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This paper deals mainly with fast quantifier elimination in the elementary theory of algebraical- 

ly closed fields of any characteristic. It is subdivided into an introduction, a short exposition of 

the computational model and of our results, and concludes with a section dedicated to proofs. 

The new outcomes concern parallelism where the number of processors is controlled by the in- 

trinsic sequential complexity of quantifier elimination. Our algorithms are optimal from the point 

of view of the overall complexities in parallel and in sequential (number of processors). 

Due to recent progress concerning Triviality Testing of Polynomial Ideals (relying on effective 

affine Nullstellensatze) we are able to give upper bounds in a refined and satisfactory precise form. 

1. Introduction 

Many interesting geometric and algebraic problems can be formulated as first 

order statements about algebraically closed fields. In particular, the question 

whether a given finite set of multivariate polynomials has a zero in a suitable 

algebraically closed field can be stated in this language and can also be decided. 

More generally, if the coefficients of the polynomials are indeterminates, purely 

algebraic conditions can be given for instances of the coefficients in the algebraically 

closed field such that the polynomials have a common zero. This is a particular 

case of the general fact that the elementary theory of algebraically closed fields of 

given characteristic admits quantifier elimination. 

In the last decade special effort has been made to find more efficient algorithms 

for algebraic and geometric problems, in particular for those problems which can 

be formulated as first order statements about algebraically closed fields. 

* A preliminary version of this paper (A. Galligo, J. Heintz and J. Morgenstern: Parallelism and fast 

quantifier elimination over algebraically (and real) closed fields) has been presented at “Fundamentals 

of Computation Theory” (FCT’87), Kazan, USSR, 1987. 
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Special attention has been paid to the polynomial ideal membership problem, i.e. 

to the question of deciding whether a given polynomial is contained in a polynomial 

ideal given by a finite set of generators. Two kinds of algorithms have been devel- 

oped for this purpose, one based on effective versions of Hilbert’s Basissatz 

[19,21,24,25,29], the other one based on term rewriting [5,15,17]. The polynomial 

ideal membership problem is rather of algebraical than of geometrical nature and 

its worst case complexity is intrinsically high. (The ideal membership problem is ex- 

ponential space complete [ 1,12,26] .) This implies doubly exponential complexity 

bounds in the actual sequential algorithms (see e.g. [17,19]). By Hilbert’s Null- 

stellensatz an algorithm which solves the polynomial ideal membership problem 

leads to a procedure which decides whether a given finite set of polynomials has a 

zero in an algebraically closed field. Those algorithms which are based on effective 

versions of Hilbert’s Basissatz [21,24,25,29] can be used to compute projections of 

algebraic varieties. (This has been done in [20] and [19].) 

Since quantifier elimination for algebraically closed fields has intrinsically doubly 

exponential sequential complexity [ 19,301, the doubly exponential degree bounds of 

the mentioned effective versions of Hilbert’s Basissatz do not increase the overall 

complexity of the algorithms in [20] and [19] (see also [31]). 

The only way to ‘improve’ the results consists in looking more closely at the 

parameters which determine the complexity bounds of the algorithms. Based on 

fundamental techniques [ 191 and [9], this has been done in [lo] and [ 181, and the 

sequential complexity bounds obtained there are up to now as precise as possible. 

However, the complexity of the algorithm of [lo] and [ 181 depends on the arithmetic 

properties of the field of constants from which the coefficients of the polynomial 

terms appearing in the input formula are taken. (This is due to the fact that poly- 

nomial factorization algorithms are used as subalgorithms.) Combining an affine ef- 

fective Nullstellensatz (e.g. [7, S]) with the methods of [19], one obtains the same 

precise sequential complexity bounds as in [lo] and [ 181. The advantage of doing 

so consists in making the algorithms more transparent and in avoiding the depend- 

ence of the complexity bounds on the field of constants mentioned above. However, 

neither the algorithms of [19,20,31] nor the one of [lo, 181 are efficiently parallel- 

izable because they contain subalgorithms which are inherently sequential. 

In the present paper we construct an arithmetical network (see [16] for this no- 

tion) which for a given input formula of the first order theory language of algebraic- 

ally closed fields of fixed characteristic computes an equivalent quantifier free one. 

Our upper bounds for the complexity of quantifier elimination over algebraically 

closed fields are precise with respect to the following parameters: length, number 

and degree of the polynomials, total number of variables and number of the quan- 
tifier alternations of the (prenex) input formula. The (intrinsically) doubly exponen- 

tial behaviour of the parallel complexity of quantifier elimination over algebraically 

closed fields depends only on the number of quantifier alternations in the input for- 

mula. Thus for a fixed number of quantifier alternations quantifier elimination over 

algebraically closed fields has simply exponential sequential and polynomial parallel 
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complexity. This represents a refinement of the complexity results of [ 19,20,3 l] and 

also of [lo, 181. 

The precise and ‘fast’ algorithm for quantifier elimination presented here can also 

be used to decide the first order theory of algebraically closed fields of given char- 

acteristic within the same complexity limits. 

Most of the ‘mathematically interesting’ decision problems of elementary alge- 

braic geometry involve only a fixed, small number of quantifier alternations: for ex- 

ample, solvability of polynomial equations systems over an algebraically closed field 

or computation of dimension and degree of an algebraic variety. Our complexity 

result about quantifier elimination implies that these computational problems can 

be solved in simply exponential sequential and polynomial parallel time. (See [6,7] 

for more details. Compare also [9] for the sequential aspect.) 

Let us also observe that our algorithmical results can be transferred mutatis 

mutandis to the context of Turing complexity. (From our parallel complexity 

bounds or by direct inspection of our algorithm one easily sees that coefficient 

growth of intermediate polynomial manipulations remain under control. Compare 

[19] and [31] for technical aspects.) 

The present paper covers also some aspects of lower bounds. 
We give examples of formulae in the language of the first order theory of alge- 

braically closed fields of given characteristic with the property that any quantifier 

elimination procedure applied to these formulas requires doubly exponential se- 

quential time and simply exponential parallel time to represent the output. Thus our 

doubly exponential sequential and simply exponential parallel complexity bounds 

for quantifier elimination over algebraically closed fields are intrinsic. 
Finally, let us mention that similar complexity results for quantifier elimination 

over real closed fields have recently been obtained by M.F. Coste-Roy and some of 

the (Noah’ Fitchas) coauthors of the present paper: J. Heintz and P. Salerno. 

Previous complexity results (upper and lower bounds) concerning parallel quan- 

tifier elimination over real and algebraically closed fields are contained in [14]. 

2. Short exposition of the computational model and of the results 

In the sequel let k be an arbitrary field and 1; an algebraically closed field contain- 

ing k (e.g. its algebraical closure). 

In order to speak about i; we consider the first order language L with the follow- 

ing non-logical symbols: For each a E k we have a constant which we also call ‘a’. 
Furthermore we have the function symbols +, -, . and the relation symbol = . 

We consider the variables of L as indeterminates Xi, . . . ,X, over k, and we think 

the terms of our language L represented as multivariate polynomials with coeffi- 

cients in k (dense representation). 

So, a typical term has the form FE k[X,, . . . . X,], and a typical atomic formula 

has the form F=O. For the negation of this formula, we write F#O. 
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Our language is built up by atomic formulae using the logical connectives A, v, 1, 

and the first order quantifiers 3, V running over the elements of k (not over subsets, 

relations or higher order predicates of k). So each formula @EL is built up by 

atomic formulae involving polynomials, say F,, . . . , F, E k [X,, . . . ,X,1. X,, . . . ,X,, 

are the variables of CD. 

We think of the language L as a set of words over the (infinite) set of symbols 

of L which consists of the non-logical symbols and the variables of L, the logical 

connectives, the quantifiers, and the brackets (and) . 

So to each formula @EL there corresponds its length I@ (number of symbols 

required to write down @). 

We shall also use the following parameters which measure @: 

a(@):=2+ c degF,, 
1sis.s 

n := total number of variables contained in @. 

If @ is prenex (i.e. all quantifiers appear at the beginning of @) we also consider 

r:= number of alternations of blocks of existential and universal 

quantifiers. 

We note that each formula @ EL can be brought in (sequential) time 0( 1 @I) into 

an equivalent prenex form. This procedure does not change 1 Qj and a(@), and a 

possible increase of n is bound by the number of quantifiers contained in 0. 

Now we are going to give a short description of our computational model. The 

core of our algorithms consists in performing arithmetical operations (+, -, .) with 

multivariate polynomials over k which we think represented by their coefficient vec- 

tors in dense form. From the point of view of parallel complexity it is convenient 

to compute the coefficients of the resulting polynomials by interpolation using 

elements of k (note that k is infinite). Sometimes we have to ask whether or not the 

resulting polynomial is identically zero. So we also allow comparison of elements 

of k. The further development of the algorithm depends then on the result of these 

comparisons. Therefore we also have to use selectors. Of course, independent com- 

putations, comparisons, and selections can be executed simultaneously. To this kind 

of algorithm there corresponds the model of ‘arithmetical network’ [16]. 

Our arithmetical networks use as input elements of k, admit arithmetical and 

boolean operations including the use of constants from k, comparisons and selec- 

tions of elements of k. They compute elements of k or boolean values. The notion 

of arithmetical network may be described by a directed, acyclical graph where each 

vertex represents an arithmetical or boolean operation, a comparison or a selection. 

To each arithmetical network there correspond two notions of complexity: 

(i) the parallel complexity or depth of the arithmetical network, i.e. the length 

of a longest directed path in the corresponding graph; 

(ii) the sequential complexity or the number of processors or the size of the 

arithmetical network, i.e. the number of vertices of the corresponding graph. 
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(We avoid in the following the expression ‘number of processors’ for the size of an 

arithmetical network since it connotes the uneconomical assumption that the same 

processor is used only once in each execution of the algorithm. We prefer the expres- 

sion ‘sequential complexity’.) 

In general fast sequential algorithms are not the best ones from a parallel point 

of view and vice versa. We are looking for fast parallel algorithms trying to control 

simultaneously their sequential complexity. This means concretely that the sequen- 
tial complexity of our fast parallel algorithms is equal in order of magnitude to the 

complexity of other algorithms for the elimination of quantifiers known to be ‘fast’ 

in sequential time. 

We leave to the imagination of the reader the part of our algorithmic model (net- 

work over the symbols of L) which corresponds to pure manipulation of formulae 

of L. For example, from the input formula @ we have to extract the polynomials 

F 1 ,..., FSek[X1 ,..., X,] contained in @. F,, . . . , F, are then transformed by means 

of an arithmetical network into polynomials which appear in the final quantifier 

free output formula. Constructing this output formula requires once more manipul- 

ations in L. To be short, we admit the same kind of elementary operations with sym- 

bols of L as with elements of k : for example, concatenating words, interchanging 

or inserting symbols of L. In particular, these operations permit to transform the 

formula @EL into an equivalent prenex one in time O(l@l). 

In the present paper we treat two different problems: the problem of upper 

bounds and the problem of lower bounds for the complexity of quantifier elimina- 

tion in the language of the first order theory of algebraically closed fields of given 

characteristic. 

2.1. Upper bounds for the complexity of quantifier elimination 

The bounds for the sequential complexity of quantifier elimination over 1; obtained 

in [19,20,31] are doubly exponential and of type 

[lo] and [18], based on [9] and [ 191, give the most precise bound with respect to the 

parameters which measure the input: 

where the (inherent) double exponentiality of the bound depends only on r, the 

number of quantifier alternations in the formule @EL which is supposed to be 

prenex. (However, the complexity changes if the field of constants k is extended, 

whereas the complexity of the algorithms presented in the present paper is indepen- 

dent from such extensions.) 

Let us remark that the dependency on the term I@,1 in the complexity bounds 

above is inessential and omitted by most authors. It is due to some ‘preprocessing’ 

of the input formula @ in order to control the logical connectives and to extract the 

polynomials which appear in @. 
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We present here the following results concerning upper bounds for the complexity 

of quantifier elimination in the first order theory of the algebraically closed field 1; : 

Theorem 1. For each IE N there exists a network N, over the symbols of L of 
depth 1”” and size liO”’ with the following property: 

For each input formula @ EL with 1 @I = I, Jv, computes a quantifier free equiv- 
alent one (with respect to the first order theory of i;). q 

In other words, there exists an algorithm (the family of networks A’/, I E N) 
which eliminates quantifiers (with respect to the first order theory of 1;) 

in parallel time (depth of JV,) I@/ 7 
O(l@l) 

and sequential time (size of SJ,) 1 @@lo’ “, 

where @ EL is an arbitrary input formula (of length 1 @I = 1). 

Corollary. There exists an algorithm which decides the elementary theory of I; in 
simply exponential parallel and doubly exponential sequential time, the input for- 
mula being measured by its length. 0 

In Theorem 1 we used the length of the input formula as unique parameter. 

For the next theorems we assume that @ EL is prenex and suitably ‘prepared’, this 

means that the polynomials appearing in @ are explicitly given and that the quan- 

tifier free part of @ can be written down with respect to the logical connectives in 

depth O(log l@l). 

We consider the more differentiated parameters a(@), which measures number 

and degree of the polynomials, n, the total number of variables, and r, the number 

of quantifier alternations which appear in @. 

Theorem 2. (i) There exists an algorithm which eliminates quantifiers (with respect 
to first order theory of I;) and which works 

in parallel time n’(‘)(log o(G))‘(‘) + O(log l@l), 

and sequential time a(@)“0”‘. 1 @I. 

(ii) The same bounds are true for the complexity of the decision of the first order 

theory of I;. 

Theorem 2 implies that the elimination of quantifiers and decision of the elemen- 

tary theory of 1; is in the complexity class NC (i.e. it has polylogarithmic parallel 

and polynomial sequential complexity) if the number of variables n of the input for- 

mula @ is fixed. 

The sequential result of Theorem 2 has been shown in [lo] and [ 181 by a somewhat 

different way. 
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2.2. Lower bounds for the complexity of quantifier elimination 

The aim of this subsection is to explain that our algorithms are optimal from the 

point of view of overall complexity. This means that the general problem of quan- 

tifier elimination over algebraically closed fields has an inherent simply exponential 

parallel and doubly exponential sequential complexity. Independent from how we 

internally realize quantifier elimination, we do need simply exponential parallel time 

or doubly exponential sequential time to print the output, a suitable quantifier free 

formula. 

We have the following: 

Theorem 3. There exists a sequence of formulae (containing quantifiers and two 
free variables) Qk E L, k E N, with the following properties: 

(9 1% = O(k). 
(ii) For each quantifier free formula 0 EL equivalent to Qk involving the poly- 

nomials F,, . . . , F,, there exists i, 15 ir s, such that deg Fi 2 22ck, where c> 0 is a 
suitable constant. 

Property (ii) implies 181 2 2=‘*, since in our language L the polynomials (terms) 

are densely codified. In particular any sequential algorithm for quantifier elimina- 

tion applied to the input Qk needs time doubly exponential in IQkl to write down 

the quantifier free output formula (see [19] and [30]). Moreover any parallel algo- 

rithm for quantifier elimination applied to the input Qk needs time simply ex- 
ponential in lQkl to print the quantifier free output formula, since the output 

contains a polynomial of doubly exponential degree. To represent this polynomial 

we need an arithmetical network of at least simply exponential depth (compare 

1161). 
Let us remark here that our sequential lower bound depends on the assumption 

that polynomials are densely coded. 

Analogous lower bounds are true for quantifier elimination over real closed fields 

(see [ 141). 

3. Proofs 

In this section we are going to prove Theorem 2 and Theorem 3 for the first order 

theory of the algebraically closed field i;. The proof follows the general lines of the 

sequential quantifier elimination procedures [19], [lo] and [18]. However, since 

these algorithms do not give satisfactory results in parallel, one has to change crucial 

points of them. As a byproduct one obtains a new fast sequential algorithm for 

quantifier elimination over algebraically closed fields. 

Let @ EL be an arbitrary prenex formula, containing n variables X,, . . . ,X,,, 

where X,, . . . , X,_,, are free and Xn_m+l, . . . . X, are bounded. So @ has the form 
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(Q,-,+lxn~,+,)...(Q,x,>Y(X,,...,X,), where Q,-,+I,...,Q,~{~I,V} and 
wx,, .--, X,) is a quantifier free formula being a boolean combination of atomic 

formulae containing polynomials, say Fr, . . . , F, E k [X,, . . . , X,] with 

a:=a(@)=2+ c degF,. 
Isiss 

As in [19], we call a nonempty set Zcii” an F,, . . . , F,-cell, if there exists 

&C{l,..., s> such that 

Z:= {x~i;“: F,(x)=OVi~&and Fj(x)#OVj~{l,...,~}-~}. 

Taking into account that V can be expressed as 1 ?I 1, we may assume that the 

last block of quantifiers (and the first to be eliminated) in our formula Cp is existen- 

tial. 

The first step of our algorithm consists in replacing Y(X,, . . . ,X,) by an equiv- 

alent disjunction of conjunctions of the form 

/\ F;=O/\ /\ F,+O, 
iE&t jE{l,...,Y}\.4l 

where.M~{l,..., s} determines a F,, . . . , F,-cell contained in the subset of k” defin- 

ed by Y(X,,, . . . ,X,). 

This is possible because the F,, . . . , F,-cells are the atoms of the boolean lattice of 

the subsets of i;” which can be defined by quantifier free formulas involving only 

the polynomials F,, . . . , F, l k [X,, . . . , X,,] . 

For this purpose we construct a network of depth O(n’(‘) log3 a) and size 

O(o”““‘) which enumerates all F,, . . . , F,-cells. This can be done using [19, Cor- 

ollary l] (which is a consequence of the Bezout-Inequality), and an affine effective 

Nullstellensatz (see [7], [S] or [13] for such Nullstellensatze with elementary proofs). 

For the construction of the network we use a simple divide-and-conquer strategy, 

testing at each stage whether or not some already constructed conjunctions define 

really cells, i.e. nonempty subsets of 1;“. 

Stage by stage, we build a binary tree of depth logs: 

At stage 0 we determine which one of the subsets of i? defined by Fi = 0 or Fi # 0 

(1 5 i I s) are non-empty. 

At stage 1 we construct s/2 sets of consistent conjunctions of type: 

{F,=OAF,=O,F,=OAF,#O, F,#OAF2=0, F,#OAF,#O} )...) 

{F,_,=OAF,=O,F,~,=OAF,#O,F,_,#OAF,=O,F,_,#O~F,#O}. 

At stage k, 05 krlogs, we construct ~/(2~) sets of consistent conjunctions by 

means of the adjacent sets of stage k- 1. 
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In this way we obtain a tree of the following type: 

stage 0: {F,=O, F,#O} {Fz=O, Fz#O} ... {F,=O,F,#O} 

V V 
stage 1: {F,=~AF,=~ ,..., F,+OAF,ZO} 

V 
stage 2: 

/\ F=OA /\ Fj#O: .Mc{l,...,s) determines 
iG.M j~{l,...,S}-de 1 

an F,, . . . , F,-cell. 

Each of the ~/(2~) sets constructed at stage k consists of at most 22k different con- 

junctions which involve the polynomials F,, . . . , F, whose sum of degrees is bounded 

by 0. 

These conjunctions are consistent and-as mentioned before-constructed by 

means of consistent conjunctions of adjacent sets of stage k - 1. This implies that 

we have to deal with at most on conjunctions at stage k (see [19, Corollary 11). 

This leads to at most ~/(2~). 02n consistency tests at stage k which can be executed 

independently. In total we have at most 2s ozn consistency tests. 

The description of our algorithm is complete if we explain how to perform a consis- 

tency test for a given conjunction, say F1 = 0 A ... A F,, = 0 A F,,, , #0 A ... A F,#O. 

We use the well known ‘Rabinowitsch trick’. 

Put F:= F,,, , . ... *F, and let T be a new variable. According to Hilbert’s Null- 

stellensatz, F,=Or\...r\F,,=O/\F,‘.,#Or\... A F, #O is inconsistent if and only 

if the ideal generated by F,, . . . , F,,, 1 - TF in k[X,, . . . ,X,] is trivial, that is if 

1 E (F,, . . . . F,,, 1 - TF). Now we use an affine effective Nullstellensatz with simply 

exponential degree bounds, e.g. [7, Theorem 161, or [8, Theoreme]. We have 

1 E (F,, . . . . F,,, 1 - TF) iff SIP,, . . . ,P,,,PE k[X,, . . . ,X,] such that 

deg PiFj, deg P(l - TF)s c#‘+~)@‘+~)‘~ 

for 15 i 5 s’, and such that 

l=P,F,+...+P,,F,,+P(l-TF). 

By comparison of coefficients our consistency test is now reduced to the question 

whether some inhomogeneous linear equation system of order ocn3 x gc”’ (for c> 0 

a suitable constant) whose coefficients come from the coefficients of F,, . . . , F, and 

1 - TF is solvable. 

In other words, we have to compare the rank of two matrices (over k) of order 
*C”) x&n’* This leads to the problem of computing the rank of a matrix by an 

algorithm which is fast both in parallel and sequential time. Here we follow the 

treatment of [27]. (One could also use the algorithm of [ll].) 

Introducing a new variable Z, one transforms the given matrix into a new square 

one with entries from k[Z] whose characteristic polynomial we compute. The coeffi- 

cients of the characteristic polynomial are obtained in parallel time 0(n6 log 02) 
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and in sequential time O(oO@‘)) by [2]. From our construction (see [27] for de- 

tails) it follows that the multiplicity of the root 0 in the characteristic polynomial 

indicates the rank of the matrix we started from. One eliminates the artificially in- 

troduced variable Z evaluating the coefficients of the characteristic polynomial 

(which are themselves polynomials over k of degree less than ocn3 in the indeter- 

minate Z) in ocn3 points of k. Thus one sees which one is the first coefficient of 

the characteristic polynomial different from zero and hence which is the rank of the 

given matrix. 

In its essence, the depth of our cell enumerating algorithm depends only on logs 

and on the depth of the algorithm [2] which computes the rank of a matrix (in our 

case of order or”’ x 0““’ ). The sequential complexity of the cell enumerating algo- 

rithm is essentially controlled by the number of F,, . . . ,F,-cells, which is bounded 

by on, and the complexity of the rank computation above, which is DO@‘). 

Once the F,, . . . . F,-cells are enumerated, y/(X,, . . . ,X,) can be brought into the 

desired disjunctive form in parallel time O(log IYl) and sequential time O(/Yl). 

Since the existential quantifiers and disjunctions commute, we have only to 

characterize the subsets of I?’ which are definable by formulas of type 

(~,)~~~(~~)(F,=O~\~~~~\F,~=OAF,~+,#OA~~~AF,#O). 

(Here 12 n -m + 1 indicates the length of the last block of quantifiers in our input 

formula which is supposed to be existential.) 

In other words, by a quantifier free formula we try to characterize some projec- 

tion of a given subset of k” which is locally closed in the Zariski topology. Let 

D:={x~i?‘: (~~)...(~~)F,(x,X,,...,X,)=Or\...r\F,,(x,X,,...,X,)=O 

AF,,+,(x,X ,,..., X,)#OA...r\F,(x,X ,,..., X,)+0). 

We have to find polynomials G,, . . . , G[E k[X,, . . . ,X,pl] which describe D by a 

quantifier free formula. 
Let E:=k’-‘-D F.=F 9 . s’+ 1 - +.. SF, and T be a new variable. By Hilbert’s Null- 

stellensatz we have 

E={x&-‘: l~(Fi(x,X ,,..., X,,) ,..., F,,(x,X ,,..., X,),1-TF(x,X, ,..., X,))}. 

We consider F,, . . . , F,, , 1 - TF as polynomials in X,, . . . , X,,, T with coefficients in 

k]X ,, . . . , X,_ i]. We use again the affine effective Nullstellensatz of [7] or [8]. For 

the moment we replace (Xi, . . . ,X,_ ,) by XE k’- ‘. Then we have 

1 E (F, (x, X,, . . . , X,J, . . . > 6, (x, X,, . . . ,X,),1 - TF(x, X,, . . . ,X,3 

iff BP,, . . . . P,,, PEk[X I,..., X,], such that for 1 I ils’, 

deg P,F,(x,X,, . . . , X,), deg P(l - TF)(x, X,, . . . , X,) 5 dn-‘+z)(np’+3)‘2 

and such that 

l=P,F,(x,X ,,..., X,)+...+P,,F,,(x,X ,,..., X,)+P(l-TF)(x,X ,,..., X,)). 
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We compare coefficients of X,, . . . , X,,, T taking into account the degree bounds 

of P,, . . . . P,,,P and remembering that F,,..., F,!, 1 - TF are considered as poly- 

nomials in X,, . . . , X,,, T with coefficients in k [X,, . . . , Xl_ ,I. So our task is reduced 

to consider the solvability of some inhomogeneous linear equation system. In other 

words, we have to describe a set of type 

i 
x~l;‘-‘: c F/Jx)Tj =Fkp+l (x), 15 /cl q, has a solution in kP 

ISjSp 1 

by a quantifier free formula involving polynomials, say Gi, . . . , G, E k [X,, . . . ,X1_ 1 1. 

(Here FkjyFkp+l Ek[XI, . . . . X,_ 1], 1 sksq, 1 sjrp, are certain coefficients of 

F 1 ,..., F,,,l-TFand T ,,..., Tp are new variables describing the unknowns of our 

linear equation system. Moreover, we have p, qs d(“-‘)‘, where c> 0 is a suitable 

constant.) 

Once more we use the algorithms of [27] and [2], essentially in the same way as 

before. These algorithms permit to exhibit necessary and sufficient polynomial con- 

ditions on x E I? ’ for the equality of the ranks of 

(Fkj(X))l sksq, 1 sjsp and (Fkj(X))l~j~q,l~j~p+1. 

For this purpose we consider the (generic) matrices 

and, as before, we look at the characteristic polynomials of the matrices obtained 

from the two given generic matrices applying the procedure of [27]. (Again, we have 

to use an auxiliary variable Z.) 

Applying the algorithm of [2] we compute the coefficients of the two character- 

istic polynomials. These coefficients are elements of k[Xl, . . . , Xl_ ,, Z] and we con- 

sider them as polynomials in Z. Interpolating these polynomials in sufficiently many 

elements of 1; (i; is infinite and the algorithm of [2] does not use divisions), 

i.e. specializing Z, we find their coefficients which represent, for 1 <is t, the 

G;~k[x~,..., XI_,], we are looking for. 

The vanishing (the non-vanishing respectively) of the G;, 1 I is t, in a given 

point x=(x,, . . . . x1_ i) E i;‘- ’ expresses the multiplicity of 0 in our two characteristic 

polynomials after specializing the variables Xi, . . . ,X,_ 1 to x1, . . . ,x,_ 1. Thus, by 

our construction (See [27]) eqUdity of the ranks of (Fkj(X))l<k<q,l~J~P and 

(Fkj(X))lsksq,lsjsp+l can be expressed as a boolean combination of the atomic 

formulas G,(x) = 0, . . . , G,(x) = 0. 

This means that the set 

L 
XEP’: C Fkj(X)Tj ‘Fkp+ 1 (x), 15 ks q, has a solution in kp 

1 sjcp 1 

can be described by a quantifier free formula involving only Gi, . . . , G,. Since 

degF,,Sa, F,,Ek[X,,...,X~~I]Ck[XI ,..., X,] for all 1 <k<q, 1 <j<p+ 1, and 
since p,qlac(nP’)‘IaCn’, an immediate analysis of the algorithms [27] and [2] 

gives C, 5isr deg Gil ocn’. (Here c>O is a suitable constant.) 
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In the same way one sees that Gr, . . . , G, can be computed in parallel time 
0(n6 log2 a) and sequential time o”@“). 

The boolean combination of the atomic formulae Gi = 0, . . . , G, = 0 (the quan- 

tifier free formula) mentioned above can be represented by a network of depth 

0(n3 log a) and size o”@). 

This means that it is possible to eliminate one block of existential quantifiers in 

parallel time O(n6 log2 0) and sequential time o o(nJ) by a formula which involves 

only polynomials whose number and degree is of order o”@). 

The general bounds of Theorem 2 follow now by induction on the number of 

blocks of quantifiers. 0 

Theorem 1 is an immediate consequence of Theorem 2. 

We are going to prove Theorem 3. 

In [19] there is given a sequence of formulae Qk(X, Y) E L, ke N, in the two free 

variables X, Y with the following properties: 

(i) 1% = O(k), 
(ii) Qk defines the graph of the application k --f i; which maps x E k onto x2’“. In 

other words, (Pk defines the set Mk := {X2” - Y= 0} := ((x,y) ~1;~: xz2”=y}. 

Let 0 EL be a quantifier free formula equivalent to Qk which contains the poly- 

nomials F,, . . . , F,ek[X, Y] and let Gi, . . . . G, be the prime factors of F,, . . . , F, in 

k [X, Y]. One has max{ deg FJ : 1 <j<s} ?max{deg G,: 15 is r}. Therefore it suf- 

fices to show that there exists i, 1 sis t, such that deg G;z~~‘. 

One transforms 0 EL into a formula & of the language L” with the non-logical 

symbols {a: agI;}U{+,--,a, =}, replacing each atomic formula FJ = 0 with 

Fj = ~3,;’ -...-Gz (i ,,..., i,E{l,..., t},r, ,..., r, E N) by the expression G;, = 0 V ... V 

G;,,, = 0. 

Consequently 6 involves only irreducible polynomials over 1;: Gr , . . . , G,. More- 

over, we suppose that 8 is a disjunction of consistent expressions: 

(*) G;, = 0 A ... A G;, = 0 A G;,+, # 0 A .+e A Gi, # 0, 

where all the G;, 15 is t, appear. (Observe that, in principle, one cannot exclude 

the case I= 0.) 

&is a quantifier free formula in two free variables, X, Y, equivalent to 0 and con- 

sequently to Qk. So 6 defines the subset Mk = {X2’” - Y = 0) of k2, which is closed 

in the Zariski-topology. Mk is union of sets defined by conjunctions of type (*). 

Since Mk is different from k2 and is closed in the Zariski topology of E2, we have 

II 1 in each conjunction (*). Taking into account that Gi,, . . . , G,, are absolutely ir- 

reducible, distinct polynomials, one infers from the Dimension Theorem [23, II, 7, 

Theorem 1 l] that (*) defines a finite set, if I? 2. Therefore Mk can be written as 

a union of sets defined by conjunctions (*) with I= 1 and of finite sets. 

Let us consider a conjunction (*) with I= 1 which appears in 6. Since Gi, is ir- 

reducible over i; and (*) is consistent, the closure of the set defined by (*) is 
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{Gi, =O}. On the other hand we know that Mk is closed. So Mk can be written as 

a union of sets {G;, = 0} and of finite sets. 

On the other hand, Mk is the graph {X2’” - Y = 0) and therefore irreducible. 

X2*” - Y is an irreducible polynomial of i;[X, Y]. With other words, X2” - Y is the 

minimal equation of the irreducible hypersurface Mk of k2. 

So we have that Mk is irreducible and infinite and that the sets {G;, = 0} and the 

finite sets which appear in the decomposition of Mk are closed. Therefore there ex- 

ists i,~{l,..., t) such that {X2’” - 

minimal equation of Mk, X2*” 

Y= 0} =Mk = {Gil = O}. Since X2’” - Y is the 

- Y divides G;, , whence deg Gi, 2 22”. 0 
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