)  and of Q ~ ( ~ , a m )  , which have 
rank at most i - 1. Hence 

i - 1 = rank(F~L!..,i_l)({ , am) ) = rank(Qo~({,  am) ) = rank(Q~m({, am) ). 

This means that  the column vectors 

[2i(~' am) -~ Ogl E ~JFJ +i+l (~' am) 
O<j<s-i-1 
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and 

O<_j<_s-i-1 

are linearly dependent  from the column vectors of ,~(k) ,~ ~. V(1,...,i_1)[r aft)~ Since a l  # 
a2 this implies that  

rank ([F/~!..,i_l), Fi](~, az)) = rank ([F{~!..,i_I) , E /3JFj+ielJ({," a~)) 
O<_d<s-i-1 

= i - 1 .  

By an argument  similar to the one just  used, we conclude that  at least one i x i 
subde te rminant  of 

[F(k) 
(1,...,i-1)' f i ] (~ ,  ~) 

/ rF (k) ., o is different from zero�9 Since rank ~t (~,...,i-1) Fi](~, az)) = i - !, ao ,s a zero of 

this nonvanishing i x i subdeterminant  of [p(k) t. (1,...,i_~), Fi](~, t), which has degree 
at most  id. Thus,  if/3 varies over Bi, we see that  

#{ae:/3 e B d  < id. 

Since # Bi _> i (s  - i - 1)d + 1 we conclude by the pigeonhole principle that  
there exist pairwise different e lements /30, . .  -,/3,-i-~ E Bi such that  a = dO0 = 
. . . .  aZ,_,_~. Therefore the column vectors 

and 
E J /3eFj+i+l(~,a), for O < g < s - i -  [, 

O<_j<_s-i-1 

belong to the K-l inear  vector  space generated by F ~ k ) ( ~ , a ) , . o ~  the 

column vectors of F (k) (~, a). (1,...,i-1) ~ 
Since the Vandermonde matr ix  

J [/3e]o<_j,e<s-i-1 

is regular we conclude that  F/(~,a) ,  F i + l ( ~ , a ) , . � 9  F,(~ ,a )  belong to the If 

�9 . E( k) t~ a~ Hence linear space generated by F } k ) ( G a ) , . ,  i-1,~,, J. 

rank [F{~ ) i _ , ) , F i , . . . , F ~ ] ( 4 ,  a) 

= r a n k [ F } ; i ' i ) , a ) , . . . , F i < k { ( ~ , a ) , F i ( ~ , a ) , . . . , a ( G a ) ]  
= i - 1 .  
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On the other  hand let A C h "*x* be the matr ix  we obtain by taking the first 
i - 1 column vectors of Ak and adding to them the last s - i + 1 column vectors 
of the ident i ty  matr ix  I, ,  i.e., 

A = [ ( A k ) I , . . . , ( A k ) i - I , ( L ) i , . . . ,  (I,),].  

rF (k) , Fi, . .  , F~] = F A  is uni- From (5.3) we see that  A is regular. Thus L (1,...,i-1) 

modular  This implies rank[F  (k) , F i , . . . , F , ] ( { , a )  = r. This leads to a 
" ( 1 , . . . , i - 1 )  

contradict ion,  and thereby finishes the proof of Lemma 5.5. [] 

PROPOSITION 5.6. (See Lemma 4.4.) For each ~ E A ~-~ there exists (o~; fl) E 
.lql<i<~ Ai x 111<i<~-1 Bi with the following property. Let 

F '  = FA(~;0), D i = det[F~, . . . . . .  , F~'], D;  = det[F~, , F;-1,' tP;+I]' 

and 

Then c({) r O. 

c = Res,(D;,  D;) .  

PROOF. The Binet-Cauchy Formula (see Remark 2.7) and Assumption 5.2 

imply tha t  det(F}k )) is monic in t for all 1 < k < N. 
Suppose that  there exists { E A n-1 such that  for all 1 < k < N,  

Rest(det(F}~)(~,t)), det(F}:)(~, t ) ) )  = 0. 

From (.5.3) we see that  F/(k ) and F}: ) have the form 

and 
F(k) [F(k) J = C ~ r F j + r + t j  , 12 [ (1,...,r--I) ~ E 

o<_j<s-~-I 

if the k-th pair of I-it<~<~ Ai x I]1<i<~-~. Bi is (a~ , . . . , c~; /3~, . . . , /3~_1) .  By 

F (k~ (~ t) is unimodular .  Lemma 5.5 there exists 1 _< ko < N such that  (1,...#-l)~S, 
Our assumptions imply now that  for each a E A~ there exists an element 

a~ C I( such that  

F,.(~, a~) and ~ c~aFj+~+, ({, a~) 
0<j<s-~-I 
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belong to the K-linear vector space generated by F~k~162 .... , i~4~(~,a~),  

i.e., the column vectors of F (k~ 1 (~, (1,...~-) a~). In particular a~ is a root of 

det(F}k~ t)) = det(rF (k~ t (1 . . . . . . .  1), Fr](r t)) 

for each a E A~. Since det(F}~~ t ) ) i s  a specialization of det(~!~ ~ which is 
monic in t and of degree at most rd, we conclude that  

# { a ~  : ~  e AT} _ ,~d. 

Since @ A~ >_ r(s - r)d + 1, the pigeonhole principle implies that  there exist 
pairwise different elements sO,.o.,C~_~_l C A~ such that  a = a~ o . . . . .  
a~ . . . .  ~. Thus the column vectors 

F~(~ ,a)  

and 
E ~ 5 + ~ + , ( ~ ,  ~), for 0 < ~ < ~ - ~ - ~, 

O < j < s - r - 1  

belong to the K-linear vector space generated by f}k0)(~, a ) , . . . ,  ~,--l~(k~ a), the 

column vectors of F~~ a ). 
Since the Vandermonde matrix 

[~]o_<~,~<_~-:.-1 

is nonsingular, this implies that  

rF (k~ F ~ , . . .  F~](~, ~) = ~ - 1. rank L (1 ....... 1), 

This contradicts the unimodulari ty of [F{~~ , F 1 , . . . ,  F,] which follows from 
the unimodulari ty of F and from (5.3). [] 

If we now replace Lemma 4.4 by Proposition 5.6 in the proof of Proposi- 
tion 4.1 (see Procedure 4.6), we obtain an algorithm which constructs, for the 
given unimodular  matrix F E R rx*, a matrix M *• satisfying the properties 
( i ) , . . . ,  (iv) of Proposition 4.1. 

Here we give only an overview of the complexity bounds of the main steps 
of this algorithm, which involves only parallelizable linear algebra over K (see 
Berkowitz 1984, Chistov 1985, Mulmuley 1986 and the survey yon zur Gathen 
1986) and interpolation techniques as described in (Fitchas et aL 1990). The 
verification of these bounds is straightforward but lengthy so we shall omit  it. 
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FACT 5.7. ( P r e p a r a t o r y  Step) (See Assumptions 2.8 and 5.2.) Multiplica- 
tion by an s x s matrix  and linear change of variables is executed in 

sequential time = s2(rd) ~ and 

paralld time = O(n 2 log 2 srd). 

FACT 5.8. C o m p u t a t i o n  of Cl, . . .  ,CN (see Proposition 5.6 and Procedure 
4.3, Step 1) is executed in 

sequential time = s~176 d~ +~2), and 

parallel t ime = O(n 4 log 2 srd). 

FACT 5.9. C o m p u t a t i o n  
in 

sequential 

parallel 

of al, . . . , aN (see Procedure 4.3, Step 2) is executed 

time = s~176 and 

time = O ( n 4 r  4 log 2 srd). 

FACT 5.10. C o m p u t a t i o n  of E l ,  ..., EN (see Procedure 4.3, Step 3 and Lemma 
4.5) is executed in 

sequential t ime = s ~176176 and 

parallel t ime = O(n 4 log 2 srd). 

From the complexity bounds, Facts 5.7 to 5.10, we obtain finally the com- 
plexity of the algorithm corresponding to Proposition 4.1: 

FACT 5.11. C o m p u t a t i o n  of M (see Procedure 4.3, Step 4) is executed in 

sequential time = s~176176 and 

parallel t ime = O(Tt4r  4 log  2 srd). 

Applying the algorithm corresponding to Proposition 4.1 n times one ob- 
tains easily Theorem a.a. The complexity bounds of Theorem a.a follow from 
Fact 5.11. 
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