
Journal of Complexity 30 (2014) 588–603

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

Effective differential Nullstellensatz for ordinary
DAE systems with constant coefficients✩

Lisi D’Alfonso a, Gabriela Jeronimo b, Pablo Solernó b,∗

a Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires,
Ciudad Universitaria, 1428, Buenos Aires, Argentina
b Departamento de Matemática and IMAS, UBA-CONICET, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina

a r t i c l e i n f o

Article history:
Received 27 May 2013
Accepted 23 January 2014
Available online 31 January 2014

Keywords:
Differential algebra
Differential Hilbert Nullstellensatz
Differential elimination
DAE systems

a b s t r a c t

We give upper bounds for the differential Nullstellensatz in the
case of ordinary systems of differential algebraic equations over
any field of constants K of characteristic 0. Let x be a set of n
differential variables, f a finite family of differential polynomials in
the ring K{x} and f ∈ K{x} another polynomial which vanishes at
every solution of the differential equation system f = 0 in any dif-
ferentially closed field containing K . Let d := max{deg(f), deg(f )}
and ϵ := max{2, ord(f), ord(f )}. We show that f M belongs to the
algebraic ideal generated by the successive derivatives of f of order
at most L = (nϵd)2

c(nϵ)3
, for a suitable universal constant c > 0,

and M = dn(ϵ+L+1). The previously known bounds for L and M are
not elementary recursive.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In 1890, D. Hilbert states his famous result, currently known as Hilbert’s Nullstellensatz: if k is
a field and f1, . . . , fs, h are multivariate polynomials such that every zero of the fi’s, in an algebraic
closure of k, is a zero of h, then some power of h is a linear combination of the fi’s with polynomial
coefficients. In particular if f1, . . . , fs have no common zeros, then there exist polynomials h1, . . . , hs
such that 1 = h1f1 + · · · + hsfs. The classical proofs give no information about the polynomials hi, for
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instance, they give no bound for their degrees. The knowledge of such bounds yields a simple way of
determining whether the algebraic variety {f1 = 0, . . . , fs = 0} is empty. G. Hermann, in 1925, first
addresses this question in [9] where she obtains a bound for the degrees of the hi’s double exponential
in the number of variables. In the last 25 years, several authors have shown bounds single exponential
in the number of variables (for a survey of the first results see [1] and for more recent improvements
see [10]).

In 1932, J.F. Ritt in [21] introduces for the first time the differential version of Hilbert’s
Nullstellensatz in the ordinary context: let f1, . . . , fk, h be multivariate differential polynomials with
coefficients in an ordinary differential field F . If every zero of the system f1, . . . , fk in any extension of
F is a zero of h, then some power of h is a linear combination of the fi’s and a certain number of their
derivatives, with polynomials as coefficients. In particular if the fi’s do not have common zeros, then a
combination of f1, . . . , fk and their derivatives of various orders equals unity.

In fact, Ritt considers only the case of differential polynomials with coefficients in a differential
field F of meromorphic functions in an open set of the complex plane. Later, H.W. Raudenbush,
in [20], proves this result for polynomials with coefficients in any abstract ordinary differential field
of characteristic 0. In 1952, A. Seidenberg gives a proof for arbitrary characteristic (see [22]) and, in
1973, E. Kolchin, in his book [12], proves the generalization of this result to differential polynomials
with coefficients in an arbitrary, not necessarily ordinary, differential field.

None of the proofsmentioned above gives a constructivemethod for obtaining admissible values of
the power of the polynomial h that is a combination of the fi’s and their derivatives, or for the number
of these derivatives. A bound for these orders of derivation allows us to work in a polynomial ring in
finitely many variables and invoke the results of the algebraic Nullstellensatz in order to determine
whether or not a differential system has a solution. A first step in this direction was given by R. Cohn
in [2], where he proves the existence of the power of the polynomial h through a process that it is
known to have only a finite number of steps. In [23], Seidenberg studies this problem in the case of
ordinary and partial differential systems, proving the existence of functions in terms of the parameters
of the input polynomialswhich describe the order of the derivatives involved; however, no bounds are
explicitly shown there. The first known bounds on this subject are given by O. Golubitsky et al. in [5],
by means of rewriting techniques. Their general upper bounds are stated in terms of the Ackermann
function and, in particular, they are not primitive recursive (see [5, Theorem 1]). If the number of
derivations is fixed (for instance, in the case of ordinary differential equations), the bounds become
primitive recursive; however, they are not elementary recursive, growing faster than any tower of
exponentials of fixed height.

The present paper deals with effective aspects of the ordinary differential Nullstellensatz over the
field C of complex numbers or, more generally, over arbitrary fields of constants of characteristic 0.
Our main result, which can be found in Corollary 21 (see also Section 6 for the general case) states a
doubly exponential upper bound for the number of required differentiations:

Theorem. Let x := x1, . . . , xn and f := f1, . . . , fs be differential polynomials in C{x}. Suppose that
f ∈ C{x} is a differential polynomial such that every solution of the differential system f = 0 in
any differentially closed field containing C satisfies also f = 0. Let d := max{deg(f), deg(f )} and

ϵ := max{2, ord(f), ord(f )}. Then f M ∈ (f, . . . , f(L)) where L ≤ (nϵd)2
c(nϵ)3

, for a universal constant
c > 0, and M = dn(ϵ+L+1).

In particular, this theorem, combined with known degree bounds for the polynomial coefficients
in a representation of 1 as a linear combination of given generators of trivial algebraic ideals, allows
the construction of an algorithm to decide whether a differential system has a solution with a triple
exponential running time. From a different approach, an algorithm for this decision problem, with
similar complexity, can be deduced as a particular case of the quantifier elimination method for
ordinary differential equations proposed by D. Grigoriev in [6].

Our approach focusesmainly on the consistency problem for first order semiexplicit ordinary systems
over C, namely differential systems of the type of the system (4) introduced in Section 4. An iterative
process of prolongation and projection, together with several tools from effective commutative alge-
bra and algebraic geometry, is applied in such a way that in each step the dimension of the algebraic
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constraints decreases until a reduced, zero-dimensional situation is reached. The bounds for this par-
ticular case are computeddirectly. Then, bymeans of a recursive reconstruction,we are able to obtain a
representation of 1 as an element of the differential ideal associated to the original system. The results
for any arbitrary ordinary DAE systemoverC are deduced through the classicalmethod of reduction of
order, the algebraic Nullstellensatz, and the Rabinowitsch trick. The generalization from C to an arbi-
trary field of constants of characteristic 0 is achieved by means of standard arguments of field theory.

This paper is organized as follows. In Section 2 we introduce some basic tools and previous results
from effective commutative algebra and algebraic geometry and some basic notions and notations
from differential algebra. In Section 3 we address the case of semiexplicit systems with reduced
0-dimensional algebraic constraints. In Section 4 we show the process that reduces the arbitrary
dimensional case to the reduced 0-dimensional one and then recover the information for the original
system. In Section 5, the general case of an arbitrary ordinary DAE system overC is considered. Finally,
in Section 6 we extend the previous results to any arbitrary base field K of characteristic 0 considered
as a field of constants.

2. Preliminaries

In this section we recall some definitions and results from effective commutative algebra and
algebraic geometry and introduce the notation and basic notions from differential algebra used
throughout the paper.

2.1. Some tools from effective commutative algebra and algebraic geometry

Throughout the paper we will need several results from effective commutative algebra and
algebraic geometry. We recall them here in the precise formulations we will use.

Before proceeding, we introduce some notation. Let x = x1, . . . , xn be a set of variables and
f = f1, . . . , fs polynomials in C[x]. We will write V (f) for the algebraic variety in Cn defined by
{f = 0} = {x ∈ Cn

: f1(x) = 0, . . . , fs(x) = 0}. If V ⊂ Cn is an algebraic variety, I(V ) will denote the
vanishing ideal of the variety V , that is I(V ) = {f ∈ C[x] : f (x) = 0 ∀ x ∈ V }.

One of the results we will apply is an effective version of the strong Hilbert’s Nullstellensatz (see
for instance [10, Theorem 1.3]):

Proposition 1. Let f1, . . . , fs ∈ C[x1, . . . , xn] be polynomials of degrees bounded by d, and let I =

(f1, . . . , fs) ⊂ C[x1, . . . , xn]. Then (
√
I)d

n
⊂ I .

In addition, we will need estimates for the degrees of generators of the (radical) ideal of an affine
variety V ⊂ Cn.

A classical result due to Kronecker [16] states that any algebraic variety in Cn can be defined by
n + 1 polynomials in C[x1, . . . , xn]. Moreover, these n + 1 polynomials can be chosen to be Q-linear
combinations of any finite set of polynomials defining the variety. In [7, Proposition 3], a refined
version of Kronecker’s theorem is proved for irreducible affine varieties. In this version the degree of
the n+1 defining polynomials is bounded by the degree of the variety. We recall that the degree of an
irreducible algebraic variety is defined as the number of points in the intersection of the variety with
a generic linear variety of complementary dimension; for an arbitrary algebraic variety, it is defined
as the sum of the degrees of its irreducible components (see [7]).

Kronecker’s theorem with degree bounds can be extended straightforwardly to an arbitrary (not
necessarily irreducible) algebraic variety V ⊂ Cn by considering equations of degree deg(C) for each
irreducible component C of V and multiplying them in order to obtain a finite family of polynomials
of degree


C deg(C) = deg(V ) defining V :

Proposition 2. Let V ⊂ Cn be an algebraic variety. Then, there exist n+1 polynomials of degrees at most
deg(V ) whose set of common zeros in Cn is V .

In order to obtain upper bounds for the number and degrees of generators of the ideal of V , we will
apply the following estimates, which follow from the algorithm for the computation of the radical of
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an ideal presented in [17, Section 4] (see also [14,15]) and estimates for the number and degrees of
polynomials involved in Gröbner basis computations (see, for instance, [3,19,4]):

Proposition 3. Let I = (f1, . . . , fs) ⊂ C[x1, . . . , xn] be an ideal generated by s polynomials of degrees at
most d that define an algebraic variety of dimension r and let ν = max{1, r}. Then, the radical ideal

√
I

can be generated by (sd)2
O(νn)

polynomials of degrees at most (sd)2
O(νn)

.

Combining Propositions 2 and 3, we have:

Proposition 4. Let V ⊂ Cn be an algebraic variety of dimension r and degree D and ν = max{1, r}.
Then, the vanishing ideal of V can be generated by (nD)2

O(νn)
polynomials of degrees at most (nD)2

O(νn)
.

Finally, in order to use the bounds in the previous proposition, we will need to compute upper
bounds for the degrees of algebraic varieties. To this end, we will apply the following Bézout type
bound, taken from [8, Proposition 2.3]:

Proposition 5. Let V ⊂ Cn be an algebraic variety of dimension r and degree D, and let f1, . . . , fs ∈

C[x1, . . . , xn] be polynomials of degree at most d. Then,

deg(V ∩ V (f1, . . . , fs)) ≤ Ddr .

2.2. Basic notions from differential algebra

If z := z1, . . . , zα is a set of α indeterminates, the ring of differential polynomials is denoted by
C{z1, . . . , zα} or simply C{z} and is defined as the commutative polynomial ring C[z(p)j , 1 ≤ j ≤

α, p ∈ N0] (in infinitely many indeterminates), with the derivation δ(z(i)j ) = z(i+1)
j , that is, z(i)j

stands for the ith derivative of zj (as usual, the first derivatives are also denoted by żj). We write
z(p) := {z(p)1 , . . . , z(p)α } and z[p]

:= {z(i), 0 ≤ i ≤ p} for every p ∈ N0.
For a differential polynomial h lying in the differential polynomial ring C{z} the successive total

derivatives of h are:
h(0) := h

h(p) :=


i∈N0,1≤j≤α

∂h(p−1)

∂z(i)j
z(i+1)
j , for p ≥ 1.

The order of h ∈ C{z} with respect to zj is ord(h, zj) := max{i ∈ N0 : z(i)j appears in h}, and the order
of h is ord(h) := max{ord(h, zj) : 1 ≤ j ≤ α}.

Given a finite set of differential polynomials h = h1, . . . , hβ ∈ C{z}, we write [h] to denote
the smallest differential ideal of C{z} containing h (i.e. the smallest ideal containing the polynomials
h and all their derivatives of arbitrary order). For every i ∈ N, we write h(i) := h(i)1 , . . . , h

(i)
β and

h[i]
:= h,h(1), . . . ,h(i).

3. The case of ODE’s with 0-dimensional reduced algebraic constraint

3.1. An introductory case: univariate ODE’s

We start by considering the simple case of trivial univariate differential ideals contained in C{x}
where x is a single differential variable.

Suppose that the trivial ideal is presented by two generators ẋ − f (x) and g(x), without common
differential solutions, where f and g are polynomials in C[x].

Since we assume that there exists a representation of 1 as a combination of ẋ − f (x) and g(x) and
suitable derivatives of them, by replacing in such a representation all derivatives x(i) by 0 for i ≥ 1,
we deduce that the univariate polynomials f and g are relatively prime in C[x].

Let 1 = pf + qg be an identity in C[x]; therefore, we have
1 = −p(x)(ẋ − f (x))+ q(x)g(x)+ p(x)ẋ. (1)
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On the other hand, if we assume that g is square-free, from a relation 1 = a(x)g(x)+ b(x) ∂g
∂x (x)we

deduce ẋ = ẋa(x)g(x)+ b(x)ẋ ∂g
∂x (x) = ẋa(x)g(x)+ b(x)ġ . Thus, replacing ẋ in (1) we have:

1 = −p(x)(ẋ − f (x))+ (q(x)+ p(x)ẋa(x))g(x)+ p(x)b(x)ġ.
In other words, we need at most one derivative of g in order to write 1 as a combination of the
derivatives of the generators ẋ − f (x) and g(x).

Let us remark that a similar argument can be applied also if g is not assumed square-free with the
aid of the Faà di Bruno formula (see for instance [11]) which describes each differential polynomial
g(i) as a Q-linear combination of products of x(j), j ≤ i, and successive derivatives ∂kg

∂xk
up to order i.

In this case it is not difficult to show that the maximum number of derivatives of the input equations
which allow us to write 1 can be bounded a priori by the smallest k such that the first k derivatives of
g are relatively prime and, moreover, no derivatives of ẋ− f of positive order are needed. Since we do
not make use of this result, we have not included a complete proof here.

3.2. The multivariate case

Now we consider the case of an arbitrary number of variables. Suppose that x = x1, . . . , xn
and u = u1, . . . , um are independent differential variables. Let f = f1, . . . , fn ∈ C[x,u] and
g = g1, . . . , gs ∈ C[x,u] be polynomials such that the (polynomial) ideal (g) ⊆ C[x,u] is radical
and 0-dimensional.

Suppose that the differential ideal generated by the n + s polynomials ẋ − f and g is the whole
differential ring C{x,u} (i.e. 1 ∈ [ẋ − f, g]). The goal of this subsection is to show that the order of
derivatives of the generators which allows us to write 1 as a combination of them is at most 1 (see
Proposition 6).

Under these assumptions, as in the previous section, we deduce that the polynomial ideal (f, g) is
the ring C[x,u]; hence, we have an algebraic identity 1 = p · f + q · g for suitable n + s polynomials
p, q ∈ C[x,u]. Thus,

1 = −p · (ẋ − f)+ q · g + p · ẋ. (2)
Since the polynomial ideal (g) is assumed to be radical and 0-dimensional, for each variable xj there

exists a nonzero square-free univariate polynomial hj ∈ C[xj] such that hj(xj) ∈ (g) ⊆ C[x,u]. The
square-freeness of hj implies that the relation 1 = ajhj + bj

∂hj
∂xj

holds in the ring C[xj] for suitable
polynomials aj, bj ∈ C[xj] and then, after multiplying by ẋj we obtain the identities

ẋj = ajẋjhj + bjḣj, for j = 1, . . . , n. (3)
On the other hand, each polynomial hj can be written as a linear combination of the polynomials g
with coefficients inC[x,u], which induces by derivation a representation of its derivative ḣj as a linear
combination of g, ġwith coefficients in C[x,u, ẋ, u̇]. Replacing hj and ḣj in (3) by these combinations
and then replacing ẋ in (2), we conclude:

Proposition 6. With the previous notations and assumptions we have

1 ∈ [ẋ − f, g] ⊆ C{x,u} if and only if 1 ∈ (ẋ − f, g, ġ) ⊆ C[x,u, ẋ, u̇].

In other words, in order to obtain a (differential) representation of 1 it suffices to derive once the algebraic
reduced equations g. �

4. The main case: ODE’s with arbitrary algebraic constraint

We will now consider semiexplicit differential systems with no restrictions on the dimension of
the algebraic variety of constraints.

Let x = x1, . . . , xn and u = u1, . . . , um be differential variables, and let f = f1, . . . , fn and
g = g1, . . . , gs be polynomials in C[x,u]. We consider the differential first order semiexplicit system

ẋ − f(x,u) = 0
g(x,u) = 0. (4)
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Suppose that the differential system (4) has no solution (or equivalently, 1 ∈ [ẋ− f, g] ⊆ C{x,u}).
Our goal is to find bounds for the order of a representation of 1 as a combination of the polynomials
ẋ−f, g and their derivatives.Without loss of generalitywewill suppose that the purely algebraic system
g = 0 is consistent, because if it is not, it suffices to write 1 as a combination of the polynomials g and
no derivatives are required.

The following theorem will be proved at the end of this section:

Theorem 7. Let x = x1, . . . , xn and u = u1, . . . , um be differential variables, and let f = f1, . . . , fn and
g = g1, . . . , gs be polynomials in C[x,u]. Let V ⊂ Cn+m be the variety defined as the set of zeros of the
ideal (g), 0 ≤ r := dim(V ), ν := max{1, r} and D be an upper bound for the degrees of f, g and V . Then,

1 ∈ [ẋ − f, g] ⇐⇒ 1 ∈ (ẋ − f, . . . , x(L+1)
− f(L), g, . . . , g(L)),

where L ≤ ((n + m)D)2
cν2(n+m)

for a universal constant c > 0.

In what follows we will show how it is possible to obtain a system related to the original
inconsistent input system (4) but whose algebraic variety of constraints has dimension 0. To do
this, we consider a sequence of auxiliary inconsistent differential systems such that their algebraic
constraints define varieties with decreasing dimensions. Once this descending dimension process
is done, we will be able to apply the results of Section 3.2. Finally, we will estimate the order of
derivatives of the equationswhich enable us towrite 1 as an element of the differential ideal bymeans
of an ascending dimension process associated to the same sequence of auxiliary systems.

4.1. The dimension descending process

Let us begin by introducing some notation related to the differential part ẋ − f = 0 of the system
(4) that will be used throughout this section.

Notation 8. If h = h1, . . . , hβ is a set of polynomials in C[x,u], we define

hi :=

n
j=1

∂hi

∂xj
fj +

m
k=1

∂hi

∂uk
u̇k ∈ C[x,u, u̇]

for i = 1, . . . , β . In other words,

h :=
∂h
∂x

· f +
∂h
∂u

· u̇.

Note that the polynomialsh belong to the polynomial ideal (ẋ − f, ḣ) ∩ C[x,u, u̇].
If I ⊂ C[x,u] is an ideal, we denote byI ⊂ C[x,u, u̇] the ideal generated by I and the polynomialsh

with h ∈ I . Note that if a set of polynomials h generates the ideal I , then the polynomials h,h generate
the idealI in C[x,u, u̇] and thatI ⊂ (ẋ − f,h, ḣ) ∩ C[x,u, u̇].

The key point to our dimension descending process is the following geometric lemma.

Lemma 9. Let π : Cn+2m
→ Cn+m be the projection (x,u, u̇) → (x,u) and suppose that the ideal

(g) ⊂ C[x,u] is radical.
If the system (4) has no solution, then no irreducible component of V (g) is contained in the Zariski

closure π(V (g,g)) and, in particular, since π(V (g,g)) ⊆ V (g), we have that dimπ(V (g,g)) <
dim V (g).
Proof. Throughout the proof, for a set of variables z and a set of polynomials h in C[z], if z ⊂ z and
h ⊂ h, we will denote by ∂h

∂z the #(h)×#(z) Jacobian matrix of the polynomials hwith respect to the
variables z.

Suppose that there is an irreducible component C of V (g) included inπ(V (g,g)).Wewill construct
a solution for the system (4).

Since the Zariski algebraic closed set π(V (g,g)) is contained in V (g), there exists at least one
irreducible component Z of V (g,g) such that C = π(Z). From Chevalley’s Theorem (see e.g. [18,
Chapter 2, Section 6]) there exists a nonempty Zariski open subset U of C contained in the image
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π(Z) ⊆ π(V (g,g)). Moreover, since the ideal (g) is assumed to be radical, shrinking the open set U
if necessary, we may also suppose that all points p ∈ U are regular points of C and then, the Jacobian
matrix ∂g

∂(x,u) (p) has rank n + m − dim C .
Similarly, we may suppose also that for all p ∈ U the equality

rk
∂g
∂u
(p) = max


rk
∂g
∂u
(x, u) : (x, u) ∈ C


holds, and that the first columns of ∂g

∂u (p) are a C-basis of the column space of this matrix.
Set l := rk ∂g

∂u (p). If u = u1, . . . , ul and u = ul+1, . . . , um, then there exists a subsetx ⊆ x of
cardinality k := n + m − dim C − l such that rk ∂g

∂(x,u) (p) = rk ∂g
∂(x,u) (p) = k + l. For simplicity assume

thatx = x1, . . . , xk. We denote x = xk+1, . . . , xn.

Claim. For every p ∈ U there exists a uniqueη ∈ Cl (depending on p) such that (p,η, 0) ∈ V (g,g).
Proof of the claim. Fix p ∈ U. Since U ⊆ π(V (g,g)) there exists (a, b) ∈ Cl

× Cm−l (not necessarily
unique) such that (p, a, b) ∈ V (g,g). Thus

∂g
∂x
(p) · f(p)+

∂g
∂u (p) · a +

∂g
∂u
(p) · b = 0.

In particular, the linear system in the unknowns (y, z) ∈ Cl
× Cm−l:

∂g
∂u (p) · y +

∂g
∂u
(p) · z = −

∂g
∂x
(p) · f(p)

has a solution, or equivalently, the columns of ∂g
∂x (p) · f(p) belong to the linear subspace generated by

the columns of the matrix ∂g
∂u (p). By our choice of the variablesu, the columns of the matrix ∂g

∂u (p) are
a basis of this subspace. Then, the linear system ∂g

∂u (p) ·y = −
∂g
∂x (p) · f(p) has a unique solutionη ∈ Cl,

which means that (p,η, 0) ∈ V (g,g). This finishes the proof of the claim.

Now we go back to the proof of the lemma. We are looking for a solution of the system (4) when
the irreducible component C of the variety V (g) lies in π(V (g,g)).

Fix a point (x0, u0) = (x0, x0,u0, u0) ∈ U. From the Implicit Function Theorem around
(x0, u0), shrinking the open set U in the strong topology if necessary, there exists a neighborhood
V0 ⊂ C(n−k)+(m−l) of the point (x0, u0) (also in the strong topology) and differentiable functions
ϕ1 : V0 → Ck and ϕ2 : V0 → Cl such that for any (x, u) = (x, x,u, u) ∈ U, the equality
(x,u) = (ϕ1(x, u), ϕ2(x, u)) holds and in particular we have

(x, u) = (ϕ1(x, u), x, ϕ2(x, u), u) for all (x, u) ∈ U. (5)

For i = k + 1, . . . , n, we write ψi(x,u) = fi(ϕ1(x,u), x, ϕ2(x,u),u) and ψ = ψk+1, . . . , ψn.
Let us consider the following ODE with initial condition in the n − k unknowns x:

ẋ = ψ(x, u0)
x(0) = x0

(6)

and let γ (t) = (γk+1(t), . . . , γn(t)) be a solution of the system (6) in a neighborhood of 0.
From this solution γ we define

Γ (t) = (ϕ1(γ (t), u0), γ (t), ϕ2(γ (t), u0), u0)

in a neighborhood of 0. From (6) we have that (γ (0), u0) = (x0, u0); therefore, the continuity of γ
ensures that for all t in a neighborhood of 0, (γ (t), u0) belongs to the open set V0 and then Γ is well
defined.

It suffices to prove that Γ (t) is a solution of the original system (4), which leads to a contradiction
since that system has no solution.

First of all, by (5) we deduce that Γ (t) ∈ U ⊆ C for all t small enough and so, g(Γ (t)) = 0. In
other words, Γ (t) satisfies the algebraic constraint of the system (4). In order to show that Γ (t) also
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satisfies the differential part of (4) we observe that its coordinates k+1, . . . , n are simply γ (t), which
satisfy the differential relations:

d
dt
(γi(t)) = ψ i(γ (t), u0)

for i = k + 1, . . . , n. Since ψ i(γ (t), u0) = fi(Γ (t)), we conclude that Γ satisfies the last n − k differ-
ential equations of (4). It remains to show that it also satisfies the first k differential equations of (4).

Taking the derivative with respect to the single variable t in the identity g(Γ (t)) = 0 we obtain:

∂g
∂x (Γ (t)) ·

d
dt
(ϕ1(γ (t), u0))+

∂g
∂x
(Γ (t)) ·

d
dt
(γ (t))+

∂g
∂u (Γ (t)) ·

d
dt
(ϕ2(γ (t), u0)) = 0,

and then

−
∂g
∂x
(Γ (t)) ·

d
dt
(γ (t)) =

∂g
∂(x,u) (Γ (t)) ·

d
dt
(ϕ(γ (t), u0)), (7)

where ϕ = (ϕ1, ϕ2).
On the other hand, since for all t in a neighborhood of 0 we have Γ (t) ∈ U ⊆ π(V (g,g)), the

previous Claim implies that there exists a uniqueη(t) ∈ Cl such that (Γ (t),η(t), 0) ∈ V (g,g) and
then, if we writef = f1, . . . , fk and f = fk+1, . . . , fn,

∂g
∂x (Γ (t)) ·f(Γ (t))+

∂g
∂x
(Γ (t)) · f(Γ (t))+

∂g
∂u (Γ (t)) ·η(t) = 0.

Hence,

−
∂g
∂x
(Γ (t)) · f(Γ (t)) =

∂g
∂(x,u) (Γ (t)) · (f(Γ (t)),η(t)). (8)

Since d
dt (γ (t)) = ψ(γ (t), u0) = f(Γ (t)) and thematrix ∂g

∂(x,u) (Γ (t)) has a (k+l)×(k+l) invertible
minor, comparing (7) and (8), we infer that

d
dt
(ϕ(γ (t), u0)) = (f(Γ (t)),η(t)).

In particular d
dt (ϕ1(γ (t), u0)) =f(Γ (t)). Thus Γ verifies also the first k differential equations in (4)

and the lemma is proved. �

Before we begin the descending process, let us remark that the new differential system induced by
the construction underlying Lemma 9 trivially inherits the inconsistency from the input system (4):

Remark 10. Let notations be as in Lemma 9 and g1 be a set of generators of the (radical) ideal
I(π(V (g,g))). If the system (4) has no solution, neither does the differential system

ẋ − f(x,u) = 0
g1(x,u) = 0.

This is a consequence of the inclusion of algebraic ideals (g) ⊂
√
(g) ⊂ (g1), which implies the

inclusion of differential ideals [g] ⊂ [g1]; hence, 1 ∈ [ẋ − f, g1].

We will now begin to present the descending dimension process induced by Lemma 9.

Definition 11. From the system (4), we define recursively an increasing chain of radical ideals I0 ⊂

I1 ⊂ · · · in the polynomial ring C[x,u] as follows:
• I0 =

√
(g).

• Assuming that Ii is defined, consider the idealIi ⊆ C[x,u, u̇] introduced in Notation 8 and suppose
that 1 ∉Ii. We define Ii+1 =

Ii ∩ C[x,u].

Let us observe some basic facts about this definition. First, note that I0 = I(V (g)) and, for i ≥ 1,
if π : Cn+2m

→ Cn+m is the projection (x,u, u̇) → (x,u), then Ii+1 = I(π(V (Ii))) (we have that
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V (Ii) ⊂ Cn+2m is nonempty since we assume 1 ∉Ii). Second, from Lemma 9, it follows that the chain
of ideals defined is strictly increasing since the inequality dim(V (Ii+1)) < dim(V (Ii)) holds. We can
estimate the length of this chain: if we define

ρ := min{i ∈ Z≥0 : dim(V (Ii)) ≤ 0}

we have that 0 ≤ ρ ≤ r (recall that we assume that the ideal I0 is a proper ideal with dim(V (I0)) =

r ≥ 0). Notice also that if ρ > 0, then dim(V (Iρ)) = 0 or −1 and dim(V (Iρ−1)) > 0.
Any system of generators gρ of the last ideal Iρ allows us to exhibit a new ODE system, related

to the original one, with no solutions and such that 1 can be easily written as a combination of the
generators of the associated differential ideal. More precisely,

Proposition 12. Fix i = 0, . . . , ρ and let gi ⊂ C[x,u] be any system of generators of the radical ideal Ii.
Then the DAE system

ẋ − f(x,u) = 0
gi(x,u) = 0

has no solution. In the particular case i = ρ , we also have that 1 belongs to the polynomial ideal
(ẋ − f, gρ, ġρ) ⊂ C[x, ẋ,u, u̇].

Proof. The first assertion follows from the iterated application of Remark 10. If i = ρ and dim(Iρ) =

−1 (i.e. if Iρ = C[x,u]) we have 1 ∈ (gρ) ⊂ (ẋ − f, gρ, ġρ). Otherwise, if dim(Iρ) = 0, since
the ideal Iρ = (gρ) is radical, the proposition follows from the 0-dimensional case considered in
Proposition 6. �

In the following lemma we will estimate bounds for the degree and the number of polynomials
in suitable families gi which generate the ideals Ii, for each i = 1, . . . , ρ. It will be a consequence of
Proposition 4.

Lemma 13. Consider the DAE system (4), and let r := dim(V (g)), ν := max{1, r} and D :=

max{deg(f), deg(g), deg(V (g))}. There exists a universal constant c > 0 such that for each 0 ≤ i ≤ ρ ,
the ideal Ii can be generated by a family of polynomials gi whose number and degrees are bounded by
((n+m)D)2

c(i+1)ν(n+m)
. Moreover, if r > 0, this is also an upper bound for the degrees of the polynomialsgi.

Proof. First, notice that, if r = 0, then ρ = 0. Since g0 is a set of generators of
√
(g), the bound is a

direct consequence of Proposition 4. Let us now suppose that r > 0.
From Proposition 4, since V (g) ⊂ Cn+m is an algebraic variety of dimension r0 := r and degree at

most D0 := D, the radical ideal I0 = I(V (g)) can be generated by a set g0 of δ0 := ((n + m)D)2
c0r0(n+m)

polynomials of degrees at most δ0, where c0 is an adequate positive constant. By modifying the
constant c0 if necessary, we may suppose that δ0 is also an upper bound for the degrees of the
polynomialsg0 introduced in Notation 8.

Following [7, Lemma 2], the degree of the variety π(V (I0)) = π(V (g0,g0)) is at most
deg(V (g0,g0)) and then, from Proposition 5 and the previous bounds we infer that

deg(π(V (I0))) ≤ deg(V (g0,g0)) ≤ D0δ
r0
0 = (n + m)r02

c0r0(n+m)
D1+r02c0r0(n+m)

=: D1.

Applying again the estimate stated in Proposition 4, we have that the ideal I1 = I(π(V (I0))) can be
generated by a set g1 consisting of at most

δ1 := ((n + m)D1)
2c0r1(n+m)

= ((n + m)D)2
c0r1(n+m)(1+r02c0r0(n+m))

polynomials of degrees bounded by δ1, where r1 := dim(V (I1)) < r0. By the choice of c0, δ1 is also an
upper bound for the degrees of the polynomialsg1.

Proceeding in the same way, it can be proved inductively that, for every 0 ≤ i ≤ ρ − 1,

deg(π(V (Ii))) ≤ deg(V (gi,gi)) ≤ Diδ
ri
i =

1
n + m

((n + m)D)

i
j=0
(1+rj2

c0rj(n+m)
)

=: Di+1
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and, therefore, the radical ideal Ii+1 = I(π(V (Ii))) can be generated by a system of polynomials gi+1
whose number and degrees are bounded by

δi+1 := ((n + m)Di+1)
2c0ri+1(n+m)

= ((n + m)D)2
c0ri+1(n+m) i

j=0(1+rj2
c0rj(n+m)

)
,

which is also an upper bound for the degrees of the polynomialsgi.
The result follows by choosing a universal constant c such that 1 + r2c0r(n+m)

≤ 2cr(n+m) for every
r > 0. �

We introduce the following invariants associated to the chain of ideals I0 ⊂ I1 ⊂ · · · ⊂ Iρ and the
generators gi, i = 0, . . . , ρ, considered in Lemma 13, that we will use in the next section.

Definition 14. With the previous notations, for each i = 0, . . . , ρ, we define εi as follows:

ε0 := min{ε ∈ N : Iε0 ⊆ (g)},
εi := min{ε ∈ N : Iεi ⊆ (ẋ − f, gi−1, ġi−1)} for i > 0.

Observe that by definition, εi > 0 for all i. Moreover, they are well defined (i.e. finite) since Ii is the
radical of the idealIi−1 ∩ C[x,u] andIi−1 = (gi−1,gi−1) ⊆ (ẋ − f, gi−1, ġi−1) (see the final remark in
Notation 8). In fact, we can obtain upper bounds for these integer numbers in terms of the parameters
of the input system (4):

Proposition 15. As in Lemma 13, let D := max{deg(f), deg(g), deg(V (g))}. We have the inequalities:

ε0 ≤ Dn+m and εi ≤ ((n + m)D)2
cir(n+m)

for i = 1, . . . , ρ,

where c > 0 is a universal constant.
Proof. If i = 0 the bound follows from Proposition 1 applied to I = (g) and I0 =

√
I in the polynomial

ring C[x,u]: we have that Ideg(g)
n+m

0 ⊂ (g) and then, ε0 ≤ Dn+m.
Now, fix an index i = 1, . . . , ρ. FromDefinition 11, it follows that Ii is contained in


(gi−1,gi−1) ⊂

C[x,u, u̇]. Thus, applying Proposition 1 to the ideal I = (gi−1,gi−1), with the estimations of Lemma13,
we conclude that Iεi ⊂ (gi−1,gi−1) for ε := (((n+m)D)2

cir(n+m)
)n+2m

= ((n+m)D)(n+2m)2cir(n+m)
, since

in this case r > 0 and then ν = r .
The proposition follows from the fact that (gi−1,gi−1) ⊂ (ẋ − f, gi−1, ġi−1) changing the constant

c by another one c ′ such that the inequality (n + 2m)2cir(n+m)
≤ 2c′ir(n+m) holds for any n,m. �

4.2. Going back to the original system

We follow the notations and keep the hypotheses of the previous section.
The aim of this section is to prove the main Theorem 7, roughly speaking, an upper bound for the

number of derivations needed to obtain a representation of 1 as an element of the differential ideal
[ẋ − f, g] introduced in formula (4).

Let gi, i = 0, . . . , ρ, be the polynomials in C[x,u] introduced in Lemma 13. From Proposition 12,
the differential Nullstellensatz asserts that 1 ∈ [ẋ− f, gi] for i = 0, . . . , ρ. Thus for each i there exists
a non negative integer k (depending on i) such that 1 ∈ ((ẋ − f)[k], g[k]

i ) ⊆ C[x[k+1],u[k]
].

For i = 0, . . . , ρ, we define:

ki := min{k ∈ N0 : 1 ∈ ((ẋ − f)[k], g[k]
i )}. (9)

Observe that, since (gi) = Ii ⊂ Ii+1 = (gi+1), the sequence ki is decreasing and that Proposition 12
ensures that kρ ≤ 1.

The following key lemma allows us to bound recursively each ki−1 in terms of ki with the help of
the sequence εi introduced in Definition 14:

Lemma 16. Suppose that the finite sequence ki introduced in (9) is not identically zero and let µ :=

max{0 ≤ i ≤ ρ : ki ≠ 0}. Then:
1. the inequality ki−1 ≤ 1 + εiki holds for every 1 ≤ i ≤ µ.
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2. kµ = 1 and ki = 0 for every i > µ.
3. k0 ≤ (µ+ 1)

µ

i=1 εi.

Proof. Obviously, ki = 0 for all i > µ from the definition of µ.
Consider now 1 ≤ i ≤ µ+ 1. From Definition 14, any g ∈ Ii = (gi) satisfies

gεi ∈ (ẋ − f, gi−1, ġi−1). (10)

For any j ≥ 1, if we differentiate jεi times the polynomial gεi , by means of Leibniz’s Formula, we
have

(gεi)(jεi) =


r1+r2+···rεi=jεi


jεi

r1 . . . rεi


g(r1) . . . g(rεi ),

where r1, . . . , rεi are nonnegative integers and


jεi
r1...rεi


:=

(jεi)!
r1!...rεi !

. In the formula above, the term

with r1 = · · · = rεi = j equals (jεi)!
(j!)εi (g

(j))εi and, since the sum of all the rl, with l = 1, . . . , εi, must be
jεi, in all the other terms there is at least one g(rl) with rl < j. Thus, for every j = 0, . . . , ki, there exist
polynomials pj,0, . . . , pj,j−1, such that the equality

(gεi)(jεi) =
(jεi)!
(j!)εi

(g(j))ϵi +
j−1
l=0

pj,l g(l)

holds; moreover, from (10), by differentiating jεi times we deduce that

(jεi)!
(j!)εi

(g(j))εi +
j−1
l=0

pj,l g(l) ∈ ((ẋ − f)[jεi], g[1+jεi]
i−1 ).

From these relations we deduce recursively that a common zero of the polynomials (ẋ− f)[kiεi] and
g[1+kiεi]
i−1 is also a zero of the polynomials g, ġ, . . . , g(ki) for every g ∈ Ii = (gi); in particular, it is a

common zero of (ẋ − f)[ki], g[ki]
i (recall that, by definition, εi is at least 1 and then kiεi ≥ ki for all i).

This contradicts the definition of ki (see (9)).
Therefore, 1 ∈ ((ẋ − f)[kiεi], g[1+kiεi]

i−1 ) and then, ki−1 ≤ 1 + kiεi, which proves the first part of the
lemma.

In particular, if µ < ρ, taking i = µ + 1 in the previous inequality, we have 0 < kµ ≤

1 + kµ+1εµ+1 = 1, hence kµ = 1. In the case µ = ρ, Proposition 12 implies that kρ ≤ 1 and
then, since kµ is assumed nonzero, we have kµ = kρ = 1. This proves the second assertion.

Finally, the last statement is an easy consequence of the previous ones: it follows from the fact that
kµ = 1, applying recursively the inequality ki−1 ≤ 1 + kiεi for i = µ,µ− 1, . . . , 1. �

We are now ready to prove Theorem 7 stated at the beginning of this subsection as a corollary of
the previous lemma and its proof:

Proof of Theorem 7. Wemust estimate an upper bound for the minimum integer L such that

1 ∈ ((ẋ − f)[L], g[L]).

By Definition 14 the inclusion (g0)
ε0 ⊆ (g) holds. We can repeat the same argument as in the proof of

Lemma16 and prove that, for any g ∈ (g0) = I0 =
√
(g) and for j = 0, . . . , k0, there exist polynomials

pj,0, . . . , pj,j−1 such that

(gε0)(jε0) =
(jε0)!
(j!)ε0

(g(j))ε0 +

j−1
l=0

pj,l g(l) ∈ (g[jε0]).

As before, this implies that a common zero of the polynomials (ẋ − f)[k0ε0] and g[k0ε0] is also a zero of
g, . . . , g(k0) for an arbitrary element g ∈ (g0); in particular, taking into account that ε0 ≥ 1, it follows
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that it is a common zero of (ẋ − f)[k0], g[k0]
0 , contradicting the definition of k0 (see (9)). We conclude

then that

1 ∈ ((ẋ − f)[k0ε0], g[k0ε0]).

Thus, the inequality L ≤ k0ε0 holds.
If r = 0, from Proposition 6, we have that k0 = 1 and then, from Proposition 15, L ≤ ε0 ≤ Dn+m.

On the other hand, if r > 0, from Proposition 15 and Lemma 16, taking into account that µ ≤ r , we
have that there is a constant c such that

L ≤ k0ε0 ≤ Dn+m(µ+ 1)
µ
i=1

((n + m)D)2
cir(n+m)

= (µ+ 1)((n + m)D)
µ

i=0 2cir(n+m)

≤ (µ+ 1)((n + m)D)2
1+cµr(n+m)

≤ (r + 1)((n + m)D)2
1+cr2(n+m)

.

The desired bound follows taking a new constant c ′, in such a way that the inequality (r + 1)((n +

m)D)2
1+cr2(n+m)

≤ ((n + m)D)2
c′r2(n+m)

holds. Finally, since ν = max{1, r}, it is easy to see that Dn+m

and ((n + m)D)2
c′r2(n+m)

are both bounded by ((n + m)D)2
c′′ν2(n+m)

for a suitable universal constant
c ′′ > 0.

The converse is obvious. �

Aswehave observed in the previous proof, if we assume r = 0 (i.e. the algebraic constraint g = 0 of
the DAE system (4) defines a 0-dimensional algebraic variety in Cn+m), the constant L can be bounded
directly by ε0. This estimation is optimal for this kind of DAE systems as it is shown by the following
example extracted from [5, Example 5]:

Example 17. In the DAE system (4) suppose n = 1, x = x1,u = u1, . . . , um, f = 1, and g(x,u) =

um − x21, um−1 − u2
m, . . . , u1 − u2

2, u
2
1.

As it is shown in [5, Example 5], this system has no solutions and 1 ∈ ((ẋ − f)[L], g[L]) if and only if
L ≥ 2m+1. On the other hand, the inequality ε0 ≤ 2m+1 holds from Proposition 1. Hence ε0 = 2m+1

and the upper bound is reached.

5. The general case

The well-known method of reducing the order of a system of differential equations will enable us
to apply the results of the previous section to the general case.

Let x = x1, . . . , xn and f = f1, . . . , fs be differential polynomials in C[x, . . . , x(e)], with e ≥ 1. We
consider the differential system

f1(x, . . . , x(e)) = 0
...

fs(x, . . . , x(e)) = 0.

(11)

Theorem 7 yields the following:

Theorem 18. Let x = x1, . . . , xn and f = f1, . . . , fs be differential polynomials in C[x, . . . , x(e)].
Let V ⊂ Cn(e+1) be the algebraic variety defined by {f = 0}, and let ν := max{1, dim(V )} and
D := max{deg(g), deg(V )}. Then

1 ∈ [f] ⇐⇒ 1 ∈ (f, . . . , f(L))

where L ≤ (n(e + 1)D)2
cν2n(e+1)

for a universal constant c > 0.

Proof. As usual, the introduction of the new variables zi,j := x(j)i , for i = 1, . . . , n and j = 0, . . . , e,
and zj = z1,j, . . . , zn,j, allows us to transform the implicit system (11) into the following first order



600 L. D’Alfonso et al. / Journal of Complexity 30 (2014) 588–603

system with a set of polynomial constraints:
ż0 = z1
...
że−1 = ze
f = 0

(12)

where f = f1(z0, . . . , ze), . . . , fs(z0, . . . , ze). It is clear that

1 ∈ [f] ⇐⇒ 1 ∈ [ż0 − z1, . . . , że−1 − ze, f].

The differential part of the system (12) is given by an ODE consisting of ne equations in n(e + 1)
variables and the constraints are given by polynomials in n(e+ 1) variables, that is, f ∈ C[z0, . . . , ze].
Then, Theorem 7 applied to this system implies that

1 ∈ [ż0 − z1, . . . , że−1 − ze, f] ⇐⇒ 1 ∈ ((ż0 − z1)[L], . . . , (że−1 − ze)[L], f
[L]
)

where L ≤ (n(e+1)D)2
cν2(n(e+1))

, with c > 0 a universal constant. Going back to the original variables,
replacing z(k)i,j by x(j+k)

i for i = 1, . . . , n, j = 0, . . . , e and k = 0, . . . , L, we get that

1 ∈ [f] ⇐⇒ 1 ∈ (f, . . . , f(L))

and the theorem follows. �

Applying the trivial bound dim(V ) ≤ n(e + 1) and Bézout’s inequality, which implies that
deg(V ) ≤ dn(e+1), we deduce the following purely syntactic upper bound for the order in the
differential Nullstellensatz:

Corollary 19. Let f ⊂ C{x} be a finite set of differential polynomials in the variables x = x1, . . . , xn,
whose degrees and orders are bounded by d and e respectively. Then,

1 ∈ [f] ⇐⇒ 1 ∈ (f, . . . , f(L))

where L ≤ (n(e + 1)d)2
c(n(e+1))3

for a universal constant c > 0. �

Now, once the order is bounded, as a straightforward consequence of the classical effective
Nullstellensatz (see for instance [10, Theorem 1.1]), we can estimate the degrees of the polynomials
involved in the representation of 1 as an element of the ideal [f].

Corollary 20. Let f = {f1, . . . , fs} ⊂ C{x} be a finite set of differential polynomials in the variables
x = x1, . . . , xn, whose degrees and orders are bounded by d and e respectively. Let ϵ := max{2, e}. Then
1 ∈ [ f ] if, and only if, there exist polynomials pij ∈ C[x[ϵ+L]

] such that 1 =
s

i=1
L

j=0 pij f
(j)
i , where

L ≤ (nϵd)2
c(nϵ)3

and deg(pij f
(j)
i ) ≤ d(nϵd)

2c(nϵ)
3

,

for a universal constant c > 0.

Proof. This corollary is an immediate consequence of the result in [10, Theorem 1.1] applied to the
polynomials f[L] of Corollary 19, oncewe notice that all the polynomials f[L] have degree bounded by d,
since differentiation does not increase the degree, and thatN := n(e+L+1) is the number of variables
used. Thus deg(pijf

(j)
i ) ≤ 2dN , and we only need to change the constant c for a new constant c ′ > 0

such that (n(e + 1)d)2
c(n(e+1))3

≤ (nϵd)2
c′(nϵ)3

and, for d ≥ 2, 2dn(e+(n(e+1)d)2
c(n(e+1))3

+1)
≤ d(nϵd)

2c
′(nϵ)3

.
For d = 1, we can take pij ∈ C and so, the degree upper bound also holds. �

We remark that Corollary 20 allows us to construct an algorithmwhich decides if an ordinary DAE
system f = 0 over C has a solution or not. It suffices to consider the coefficients of the polynomials pij
as indeterminates (finitely many, since orders and degrees are bounded a priori) and obtain them by
solving a nonhomogeneous linear systemoverC. It is easy to see that the complexity of this procedure
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becomes triply exponential in the parameters n and e. Another algorithm of the same hierarchy of
complexity (i.e. triply exponential) can be deduced as a particular case of the quantifier elimination
method of ordinary differential equations proposed by D. Grigoriev in [6].

In the usual way, we can deduce an effective strong differential Nullstellensatz from Corollary 19
and the well-known Rabinowitsch trick:

Corollary 21. Let f ⊂ C{x} be a finite set of differential polynomials in the variables x = x1, . . . , xn.
Suppose that f ∈ C{x} is a differential polynomial such that every solution of the differential system
f = 0 is a solution of the differential equation f = 0. Let d := max{deg(f), deg(f )} and ϵ :=

max{2, ord(f), ord(f )}. Then f M ∈ (f[L]) ⊂ [ f ]where M = dn(ϵ+L+1) and L ≤ (nϵd)2
c(nϵ)3

for a universal
constant c > 0.

Proof. We start with the Rabinowitsch trick: since every solution of the system f = 0 is a solution of
f = 0, if we introduce a new differential variable y, the differential system f = 0, 1 − yf = 0 has no
solution. Hence, 1 belongs to the differential ideal [f, 1 − yf ] ⊆ C{x, y}.

Therefore, Corollary 19 implies that 1 belongs to the polynomial ideal (f[L], (1 − yf )[L]), with

L ≤ ((n+1)(ϵ+1)(d+1))2
c((n+1)(ϵ+1))3

≤ (nϵd)2
c′(nϵ)3

, for suitable universal constants c, c ′ > 0. Taking
any representation of 1 as a linear combination of the generators f[L], (1 − yf )[L] with polynomial
coefficients and replacing each variable y(i) by the corresponding (f −1)(i) for 0 ≤ i ≤ L, we deduce
that a suitable power of f belongs to the polynomial ideal (f[L]) or, equivalently, f ∈


(f[L]) in the

polynomial ring C[x[ϵ+L]
].

Now, applying [10, Theorem 1.3] stated in Proposition 1, we conclude that f d
N

∈ (f[L]) for N :=

n(ϵ + L + 1), the number of variables of the ground polynomial ring C[x[ϵ+L]
], and the corollary is

proved. �

With the same notation and assumptions as in Corollary 21, we can obtain upper bounds for the
degrees of the polynomials involved in a representation of a power of f as an element of the differential
ideal [f]. Applying [13, Corollary 1.7], we have that, if f = f1, . . . , fs are differential polynomials
of degrees at least 3, there are polynomials pij ∈ C[x[ϵ+L]

] such that f M =
s

i=1
L

j=0 pij f
(j)
i with

deg(pij f
(j)
i ) ≤ (1 + d)M , where M = dn(ϵ+L+1). For differential polynomials with arbitrary degrees,

following the proof of the first part of Corollary 21 and taking into account the bounds in Corollary 20,

we get a representation f M
=

s
i=1

L
j=0pij f (j)i , where M = 2(L + 1)dn(ϵ+L+1)+1

≤ d(nϵd)
2c(nϵ)

3

, with

deg(pij) ≤ d(nϵd)
2c(nϵ)

3

for a suitable universal constant c > 0.

6. The case of an arbitrary field of constants

In the previous sections the assumption of taking the complex numbers as the ground field is
only essential in the proof of Lemma 9 because the Implicit Function Theorem is applied. Even if the
statement of this lemma makes sense in any field, we are not able to prove it in the more general
case of any field of constants. However, it is not difficult to prove that if K is an arbitrary field of
characteristic 0 (with the trivial derivation) the following analogue of Theorem 7 remains true for K .
More precisely:

Theorem 22. Let K be an arbitrary field of characteristic 0with the trivial derivation, x = x1, . . . , xn and
u = u1, . . . , um differential variables over K , f = f1, . . . , fn and g = g1, . . . , gs polynomials in K [x,u].
If d > 0 is an upper bound for the degrees of f and g we have:

1 ∈ [ẋ − f, g] ⊆ K{x,u} ⇐⇒ 1 ∈ (ẋ − f, . . . , x(L+1)
− f(L), g, . . . , g(L)),

where L ≤ ((n + m)d)2
c(n+m)3

for a suitable universal constant c > 0.

Proof. We prove only the non trivial implication. Suppose that

1 ∈ [ẋ − f, g] ⊆ K{x,u}
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holds. Let k ⊆ K be the subfield of K which is generated over Q by the coefficients of the finitelymany
polynomials involved in a decomposition of 1 as an element of the ideal [ẋ− f, g]. Obviously, we have
1 ∈ [ẋ − f, g] in the differential ring k{x,u}.

Since k is a finitely generated extension of Q and C is algebraically closed having infinite
transcendence degree over Q, there exists a field Q-embedding σ : k → C. This morphism
can be extended to an embedding of the ring k{x,u} into C{x,u}, simply by applying σ to the
coefficients of the polynomials. Moreover, by considering k and C as fields of constants, σ defines
a monomorphism of differential rings. In particular, the condition 1 ∈ [ẋ − f, g] ⊆ k{x,u} implies
that 1 ∈ [ẋ − σ(f), σ (g)] ⊆ σ(k){x,u} ⊆ C{x,u}.

Now, applying Theorem 7 to the polynomials σ(f), σ (g)we conclude that the relation

1 ∈ (ẋ − σ(f), . . . , x(L+1)
− σ(f)(L), σ (g), . . . , σ (g)(L)) (13)

holds in an algebraic polynomial ring C[x[L+1],u[L]
] with L ≤ ((n + m)D)2

cν2(n+m)
, where D is the

degree of the variety V ⊂ Cn+m defined by σ(g) and ν := max{1, dim(V )}. Using Bézout’s inequality
we may replace D by dn+m and then, changing the constant c if necessary, we may suppose L ≤

((n + m)d)2
c(n+m)3

. Moreover, we can also replace C by the subfield σ(k), because the coefficients
of the polynomial combination underlying (13) may be chosen as solutions of a linear system with
coefficients in that field. The theorem follows by taking σ−1 in that polynomial relation. �

Using Theorem 22we can replace C by an arbitrary base field of constants K of characteristic 0 and
the results in Corollaries 19–21 of Section 5 remain true: the general version of Corollary 19 follows
by a standard reduction to a first order system as in the proof of Theorem 18 and replacing the bound
for the order L in Theorem 7 by the one in Theorem 22. The proofs of Corollaries 20 and 21 rely on the
bound stated in Corollary 19 and on known results that hold over any field of characteristic 0.
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