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Abstract. Let V be a bounded semialgebraic hypersurface defined by a regular polynomial

equation and let x1, x2 be two points of V . Assume that x1, x2 are given by a boolean combi-

nation of polynomial inequalities. We describe an algorithm which decides in single exponential

sequential time and polynomial parallel time whether x1 and x2 are contained in the same

semialgebraically connected component of V . If they do, the algorithm constructs a continuous

semialgebraic path of V connecting x1 and x2 . By the way the algorithm constructs a roadmap

of V . In particular we obtain that the number of semialgebraically connected components of V
is computable within the mentioned time bounds.

1. Introduction
Let R be a real closed field containing a subring A. Let X1, . . . , Xn be indetermi-

nates over A.
We consider the following path finding problem for semialgebraic sets: let V be a

semialgebraic subset of Rn containing two points x1 and x2 . Suppose that V and x1, x2

are described by boolean combinations of inequalities involving polynomials F1, . . . , Fs ∈
A[X1, . . . , Xn]. Let D := deg(F1) + · · · + deg(Fs) be the sum of the total degrees of
F1, . . . , Fs .

Our aim is to design (by means of an arithmetical network over A; see [Ga], [FGM])
an algorithm which decides whether x1 and x2 lie in the same semialgebraically con-
nected component of V , and, if they do, constructs a continuous semialgebraic path
connecting x1 and x2 . By such an algorithm the exact number of semialgebraically
connected components can easily be determined. Moreover if V is closed and bounded
a roadmap construction of V is required.

By cylindrical algebraic decomposition it is possible to solve algorithmically this
path finding problem for semialgebraic sets. Unfortunately this technique has its short-
comings since it produces quite elevated worst case complexity results: sequential time
bounds of order DnO(n)

and parallel time bounds of order nO(n)(log D)O(1) (see [FGM]
for details). This method has been used in [SS] for the solution of path finding problems
in robotics.

However it is possible to obtain more realistic (we shall say “admissible”) com-
plexity bounds for the path finding problem: the sequential time complexity (i.e. the
size of the corresponding arithmetical network) is of order DnO(1)

and the parallel time
complexity (the depth of the network) is of order nO(1)(log D)O(1) .
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In this paper we present the core of this complexity result considering the case where
V is a bounded regular hypersurface of Rn given by a polynomial F ∈ A[X1, . . . , Xn]
with non vanishing gradient on V (Theorem 12). The methods developed in [GV 1],
[HRS 2,3] allow to transfer this algorithmical result for bounded regular hypersurfaces
to arbitrary semialgebraic sets (see Theorem 13 below and for proofs [HRS 4]).

The paper uses ideas of elementary differential geometry and combines them with
techniques from computational algebraic geometry. This method has been introduced
in [GV 1], [G] and was extended in [S 1], [HRS 1,2,3]. More specifically our tools are the
ones used in the efficient quantifier elimination procedure for real closed fields ([HRS
2,3]).

Our algorithms are based on elementary techniques of computational linear algebra
and hence efficiently parallelizable. In this point they differ substantially from the
algorithmical methods of [GV 1] and [G], which use efficient polynomial factorization.
At this moment this has no efficient parallel counterpart.

A first attempt to obtain efficiently parallelizable single exponential time bounds
for the path finding problem and roadmap constructions in semialgebraic sets has been
made in [C 2] and [C 3]. However in this work the semialgebraically input sets are
subject to considerable geometric and computational restrictions: they are in general
position or already equipped with a Whitney Stratification (see also the comments on
the proofs of [C 2] and [C 3] in [T]).

Let us also point out that in the bit-model a single exponential sequential time
algorithm for the path finding problem with a somewhat more precise complexity bound
of DO(n20) has been independently obtained by D. Yu Grigor’ev and N.N. Vorobjov in
[GV 2].

It is not too difficult to derive from our methods a “parametrized” version of our
main Theorem 12. Taking into account the results of [HRS 4] (or [GV 2]) one obtains
thus an admissible algorithm which solves the problem of defining the semialgebraically
connected components of a given semialgebraic set. Details have been done in [CGV]
for the sequential time complexity in the bit-model.

Surveys of these results are given in [HKRS] and [GHRSV].

2. Notions and Notations
Throughout this paper we fix a real closed field R and a subring A of R (for

example R := R and A := Z).
Let X1, . . . , Xn be indeterminates (variables) over R . To a polynomial F ∈

A[X1, . . . , Xn] we assign its total degree deg(F ) and its number of variables n. For a
finite set F of polynomials of A[X1, . . . , Xn] we write degF := 2 +

∑

F∈F
deg(F ).

We call an element z ∈ R real algebraic if it is algebraic over A.
We consider Rn , n = 0, 1, . . ., as a topological space equipped with the euclidean

topology. Let x := (x1, . . . , xn) and y := (y1, . . . , yn) be two points of Rn , we write

|x− y| :=
√

(x1 − y1)2 + · · ·+ (xn − yn)2

for their euclidean distance. If r is a positive element of R we write B(x, r) := {y ∈
Rn; |x− y| < r} for the open ball of radius r centered at x.



If x, y ∈ R (i.e. n = 1) we write [x, y], (x, y), [x, y), (x, y] for the closed, open and
half open intervals with boundaries x and y .

A semialgebraic subset of Rn (over A) is a set definable by a boolean combination
of equalities and inequalities involving polynomials from A[X1, . . . , Xn].

A semialgebraic set has only finitely many semialgebraically connected components
which are all semialgebraic (see [BCR], Def. 2.4.2 and Th. 2.4.4).

Let V ⊂ Rn , W ⊂ Rm be semialgebraic sets and f : V → W a map. We call f
semialgebraic if its graph is a semialgebraic subset of Rn+m .

The image of a semialgebraic set by a semialgebraic function is semialgebraic too.
This fact is called the Tarski-Seidenberg Principle (see [BCR], Théorème 2.2.1).

The Tarski-Seidenberg Principle can also be stated in terms of logics. It means
that the elementary theory of real closed fields with constants from A admits quantifier
elimination ([BCR], Prop. 5.2.2).

From this we obtain the following Transfer Principle ([BCR], Prop. 5.2.3): let R′

be a real closed extension of R and let Φ be a formula without free variables (i.e. all
the variables are quantified) in the elementary language L of real closed fields with
constants from A. Then Φ is valid in R′ iff Φ is valid in R .

Let Φ ∈ L be a formula in the free variables X1, . . . , Xn . Φ defines a subset S of
Rn . Since the elementary theory of R admits quantifier elimination we see that S is
semialgebraic. On the other hand Φ can also be interpretated over R′ . Thus Φ defines
also a semialgebraic subset of R′n which we denote by S(R′) (the independence of this
notation from the particular defining formula Φ is justified by the Transfer Principle).

We call two formulas in the same free variables X1, . . . , Xn equivalent if they define
the same subset of Rn (this means they are equivalent with respect to the elementary
theory of real closed fields).

A formula containing no quantifiers is called quantifier free. Thus the semialgebraic
sets are those which are definable by quantifier free formulas. A formula is called prenex
if all its quantifiers occur at the beginning.

Let Φ ∈ L be a formula built up by atomic formulas involving a finite set F of
polynomials of A[X1, . . . , Xn]. We write deg Φ := degF . The length of Φ is denoted
by |Φ|.

An algorithm N (represented by a suitable family of arithmetical networks over
A, see [Ga], [FGM]) which for given natural numbers D , n and any input set F ⊂
A[X1, . . . , Xn] subject to degF ≤ D computes an output set G ⊂ A[x1, . . . , Xm], is
called admissible if the following conditions are satisfied:

– deg G = DnO(1)
.

– the sequential complexity of N is DnO(1)
.

– the parallel complexity of N is (n . log D)O(1) .
In the case that such an algorithm exists we say that G is computable from the input
F in admissible time.

Under certain circumstances F and G may represent the polynomials involved in
quantifier free formulas Φ, Ψ ∈ L defining semialgebraic sets V ⊂ Rn and W ⊂ Rm . If
N is admissible and computes also from the input data Φ the boolean combination of
atomic formulas representing Ψ, we say that W is admissible computable from V .

Note that the data structures corresponding to polynomials and to finite sets of
polynomials are considered as coefficients vectors written in dense form.



We shall also make use of the notions of critical point, Nash function and Nash
variety. For precise definitions, we refer to [BCR].

3. Algorithmical and mathematical tools
In this section we collect some algorithmical and mathematical tools we need for our

later roadmap construction. We state first a theorem which expresses a local property
for projections of semialgebraic sets. In terms of logics this theorem can also be inter-
pretated as a statement about the local existence of continuous semialgebraic Skolem
functions, computable in admissible time.

Theorem 1 ([HRS 3]). Let S be a semialgebraic subset of Rk × Rn . It is possible to
compute in admissible time the following items:

- a partition of Rk into semialgebraic sets Ti , 1 ≤ i ≤ s.
- for each 1 ≤ i ≤ s a finite family (ξij)1≤j≤`i of continuous semialgebraic functions

from Ti to Rn such that for each 1 ≤ j ≤ `i the graph of ξij belongs to S and such that
for each x ∈ Ti each semialgebraically connected component of S∩ ({x}×Rn) contains
at least one point of the graph of some ξij . In particular, each connected component of
S ∩ (Ti ×Rn) contains at least the graph of some ξij . ♦

For a proof of Theorem 1, see [HRS 3], Théorème 7. A weaker version of this
theorem appears in [G], [HRS 1] and [S 1].

Theorem 1 has a series of consequences (Corollaries 2, 3, 4):

Corollary 2. Let S be a semialgebraic subset of R × Rn . In admissible time it is
possible to compute the following items:

- a partition of R in semialgebraic intervals Ti , 1 ≤ i ≤ s.
- for each 1 ≤ i ≤ s a finite family (ξij)1≤j≤`i of continuous semialgebraic functions

(curves) from Ti to Rn such that the graph of each ξij belongs to S and such that for
each semialgebraically connected component of S ∩ ({x} × Rn) contains at least one
point of the graph of some ξij . In particular, each connected component of S∩(Ti×Rn)
contains at least the graph of some ξij .

Proof. Put k := 1 in Theorem 1 and observe that any semialgebraic subset of R
can be decomposed in admissible time in finitely many intervals. ♦

Since the curves ξij in Corollary 2 are defined on intervals, their images are semi-
algebraically connected. This observation will be relevant in later applications of this
corollary.

Corollary 3 (efficient quantifier elimination, [HRS 2,3], [R]). Let Φ be a prenex for-
mula in the language L of ordered fields with constants in A. Suppose that Φ contains
m blocks of quantifiers and n variables. Then it is possible to compute in sequen-

tial time (deg Φ)nO(m) |Φ|O(1) and in parallel time nO(m)(log deg Φ)O(1) +(log |Φ|)O(1) a
quantifier free formula Ψ which is equivalent to Φ. ♦

Corollary 4 (efficient curve selection lemma, [HRS 1], [S 1]). Let S be a semialgebraic
subset of Rn and let p be in the topological closure S of S . Assume that S and p are
definable by quantifier free formulas of L. Then there exists an admissible algorithm



which computes positive elements δ, ε ∈ R and continuous semialgebraic curves γi :
[0, δ] → Rn , 1 ≤ i ≤ s, satisfying the following conditions:

- γi((0, δ]) ⊂ S and γi(0) = p for each 1 ≤ i ≤ s.
- each semialgebraically connected component of B(p, ε)∩S contains γi((0, δ]) for

at least one i.

Proof. Apply Theorem 1 to the semialgebraic set S′ defined by
S′ := {(r, x) ∈ R×Rn; x ∈ S, |x− p|2 ≤ r}. ♦

Let K be the fraction field of A. In the next lemma we consider an arithmetical
network over K .

Lemma 5. Let J be a zero dimensional ideal of K[X1, . . . , Xn] given by a finite
set F of generators. Denote by Z(J ) the set of zeros of J contained in Rn . Let
U be a new indeterminate. In admissible time it is possible to compute polynomials
P, P1, . . . , Pn ∈ K[U ] such that for each element x ∈ Z(J ) there exists a root u of P
contained in R satisfying x = (P1(u), . . . , Pn(u)). ♦

For a proof of Lemma 5 see [HRS 3], Proposition 7, or [C 1].

Let F ∈ A[X1, . . . , Xn] be a polynomial such that the closed semialgebraic set
V := {F = 0} := {x ∈ Rn; F (x) = 0} is bounded, and such that the gradient 5F :=( ∂F

∂X1
, . . . ,

∂F

∂Xn

)
vanishes nowhere on V . Thus V is a regular bounded hypersurface

of Rn .
Let G ∈ A[X1, . . . , Xn] be a linear form and let g : V → R be the semialgebraic

map induced by G on V .
We are going to apply to V and g concepts borrowed from elementary differential

geometry. To be more precise, we consider V as a Nash subvariety of Rn and g as a Nash
function defined on V (see [BCR], Chapitre 8); therefore the reader interested in more
generality may replace in the next statements (Observation 6, Lemma 7, Propositions 8
and 9) the semialgebraic set V by any bounded and closed Nash subvariety of Rn and
g by any Nash function mapping V into R .

The local inversibility theorem for Nash functions ([BCR], Proposition 2.9.5) im-
plies the following basic fact:

Observation 6. Let x be a point of V and let y1, . . . , yn−1 be a system of local
coordinates for x. Suppose that x is not a critical point of g . Then there exists
1 ≤ i ≤ n − 1 such that g, y1, . . . , yi−1, yi+1, . . . , yn−1 is a system of local coordinates
for x.

Lemma 7. Let t be an element of R such that t is not a critical value of g and such
that the fibre g−1(t) is non empty. Then there exists a positive element ε ∈ R such
that for the semialgebraically connected components C1, . . . , Cs of g−1((t − ε, t + ε))
and for each t′ ∈ (t− ε, t + ε) the sets C1 ∩ g−1(t′), . . . , Cs ∩ g−1(t′) are non empty and
semialgebraically connected.

Proof. Since the semialgebraically connected components of semialgebraic sets definable
by polynomials of previously bounded degree are themselves uniformly semialgebraically



definable we may argue by the Transfer Principle. Thus we may assume without loss of
generality that R := R. Thus V is compact.
By assumption no point of the fibre g−1(t) is critical. By Observation 6 we may therefore
choose for each x ∈ g−1(t) an open neighborhood Ux in V , a positive element εx ∈ R
and local coordinates of the form g

∣∣
Ux

, y2, . . . , yn−1 which map Ux homeomorphically
onto the connected chart (t−εx , t+εx)×(−εx, εx)n−2 (here g

∣∣
Ux

denotes the restriction
of g to Ux ). From the particular form of this chart we infer that Ux and Ux∩g−1(t′) are
connected for any t′ ∈ (t− εx, t+ εx). Since g−1(t) is compact there exist finitely many
points x1, . . . , xp ∈ g−1(t) such that Ux1 , . . . , Uxp

cover g−1(t). Again by compactness
we see that we may choose a positive ε < min{εxj

: 1 ≤ j ≤ p} such that for each
t′ ∈ (t − ε, t + ε) the fibre g−1(t′) is contained in Ux1 ∪ . . . ∪ Uxp

(this can be seen
by the following indirect argument: suppose that there exists a sequence (ti)i∈N of
real numbers converging to t such that for each i ∈ N there is a point yi ∈ (V ∩
g−1(ti))\(Ux1 ∪ . . . ∪ Uxp); since V is compact we may suppose that the sequence
(yi)i∈N converges to a point y ∈ (V ∩ g−1(t))\(Ux1 ∪ . . . ∪ Uxp

). Contradiction).
For 1 ≤ j ≤ p let Uj := Uxj ∩ g−1((t− ε, t + ε)).
Choosing ε small enough and taking into account the “open ball” form of the charts
U1, . . . , Up one can achieve the following: for each 1 ≤ j, j′ ≤ p and for each t′ ∈
(t − ε, t + ε) the sets Uj are connected, Uj ∩ g−1(t′) is non empty and connected and
its topological closure in g−1(t′) coincides which Uj ∩ g−1(t′).
For each t′ ∈ (t − ε, t + ε) we consider the following undirected graph Gt′ : its vertex
set is {1, . . . , p} and two vertices j, j′ ∈ {1, . . . , p} form a “primitive edge” of Gt′ if
Uj ∩Uj′ ∩ g−1(t′) 6= φ. The edges of the graph Gt′ are defined by taking the transitive
closure of the relation of {1, . . . , p} induced by the primitive edges. The connected
components of the graph Gt′ describe the (topological) connected components of g−1(t′)
as unions of the connected sets U1 ∩ g−1(t′), . . . , Up ∩ g−1(t′). We claim that Gt = Gt′

for all t′ ∈ (t−ε, t+ε) if ε > 0 is chosen small enough. Thus Gt describes the connected
components of g−1((t− ε, t + ε)) as unions of the connected sets Uj , 1 ≤ j ≤ p. This
implies Lemma 7.
Now we are going to prove our claim. First we show that Gt is a subgraph of Gt′

for all t′ ∈ (t − ε, t + ε) with ε > 0 sufficiently small. For this purpose let t′ ∈
(t − ε, t + ε) and let j, j′ ∈ {1, . . . , p} be two vertices of Gt forming a primitive edge.
Thus Uj ∩ Uj′ ∩ g−1(t) 6= φ. Since Uj ∩ Uj′ is a non empty open subset of the chart
Uj its image by g contains an open interval of the form (t − ε, t + ε). Therefore
Uj ∩Uj′ ∩ g−1(t′) 6= φ for t′ ∈ (t− ε, t + ε). This means that j and j′ form a primitive
edge of Gt′ and our assertion follows now easily.
Let us now show the converse, namely that Gt′ is a subgraph of Gt for all t′ ∈ (t−ε, t+ε)
where ε is chosen sufficiently small. Suppose that this is not the case. Then there exist
vertices j, j′ ∈ {1, . . . , p} and a sequence (ti)i∈N of real values converging to t such that
Uj ∩Uj′ ∩ g−1(ti) 6= φ for all i ∈ N and such that Uj ∩Uj′ ∩ g−1(t) = φ. Thus we may
choose without loss of generality a sequence (yi)i∈N of points yi ∈ Uj ∩ Uj′ ∩ g−1(ti)
converging to a point y ∈ Uj∩Uj′∩g−1(t). Let k ∈ {1, . . . , p} such that y ∈ Uk∩g−1(t).
Since Uk ∩ g−1t is a neighborhood of y in g−1(t) and since the set Uj ∩ g−1(t), which
contains y , is the closure of Uj∩g−1(t) in g−1(t), we conclude that Uj∩Uk∩g−1(t) 6= φ.



By the same argument one infers that Uj′ ∩ Uk ∩ g−1(t) 6= φ. Thus {j, k} and {j′, k}
are primitive edges of Gt which implies that {j, j′} is an edge of Gt . Contradiction.

♦

Proposition 8. Let t1 < t2 be two elements of R . Suppose that the interval
(t1, t2) doesn’t contain any critical value of g . Let C1, . . . , Cs be the semialgebraically
connected components of g−1((t1, t2)). Then for each t ∈ (t1, t2), the sets C1 ∩
g−1(t), . . . , Cs ∩ g−1(t) are the semialgebraically connected components of g−1(t). In
particular we obtain that the number of semialgebraically components remain constant
when t ranges over (t1, t2).

Proof. By the Transfer Principle we may assume R := R.
In a first step of the proof we consider arbitrary real numbers t′1, t

′
2 with t1 < t′1 <

t′2 < t2 . Let C ′1, . . . , C
′
s′ , be the connected components of the compact semialgebraic

set g−1([t′1, t
′
2]). We claim that for any t ∈ [t′1, t

′
2] the sets C ′1 ∩ g−1(t), . . . , C ′s′ ∩ g−1(t)

are the connected components of g−1(t). To see this we observe that [t′1, t
′
2] can be

covered by finitely many open intervals with the properties stated in Lemma 7. These
intervals can be arranged in a chain of succesively overlaping members. Looking at the
common values contained in any two of these overlaping intervals we infer our claim
just by glueing connected sets together.
Proposition 8 follows now easily from our claim by considering any ascending chain of
closed intervals [t′1, t

′
2], [t′′1 , t′′2 ], . . . converging to (t1, t2). ♦

Proposition 9. Let notations and assumptions be as in Proposition 8. Then for each
1 ≤ j 6= j′ ≤ s and k = 1, 2, the following is true:
(i) Cj ∩ g−1(tk) is semialgebraically connected

(ii) each point of Cj ∩ Cj′ ∩ g−1(tk) is a critical point of g .

Proof. By the Transfer Principle, one may again assume that R = R.
We show first (i): Suppose on the contrary that there exists a connected component of
g−1((t1, t2)), say C1 , such that C1 ∩ g−1(t1) is disconnected. Then there exist open
subsets O , U of Rn such that O∩U = φ, C1 ∩ g−1(t1)∩O 6= φ, C1 ∩ g−1(t1)∩U 6= φ
and C1 ∩ g−1(t1) ⊂ O ∪ U . By compactness one sees then that there exists t1 < t < t2
such that C1 ∩ g−1(t) ∩ O 6= φ, C1 ∩ g−1(t) ∩ U 6= φ and C1 ∩ g−1(t) ⊂ O ∪ U . This
contradicts the conclusion of Proposition 8.
Now we show (ii): Suppose on the contrary that there exist two different connected
components of g−1((t1, t2)), say C1 and C2 , such that g−1(t1)∩C1∩C2 contains a point
x which is not critical for g . By Observation 6, we may chose an open neighborhood U of
x in V , a real number 0 < ε < t2−t1 and local coordinates of the form g

∣∣
U , y2, . . . , yn−1

which maps U homeomorphically onto (t1−ε, t1+ε)×(−ε, ε)n−2 . Thus U∩g−1((t1, t2))
is mapped onto (t1, t1 + ε)× (−ε, ε)n−2 which is connected. Since x is in the closure of
C1 and C2 we see that C1 ∩ U 6= φ and C2 ∩ U 6= φ. Choose points x1 ∈ C1 ∩ U and
x2 ∈ C2 ∩ U . The images of x1 and x2 in (t1, t1 + ε) × (−ε, ε)n−2 can be connected
by a continuous path. Thus x1 and x2 can be connected by a continuous path in
U ∩ g−1((t1, t2)). This implies C1 = C2 . Contradiction. ♦

We shall need the following concept of M -directions (M -functions) which share
some basic properties with Morse functions.



Definition. Let notations be as before. We call g : V → R an M-direction (or
M-function) of V if the set of critical points of g is nowhere dense.

Note that the set of critical points of an M -function is finite, since this set is
semialgebraic and nowhere dense.

Observation 10. As a consequence of Sard’s theorem ([BCR], Théorème 9.5.2), one
obtains that the coefficient vectors of the linear forms of R[X1, . . . , Xn] inducing M -
directions on V form a dense subset of Rn (see [BCR], proof of Proposition 11.5.1 for
details). Later we shall make use of the existence of an admissible algorithm which
yields M -directions of V with integer coordinates.
Such an algorithm can be obtained combining the fact that being an M -direction is an
elementary property and the mentioned density of M -directions with efficient quantifier
elimination over R (Corollary 3).
A detailed account of this argument can be found in [S 2]. Compare also
[HRS 3] Théorème 3, where a description of an admissible algorithm for finding M -
directions which doesn’t make use of Sard’s theorem and efficient quantifier elimination
is given (in fact, this algorithm constructs M -directions with coordinates contained in
a real quadratic field extension of Q).

4. The roadmap algorithm
During this section let V := {F = 0} be a regular bounded hypersurface of Rn

defined by a polynomial F ∈ A[X1, . . . , Xn] of degree d := deg(F ), whose gradient

5F :=
( ∂F

∂X1
, . . . ,

∂F

∂Xn

)
vanishes nowhere on V (we say in this case that F is a

regular polynomial). The variables X1, . . . , Xn induce on V continuous semialgebraic
coordinate functions π1, . . . , πn .

Definition. Let G ∈ A[X1, . . . , Xn] be a linear form and let g : V → R be the semi-
algebraic map induced by G on V . A piecewise parametrized continuous semialgebraic
curve σ of V is called a roadmap of V with respect to g if the following conditions are
satisfied:
(i) for each t ∈ R , any semialgebraically connected component of g−1(t) cuts σ .
(ii) any two points of σ which lie on the same semialgebraically connected component

of V lie on the same semialgebraically connected component of σ .

This definition of roadmap is closely related to the regular and bounded hypersur-
face V and the semialgebraic map g .

As a matter of fact any semialgebraic set of dimension one can be represented in
admissible time as an union of continuously parametrized semialgebraic curves. This
can easily be deduced from Corollary 2 (see [HRS 4] for details).

By Observation 10 we are able to construct (in admissible time) a Z-linear com-
bination of the variables X1, . . . , Xn which induces on V an M -direction. Thus we
suppose from now on that the coordinate function πn : V → R is an M -direction of V .
For the sake of notational simplicity we write π := πn .

In this section we are going to describe an algorithm N (A,n) (depending on the
parameters A and n) which constructs a roadmap of V with respect to the M -direction



π and which, for any two points x1 and x2 ∈ V , given by quantifier free formulas Φ1

and Φ2 of the elementary language L, decides whether x1 and x2 lie in the same
semialgebraically connected component of V . If x1 and x2 do so, the algorithm finds
a continuous semialgebraic curve of V joining them. We shall represent the algorithm
N (A,n) by a family of arithmetical networks over A depending on the parameter
D := deg(Φ1) + deg(Φ2) + d when n is fixed. We shall apply N (A,n) recursively
in n changing at each call the base ring A. In order to obtain an admissible overall
complexity in terms of arithmetical operations and sign evaluations in the original base
ring, we shall use only constructions which are uniform on A.

In the next section we will show that the algorithm N (A,n) runs in admissible time
in the inputs: n, d, for the construction of the roadmap, and n, deg(Φ1) + deg(Φ2) + d
for the decision and the construction of the curve.

During this section we suppose that for any subring A′ of R and any bounded
hypersurface of Rn−1 defined by a regular polynomial F ′ ∈ A′[X1, . . . , Xn−1] such an
algorithm N (A′, n− 1) is already given.

We subdivide the description of our algorithm in several steps.

Step 1: The set B := {x ∈ V ; x is a critical point of π} is definable by the following
quantifier free formula Φ:

F = 0 ∧ ∂F

∂X1
= 0 ∧ . . . ∧ ∂F

∂Xn−1
= 0

Since π is an M -direction, the set B is finite. Applying efficient quantifier elimination
(Corollary 3) to the formulas (∃X2) . . . (∃Xn)Φ, . . . , (∃X1) . . . (∃Xn−1)Φ, we compute
(in admissible time) univariate polynomials in X1, . . . , Xn which represent the coor-
dinates of the elements of B as their roots, suitably codified by Thom’s Lemma (see
[CR]). In this sense we are able to compute B “explicitely” and to handle its elements.
In particular we are able to evaluate the sign of a given polynomial at any point of B
(see [HRS 3] or [RS] for details). Observe also that the coordinates of the points of B
are algebraic over A and zeros of polynomials of degree dnO(1)

. In such a way we obtain
the critical values of π explicitely.

Step 2: Using Corollary 2 we compute (in admissible time) the following:
– a partition of π(V ) in intervals Ti , 1 ≤ i ≤ s, definable over A.
– for each 1 ≤ i ≤ s a finite family of continuous semialgebraic curves ξij : Ti → V ,
1 ≤ j ≤ `i , such that for any t ∈ Ti each semialgebraically connected component of
π−1(t) contains at least one point of the form ξij(t), where 1 ≤ j ≤ `i , and such that
π ◦ ξij(t) = t for all 1 ≤ j ≤ `i and all t ∈ Ti . Since V is a closed and bounded
semialgebraic subset of Rn , each ξij has a unique continuous semialgebraic extension
to the boundary of Ti (by Corollary 3, this extension can be computed in admissible
time). Thus we may assume that all intervals Ti are closed and have disjoint interiors.
For t ∈ π(V ) let V +

t := {x ∈ V ; π(x) > t} and V −
t := {x ∈ V, π(x) < t}. Given a point

x ∈ V corresponding to a critical value t := π(x) such that x ∈ B or x is an endpoint of
a curve ξij , we construct (in admissible time) two families of continuous semialgebraic
curves (ξ(x)

k )1≤k≤mx and (ξ̃(x)

k̃
)
1≤k̃≤m̃x

as follows: assume first that x is contained in



the topological closure of V +
t . Using the effective curve selection lemma (Corollary

4) we find (in admissible time) a closed interval T+
x of the form T+

x = [t, t+] with
t < t+ , a positive element ε+

x ∈ R and continuous semialgebraic curves ξ
(x)
k : T+

x → V ,
1 ≤ k ≤ mx , satisfying the following conditions:

– ξ
(x)
k ((t, t+]) ⊂ V +

t , ξ
(x)
k (t) = x and π ◦ ξ

(x)
k (t′) = t′ for each t′ ∈ T+

x and each
1 ≤ k ≤ mx .

– each semialgebraically connected component of B(x, ε+
x )∩V +

t contains at least one
ξ
(x)
k ((t, t+]).

If x is not contained in the closure of V +
t we put mx := 0.

Assume now that x is contained in the closure of V −
t . By the effective curve selection

lemma we find (in admissible time) a closed interval T−x of the form T−x = [t−, t] with
t− < t, a positive element ε−x ∈ R and continuous semialgebraic curves ξ̃

(x)

k̃
: T−x → V ,

1 ≤ k̃ ≤ m̃x , satisfying the analogous conditions as before.
If x is not contained in the closure of V −

t we put m̃x = 0.
Let K be the set of all curves of the form ξij , where 1 ≤ i ≤ s, 1 ≤ j ≤ `i , or of the
form ξ

(x)
k , ξ̃

(x)

k̃
, where x ∈ B , 1 ≤ k ≤ mx , 1 ≤ k̃ ≤ m̃x .

Without loss of generality we may suppose that the curves contained in K have domains
whose interior is not empty.
K is computable in admissible time and so is also the set of all “endpoints” of the curves
contained in K , namely

C :=
{

x ∈ V ; there exists η ∈ K with domain [t1, t2]such that
x = η(t1) or x = η(t2)

}

Summarizing all this we have constructed in admissible time the following items
– a finite set K of continuous semialgebraic curves of V having domains with non empty
interiors.
– a finite set C consisting of all endpoints of the curves contained in K .
Note in particular that the domains of the curves of K cover π(V ) and that C contains
all the critical points of π . Observe also that the coordinates of the points of C are
algebraic over A and that we have #C ∩ K = dnO(1)

(# denotes cardinality).
Subdividing the domains of the curves contained in K and increasing eventually C we
may suppose that no curve of K ranges over an interval whose interior contains an
element of π(C). This implies that two curves of K defined on intervals whose interiors
overlap, have the same domain. Moreover we may assume that at most one boundary
point of the domain of any curve of K is a critical value.

Step 3: We are going to describe a roadmap σ of V with respect to π . For this purpose
let us consider an arbitrary element t of π(C) which is not a critical value of π . Note
that under this circumstance π−1(t) is a bounded hypersurface of Rn−1 defined by
the regular polynomial F (X1, . . . , Xn−1, t) ∈ A[t][X1, . . . , Xn−1]. Thus we call π−1(t)
a regular fibre. For each two points x, x′ ∈ C ∩ π−1(t) we decide whether x and
x′ are in the same semialgebraically connected component of π−1(t) by means of the
algorithm N (A[x, x′], n − 1). If they do we find a continuous semialgebraic curve of
π−1(t) connecting x and x′ .



We define σ as the join of these connecting curves (for t ranging over all non critical
values contained in π(C)) with the curves of K constructed in Step 2. Thus σ is a
piecewise parametrized continuous semialgebraic curve of V .

Lemma 11. σ is a roadmap of V with respect to π .

Proof. From Step 2 in the construction of σ it is clear that for each t ∈ R any
semialgebraically connected component of π−1(t) cuts σ . Let x1, x2 be two different
points of σ lying in the same semialgebraically connected component of V . We are
going to show that x1 and x2 lie in the same connected component of σ . From Steps
2 and 3 in the construction of σ we see that we may suppose without loss of generality
that x1, x2 ∈ C . Thus we can choose curves η1, η2 ∈ K such that x1 is an endpoint of
η1 and x2 is an endpoint of η2 .
Suppose first that η1 and η2 are defined on the same interval [t, t′] and that x1 and
x2 are in the same semialgebraically connected component of π−1([t, t′]). From Step
2 in the construction of σ we deduce that (t, t′) contains no element of π(C) and in
particular no critical value of π .
Suppose first that t and t′ are not critical values of π . By hypothesis η1([t, t′]) and
η2([t, t′]) are contained in the same connected component C of π−1([t, t′]). From Propo-
sition 8 we infer that C ∩ π−1(t) is a semialgebraically connected component of π−1(t)
containing the points η1(t), η2(t) ∈ C . Therefore η1(t) and η2(t) are connected by a con-
tinuous semialgebraic path of σ (following Step 3 in the construction of our roadmap).
This implies that η1([t, t′]), η2([t, t′]) and hence also x1, x2 are contained in the same
semialgebraically connected component of σ .
Assume now that t is a critical value of π . Then, by Step 2 in the construction of the
roadmap σ , t′ is not a critical value. First suppose that η1((t, t′]) and η2((t, t′]) are
contained in the same semialgebraically connected component C of π−1((t, t′]). Since
(t, t′] contains no critical value of π we deduce from Proposition 8 that C ∩ π−1(t′)
is semialgebraically connected in the regular fibre π−1(t′). Furthermore C ∩ π−1(t′)
contains the points η1(t′), η2(t′) which are elements of C . Thus, as before, we see that
η1(t′) and η2(t′) are connected by a continuous semialgebraic arc of σ . This implies
that x1 and x2 are contained in the same semialgebraically connected component of σ .
Now suppose that η1((t, t′]) and η2((t, t′]) are contained in distinct semialgebraically
connected components C and C ′ of π−1((t, t′]). Since (t, t′] contains no critical point
and π is an M -function, we infer from Proposition 9 that the semialgebraically con-
nected components of π−1([t, t′]) are unions of the topological closures of the semi-
algebraically connected components of π−1((t, t′]) and eventually some critical points
contained in π−1(t). Since by hypothesis η1([t, t′]) and η2([t, t′]) are semialgebraically
connected in π−1([t, t′]) there exist distinct semialgebraically connected components
C1, . . . , Cs of π−1((t, t′]) with C1 = C , Cs = C ′ such that C1∩C2 6= φ, . . . , Cs−1∩Cs 6=
φ. By Proposition 9, the sets C1 ∩ C2, . . . , Cs−1 ∩ Cs consist only of critical points
contained in π−1(t).
Thus by Step 2 in the construction of σ there exist continuous semialgebraic curves
θ1, θ2, θ

′
2, . . . , θs−1, θ

′
s−1, θs ∈ K defined on [t, t′] such that the following holds:

– θ1([t, t′]) is contained in C1 ,
θ2([t, t′]) and θ′2([t, t

′]) are contained in C2 ,



...
θs−1([t, t′]) and θ′s−1([t, t

′]) are contained in Cs−1 ,
θs([t, t′]) is contained in Cs , and

– θ1(t) = θ2(t), θ′2(t) = θ3(t), . . ., θ′s−2(t) = θs−1(t),
θ′s−1(t) = θs(t).

On the other hand η1(t′) and θ1(t′) are elements of C lying in the same semialgebraically
connected component C1 ∩ π−1(t′) of the regular fibre π−1(t′). Thus, by Step 3 of the
construction of σ , the points η1(t′) and θ1(t′) are connected by a continuous semialge-
braic subarc of σ . This implies that η1(t′) and θ1(t′) are in the same semialgebraically
connected component of σ . Similarly one shows that θ2(t′) and θ′2(t

′), . . . , θs−1(t′) and
θ′s−1(t

′), θs(t′) and η2(t′) lie pairwise in the same semialgebraically connected compo-
nent of σ .
From this we conclude that one and the same connected component of σ contains all
the endpoints of η1, θ1, θ2, θ

′
2, θ3, . . . , θ

′
s−2, θs−1 , θ′s−1, θs, η2 . The same holds for the

images of these curves. Thus x1 and x2 are in the same semialgebraically connected
component of σ .
Now let x1 6= x2 be arbitrary points of C lying in the same semialgebraically connected
component of V . By [BCR], Définition et Proposition 2.5.11, there exists a continuous
semialgebraic curve γ : [0, 1] → V such that γ(0) = x1 and γ(1) = x2 .
Let r be the number of times that π◦γ “crosses” values of π(C), i.e. let r be the number
of semialgebraically connected components of the set {z ∈ [0, 1]; π ◦ γ(z) ∈ π(C)}.
The case r = 1 is already treated.
Suppose that r > 1 and that the assertion is true for distinct points x1, x2 ∈ C which
can be connected by a continuous semialgebraic curve which crosses less than r times
values of π(C). Choose z ∈ [0, 1] such that t := π ◦ γ(z) is an element of π(C) different
from π(x1) = π ◦ γ(0) and π(x2) = π ◦ γ(1). By Step 2 of the construction of σ
there exists x ∈ C lying in the same semialgebraically connected component of π−1(t)
as γ(z). Thus x1, x and x2 lie in the same semialgebraically connected component
of V and we can connect x1 with x and x with x2 by two continuous semialgebraic
curves γ′ and γ′′ such that π ◦ γ′ and π ◦ γ′′ cross less than r times values of π(C).
From our induction hypothesis we conclude now that x1, x and x2 lie on the same
semialgebraically connected component of σ . This ends the proof of Lemma 11. ♦

To finish the description of our algorithm N (A,n) it suffices to explain how a point
x ∈ V , given by a quantifier free formula of L, can be connected with the roadmap
σ . From this the reader infers easily an algorithm which for two points x1, x2 of V ,
given by quantifier free formulas of L, decides whether x1 and x2 lie on the same
semialgebraically connected component of V , and, if they do so, finds a continuous
semialgebraic curve connecting x1 and x2 . Let x be a point of V defined by a quantifier
free formula Φ of L. By Corollary 3 we compute x explicitely from Φ in admissible
time. If t := π(x) is a critical value of π we find by the effective curve selection lemma
(Corollary 4) in admissible time a continuous semialgebraic curve θ : T → V , defined
on a closed interval T , such that the following holds:
– the boundary points of T are t and some non critical value t′ .
– θ(t) = x.



Replacing the point x by θ(t′) we may assume without loss of generality that t is not
a critical value of π . Thus π−1(t) is a bounded hypersurface of Rn−1 defined by the
regular polynomial F (X1, . . . , Xn−1, t) ∈ A[t][X1, . . . , Xn−1]. For each curve η ∈ K
whose domain contains t we compute η(t). Thus we obtain a finite set D , explicitely
computable in admissible time, which for each semialgebraically connected component
of π−1(t) contains at least one point (see Step 2 in the construction of the roadmap σ).
For each point x′ ∈ D we decide by means of the algorithm N (A[x, x′], n− 1) whether
x′ and x lie on the same semialgebraically connected component of π−1(t). Finally we
find a point x′ ∈ D and a continuous semialgebraic curve τ in π−1(t) connecting x and
x′ . Since x′ is a point of σ the curve τ connects x with the roadmap σ .
This ends the description of the roadmap algorithm N (A,n).

Finally we observe that the algorithm N (A,n) can also be used to compute the
number of semialgebraically connected components of V exactly. For this purpose we
note that the set C computed in Step 2 of our construction of the roadmap σ cuts each
semialgebraically connected component of V in at least one point. By means of the algo-
rithm N (A,n) we can decide whether two points of C lie in the same semialgebraically
connected component of V . Thus we can find a system of points of C representing each
semialgebraically connected component of V just once. The cardinality of this system
is exactly the number of semialgebraically connected components of V .

5. Complexity of the roadmap algorithm
It is clear that iterating the procedure of the last section we obtain a recursive

construction of an algorithm denoted by N (A,n) which accepts as input a regular
polynomial F ∈ [X1, . . . , Xn] defining a bounded hypersurface V of Rn and points
x1, x2 ∈ V given by quantifier free formulas Φ1, Φ2 ∈ L. The algorithm N (A,n)
computes for this input a roadmap σ and decides whether x1 and x2 are in the same
semialgebraically connected component of V , and, if they do, constructs a continuous
semialgebraic curve joining x1 and x2 . The algorithm N (A,n) is realizable by an
arithmetical network over A whose size and depth depends on n and D := deg F +
deg Φ1 + deg Φ2 .

We fix the inputs V, x1, x2 (given by F, Φ1,Φ2 ) and the parameters n,D for the
moment.

Reviewing the constructions of the last sections we observe that the sequential and
parallel complexities of N (A,n) (the size and the depth of the arithmetical network
realizing the algorithm for fixed n and D) doesn’t really depend on the ground ring A
but only on the parameters n and D . Thus, let S(n,D) be the sequential and P (n,D)
the (simultaneous) parallel complexity of the algorithm N (A,n) applied to an input
with parameters of size n and D .

In the last section, we constructed in admissible time the following items:
– a variable transformation corresponding to an M -direction π of V .
– certain continuous semialgebraic curves of V (e.g. the curves of K).
– certain points of V , definable over L, with algebraic coordinates.



All the constructions of this “preprocessing” are realizable by arithmetical networks
over A of size DnO(1)

and depth nO(1)(log D)O(1) . Then we used DnO(1)
calls of algo-

rithms of the form N (A[x, x′], n−1), where x and x′ were certain points of V definable
over L (e.g. from C ) with t := π(x) = π(x′) and t being not a critical value of π .

Such an algorithm N (A[x, x′], n− 1) is realizable by an arithmetical network over
A[x, x′]. Its inputs are the regular polynomial F (X1, . . . , Xn−1, t) and the points x, x′ ∈
A[x, x′]n . This input has parameters of size n−1 and deg(F )+2n, which are bounded by
n−1 and D . Thus the arithmetical network over A[x, x′] which realizes this algorithm
has sequential complexity S(n− 1, D) and parallel complexity P (n− 1, D).

We have to transform this algorithm into an arithmetical network over A.
Let K be the fraction field of A. Since x and x′ are explicitely given they are zeros

of a 0-dimensional ideal of K[X1, . . . , Xn] with known generators whose number and
degrees are of order DnO(1)

. Using Lemma 5 we construct in sequential time DnO(1)
and

parallel time nO(1)(log D)O(1) an algebraic element (over A) u of R , suitably codified
by Thom’s Lemma as a zero of an effectively given univariate polynomial P ∈ A[U ]
with deg(P ) = DnO(1)

, such that K[x, x′] ⊂ K[u].
We interprete now our algorithm as an arithmetical network over K[u]. From [HRS

3], Proposition 3, we deduce that arithmetical operations and sign determinations in
K[u] can be performed by an arithmetical network over A of size DnO(1)

and depth
nO(1)(log D)O(1) . This implies that the algorithm N (A[x, x′], n− 1) in question can be
executed by an arithmetical network over A in sequential time DnO(1) . S(n− 1, D).

Let us first estimate the sequential complexity S(n,D) of the algorithm N (A,n).
We have to consider the “preprocessing”, which can be realized in sequential time
DnO(1)

, and DnO(1)
calls of algorithms of type N (A[x, x′], n − 1), which can be ex-

ecuted by arithmetical networks over A of size DnO(1)
S(n− 1, D).

Thus we obtain the following recursion formula:

S(n,D) = DnO(1)
S(n− 1, D) .

From this formula one infers easily that S(n,D) = DnO(1)
.

Let us now estimate the parallel complexity P (n,D) of the algorithm N (A,n).
The “preprocessing” can be executed in parallel time nO(1)(log D)O(1) and the

DnO(1)
calls of the algorithms N (A[x, x′], n − 1) can be made simultaneously. We are

going to estimate the parallel complexity of such a call. Let x, x′ ∈ V and u be as
before, and let A be the arithmetical network over A which realizes the algorithm
N (A[x, x′], n − 1). First observe that A simulates arithmetical operations and sign
tests in K[u] which come from the original version of the algorithm N (A[x, x′], n− 1)
as arithmetical network over K[u]. Here the elements of K[u] are interpretated as
polynomials of degree DnO(1)

in u and represented by their coefficient vectors which
are suitably codified over A. Thus the element u, algebraic over A, may be replaced
by an indeterminate U . We may now read our arithmetical network as follows:
A computes first certain polynomials G1, . . . , Gs ∈ K[U ] with deg(G1)+· · ·+deg(Gs) =
DnO(1)

, evaluates then the signs of G1(u), . . . , Gs(u) and finally simulates the origi-
nal version of the algorithm N (A[x, x′], n − 1), given as an arithmetical network over
K[u]. Taking into account that the degrees of G1, . . . , Gs are bounded by DnO(1)

and



that the sequential complexity of A is of order DnO(1)
, we can realize the computa-

tion of the coefficients of G1, . . . , Gs by an arithmetical network of size DnO(1)
and

depth nO(1)(log D)O(1) using interpolation in DnO(1)
points of Z (see [VSBR]). The

evaluation of the signs of G1(u), . . . , Gs(u), which can be done simultaneously, costs
nO(1)(log D)O(1) parallel steps. Using these data one simulates the original version of
the algorithm N (A[x, x′], n−1) given as an arithmetical network over K[u] by an arith-
metical network over A of depth P (n − 1, D). If we add to this “preprocessing” and
to the DnO(1)

calls of the algorithms the complexity of decide if two points of C can be
joined in σ (which can be reduced to the computations of the connected components of
a graph, represented here by the points of C ), we obtain the following recursion formula:

P (n,D) = nO(1)(log D)O(1) + P (n− 1, D) .

From this we infer the parallel complexity bound: P (n,D) = nO(1)(log D)O(1) .
We summarize these complexity results in the following

Theorem 12. Let V be a bounded hypersurface of Rn given by a regular polyno-
mial F ∈ A[X1, . . . , Xn] and let x1, x2 be points of V definable by two quantifier free
formulas Φ1, Φ2 . Let g : V → R be an M -direction of V given by a linear form
G ∈ A[X1, . . . , Xn]. There exists an admissible algorithm which constructs, from the
input F, Φ1, Φ2, G, a roadmap of V with respect to g and which decides whether x1

and x2 lie in the same semialgebraically connected component of V . If this is the case,
the algorithm constructs a continuous semialgebraic curve contained in V connecting
x1 and x2 . In particular, the number of semialgebraically connected components of V
is computable in admissible time.

♦

6. Conclusion
Let V ⊂ Rn be a semialgebraic set defined by a quantifier free formula Φ ∈ L. Let

g : V → R be a direction of V induced by a linear form G ∈ A[X1, . . . , Xn]. If V is
closed and bounded it makes sense to define the notion of roadmap of V with respect
to g in the same way as we did for bounded regular hypersurfaces of Rn . If V doesn’t
satisfy these conditions we are not going to speak about roadmaps. However, we can
obtain the following result for the case of an arbitrary semialgebraic set:

Theorem 13. ([HRS 4]. See also [GV 2] for an analogous result in the sequential
bit-complexity model). Let V ⊂ Rn be a semialgebraic set defined by a quantifier free
formula Φ. Let x1, x2 be two points of V defined by quantifier free formulas Φ1, Φ2 ∈ L.
Then there exists an admissible algorithm which decides whether x1 and x2 are in the
same semialgebraically connected component of V . If they do, the algorithm computes
a continuous semialgebraic curve contained in V connecting x1 and x2 . In particular
the algorithm computes the exact number of semialgebraically connected components
of V .
If V is closed and bounded and if there is given a direction g : V → R induced by a
linear form G ∈ A[X1, . . . , Xn], the algorithm is able to compute a roadmap of V with
respect to g . ♦



The proof of this theorem (see [HRS 4]) is based on Theorem 12 and combines effi-
cient computations with infinitesimals over R developped in [GV 1] and
[HRS 3].
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