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Abstract. This paper is devoted to the following result: let R be a real closed field and S
a semialgebraic subset of Rn defined by a boolean combination of polynomial inequalities.
Let D be the sum of the degrees of the polynomials involved. Then it is possible to
find algorithmically a description of the semialgebraically connected components of S in

sequential time DnO(1)
and parallel time (n log D)O(1). This implies that the problem of

finding the connected components of a semialgebraic set can be solved in P-SPACE.

1. Introduction

1.1. The statement
We denote by R a real closed field, by A a subring of R and by S a semialgebraic

(over A) subset of Rn. Let X1, ..., Xn be indeterminates over R. We suppose that S is
given by a boolean combination of polynomial inequalities involving polynomials F1, ..., Fs

of A[X1, ..., Xn]. We consider F1, ..., Fs as the standard input of all algorithms we shall
design in the sequel. The length of this input is determined by the parameters n , D :=∑

1≤j≤s

deg Fj , and, in the case of A := ZZ, by the maximal binary length σ of the coefficients

of F1, ..., Fs . We think of the polynomials F1, ..., Fs as represented in dense form by their
coefficient vectors. Thus the size of our input is O(sDn) if we are working in an algebraic
complexity model and O(sσDn) if we are working in the bit-model and if A := ZZ.

The notion of algorithm which we use is that of an uniform family of arithmetical
networks over A parametrized by D and n (see [Ga] for definitions). By sequential and
parallel complexity of the algorithm (or sequential and parallel time) we refer to the size
and the depth of the arithmetic networks representing the algorithm. We call an algorithm
admissible (or single exponential) if its sequential execution time is DnO(1)

and its parallel
execution time is (n log D)O(1).

In case A := ZZ all our (admissible) algorithms can be simulated by uniform families
of boolean networks of size DnO(1)

σO(1) and depth (n log Dσ)O(1). Therefore they can
be executed in deterministic Turing machine time DnO(1)

σO(1) and Turing machine space
(n log Dσ)O(1).

Since these simulation arguments are absolutely straightforward we shall restrict our-
selves to the (algebraic) complexity model of arithmetical networks over A.

The central result of this paper is the following:
Main Theorem. It is possible to compute by a uniform family of arithmetical networks

of size DnO(1)
and depth (n log D)O(1) (i.e. in admissible time) a description of each

semialgebraically connected component of S.
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This description is given by a set of DO(n) quantifier free formulas, each defining a
semialgebraically connected component of S. The number and the degree of the polyno-

mials (of A[X1, ..., Xn]) involved in these formulas is of order DnO(1)
.

1.2. Comments
Our main result follows the line of various papers devoted to the complexity of algo-

rithms in real algebraic geometry (and topology) in single exponential time ([GV 1,2], [G],
[Ca 1,2], [R 1,2,3], [GHRSV], [GR], [HRS 1,2,3,4,5]).

A similar algorithmic result with a sequential complexity bound which is doubly ex-
ponential in n was already known (see for exemple [Co] or [SS]). The doubly exponential
behavior of the complexity in these papers is due to the use of iterated projections in the
process of the so called cylindric algebraic decomposition on which they are based.

The first result with single exponential complexity bounds concerning the topology
of semialgebraic sets may be found in [Ca 2], where the essential geometric idea, which
we also use, consists of constructing continuous curves on the semialgebraic set S directly
instead of doing this by means of iterated projections. There are nevertheless significant
differences between Canny’s results and ours. Namely, we have no restrictive hypothesis
(such as general position) on the semialgebraic set. We do not need a Whitney stratified
input nor do we make use of the theory of stratifications.

The present paper is a direct continuation of the articles [HRS 3] and [HRS 4], which
treat the problem of single exponential path and roadmap finding in semialgebraic sets.
(See also [GV 2] and [GR] for analogous results concerning this question and [GHRSV] for
an expository presentation of the methods used). Our main theorem was announced in
[HRS 5] and the corresponding result for the sequential bit complexity model was obtained
in [CGV].

We use an approach which is somewhat different from [GV 2] and [CGV] which we
developed independently (and simultaneously). We hope that our approach contributes a
clarification of the complicated algorithmic structure of the subject.

We use some notions and results from differential topology and the topology of semi-
algebraic sets. We also need some ideas from real algebraic geometry, the notion of semial-
gebraically connected components of semialgebraic sets over an arbitrary real closed field
(see [BCR]) for example, or the use of infinitely small (or large) elements and Puiseux se-
ries (see [GV 1] , [G], [HRS 2,3,4]). We shall employ the “efficient” quantifier elimination
method of [HRS 2] (or of [R 3]) in various situations such as the computation of the closure
and the interior of a semialgebraic set and the computation of the image of a semialgebraic
function.

1.3. Definitions and notations
Let x := (x1, ..., xn) and y := (y1, ..., yn) be two points of Rn.
We write

|x− y| :=
√

(x1 − y1)2 + ... + (xn − yn)2

for their euclidean distance. If r is a positive element of R we write

B(x, r) := {y ∈ Rn; |x− y| < r}
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for the open ball of radius r centered at x.

We think of the (real) affine space Rn as being equipped with the euclidean topology
and the semialgebraic subsets of Rn with the induced one (which we call euclidean as well).

For a given subset M ⊂ Rn we write M for its closure in the euclidean topology.

We shall denote by L(A) the elementary language of ordered fields with constants
from A. Terms of L(A) are considered as polynomials with coefficients in A. (See [BCR]
2.2).

The Tarski-Seidenberg Principle states that the sets definable by elementary (first
order) formulas from L(A) are exactly the semialgebraic sets over A.

For a formula Φ ∈ L(A) we write d(Φ) for the sum of the (total) degrees of the
polynomials appearing as terms in Φ and call this quantity the degree of Φ.

We shall say that a semialgebraic subset S of Rn is explicitly given if there is given a
boolean combination of polynomial inequalities (or equivalently a quantifier free formula
Φ of L(A)) defining S. In this case we use the (somewhat lax) notation d(S) instead of
d(Φ).

Let S ⊂ Rn be an explicitly given semialgebraic set with D := d(S). We say that an
algorithm which accepts the polynomials defining S is admissible if it runs in sequential
time DnO(1)

and in parallel time (n log D)O(1).

2. The strategy of the proof

2.1. The case of a bounded smooth hypersurface

Let us suppose from now on that S is a bounded and smooth semialgebraic hypersur-
face of Rn defined as the zeros of a polynomial F ∈ A[X1, ..., Xn] which has the property
that ∇F := ( ∂F

∂X1
)2 + ... + ( ∂F

∂Xn
)2 vanishes nowhere on S. (We call such a polynomial F a

regular equation of the bounded hypersurface S). We denote by D := deg F the degree of
F .

Our first goal is the construction of families of semialgebraic curves which describe in
a certain manner the semialgebraically connected components of S. For this purpose we
introduce the following notion of a roadmap (see also [Ca 2]):

Definition 2.1. Let W ⊂ Rn be a semialgebraic set. We call a semialgebraic set < ⊂ W
a roadmap for W if dim< ≤ 1 and if the intersection of any semialgebraically connected
component of W with < is nonempty and semialgebraically connected. (Here dim< denotes
the dimension of the semialgebraic set <. See [BCR] 2.8.)

In [HRS 3] and [HRS 4] we designed an admissible algorithm for the construction of
a suitable roadmap in an arbitrary semialgebraic set W . This algorithm furnishes also an
admissible procedure to join any semialgebraically definable point of W (i.e. any point of
W with algebraic coordinates over A) with the roadmap by means of a semialgebraically
connected curve in W . We show in sections 3 and 4 that this join procedure can be realized
in a uniform way in the hypersurface S. Thus we obtain an admissible algorithm which
allows us to connect any point of S (not only the semialgebraically definable ones) with a
given roadmap of S (see Lemma 11 below).
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Let 1 ≤ i < n. We write πi : S → R for the semialgebraic projection (or coordinate)
function induced by the variable Xi on S. For any point x := (xi+1, ..., xn) of Rn−i let
Sx := {(z1, ..., zn) ∈ S; zi+1 = xi+1, ..., zn = xn } be the fiber of x in S and let π

(x)
i :

Sx → R be the restriction of πi to Sx. The fiber Sx is a semialgebraic, closed and bounded
subset of Rn defined by the equation Fx = 0, where Fx := F (X1, ..., Xi, xi+1, ..., xn) is a
polynomial of R[X1, ..., Xi].

We shall say that the fiber Sx is smooth if Fx is a regular equation of Sx.
Let us summarize the roadmap construction of [HRS 3] (compare also [GHRSV]) for

the input polynomial F :
The whole algorithm is based on two admissible procedures which both produce semi-

algebraically connected curves in S together with their end-points.
(a) the first one consists of constructing a finite semialgebraic partition of the Xn-axis and
in determining for each piece of this partition (represented as a closed interval) a finite
number of continuous semialgebraic functions having the following properties:

- the graph of each of these functions is contained in S and thus defines a semi-
algebraically connected curve in S.

- the curves which are given by these continuous semialgebraic functions on a
fixed interval meet every semialgebraically connected component of each πn-fiber along
the interval (see [HRS 3] Corollary 2, or [GHRSV] Theorem 2).
(b) the second procedure is an admissible version of the Curve Selection Lemma in real
algebraic geometry ([HRS 3], Corollary 4). It consists of constructing connected curves
starting from any given point x := (x1, ..., xn) which lies e.g. in the fiber Sxn of a critical
value xn of the function πn. These curves enter in every semialgebraically connected
components of the intersection of a suitable open ball around x with the fibers Sxn+t and
Sxn−t for sufficiently small t > 0.

These curves are used in the roadmap construction to move fibers of critical values of
πn into fibers of non-critical (regular) values.

By means of procedures (a) and (b), in [HRS 3] we designed an admissible algorithm
for a roadmap construction in S as follows (our algorithm is recursive in n and starts from
the input polynomial F ):
(1) One constructs in admissible time an A-linear transformation of the variables X1, ..., Xn

which induces on S an M-function π : S → R (following the terminology of [HRS 3] we
call a Nash function an M- function if it has only finitely many critical points). Let us
assume without loss of generality that π = πn.
(2) One applies the procedure (a) to the Xn-axis in order to obtain a family of connected
curves which intersect all semialgebraically connected components of all πn-fibers (see
[HRS 3] section 4, Step 2).
(3) For each critical point of πn and each point which

arises by intersecting any curve constructed in (2) with the fiber of a critical value of
πn, we produce by procedure (b) a set of connected curves starting from that point.
(4) Subdividing the Xn-axis, once more if necessary, into closed semialgebraic intervals we
assure that each curve constructed in (2) and (3) contains at most one point (which is an
end-point) lying in a fiber of a critical value of πn.
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Let K be the set of curves constructed in (2) and (3) and subject to the rearrangement
(4) and let C ⊂ S be the set of the end-points of the curves contained in K.
(5) For each xn ∈ πn(C) which is not a critical value of πn (i.e. the fiber Sxn

is smooth) one
links all the points of Sxn

∩ C which lie in the same semialgebraically connected component
of Sxn

by means of a connected semialgebraic curve produced by a recursive call of our
algorithm for the input polynomial F (X1, ..., Xn−1, xn) which is a regular equation for the
smooth bounded hypersurface Sxn of the n−1 dimensional real affine space Rn−1×{xn}.

In the present paper Proposition 1 and 5 below are parametric versions of the pro-
cedures (a) and (b). We construct in advance the semialgebraic curves which the above
algorithm produces by its recursive calls of (2) and (3). The recursive argument of (4)
will be replaced by a limited number of applications of the effective quantifier elimination
algorithm for real closed fields [HRS 2] (or [R 3]) to certain prenex formulas which con-
tain only one block of (existential) quantifiers. These formulas represent the result of the
composition of at most n semialgebraic maps (see Lemma 11 and Remark 12).

Finally the recursive application of (1), where we construct a suitable A-linear trans-
formation of the variables in order to obtain coordinates which represent M-functions, will
be replaced in the next section by a uniform choice of M-projections which can be done in
advance (see Remark 10).
2.2. The general case

Using infinitesimal deformations and quantifier elimination for computing limits, it is
possible now to compute in admissible time the connected components of any semialgebraic
set from the connected components of a smooth bounded hypersurface, according to [CGV],
Sections 2 and Section 3 or [HRS 4], Section 4.

3. Parametric roadmaps

We denote by pi the canonical projection: pi : Rn −→ Ri defined by

pi(x1, ..., xn) := (x1, ..., xi) for (x1, ..., xn) ∈ Rn.

For a given set W ⊂ Rn and a point x′ ∈ Ri, we write Wx′ := pi
−1(x′) ∩W.

In the next proposition we describe the fibers of a projection of a given semialgebraic
set by means of a parametrized family of continuous semialgebraic curves of admissible
complexity.
Proposition 1. Let W ⊂ Rn be an explicitly given bounded, closed semialgebraic
set. Given a fixed index i, 1 ≤ i < n, it is possible to construct in admissible time a
semialgebraic subdivision (Ul)1≤l≤N of pi(W ), a semialgebraic subdivision (Tl)1≤l≤N of
pi+1(W ) and a family (ηlj)1≤l≤N,1≤j≤Nl

of continuous semialgebraic functions
ηlj : Tl → Rn−i−1 such that the following conditions are satisfied:
(i) for any pair of indices (l, j) the graph of η(l,j) is contained in W ,
(ii) for any index l and any point z ∈ Ul the fiber (Tl)z is a closed subinterval of the line

(Ri+1)z,
(iii) for any point x′ ∈ pi+1(W ) and for any semialgebraically connected component of

Wx′ there exists a pair of indices (l, j) such that η(l,j)(x′) belongs to this component.
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Proof. The fact that W is closed and bounded implies that pi(W ) and pi+1(W ) are closed
and bounded too.

Applying [HRS 2], Theorem 7 (compare also [HRS 3], Theorem 1) to the semialgebraic
projection induced by pi+1 we find in admissible time a semialgebraic partition (Tm)1≤m≤M

of pi+1(W ) and a family (ξ(m,s))1≤m≤M,1≤s≤Mm
of continuous semialgebraic functions

ξ(m,s) : Tm → Rn−i−1 with the following properties:
• for any pair of indices (m, s) the graph of ξ(m,s) is contained in W ,
• for any point x′ ∈ pi+1(W ) and any semialgebraically connected component of Wx′

there exists a pair of indices (m, s) such that ξ(m,s)(x′) belongs to this component.
Furthermore we may assume without loss of generality that the sets Tm are defined

by an admissible family of polynomials which is stable under derivation with respect to
the variable Xi+1.

Since the semialgebraic sets W and pi+1(W ) are closed and bounded the sets Tm

have the same property and they form a covering of pi+1(W ). Moreover we may extend the
maps ξ(m,s) in admissible time to continuous semialgebraic functions ξ(m,s) :Tm → Rn−i−1

by means of the quantifier elimination procedures [HRS 2] or [R 3].
We are going to subdivide in admissible time the family (Tm)1≤m≤M into a suitable

partition (Tl)1≤l≤N of pi+1(W ). The continuous semialgebraic functions η(l,j) : Tl →
Rn−i−1 will be obtained by restricting the functions ξ(m,s). Therefore the conditions (i)
and (iii) of the proposition will be automatically satisfied.

Since the sets Tm are bounded and defined by a family of polynomials which is stable
under derivations with respect to the variable Xi+1 we conclude by Thom’s Lemma ([BCR],
Proposition 2.5.4) that for any z ∈ Ri the fiber (Tm)z is a bounded and closed subinterval
of the line (Ri+1)z.

For an arbitrary index m let us consider the semialgebraic subset T̃m of Tm defined
by the formula:

(x1, . . . , xi+1) ∈ T̃m :⇐⇒ (∀ε) (∃t) (ε > 0 → ((−ε < t < ε)∧
∧ (x1, . . . , xi, xi+1 + t) /∈ Tm ∧ (x1, . . . , xi+1) ∈ Tm ))

We observe that T̃m is the set of extrema of all the intervals (Tm)z where z ∈ Ri.
It is possible to compute T̃m explicitly in admissible time by means of the quantifier

elimination procedures [HRS 2] or [R 3].
Let π : Ri+1 → Ri be the projection which forgets the i + 1-th coordinate.
Since the semialgebraic sets Tm are closed and bounded one verifies immediately

π(Tm) = π(T̃m).
Applying [HRS 2], Theorem 7 to the semialgebraic map T̃m → Ri induced by the pro-

jection π we obtain in admissible time for each m a semialgebraic partition (Ũ(m,r))1≤m≤M,1≤r≤Mm

of π(T̃m) and for each pair of indices (m, r) two continuous semialgebraic functions
α−(m,r), α

+
(m,r) : Ũ(m,r) → R (representing opposite interval ends) satisfying the conditions:

• for any index r, the graph of α−(m,r) and α+
(m,r) is contained in T̃m and the inequality

α−(m,r)(z) ≤ α+
(m,r)(z) holds for any z ∈ U(m,r).
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• for any point z ∈ Ri and for any semialgebraically connected component of (T̃m)z there
exists an index r such that (z, α−(m,r)(z)) and (z, α+

(m,r)(z)) belong to that component.

For given m the semialgebraic sets Ũ(m,r) form a partition of π(T̃m) = π(Tm). The
sets Tm cover the image pi+1(W ) and we have pi = π◦pi+1. Therefore the sets Ũ(m,r), 1 ≤
m ≤ M, 1 ≤ r ≤ Mm cover the semialgebraic set pi(W ).

For the sake of notational simplicity let us rename the semialgebraic sets Ũ(m,r) and
the functions α−(m,r) , α+

(m,r) : Ũ(m,r) → R as Ul and α−l , α+
l , where 1 ≤ l ≤ N .

Without loss of generality we may assume that the family (Ul)1≤l≤N forms a semialgebraic
partition of pi(W ).

Finally let us consider for 1 ≤ l ≤ N the semialgebraic sets defined by the formulas

(∗) Tl :=
{

(x1, ..., xi+1) ∈ Ri+1; (x1, ..., xi) ∈ Ul, α−l (x1, ..., xi) ≤ xi+1 ≤ α+
l (x1, ..., xi)

}
.

Our construction guarantees that for Ul = Ũ(m,r) the set Tl is contained in Tm and that
the union of all sets Tl covers pi+1(W ) (in fact they form a partition of pi+1(W )).

Moreover the sets Tl satisfy condition (ii) of proposition 1 above.
The continuous semialgebraic functions η(l,j) : Tl → Rn−i−1 are obtained by embed-

ding Tl in a suitable semialgebraic set Tm and restricting the functions ξ(m,s) : Tm →
Rn−i−1 to Tl. Therefore conditions (i) and (iii) of the proposition are also satisfied.

With the same notations and assumptions as before, we make the following remarks:
Remark 2. Our construction of the semialgebraic sets and functions Tl,Ul, α

+
l , α−l implies

that for any z ∈ Ul the following equality holds :
{z} × [

α−l (z) , α+
l (z)

]
= (Tl)z.

This is an immediate consequence of the formula (∗) in the proof of Proposition 1.
Remark 3. Our algorithms operate on formulas of the first order language L(A) in the aim
of manipulating geometrical objects. In this sense the algorithm underlying Proposition
1 transforms in admissible time the input formula defining the semialgebraic set W into
a family of quantifier free formulas ϕ(l,j) ∈ L(A) in i + n variables X1, ..., Xi, Y1, ..., Yn

satisfying
∑

(l,j) d(ϕ(l,j)) = DnO(1)
.

The main property of these formulas ϕ(l,j) consists of the following: for each z ∈ Ul,
the formula ϕ(l,j)(z, Y1, ..., Yn) describes a semialgebraic curve contained in the fiber Wz.
The parametric form of this curve is the semialgebraic continuous function η(l,j) of the
proposition and ϕ(l,j) describes the graph of η(l,j).

In a similar way the algorithm computes in admissible time quantifier free formu-
las Θ+

(l,j),Θ
−
(l,j) of L(A) satisfying

∑
(l,j)(d(Θ+

(l,j)) + d(Θ−(l,j))) = DnO(1)
. These formulas

describe the end-points of the parametric curves η(l,j).
Remark 4. We observe that Proposition 1 is a generalization of Theorem 7 of [HRS 2].
In fact for the case of a closed and bounded semialgebraic set this theorem follows from
Proposition 1 putting i = 0.

The next proposition represents a parametric version of the admissible curve selection
lemma of [HRS 3], Section 4.
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Proposition 5. Let W ⊂ Rn be an explicitly given semialgebraic set.
For fixed 0 ≤ i < n, it is possible to construct in admissible time the following items:

• a semialgebraic subdivision (Wr)1≤r≤R of W ,
• a family of continuous semialgebraic functions fr : Wr → R≥0,
• an other family of continuous semialgebraic functions g−(r,j) , g+

(r,j) : Vr → Rn−i where

1 ≤ j ≤ Rr and Vr is the semialgebraic set defined by Vr :=
{

(x, t) ∈ Wr ×R ; 0 ≤
t ≤ fr(x)

}
.

These semialgebraic sets and functions satisfy the following conditions: let
x := (x1, . . . , xn) be an arbitrary point of Wr and t an arbitrary element of R such that
(x, t) ∈ Vr holds. Then:
• (x1, . . . , xi, g

+
(r,j)(x, t)) ∈ W (resp. (x1, . . . , xi, g

−
(r,j)(x, t)) ∈ W ),

• g+
(r,j)(x, 0) = g−(r,j)(x, 0) = (xi+1, ..., xn),

• pi+1(x1, ..., xi, g
+
(r,j)(x, t)) = (x1, ..., xi, xi+1 + t) and

pi+1(x1, ..., xi, g
−
(r,j)(x, t)) = (x1, ..., xi, xi+1 − t),

• for each x′ := (x1, ..., xi+1 + t) (resp. x′ := (x1, ..., xi+1 − t)) and each semialge-
braically connected component of Wx′ , there exists a couple of indices (r, j) such that
(x1, ..., xi, g

+
(r,j)(x, t)) (resp. (x1, ..., xi, g

−
(r,j)(x, t))) belongs to this component.

Proof. We describe only the construction of the functions g+
(r,j) (the functions g−(r,j) are

obtained similarly ).

Let W̃ ∈ R2n−i+1 be the semialgebraic set defined in the following way:
(x1, ..., xn, yi+1, ..., yn, t) ∈ W̃ :⇐⇒ (x1, ..., xn, x1, ..., xi, yi+1, ..., yn) ∈ W ×W

yi+1 = xi+1 + t, 0 ≤
∑

i+1≤l≤n

(xl − yl)2 ≤ 2t2 , t ≥ 0.

Let p : R2n−i+1 −→ Rn+1 be the canonical projection which forgets the last n − i
coordinates yi+1, ..., yn and q : Rn+1 −→ Rn the one which forgets the last coordinate
t. Observe that W = (q◦p)(W̃ ) holds.

In the same way as in the proof of Proposition 1, we obtain a semialgebraic subdivision
(Wr)1≤r≤R of W = (q◦p)(W̃ ) and a semialgebraic subdivision (Hr)1≤r≤R of p(W̃ )
such that for any x ∈ W the fiber (Hr)x is a subinterval of the half-line t ≥ 0 containing 0
and with a right end-point hr(x) ≥ 0 which may be infinite. We don’t repeat the proof of
this fact which is the same as the corresponding arguments in Proposition 1. We remark
only that one has to pay attention to our weaker assumptions on W , which is no longer
assumed to be closed and bounded. (This makes it necessary to also admit the value ∞
for hr.)

We define fr(x) := 1
2hr(x) if hr(x) is finite, and fr(x) := 1 if hr(x) = +∞.

The continuous semialgebraic maps g(r,j) are constructed in the same way as the
functions η(l,j) in the proof of Proposition 1. We do not repeat the arguments.

With the same notations and assumptions as in Proposition 5, we have

Remark 6. Each of the semialgebraic continuous functions g+
(r,j) : Vr → Rn−i in Propo-

sition 5 is given by a quantifier free formula
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Γ+
(r,j) which belongs to L(A) and depends on the variables X1, ..., Xn, T, Yi+1, ..., Yn.

The set of these formulas is obtained in admissible time from the quantifier free input
formula defining W .

The continuous semialgebraic function g+
(r,j) parametrizes for each x ∈ Wr a closed

and semialgebraically connected curve in the fiber Wpi(x) passing through x.
All these curves (which depend on the parameter x) are defined uniformly by a quan-

tifier free formula Ψ+
(r,j) ∈ L(A) in the variables

X1, ..., Xn, Y1, ..., Yn which we obtain in admissible time eliminating the existential
quantifier in the formula:

(∃T ) (
(X1, ..., Xn, T, Yi+1, ..., Yn) ∈ Graph (g+

(r,j)) ∧ X1 = Y1 ∧ ... ∧ Xi = Yi

)

In the same way we obtain for each r, j a quantifier free formula Ψ−(r,j) ∈ L(A) in the
variables X1, ..., Xn, Y1, ..., Yn which defines uniformly all the curves given by g−(r,j).

In a similar way we obtain in admissible time quantifier free formulas Ω+
(r,j) (resp.

Ω−(r,j)) of L(A) depending on the variables X1, ..., Xn, Y1, ..., Yn such that for each point
x = (x1, ..., xn) of W , Ω+

(r,j)(x, Y1, ..., Yn) (resp. Ω−(r,j)(x, Y1, ..., Yn)) defines the end-point
(x1, ..., xi, g

+
(r,j)(x, f(x)) (resp. (x1, ..., xi, g

−
(r,j)(x, f(x))).

Remark 7. In the case that W is a smooth and bounded hypersurface described
by a regular polynomial equation F = 0 (i.e. ∇F vanishes nowhere in W ), the
functions fr, g

+
(r,j), g

−
(r,j) of Proposition 5 may be chosen such that the following condi-

tion is satisfied: for each x := (x1, ..., xn) ∈ W such that F (x1, ..., xi, Xi+1, ..., Xn)
is a regular polynomial equation for the fiber Wpi(x) contained in Rn−i , the points
πi+1(x1, ..., xi, g

+
(r,j)(x, f(x)) and πi+1(x1, ..., xi, g

−
(r,j)(x, f(x)) are not critical values of the

projection map πi+1 : Wpi(x) −→ R. The proof of this refinement is essentially the same as
the proof of Proposition 5. The only point to be modified is the following: in the definition
of W̃ we have to add the semialgebraic condition :

Wpi(x) smooth ⇒ yi+1 is not a critical value for πi+1|Wpi(x) .

Therefore in the case of a smooth and bounded hypersurface W given by a regular
polynomial equation we are able to move points outside from critical fibers replacing x by
(pi(x), g+

(r,j)(x, fr(x))) and (pi(x), g−(r,j)(x, fr(x))) (compare section 2.1 (3)).

We now give a uniform construction of M -functions. It is well known that after a
generic linear change of coordinates, each new coordinate becomes a Morse- and conse-
quently an M -function. We realize this geometrical idea by a recursive construction of
generic coordinates which uses at each step new indeterminates for the coefficients of the
linear variable transformation involved and which works in a real closed extension of the
field R.

Let δ
(i)
j , 1 ≤ i ≤ j ≤ n , be algebraically independent elements over R , which we

order in the following way:

• δ
(i′)
j′ < δ

(i)
j iff i′ > i or i′ = i and j′ > j.

9



• 0 < δ
(i′)
j′ < z for every positive element z ∈ R(δ(1)

1 , δ
(1)
2 , ..., δ

(i)
j ) where the variables

δ
(1)
1 , ..., δ

(i)
j are exactly all the variables greater than δ

(i′)
j′ .

For i , 1 ≤ i ≤ n let Ri be the real closure of the field R(δ(1)
1 , δ

(1)
2 , ..., δ

(i)
n ) ,

Ai: = A[δ(1)
1 , δ

(1)
2 , ..., δ

(i)
n ] , R′ := Rn and A′ := An.

We consider independent linear forms Zi, 1 ≤ i ≤ n defined as follows:

Zi := δ
(i)
i Xi + δ

(i)
i+1Xi+1 + ... + δ

(i)
n Xn .

For a semialgebraic set W ⊂ Rn defined by a formula Φ of L(A), we denote by
W ′ ⊂ R′n the interpretation of Φ in R′n.

We conclude this section considering the case of a smooth and bounded hypersurface.
Suppose as before that S is a bounded and smooth hypersurface of Rn given by a

regular equation F = 0, where F is a polynomial of A[X1, ..., Xn]. Thus the gradient
vector ∇F vanishes nowhere on S. Let D := deg F .
Lemma 8. There exists a non zero n-variate polynomial P with coefficients in A having
the following property : for any real closed extension field L of R and for any point
(α1, ..., αn) of Ln \ {P = 0}, the linear form α1X1 + ... + αnXn induces a M -projection on
the hypersurface {x ∈ Ln; F (x) = 0}.
Proof. (sketch) : take the Gauss map of the hypersurface S into the n-sphere, square its
coordinates and apply the semialgebraic version of Sard’s theorem ([BCR], Theorem 9.5.2)
to this map. Then use the Transfer Principle ([BCR], Proposition 5.2.3).
Corollary 9. Fix 0 ≤ i ≤ n − 1. Let (t1, ..., ti) a point of Ri

i such that

F (t1, ..., ti, Xi+1, ..., Xn) = 0 is a regular equation for the fiber S
′
(t1,...,ti)

contained in

R′n−i. Observe that S
′
(t1,...,ti)

is a smooth hypersurface. Then the linear form Zi+1 :=

δ
(i+1)
i+1 Xi+1 + δ

(i+1)
i+2 Xi+2 + ... + δ

(i+1)
n Xn induces an M -projection on S

′
(t1,...,ti)

.

Proof. Let P be the polynomial of Lemma 8 corresponding to the hypersurface S(t1,...,ti)

of the affine space Rn−i
i . The coefficients of P are elements of Ri. Thus we have

P (δ(i+1)
i+1 , δ

(i+1)
i+2 , ..., δ

(i+1)
n ) 6= 0 since the elements δ

(i+1)
i+1 , ..., δ

(i+1)
n are algebraically inde-

pendent over Ri. This implies that the linear form Zi+1 induces an M -projection on
S
′
(t1,...,ti)

In the situation of Corollary 9 we write Zi+1 for the M -projection induced by the
linear form Zi+1 on S

′
(t1,...,ti)

.

Remark 10. Corollary 9 implies that the linear form Z1 induces a M -projection on S′

which is denoted by Z1.
The curves which occur when we apply the roadmap construction ([HRS 3], section 4)

to S′ and to the M -projection Z1 have end-points with coordinates in R1 because Z1 is a
linear form of R1[X1, ..., Xn]. Therefore the Z1–images of these points also belong to R1.
If t ∈ R1 is a regular (i.e. not a critical) value of Z1 the semialgebraic set Z−1

1 (t)∩ S′ is a
smooth variety and Z2 is an M -projection of Z−1

1 (t) ∩ S′ following Corollary 9. Iterating
this argument we see that Z1, Z2, ..., Zn−1 are M -projections on all the fibers which occur
in the construction [HRS 3] of a roadmap of S′ passing through a given point x of S. This
observation remains true when the point x belongs to S′ ∩Rn

1 .
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We denote by σ the roadmap of S given by the construction in [HRS 3]. This roadmap
is defined by a quantifier free formula Σ of L(A) which we obtain in admissible time from
the input polynomial F which represents the hypersurface S. Observe that σ′ is also a
roadmap of S′.

The following lemma describes a parametrized construction of a roadmap passing
through a given point.
Lemma 11. As before, let S be a bounded, smooth hypersurface of Rn given by a regular
equation F = 0 where F is a polynomial of A[X1, ..., Xn] and let σ be the roadmap of S
introduced above. Then it is possible to construct in admissible time from the input F
a quantifier free formula Φ in 2n variables X := (X1, ..., Xn) , Y := (Y1, ..., Yn) which
belongs to L(A′) and which verifies the following condition: for each x ∈ S the formula
Φ(x, Y ) describes a roadmap σ′x of S′ which contains the point x and the curve σ′ in
such a way that σ′ forms also a roadmap of σ′x. The algorithm presents Φ in disjunctive

form as Φ =
∨

1≤s≤N

Φs such that for each x′ ∈ S′ the formula Φs(x′, Y ) describes a

point or a closed semialgebraically connected curve contained in S′. Moreover we have

d(Φ) = DnO(1)
.

Proof: Our procedure is a modified version of the roadmap construction of [HRS 3] section
4, which applied to S′ produces in admissible time three item classes of the following type :

– M -directions for S′

– continuous semialgebraic curves contained in S′

– base points obtained intersecting the curves above with suitable fibers of M -directions.
We indicate only the modifications which the algorithm of [HRS 3] that produces

these item classes undergoes in order to construct the output formula Φ in the statement
above. The first modification concerns the choice of M -directions. The new M -directions
are projection maps induced on S′ and fibers of S′ by the linear forms Zi := δ

(i)
i Xi +

δ
(i)
i+1Xi+1 + ...+δ

(i)
n Xn where 1 ≤ i ≤ n. According to Remark 10 we may suppose that the

roadmap construction of [HRS 3] uses only these linear transformations as M -directions.
In this sense we may think that the selection of M -directions is done uniformly.

Moreover we choose the continuous semialgebraic curves of S′ corresponding to the
second item class above applying Proposition 1 and Proposition 5. Only the third item
class requires a more careful analysis. We suppose now that the base points corresponding
to this item class are already given by the algorithm of [HRS 3] and we show that in fact
this procedure is uniform. The rest of the proof is devoted to this question.

The coefficients of the linear forms Z1, ..., Zn describe a non-singular linear transfor-
mation (over A′) of the variables X1, ..., Xn. Thus we may replace the variables X1, ..., Xn

by Z1, ..., Zn. This substitution transforms the polynomial F to another one which depends
on the new variables Z1, ..., Zn. The coefficients of the new polynomial belong to the field
of fractions of A′. Multiplying this polynomial by a suitable non-zero element of A′ (in
fact the determinant of n×n matrix given by the coefficients of the forms Z1, ..., Zn−i) we
cancel denominators and thus obtain a polynomial G with coefficients in A′.

Obviously this procedure is completely algorithmic, can be performed in admissible
time and the new polynomial G satisfies deg G = deg F . Moreover G is a regular equation

11



of the smooth hypersurface S′.
Applying Proposition 1 and Proposition 5 to the semialgebraic set S′ given by the

regular equation G = 0 we obtain in admissible time for each i, 0 ≤ i ≤ n − 1, quantifier
free formulas of degree DnO(1)

of L(A′) any of which describes a parametrized family of
semialgebraically connected curves lying in S′. The parameters on which these families
depend range over suitable semialgebraic subsets of R′i (compare Remark 3 and Remark
6). We write (Ψ(i)

j )0≤j≤Mi for the family of these formulas.

The quantifier free formulas Ψ(i)
j of L(A′) involve the 2n variables Z1, ..., Zn, U1, ..., Un.

Let Z := (Z1, ..., Zn) and U := (U1, ..., Un).
Analyzing the roadmap construction of [HRS 3] we see that this algorithm constructs

implicitly a family q
(i)
jh (0 ≤ i ≤ n−1, 0 ≤ j ≤ Mi, 0 ≤ h ≤ Hi) of continuous semialgebraic

functions with domains contained in S′ and values in R′. These functions describe the
coordinates of the base points obtained by the procedure of [HRS 3].

Let us consider the following expression Ξ which depends on the two sets of variables
Z := (Z1, ..., Zn) and U := (U1, ..., Un):

∨

0≤i≤n−1
0≤j≤Mi

0≤h≤Hi

Ψ(i)
j (q(i)

1h (Z), . . . , q(i)
nh(Z), U1, ..., Un) ∧ U1 = q

(i)
1h (Z) ∧ · · · ∧ Ui = q

(i)
ih (Z)︸ ︷︷ ︸

Ξ
(i)
jh

We denote the conjunctions appearing in the expression Ξ above by Ξ(i)
jh . Observe

that Remark 3 and Remark 6 guarantee that for any point z of S′ the formula Ξ(i)
jh (z, U)

defines a point of S′ or a semialgebraically connected curve which is contained in S′.
Let = be the regular n × n-matrix defined by the coefficients of the linear forms

Z1, ..., Zn and let =−1 be its inverse. Transforming the variables Z1, ..., Zn by =−1 we
reobtain the variables X1, ..., Xn. Analogously let the variables Y1, ..., Yn be defined trans-
forming U1, ..., Un by means of =−1.

We denote by =(S) the subset of R′n obtained transforming the semialgebraic set S
by means of the matrix = (observe that the set =(S) is not semialgebraic).

Let z be a point of =(S).
From the roadmap construction of [HRS 3], Remark 3, Remark 7 and Remark 10 we

infer that the set <(z) ⊂ R′n defined by Ξ(z, U) is a roadmap of S′ which contains the
point z.

We now apply the algorithm of [HRS 3] to the hypersurface S′ in the following way :
every time the algorithm requires an M - direction we choose one of the projection maps
Z1, ..., Zn according to Remark 10. In this manner we obtain a roadmap σ1 of S′. From
the previous observations we deduce that σ1 is contained in the curve <(z) for any point
z of =(S). Without loss of generality we may suppose that =(σ) is also contained in <(z)
for all z ∈ =(S).

Unfortunately the roadmap construction of [HRS 3], as far as the variables Z1, ..., Zn

are concerned, doesn’t present the expressions Ξ(i)
jh as a quantifier free formula of degree

DnO(1)
.
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Suppose for the moment that this is the case, i.e. that the expression Ξ(i)
jh is represented

by a quantifier free formula of L(A′) which can be obtained in admissible time and which
has degree DnO(1)

. Then we have N = DnO(1)
such formulas which depend on the variables

Z1, ..., Zn and U1, ..., Un. Transforming these variables by means of the matrix =−1 we
obtain quantifier free formulas Φs in the variables X1, ..., Xn and Y1, ..., Yn where 1 ≤ s ≤
N .

Since for any z ∈ S′ the expressions Ξ(i)
jh (z, U) define points of S′ or semialgebraically

connected curves contained in S′, the same property is shared by the formula Φs(x, Y )
for any x ∈ S′ and any 1 ≤ s ≤ N . Under the hypothesis made before we are able to
construct the formulas Φs in admissible time and we have d(Φs) = DnO(1)

. The formulas
Φs and Φ :=

∨

1≤s≤N

Φs therefore satisfy the requirements of the lemma if we are able to

show that the expressions Ξ(i)
jh (Z, U) are represented by quantifier free formulas of L(A′)

which can be obtained from the input polynomial F in admissible time.

From the construction in [HRS 3] it is easy to see that the number Hi of base points
in the i-th step of the algorithm and the number Mi of formulas Ψ(i)

j are of order DnO(1)

(recall that Hi and Mi are quantities which were introduced in the expression Ξ above).

We finish the proof representing each expression Ξ(i)
jh by a quantifier free formula of

degree DnO(1)
which can be obtained in admissible time.

For this purpose, we apply the quantifier elimination algorithm of [HRS 2] or [R 3]
to the purely existential prenex formulas Λ(i)

jh which we introduce below. These formulas

have degree DnO(1)
and contain not more than 3n2 + 2n variables.

For the moment let i, j and h be fixed.

From Remark 3 and Remark 6 we obtain quantifier free formulas Θ(i)
l and Ω(i)

l in not
more than 2n variables which describe the end-points of the parametrized family of curves
given by the formula Ψ(i)

j

The following prenex formulas describe all possible intersections of the parametrized
families of curves defined by the formulas Φ(i)

j , where 0 ≤ j ≤ Mi, with fibers which contain

an end-point of one of these curves. To Ψ(i−1)
j correspond the following two formulas :

(∃Vi+1 . . . ∃Vn) ( Ψ(i−1)
j (Z,U) ∧Θ(i−1)

l (Z1, ..., Zi, U1, ..., Ui, Vi+1, ..., Vn) )

and
(∃Vi+1 . . . ∃Vn) ( Ψ(i−1)

j (Z,U) ∧ Ω(i−1)
l (Z, U1, ..., Ui, Vi+1, ..., Vn) ).

All these prenex formulas (with 0 ≤ j ≤ Mi) contain only one block of existential quan-
tifiers and applying to them the quantifier elimination algorithm of [HRS 2] or [R 3] we
obtain in admissible time a family of equivalent quantifier free formulas (Γ(i)

` )0≤`≤Li of
degree DnO(1)

which depend on the variables Z1, ..., Zn, U1, ..., Un.
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We introduce new variables T
(s)
t where 0 ≤ s ≤ i − 1 and 1 ≤ t ≤ n , W

(s′)
t′ where

1 ≤ s′ ≤ i− 1 and 1 ≤ t′ ≤ n , and V
(p)
v where 1 ≤ p ≤ i− 1 and p < r ≤ n. Observe that

the number of these variables doesn’t exceed 3 n2.
We define now for each triple of indices i, j, h a purely existential prenex formula Λ(i)

jh

which has degree DnO(1)
and can be constructed in admissible time. This formula describes

a parametrized family of continuous semialgebraic curves which connects base points lying
in the same semialgebraically connected component of S′. The formula Λ(i)

jh is given in the
way we indicate below.

Let
[ ∃ ]

be the existential quantifier block

(∃T (s)
t )(∃W (s′)

t′ )(∃V (p)
r )

where 0 ≤ s ≤ i− 1, 1 ≤ t ≤ n, 1 ≤ s′ ≤ i− 1, 1 ≤ t′ ≤ n, 1 ≤ p ≤ i− 1, p < r ≤ n.

Furthermore let
[

?
]

be the following quantifier free formula :

Ω(0)
l0

(Z, T (0)) ∧ Γ(1)
`1

(T (0)
1 , V (1),W (1)) ∧ Ω(1)

l1
(W (1), T (1)) ∧ Γ(2)

`2
(T (0)

1 , T
(1)
2 , V (2), W (2))∧

∧ Ω(2)
l2

(W (2), T (2)) ∧ .... ∧ Γ(i−1)
`i−1

(T (0)
1 , ..., T

(i−2)
i−1 , V (i−1),W (i−1)) ∧ Ω(i−1)

li−1
(W (i−1), T (i−1)).

(The formulas Γ(k)
`k

contained in
[

?
]

describe the coordinates of the base points which
our modified version of the algorithm of [HRS 3] constructs recursively, and the formulas
Ω(k)

lk
move these base points into non-critical fibers with respect to the projection maps

Zk.)
Finally let Λ(i)

jh be the formula given in the following syntactical way :
[
∃

] (
Ψ(i)

j (T (0)
1 , ..., T

(i−1)
i , T

(i−1)
i+1 , ..., T (i−1)

n , U) ∧ U1 = T
(0)
1 ∧ ... ∧ Ui = T

(i−1)
i ∧

[
?

]

The quantifier free formulas representing the expressions Ξ(i)
jh are now obtained by

applying to the purely existential prenex formulas Λ(i)
jh the quantifier elimination procedure

[HRS 2] or [R 3]. It is evident that all formulas occuring in our construction are of
degree DnO(1)

, that there are only DnO(1)
many of them and that they can be produced in

admissible time. This finishes the proof of this lemma.
Remark 12. A key point in the proof of the previous technical lemma is the simple
observation that the composition of several semialgebraic functions can be described by
an elementary prenex formula which is purely existential and contains therefore just one
single block of quantifiers. This block can be eliminated in admissible time by means of
the algorithms [HRS 2] or [R 3].

4. Description of the connected components in admissible time
In this section we finish the proof of our main theorem : the description of the semi-

algebraically connected components of an explicitly given semialgebraic set in admissible
time.
Proof of the main theorem : According to [HRS 4], Section 4 (or [CGV], Section 2
and Section 3) it suffices to consider the case of a smooth and bounded hypersurface S of
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Rn given by a regular equation F = 0 where F is a polynomial of A[X1, ..., Xn] of degree
D.

From Lemma 11 we deduce that it is possible to construct in admissible time a quanti-
fier free formula Φ of L(A′) of degree DnO(1)

which has the form of a disjunction
∨

1≤s≤N

Φs

and in which each Φs describes a parametrized family of continuous semialgebraic curves
contained in S′.

The formula Φ depends on the variables X := (X1, ..., Xn) and Y := (Y1, ..., Yn) and
for each point x ∈ S the expression Φ(x, Y ) defines a roadmap of S′ which passes through
x.

For each couple s, t where 1 ≤ s ≤ t ≤ N let Φst be the quantifier free formula of
L(A′) which we obtain applying the quantifier elimination procedure [HRS 2] or [R 3] to
the formula : (∃Y1 ...∃Yn

) (
Φs(X, Y1, ..., Yn) ∧ Φt(X,Y1, ..., Yn)

)

Let F be the set of all polynomials of A′[X1, ..., Xn] which occur as terms in the formulas
Φst. Obviously the set F can be constructed in admissible time and satisfies the estimate∑

F∈F
deg F =

∑
s,t

d(Φst) = DnO(1)
.

A (non-empty) semialgebraic subset of R′n defined by a consistent sign condition on
the elements of F is called an F–cell. According to [G] (see also [HRS 1] and [HRS 2])
the number of F–cells is of order DnO(1)

and we can find the consistent sign conditions
defining them in admissible time.

We consider all possible non-empty intersections V1, ..., VM of F–cells with the hy-
persurface S′. Thus we have S′ =

⋃

1≤k≤M

Vk and M = DnO(1)
. Observe that each formula

Φst has constant truth value on each set Vk since the polynomials appearing as terms in
Φst belong to F and therefore have constant sign on Vk.

Let k with 1 ≤ k ≤ M be fixed. We consider the binary relation ∼k on the set{
1, 2, ...,M

}
defined as follows :

for s, t ∈ {
1, 2, ..., M

}
let s ∼k t hold if and only if the formula Φst is true on Vk.

The relation ∼k is symmetric but not necessarily reflexive. Let Mk be its domain
which is contained in

{
1, 2, ..., M

}
. Then the transitive closure of the relation ∼k induces

an equivalence relation on the set Mk.
Let Λ1, ..., Λr be the partition of Mk which corresponds to this equivalence relation.

Computing the transitive closure of the relation ∼k by the algorithm of [M], Theorem
V.5.3, we obtain in admissible time the partition sets Λ1, ..., Λr .

For any index p with 1 ≤ p ≤ r let ∆(k)
p be the following quantifier free formula of

L(A′) :
∨

s∈Λp

Φs(X, Y ) .
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Obviously the formulas ∆(k)
p have degree DnO(1)

and can be constructed in admissible
time.
Claim. For any point x ∈ Vk ∩ S the formula ∆(k)

p (x, Y ) defines a semialgebraically
connected component of the roadmap σ′x introduced in Lemma 11.
Proof of the Claim. Let x ∈ S ∩ Vk be given and suppose that the set Λp can be written
as Λp = {s1, . . . , s`} such that sj ∼k sj+1 holds for 1 ≤ j ≤ ` − 1. We consider the set
τp := {y ∈ R′n; ∆(k)

p (x, y) is true }. We show that τp is a semialgebraically connected
curve contained in S′.

From the fact that ∆(k)
p (x, Y ) is identic with the formula

∨

1≤j≤`

Φsj
(x, Y ), that the

point x belongs to Vk and that s1 ∼k s2 ∼k . . . ∼k s`−1 ∼k s` holds, we infer that
there exists for each 1 ≤ j ≤ ` − 1 an element yj of S′ which verifies the expression
Φsj (x, yj) ∧ Φsj+1(x, yj). Hence, by Lemma 11, for each 1 ≤ j ≤ ` − 1 the formula
Φsj (x, Y ) ∧ Φsj+1(x, Y ) defines a semialgebraically connected curve contained in S′. This
implies that τp itself is a semialgebraically connected curve contained in S′.

Now consider 1 ≤ p′, p ≤ r with τp ∩ τp′ 6=Ø. Let y be an element of τp ∩ τp′ . There
exist indices s ∈ Λp and t ∈ Λp′ such that Φs(x, y) ∧ Φt(x, y) holds, whence s ∼k t and
finally p = p′. Therefore the semialgebraically connected curves τp are mutually disjoint.

Since the point x belongs to Vk the formula Φ(x, Y ) is equivalent to
∨

1≤p≤r

∆(k)
p (x, Y )

and thus we obtain σ′x =
⋃

1≤p≤r

τp. This finishes the proof of the claim.

Note that in virtue of the claim above the number r of formulas ∆(k)
p coincides with the

number of semialgebraically connected components of S and S′ which is of order DnO(1)
.

Let σ′ be the roadmap of S′ which we have already considered in Lemma 11. In view
of [HRS 4], Proposition 2 we may suppose that σ′ is given as a disjunction of quantifier
free formulas Σ1, . . . , Σr of L(A′) of degree DnO(1)

which describe the semialgebraically
connected components of σ′.

Recall from Lemma 11 that for each x in S the roadmap σ′x of S′ contains the curve
σ′.

Let 1 ≤ p ≤ r. For any 1 ≤ k ≤ M , any 1 ≤ p′ ≤ r and any point x of S the formula

(∃Y1 . . . ∃Yn)(Σp(Y1, ..., Yn) ∧∆(k)
p′ (x, Y1, ..., Yn) ∧∆(k)

p′ (x, x))

says that x is a point of Vk which belongs to the p-th semialgebraically connected compo-
nent of S′, i.e. which belongs to the semialgebraically connected component that contains
the curve defined by Σp. Therefore the formula

(F = 0) ∧ (∃Y1 . . . ∃Yn)
∨

1≤k≤M
1≤p′≤r

(Σp(Y1, ..., Yn) ∧∆(k)
p′ (X, Y1, ..., Yn) ∧∆(k)

p′ (X,X)) ,

when restricted to points of Rn defines the p-th semialgebraically connected component
of S.
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We apply now the quantifier elimination procedure [HRS 2] or [R 3] to all these
formulas where 1 ≤ p ≤ r. In this way we obtain in admissible time r quantifier free
formulas Π1, . . . Πr of L(A′) which involve the variables X1, ..., Xn and which restricted to
points of Rn describe the semialgebraically connected components of S.

Unfortunately the constants contained in these formulas belong to A′ = A[δ(1)
1 , δ

(1)
2 , ...,

, ..., δ
(n−1)
n , δ

(n)
n ] and not to the base ring A. To remedy this situation we apply now a

method which we have already used in [HRS 2].
Let G be the set of elements of A′[X1, ..., Xn] which occur as terms in the formulas

Π1 . . . , Πr.

The set G can be constructed in admissible time , it is of cardinality DnO(1)
and its ele-

ments are polynomials of degree DnO(1)
in the indeterminates δ

(1)
1 , δ

(1)
2 , ..., δ

(n−1)
n , δ

(n)
n , X1, ..., Xn

over the ring A.

Let G be an element of G. We consider G as a polynomial in δ
(1)
1 , δ

(1)
2 , ..., δ

(n−1)
n , δ

(n)
n

with coefficients in A[X1, ..., Xn].
Since δ

(1)
1 , δ

(1)
2 , ..., δ

(n−1)
n , δ

(n)
n are positive infinitesimals with respect to the real closed

field R any sign condition of the type G(x) > 0, G(x) < 0 or G(x) = 0 for a point x of Rn

can be expressed by a quantifier free formula of L(A) which involves only the coefficients
of the polynomial G which lie in A[X1, ..., Xn]. The quantifier free formulas of L(A) which
are produced in this way when G runs through the set G can be obtained in admissible
time and their number and degrees are of order DnO(1)

.
Using these formulas which belong to L(A) we may replace each atomic expression

in Π1, . . . , Πr by a quantifier free formula that contains only constants from A. Rewriting
the formulas Π1, . . . , Πr in this way we obtain in admissible time r quantifier free formulas
of L(A) which have degree DnO(1)

and which are equivalent to Π1, . . . , Πr when restricted
to points of Rn. In other words these formulas define the semialgebraically connected
components of the hypersurface S. This finishes the proof of the main theorem.
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Mathematik und ihrer Grenzgebiete, 3.Folge, Band 12, Springer Verlag (1987).
[Ca 1] Canny J.: Some algebraic and geometric computations in PSPACE. Proc. 20-th
Ann. ACM Symp. Theory of Computing (1988) 460–467.
[Ca 2] Canny J.: The complexity of robot motion planning. MIT Press (1989).
[CGV] Canny J., Grigor’ev D. Yu., Vorobjov N. N. (jr.): Finding connected components
of a semialgebraic set in subexponential time. Applicable Algebra in Engineering, Com-
munication and Computing (AAECC Journal) 2 (4) (1992) 217–238.
[Co] Collins G.: Quantifier elimination for real closed fields by

cylindric
algebraic decomposition. Second GI Conference on Automata Theory and Formal

Languages. Springer LN Comput. Sci. 33 (1975) 134–183.
[Ga] von zur Gathen J.: Parallel arithmetic computations: a survey. Proc. 13th Conf.
Symp. MFCS 1986, Springer LN Comput. Sci. 233 (1986) 93–112.

17



[G] Grigor’ev D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5 (1988)
65–108.
[GHRSV] Grigor’ev D. Yu, Heintz J., Roy M.-F., Solernó P., Vorobjov N. N. (jr.): Comp-
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