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Abstract

Dickenstein, A., N. Fitchas, M. Giusti and C. Sessa, The membership problem for unmixed
polynomial ideals is solvable in single exponential time, Discrete Applied Mathematics 33 (1991)
73-94,
Deciding membership for polynomial ideals represents a classical problem of computational com-
mutative algebra which is exponential space hard. This means that the usual algorithms for the
membership problem which are based on linear algebra techniques have doubly exponential se-
quential worst case complexity.

We show that the membership problem has single exponential sequential and polynomial
parallel complexity for unmixed ideals. More specific complexity results are given tor the special
cases of zero-dimensional and complete intersection ideals.

Introduction
Let k be a field and R:=k[X),..., X,] the polynomial ring in # indeterminates
Xy, ..., X, over k.
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x

We are considering the following problems from a complexity theoretical point
of view:

(0.1) Membership problem (MP): For given fi, ..., f;, fin R, decide whether f
belongs to (£, ..., fy).

(0.2) Representation problem (RP): For given f, ..., f;, fin R, decide whether f
belongs to (fy,....f), and if so, compute a representation f= L icuss . f, with
a,eR for lsu=<s.

It is known that (MP) for arbitrary f,, ..., f;, fis exponential space complete and
that (RP) may involve polynomials a,, 1 sus<s, of degree doubly exponential in 7
[27].

Obviously a solution for (RP) implies a solution for (MP) but not vice versa.

In this paper we solve (MP) for unmixed ideals and (RP) for both zero-
dimensional and complete intersection ideals with tight complexity bounds in se-
quential and in parallel. We show that in these cases (MP) and (RP) are solvable
in single exponential sequential and polynomial parallel time. The algorithmic com-
plexity of (MP) and (RP) is measured in the following parameters:

d:= max (deg(f,),3), deg(f) and n.
isuss

Our main theorem can be stated as follows: Let (f15 .-, f5) be an unmixed ideal,
then it can be decided in sequential time s'( max(deg( f), d":))O(":) and parallel time
O(n*log’s max(deg(f), d"")) whether f belongs to (s ess )

The most interesting examples of unmixed ideals are the zero-dimensional ideals
and the complete intersection ideals, f;, ...,f; being a regular sequence. In these
cases we resolve both (MP) and (RP) in a satisfactory way. We have the following
results:

(i) Let (f,...,f;) be a zero-dimensional ideal. Then for any compatible
monomial order a Grébner (standard) basis of (f1s ---»f5) can be computed in se-
quential time s77%") and parallel time O(n*log?sd).

(This specifies results of [9]. See also {24] and [19] for corresponding resuits con-
cerning homogeneous ideals.)

This implies that (RP) and (MP) can be resolved in sequential time s’(d” +
deg())°™ and parallel time O(nlog?s(d" +deg(f))) for zero-dimensional ideals.

(i) Let fi, ..., f; be a regular sequence in R. Then (RP) and (MP) can be solved
in sequential time (d" + deg(/))°" and parailel time O(n*log?(d" +deg(/))).

While this work was done, by analytical methods Berenstein and Yger [2] ob-
tained similar results for fields k& with characteristic char k=0.

We shall use an affine version of Noether’s normalization lemma. For k suffi-
ciently large we describe an algorithm which finds a k-linear transformation of the
indeterminates X),...,X, into new indeterminates X},...,X, such that for r:=
dimg, R/(f), ..., f;) the following holds:

) KXy X VO s L =10);

(i) K[X},..., X1 R/(f,, ..., f;) is an integral extension.
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The sequential complexity of this normalization algorithm is s’d°"" and its
parallel complexity is O(n*log?sd) (compare also [22,26,12]). ;
In particular r:=dimy, 4R/(f}, ..., f;) can be computed within these complexity

" bounds. (Observe that r is also the dimension of the algebraic variety of zeroes of

Jis -+ f5 in an algebraic closure of .) This is up to now the most precise complexity
result concerning the computation of the dimension of affine algebraic varieties
(compare [11] and [9]).

A homogeneous version of an effective Noether normalization lemma has been
given in [18] and is used there to calculate the dimension of projective varieties in
single exponential time.

In this paper we will freely use notions and facts from commutative algebra,
classical algebraic geometry, and Grébner (standard) basis theory. We refer the
reader to [1,30,20,8,15,25,7]. (The algorithmic notion of Grobner basis of
polynomial ideals was introduced in [5,6].)

Our proofs and algorithmic bounds are based on recent progress concerning ef-
fective versions of affine Hilbert Nullstellensitze in fields of arbitrary characteristic
[9,10,21,14,29]. First effective Nullstellensitze were proved by Lazard [23] (projec-
tive case) and by Brownawell [4] (affine case for fields of characteristic char kK =0).

1. Noether’'s normalization lemma from a complexity point of view

In this section we describe an algorithm which solves the problem of finding a
““Noether position”” for an (arbitrary) ideal 7 of the polynomial ring £[X), ..., X,]
in n indeterminates X, ..., X, over a field k. (For a Grébner basis approach to this
algorithm see [22,26].)

The input of the algorithm is:

-A set {f},...,f;} of generators of [ in k[X|, ..., X,] with

max (deg(f,))=d
l=su=s

(where s and d are arbitrary but previously fixed integer numbers).
-A field extension & C k’ such that

#(k)>d"(d"+1).

The output of the algorithm is:

- -Aset {X],...,X,} of k’linear forms in k'[X), ..., X,,] (variable transformation).
-An integer 0<r=<n (dimension). :
-A set {b,;: l=su=s, r+1=<j=n} of polynomials in £'[X,, ..., X,] (gencrating

integral dependence relations).

The properties of the ouzput data are the following:
kX, e X T =KX e K]



76 A. Dickenstein et al.
p 3

-The canonical morphism
KX, XS KX, X =KX 0 XV TR K

is a monomorphism.

-K'[X, .., X,)/IQK is integral over k'[X],...,X/] (with respect to the
monomorphism just mentioned).

~The degree of by, f, is at most d"(d"~"+1) (for u=1,...,s and Jj=r+l,...,n).
The polynomial g; := ¥, _,_ b,; f, involves only the variables X, ...,X,’,XJ' and is
““‘monic’’ in XJ i.e., deng(gj) =deg(g;)>0. (Thus g;=0 (mod /®4’) is an integral
dependence equation for X/ (mod I®K’) over k'[X],...,X/].)

The algorithm can be realized by an arithmetical network with inputs from k and
outputs from &’ which has size (sequential complexity) s’d © and depth (parallel
complexity) O(n*logsd). (For the notion of arithmetical network used here see
[16].)

Size and depth of this arithmetical network can be interpreted as sequential and
parallel complexities of our algorithm. Therefore we shall speak in the future only
about “‘sequential”” and ‘‘parallel”” complexities having in mind the concept of an
arithmetical network.

1.1. Notations. Let k be an arbitrary field and R:=k[X,,...,X,] be the
polynomial ring in n>1 indeterminates X,,..., X, over k. We denote by k£ an
algebraically closed field such that £ C k.

From now on let polynomials f, ..., f,€ R be given with

d:= max (deg(f,),3).
lsus=<s

Let 7:=(f},...,f;) be the ideal of R generated by f,, ..., f.. Finally, let k' be a
fixed subfield of & such that & is contained in k" and # (k')>d"(d" +1).

L.2. Definition. Let Z,,..., Z, be k-linear forms in R. We say that {Z,,...,Z,} is a
system of independent variables (with respect to /) if the two following conditions
are satisfied:

INK[Z,,...,Z,] =(0), )]
dimy, (R/1) = r=dimg,k(Z,, ..., Z,]. )

1.3. Remark. The condition (1) is equivalent to

The canonical morphism k{Z,,...,Z,]<.R— R/l is a
monomorphism. 3)

1.4. Definition. Let {Z),...,Z,} be a system of independent variables with respect
to 7 and let Y be a k-linear form in R. We say that Yis a dependent variable with
respect to {Z,,...,Z,} and /, if there exists a polynomial geklZ,,....,Z,,T], T be-
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ing a new indeterminate, such that g#0 and g(Z,,...,Z,, Y)e/l If g is monicin T
and g(Z,,...,Z,, Y)e ! then Y is called integral with respect to {Z,,...,Z,} and I.

1.5. Remark. Let r:=dimg,;(R//). Then
r=max{seNg: 3i,...,i,€[l,...,n] such that INk[X;,...,X;]=(0)}.

Taking into account Remark 1.5, we see that the problem of finding a system of
r independent variables can be reduced to (n/r) many zero-intersection tests. By
Proposition 1.7 below we see that such tests require only linear algebra over k (see
Remark 1.8).

1.6. Remark. Let fbe a polynomial of R belonging to rad(/), the radical of /. Then
there exists a representation

fdnz Z bufu 4

Isuss

with b,€ R and deg(b, f,)<d"(deg(f)+1).

Proof. Let F,F, ..., F; be the homogenizations of £, f}, ..., f; in k[X, ..., X,]. The
hypothesis ferad(/) implies that

XoF ecad(Fy, ..., F).
From [14, Théoreme 10], one obtains that (XOF)d"e(F[,...,Ii.). Thus, there exist
homogeneous polynomials By, ..., B;€ k[Xj, ..., X,] such that

(XoFY'= ¥ B,F,

Ilsus<s

and such that deg(B, F,) =d"(deg(f) +1). Putting X,=1, (4) follows. O

1.7. Proposition. Let {i,...,i,§ C[1,...,n). Write Y:=X, (1<!/<r). Let Ve A"
be the zero set of (f\, ..., f;) in the n-dimensional affine space A" over k. Then the
following conditions are equivalent

@ INkLY,,..., ¥,]#(0);

(b) Igek(Yy,..., Y] such that g+0 and g= Y ,_,_ b, f, with b,eR,

deg(b, f,) =d"(deg(V)+1)
where deg(V') is the degree of V defined by deg(V) := L deg(W)) if V= Uj W, is the
irreducible decomposition of V in A" (see [20, Remark 2)).

Proof. Assume that (a) holds. Let A" be the r-affine space over £. We consider the
(linear) projection map

n:A" > A",
& =& ..., Y()).
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The hypothesis (£} implies that 7(V)# A4, n (V) being the Zariski closure of #(V)
in A". From [20, Remark 4], one concludes that there exists fe k[A4] such that
f#0, deg(f)=deg(V) and f vanishes on n(V). By Remark 1.6, there exists a
representation

. T = T b, (*

lsuss
with buek'[X], .- X,], deg(b, f,) =d"(deg(V) +1). This shows that (b) has a solu-
. tion with coefficients in &.
For u=1,...,5 let R, be the k-linear subspace of R generated by all monomials
M in X, ..., X, with deg(M)=d"(deg(}) +1) —deg(/,). We consider the k-linear
monomorphism
D:R X---XR,—»R

Brssbs) w5 Y By
lsuss
Now (#) implies that (im @ Nk[Y,..., ¥,)® & #(0). Hence im @ Nk[Y,,..., Y] #
(0) and (b) follows. O

1.8. Remark. First note that deg(V)=<d" as a consequence of the Bezout inequali-
ty (see e.g. [20, Theorem 1 and Corollary 1]). The equivalence of conditions (a) and
(b) implies that we can effectively test whether /N k[Y;, ..., ¥,] #(0) holds. In fact,
taking into account the degree bounds in (b) and the estimate deg(V)<d", by com-
parison of coefficients one reduces the problem of deciding whether
INk[Y,, ..., Y,]#(0) to the Qroblem of deciding whether some homogeneous linear
equation system of size sd"™ xsd™ has a nontrivial solution. This can be done by
the algorithms of [28] and [3] in sequential time s’d°" and parallel time
O(n*log?sd). Repeating this test 2" times for all subsets of {.X,, ..., X,}, within the
same complexity order one finds a system of independent variables with respect to 7.

In particular, we obtain the following important

1.9. Coroliary (compare [11,9,18]). Let k be a field with algebraic closure k and let
Jir-n [s€kIX,, ..., X,] be n-variate polynomiais with d:=max, ., <s(deg(/f),), 3).
Let I'=(fy,....f,) and V:={Eek™ f,(&)=0,...,f,(£) =0}. Denote the dimension
of the algebraic variety V by dim(V).

Then dimg,, (k[X},...,X,]/)=dim(V) can be computed in sequential time
s’d") and in parallel time O(n*log>sd).

Let us consider a system {Z,...,Z,} of independent variables with respect to 7.
Let Ye R be a k-linear form. By Remark 1.5 Y is a dependent variable with respect
to {Z,,...,Z,}. We ask whether Y is integral with respect to {Z,,...,Z,}. By Pro-
position 1.11 below we see that this question can be decided with a test which re-
quires only linear aigebra over 4.

We need the following
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1.10. Lemma. Let WC.A" be an irreducible and closed subvariety of the n-dimen-
sional affine space A" over k. Denote by k[A"] the coordinate ring of A". Let
pC k[A"] be the prime ideal consisting of all fek[A"] vanishing on W. Suppose
that {Z|,...,Z} is a system of independent variables with respect Ito p. ;

Then, if a k-linear form Y k(A" is integral with respect to {Z;, s Z]}, there
exists a polynomial g€ k(Z],...,Z,, T, T being a new indeterminate, such that

(a) g is monic in T;

(v) &(Z),...,Z/, Y) vanishes on W and

(c) deg(g)=deg(W).

Proof. Let y denote the image of Y in kiW]=k[A")/p. The hypo{hesis on Y im-
plies that y is integral over K[Z], ...»Z]] with respect to the canonical monomor-
phism k[Zj, ..., Z/]< kK[W]. Let gek(Z},...,Z)IT] be the minimal polynomial of
y over k(Zj,...,Z;). Since k(Z),...,Z] is integrally closed, we see that ge
kl1Z},...,Z,T]. Moreover g satisfies (a) and (b). In order to verify (c) for this
minimal polynomial g, we consider the (linear) projection map

n:A"—»A“",

& = (Z{(&),, Z[(&), Y (&)

The hypothesis on Y implies that the restriction

ny: W—n(W)
is a finite morphism. Thus 7(W)=nr(W) is a hypersurface of A" defined by;a
polynomial A€ k[Z, ..., Z;, T], with deg(h) =deg(n(W))=deg(W) [20, ‘Lerr}mg ‘-]~
Therefore A(Z;, s Z/, ) =0. It follows that g divides 4. Hence deg(g) <deg(h) =<
deg(w). O "

1.11. Proposition. Ler A" be the n-dimensional affine space over k and let V' C A"
be the zero set of IRK, i.e.,
V={Zek" f(£)=0,....f(£)=0}.
Let {Z,,...,Z,} be a system of independent variables with respect to I. Assume that
a given k-linear form Y € R is integral with respect to {Z,,..-,Z,} and I. Then there
exists a polynomial gek(Z,,...,Z,, T] such that
(a) g is monic in T;
(b) deg(g)=d"(deg(V)+1);
(c) there exists a representation
&2y, Z,Y)= Y by

lsuss

with b, € R such that deg(b, f,) =d"(deg(V) + 1) for all 1su<s.

Proof. Let W,, ..., W, be the irreducible components of V. Fix %s .jsm. We put
W:= W, and we denote by p the prime idea} of all fe kK[4"] vanishing on W.
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Let y denote the image of Y in k[V] and ' its image in k[W]. We consider the
following commutative diagram of canonical morphisms:

kY] ————— k)
I

| |
kiz,..,7.] Kiz,...,z,1/p

E[zlli A Z{’]

where p“:=pNK[Z,,...,Z.] and where Z},...,Z, are K-linear combinations of
Zy, ..., Z, such that PNKIZ|,...,Z]], =(0) and such that K[Z,,..., Z,1/p° is integrai
over k[Z], ...y Z]] (such Z),...,Z/ exist by Noether’s normalization lemma).

Since t=dim(W), it follows that {Z; < Z/} is a system of independent
variables with respect to p.

The hypothesis on Y implies that y is integral over k(z, -y Z,]. Therefore y’ is
integral over K(Z,,...,Z,]/p and, a fortiori, over £[Z], --»Z/]. Lemma 1.10 im-
piies that there exists a polynomiai gek(z), .y Z, T] such that

-g is monic in 7,

-8(Z], ---»Z/, Y) vanishes on W,

-deg(g) <deg(W).

Writing Z], ---»Z/ as k-linear combinations of Z,,...,Z,, we obtain a polynomial
g€klZ,...,Z,, T] such that

-g; is monic in T,

-8/(Z,,...,Z,,Y) vanishes on w,

-deg(g;) <deg(W).

Now put f:= H,Sjs,,, gjek'[Z,,...,Z,, T]. This polynomial f verifies:

-f is monic in T,

-f(z, ---»Z,, Y) vanishes on v,

-deg(f) <deg(V).
By Remark 1.6 there exists a representation
S2ys 2, Y= T b, (x%)

Isuss

with b, e k[X, ..., X,], deg(b, f,) =d"(deg(V)+1) for all Isu=s. As in Proposi-
tion 1.7 a linear algebra argument completes the proof. []

As in Remark 1.8 the existence of a polynomial g satisfying Proposition 1.11
(@)~(c) can be tested in sequential time s’d°") and in parallel time O(n'log3sd).

Taking into account Remark 1.5, Propositions 1.7 and .11, we see that we are
in position to choose algorithmically a new order of X}, ..., X, such that:
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@) {X,,...,X,}is a system of independent variables with respect to I;

(i) X, ., -+, X}, are integral variables with respect to {X,..., X,} and I:

(i) X, 4, ..., X, are dependent (but not integral) variables with respect to
{Xi,....,.X,} and I.

The next step is to perform a changement of Xy, ..., X, in such a way that the
new variables satisfy (i) and (i) with p=n, (Then, we call Xis---, X, to be in
“Noether position’.)

Proposition 1.12 below will be useful in order to obtain complexity bounds.

1.12. Proposition. Assume that {Xi.... X} isa System of independent variapies
with respect to I, Then, given a k-linear Jorm YeR, there exists a polynomial
gEK[Xy,....X,,T), T being a new indeterminate, such that

(a) g#0, deg(g)<d"(deg(V') +1);

®) eXy, ., X, V)= 5, _,_ b, with bueR and deg(b, f,)<d"(deg(v)+1)
Jorall 1sux<s.

Proof. Consider the (linear) projection map
H:A"—*ArH
& = (X&), ... X(E), Y (2)).
The hypothesis implies that n(V)# A" By [20, Remark 4], there exists a
polynomial feE[XI,...,X,, T] with deg(f)sdeg(r[(V))sdeg(V) such that
F X onXecs Y) vanishes on V. Applying Remark 1.6, we obtain a representation
S X X, )= ¥ B, %

l=su=s

with b,,ek'[X,,...,X,,], deg(b,,j;)sd"(deg(V)+l). As in Proposition 1.7 a linear
algebra argument completes the proof. [J]

Similarly to Remark 1.8 one reduces the problem of finding a polynomial g satis-
fying Proposition 1.12 (@) and (b) to the problem of solving a linear equation
system. Using (28] and [3], this can be done in sequential time s7¢%" gpq in
parallel time O(n*log2sq).

1.13. Algorithm (compare [24] and [26]). Here we sketch the algorithm mentioned
in the beginning of this section.

Input: Siseees Sfs3 ACK’ such that #(A)>d"(d”+l)
Output: X, D ol - b, (I=suss, r+lsj<n)

(1) find {i,...,i} CIL,...,n] such that {Xi» ..., X, } is a system of independent
variables (see Remark 1.8) L

(2) rename X,, ---» X in such a way that X=X, X=X,

(3) find all integral variables among X, ., ..., X, (see Proposition 1.11)
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(4) rename X, ..., X, in such a way that the integral variables found in (3) are
X iproins Xy
) forp+1=<j=n
find gjek[Xl,...,X,, T verifying the conditions of Proposition 1.12 for
Y=X;
find G, .= maximal degree of homogeneous part of g;
find (4,,...,4,) €A G;(Ay, ..., 4, 1)#0
put X;:=X;+A4,X; (1=i=sr)

2. The membership problem in the case of an unmixed ideal

In this section we describe an algorithm which solves the membership problem
(MP) in the case of an unmixed ideal. This algerithm has simply exponential sequen-
tial and parallel complexity. Let the notations be the same as in Notations 1.1.

The ideal 7 is called unmixed if

dimg,(R/p) = dimyg, 3 (R/T)

for all associated primes p of the R-module R/I. Here dimg.(R/p) and
dimy,(R/I) denote the Krull dimensions of the rings R/p and R/I.

2.1. Remark. If 7 is unmixed, then for any field extension KCL, I®;L is un-
mixed too.

2.2. Theorem. Assume that I is unmixed. Let r:=dimg.(R/]) and let {X,,..., X}
be a system of independent variables with respect to I k' such that (R/DQ®K" is
integrai over k'[X,,...,X,] with respect o the canonical morphism (Remark 1.3
(3)). Let f be given in R. Let B:=1+max{deg(f),d+(n—r+ Dd"(d"~"+1)}.
Then the foilowing conditions are equivaleiit:
(a) fer;
(b) Ihek’'[Xy,...,X,] and p,,...,ps€ RQK’ such that
hf=Ti<uss Pulus
h#0,
deg(h) =dB*"~",
deg(p, f,)<B+dB*"~".

Proof. (b) = (a) Let hek’[X,,...,X,] be such that h+0 and hfel®k’. Let
IQk'=g,N---Ng, be an irredundant primary decomposition of I®K'.

Let p; :=rad(g;) be the radical ideal of g, (1=/=1). Thus {p;, ..., P} is the set of
associated primes of the R®@k’-module (R/I)®k’. Therefore dimg,(R®K")/
p))=rforj=1,...,t.Fix Isj=t Since (R/I)®k’ is integral over k'[X|, ..., X/], we
see that (R®k")/p; is integral over k'[X), ..., X,] too. Therefore p;Nk'[X),..., X/] =
(0). Hence h¢p;. Since hfegq;, we conciude that fegq;. Thus felI®K’ and,
a fortiori, fel.
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(@=(b) Let Y, |,..., Y, be k'-linear forms in R®k’ such that R®k’'=
k’[Xl)"'vxr’ yr+b“'1 Yn]

The hypothesis that (R/I)®k’ is integral over k’[X),...,X,] implies that
Y, .1.--, ¥, are integral variables with respect to {X),...,X,} (Definition 1.4).

Let r+1=<j=<n. By Proposition 1.11 applied to Y=Y}, there exists a polynomial
gek'lX,,...,X,, Y], g monic in Y; and such that

gi= Z bwj; (5)
l=su<s

for certain polynomials byj,...,b;e Rk’ with deg(b,; f,)<d"(deg(V)+1) for
B= LiieeySs

Let K:=k'(X}, ..., X,) be the fraction field of k’[X], ..., X,]. The hypothesis fe/
means that there exists a representation

f= ¥ af, a,eR(I=suss). (6)

Isu=<s

Fix a diagonal order in the set of monomials in Y,,,..., ¥,. Then {g,.,...,g,} is

a (Grobner) standard basis of (g,.y---,8.)K[Y;41,..., ¥,] with respect to this
order.

By Hironaka division in K[Y;,, ..., ¥,] we obtain representations

a,= Y c,g+d, (1su<s) @

r+l<j<n

where c¢,;,d,eK[Y,,\,...,Y,] and degy(d,)<(n-r)d"(deg(V)+1). Here degy
denotes the total degree in ¥, ..., ¥,.
Replacing (7) in (6) we see that
f=g¢+ ¥ 4f, (®)

Ilsuss
with ge(g,+1,---,8)KI[Y, ., ..., ¥,]. It follows that
degy(g)<B,,

where B, :=max{deg(f),d+ (n—r)d"(deg(V)+1)}.
Since {g,.y,..-,&,} is a standard basis of (g .}, .-, 8)K[Y+15..-, Y], & has a
representation

g= Y ug 9)

r+lsj<n

with v;€K[Y ,y, ..., Y], degy(v;g;) <degy(g)-
From (5), (9) and (8) we conclude that

=T “&f, (10)

I=sus<s

where ¢,:=F, oo, Vb, +a,€K[Y ..., Y] and degy(c,f)=<B,:=By+
d"(deg(V)+1). ?

Put C:=k'[X,,...,X;]. Foru=1,...,slet F, be the C-submodule of R®k’ treely



84 A. Dickenstein et al.

enerated by all monomials M in Y, ,,...,Y, with deg,(M)=<B, +degy(f,).
Similarly, let F be the C-submodule of R® &’ freely generated by all monomials M
in Y,, ..., ¥, with degy (M)<B,.
We consider the C-linear map

D FE--DF,BC-F,
(P15 D5y h) Ly Z puf hf.

isuss
Let
=r+ By
q::rank(F)=(n d 1)
. n—r
and

m:=rank(F, & @F,PC)= ¥ ( SR (f“))
Isuss \ n—r

We consider Me C?*"™, the matrix of @ with respect to the canonical bases just
introduced.

By [20, Lemma 7], there exists an upper-triangular matrix M e C?*"™ with the
following properties:

-All entries of M have degree bounded by d- min{q, m}:

-all ze C™ satisfy

M'z=0 iff M'z=0
(‘z is the column vector obtained by transposing the row vector z.)
Each ¢, of (10) has the form c¢,=p,/h for certain p,e R®k’ with
degy (p,f,) =B, and certain he C, h+0. Therefore (p,, ..., p;, h) € ker(®).

By taking coordinates with respect to the monomial bases considered, we con-
clude that there exists z=(a),...,@n_1,4) € C™ such that

M'z=0,
h#0.

(xkx)

Therefore no row of M is of the form (0, ...,0,¢) with c#0.
Taking this into account, we may assume without loss of generality that the vector
z=(ay,...,a, ,h) of (xx») satisfies:

max(deg a,, ..., deg a,,_,,deg h) <d- min(g*, m?),
M'z=0.

This shows that there exists (p;,...,P;, )€ ker(d) w1th h+0, degh)<d-
min(g’, m*)<d- B*"~" and deg(p,/,)<B, +d- min(g’m*)<B+d- BX"~D_ (Take
into account that deg(V)<d” " by Bezout’s inequality, [20, Theorem 1]y 0

Let 7 be unmixed and let fe R. Theorem 2.2 implies that the question whether f
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belongs to 7 can be decided in sequential time s’B°"” and parallel time
O(n*log*(sB)), where

B:=1+max(deg(/),d+(n—r+1)d"(d"~"+1)) = O(max(deg(/),d")).

To see this, we apply Algorithm 1.13 in order to obtain coordinates X, ..., X,
which satisfy the hypothesis of Theorem 2.2. Then we translate condition (b) into
a homogeneous linear system over k’. Using the algorithm of [28] and [3], we check
whether this system has a solution corresponding to the condition 4##0 in (b). This
can be done within the asserted time bounds.

Using arithmetical networks with entries from k and elements from k' as constant
operations [16] we obtain

2.3. Corollary. Let k be a field and let f,f,,...,f;€k{X},...,X,] be n-variate

polynomials with d:=max, < uss deg(fy,). Assume that I=(f,...,f;) is unmixed.
Then the problem of deciding whether f belongs to I is solvable in sequential time

s'max(deg(/),d")°" and in parallel time O(n*log*(s - max(deg(/),d")).

3. The representation problem in the zero-dimensional case

Throughout this section we will assume the following:

For the polynomials f, ..., f; of Notations 1.1 the Krull dimen-
sion of the quotient ring k[X,, ..., X,1/(f}, ..., f;) is less than or

equal to zero (i.e., we suppose # V< ). (11)
This is a particular case of unmixed ideals studied in Section 2. From Theorem 2.2
we obtain that any polynomial f belonging to (fy,...,f;) has a representation
f= X
Isuss

with single exponential bounds for the degrees of the coefficients a;, ..., q,. This
circumstance allows us to give a parallelizable algorithm for the computation of
Grobner bases with respect to any compatible order. Our algorithm requires only
linear algebra techniques over k. Moreover, we will show how any usual Grébner
basis algorithm can be changed into another one involving only computations with
polynomials of “‘small’”’ degree (see [9,8,2,13,17]; compare also [23,24,19] for the
case of homogeneous ideals).

3.1. Notations. Let any compatible order of the monomials in klXy,...,X,] be
given.

For fek[X,...,X,], f#0, we denote by Head(f) the maximum monomial oc-
curring in f. If Head(f)=AX"--- X/, for some A €k and some (q,, cees @) € NG,
we write Exp(f):=(ay,...,a,) and Le(f):=4. (N, denotes the set of natural in-
tegers, 0 included.) R
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Exp(f) is cailed the exponent and Lc(f) is called the ieading coefficient of f. For
a pair (f,f") of nonzero polynomials let Head(f, f") :=lcm(Head(f),Head(f")) be
the lowest common multiple of Head(f) and Head(f"’), with leading coefficient
equal to Le(f)Le(f).

For the monomials ¥ and y’ given by

v - Head(f) =y’ Head(f") =Head(f, /")
let deg(f,f’):=max{deg(w - f), deg(y’- f)} and S(f£f):=w- -f—y’' f'. We call
S(f,f") the S-polynomial of f and f.

3.2. Lemma. Let F= {f‘,’,...,jf} be a set of polynomials generating an ideal
ICklX,, ....,X,). Let hel and DN, be such that there exists a representation

h= ¥ oSy (12)

Isuss

with p,e k{X,,...,X,] and dcg(puj;))stor u=1,...,s. Let S"(F):=F and, for
k>0, let S¥(F) be the set obtained from S*-YF) as follows:

SYF) =S FVULSUS): £,./€eSU(F) and deg(f, f)=<Dj}.
Then there exists Ne N and fe S™(F) such that
Exp(h) € Exp(f) + Ng .
Proof. Our rather technical and indirect proof follows the ideas of [15,25] (see also
[5,6]). Thus we will suppose that for all x>0 and all fe S¥(#):
Exp(h) & Exp(f) + Ng. (13)

We consider all representation families & = (@; f;);c; such that
-I is a finite set of indices;
—for all i€/, ¢, is a monomial and f;€ SX(#) for some ke Ng;
~h= E,'El oS-
For each representation family & = (¢, f;),c; we introduce the following notations

Head(R) := malx (Head(g; /),

J(R):={iel: Head(¢; f;) =Head(R)},
(R):= #J(R),
deg(#):= max {deg(¢; /)}.
JeJ(R)
From (12) we see that the set of representation families # with deg(#)=<D is not
empty. Thus there exists a representation #,=(¢;f;);c;, having the following

properties:
(i) deg(#,)=miny 4(deg(R)) <D,
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(ii) Head(#,) = min{Head(): deg(#)=deg(#£,)},
(i) 7(R,)=min{r(R): deg(R) =deg(R,) and Head(R) = Head(R,)}.
Claim. 7(#,)=2.

Proof. If 7(Ry)<2, then J(Ry)={iy} for some iyel,. Therefore Head(h)=
Head(E, ., ¢:/))=Head(¢, f;). Hence Exp(h)eExp(f,)+Ng. This contradicts
(13): .

From our claim, we conclude that there exist, at least, two different indices
LkeJ(R,). Let §:=gcd(¢,, @;) be the monic greatest common divisor of ¢; and
@,. Let w and w’ be the monomials verifying

Oy=¢, and Oy’'=g,.
Let a:=Lc(¢, f;) and b:=Lc(p; fy)-
Thus, for some A€k,

wHead(f;) =ab ™' y'Head( f;) = AHead( ), fi),

whence
ASUn S =wfi—ab™ w'fy
and
O1fi—ab™' oy [ =A0S ([, fi)-
Moreover,
deg(yf;) = deg(Owf)) = deg(¢, f;) = deg(R,)
and

deg(y fy) =deg(Ow f) = deg(mﬂ) =deg(R,).

Thus f,, f,e SY(F) implies S(fir /1) €SV (). Therefore we obtain a new repre-
sentation family #,: the one induced by the equality
fi= b3 o fi+U+ab Vo fiv L 0 fi+ 405/ S0
JeJ(Ro)— {Lk} i€ly—J{ARg)
Since Head(A6S(fi,f;)) <Head(g, f;) =Head(#,), we conclude that deg(#;)=
deg(R,), Head(#)) <Head(R,) and J(R,) CJ(R,) — {/}. This contradicts (i), (ii)
or (iii). O

We conserve Notations 1.1.

3.3. Theorem. Let be given a compatible order of the monomials in k[ X\, ..., X,].
Then the following is true:

(i) Any reduced Grobner basis of I with respect to the given order contains at
most d"™ many polynomials. Moreover the reduced Grobner basis of I verifies that
all of its polynomials have total degree bounded by nd".

(ii) Let #=1{hy,....h,} be the reduced Grébner basis of I. For each 1<j<t
there exists a representation
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hj= Y

D
s
Isuss

with p,j€ R and deg(p, fy=nd¥ +d" +d.

(iii) The stair E(I):={Exp(f): f€l, f* 0} and the reduced Grobner basis of I can
be computed in sequential time: s7d°"), parallel time: O(n4logzsd).

(iv) The output of the following algorithm is the reduced Grobner basis of I:

Input: fi, -, fs
B:={(ij): 1si<j=s}
=S
while B0 do
choose (i,j)eB
if deg(f, f)=nd” +d"+d

then ¢:=t+1
B:=BU{(Gn: 1sist-1}
Ji:=SUn )
B:=B—{(i,J)}

end

Proof. We follow the general lines of the proof of [9, Theorem 20]. First observe
that dimg(R//)=d" (see [9, Theorem 17}, for an elementary proof of this well-
known fact). Thus, for each 1<j=<n, there exists g;€k[X;] such that

giel and deg(g;)=d".
By Remark 1.6 we obtain a representation

= ¥ byl
l<suss
with deg(b,,; f,)=d"(deg(g)+ 1.

Fix an additional auxiliary diagonal order in the set of monomials of R. Then
{g‘,’n,...,gz"} is a Grobner basis of (g‘,’",...,gﬁ") with respect to this auxiliary
diagonal order.

@) Let #=1{hy,...,h} be the Grobner basis of 7 with respect to the given
order. We see that, for each 1<j<n, there exists an element in #, say h;, such
that Head(h;) divides Head(g;). Thus Head(lzj)szD’ for some Djsd". Now the
hypothesis that # is reduced implies that for each A€ X and for each 1sj<n,
deng(h)sDjsd". Now it is clear that r<d" .

Since 4¢is reduced and gj, ..., g, are in /, Hironaka division of he by g,---18n
leaves h unchanged, if A is different from gy, ..., 8- Therefore the degree of the
monomials appearing in 4 is bounded by nd".

(i) Let h:=h;, 1<k=t. Write h=F,_,< a,f, with ay,...,a;eR. We divide
gy eoes s DY {g‘,’n,...,gﬁ”} with respect to the auxiliary order. Thus

= L&
a= YL c,g +d,
i=sjsn
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with deg(d,)<nd 2 Therefore

h= Z (\ Z ngfq+dL>jZ.
l<uss \lsj=n
Let g:= leus_v lejsn Cy/gf"fw
'From ge(gf,...,g%") and deg(g)<nd* +d we conclude by Hironaka division
with respect to the auxiliary order that there exists a représentation
g= Y b;g with deg(b;g] ) =nd+d.
1<j=n !
Therefore

h= % <Z bjbw+5u>ﬂl‘

I<u<s \ls<j=<n

It is easy to see that deg((¥, <<, b; bw-+a“u)fu)snd2"+d"+d. This implies asser-
tion (ii).

(iii) Immediate from (i) and (ii).

(iv) Immediate from (ii) and Lemma 3.2. O

From Theorem 3.3 one deduces easily

3.4. Corollary. Let k be a field and let f, f,...,f;ek[X),...,X,] be n-variate
polynomials with d:=max, ., (deg(f,)). Assume that I=(f,,..., f;) has dimen-
sion less than or equal to zero (i.e., dimg, wk[X|,....X,]/1<0).

If fel, then a representation f=Y,_,.,a,f, can be found with deg(a, f,) <
nd* +d" +d+deg(f) in sequential time s'(deg(f)+d™)°"™ and in paralle? :ime
O(n*log?s(deg(f) +d")).

Within the same time bounds it can be decided whether f belongs to I.

4. The membership problem in the case of a complete intersection ideal

In this section we describe an efficient test for the membership problem (MP) in
the case of a complete intersection ideal. This gives another algorithmic solution of
(MP), different from the one described in Section 2. Let us assume the following

The polynomials f, ..., f; from Notations 1.1 form a not empty
complete intersection in A", i.e., V:i={feA™ fi(&)=0,...,
[:(&)=0} is not empty and has pure dimension n—s. (14)
(Here A" denotes the n-affine space over the algebraic closure k of k.)
Let the notations be the same as in Sections 1 and 2. Using the tools developed

- in Section 1, we are going to construct a set {Xj,...,X,} of k“linear forms in

R®k’ and polynomials 4,g,, ...,g,€ R®k’ with the following properties:

() K'[X], .., X1 =KXy e X

(ii) For each extension field k'C L and for each polynomial fe L [X], RS Al
feIRL if and only if Afe(gy,...,g)L[X],.... X,].
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(iii) The polynomials g, ...,g form a Grobner basis of (g, ..., &) with respect
to the diagonal order induced by X, >--->X/. (Thus the condition Afe(gy,..-, &)
is easy to check.)

(iv) deg(h)=<s(deg(V)+1)d".

(v) For each 1 <j<s, giek'[X}, ..., X, o X, .,
(deg(V)+1)d".

(Thus condition (iii) follows from condition (v).)

] and degy-

n-s+j

(g;)=deg(g))=

4.1. Theorem (see also [12]). Ler {X|,...,X,} and {b,;: | <y, j<s} be the output
data of the algorithm of Section 1, applied to the sequence fi, ..., f;. For each
l<j<ss let g, _lsuq by fu-

Then {X,, ..., X} satisfies condition (i) above and the polynomials h:= det(by;)
and g, ..., 2 satisfy conditions (ii), (iii), (iv) and (v).

Proof. The properties of the output data of the algorithm of Section 1, imply that
conditions (i), (iv) and (v) are satisfied. As we have observed already, condition (iii)
is a consequence of condition (v). Another consequence of condition (v) is that
g, ..., & is a regular sequence in k'[X{,...,X,]. Therefore condition (ii) follows
from Lemma 4.2 below. [

2. Lemma. Let R be a Noetherian commutative ring. Let f\, ..., f; and g, ..., &
be two regular sequences in R. Assume that there exists a matrix Be R*** transfor-
ming the vector [ f,, ..., f;] into [gy, ..., &, i.e., assume that a matrix equation

(g1 -2 &1 =f1s--n S51B (15)

holds for some Be R*™".
Then, for each feR, the following statements are equivalent:
(@) fe(fir-- JOR;
(ii) (det B)fe(gy, ..., &)R.

Proof. (i)= (ii) Let feR be such that there exist a,...,aq,€ R with f=
a, fi+ - +a.f,. Thus f=[f,,....[;]-'[ay, ..., a], where '[aj,...,a] is the column
vector obtained by transposing the row vector [ay, ..., a]. Let adj(B) € R*** be the
adjoint matrix of B. From (15) we obtain that

lg), ---» &;Jadj(B) = (det B)([f}, .-, fs]-
Therefore

{g1,.--»&ladj(B)ay, ..., a] = (det B) f.
This implies (ii).
(ii) = (i) The proof proceeds by induction on s.
Case s=1. In this case BeR, g, =f\B and det B=B. Let feR be such that
Bf=g,a for some aeR. Multiplying by f;, we obtain g, f=g,fia. Since g; is
regular in R, this implies f=fa.
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Case s>1. Let feR be such that (det B)fe(g,...,&)R. The hypothesis that
fis-e-sSs and gy, ..., g are regular sequences implies that each associated prime ideal
of (fiy...,f:)R is a minimal prime over both ideals (f;, ..., ;)R and (g, .-, &)IR.

Thus, in order to show that fe(f;,...,f;)R, it is sufficient to consider the case
in which R is a local ring with maximal ideal rad(f;, ..., f;) =rad(gy, .--,&). In this
case, there exist Ne N and a matrix Ce R*** such that

U fM1=1g1 -0 8C.

Therefore [fl . f ]—[fl,. ,f:]BC. Since we already know that (i) = (ii), we
conclude that (det BC)fe (f 3 giaia f,N )R. Hence the proof can be reduced to the
case in which g, —f| — —fx‘V In this case the assumption (15) has the form

UN oo SN = finen fiIB. ' (16)

Let ¢j,...,¢; be the cofactors of B along its last row. Thus, if By is the
(s—1)x (s— 1) matrix obtained by removing the last row and the last column from
B, we see that ¢;=det By.

Let R:=R/f,R. For any element a € R denote by a the residual class of a in R.
Let B, be the image of By in R¥~V*5~1 One verifies immediately

R reend = e Te—i1By (n

Now we show that (det By)fe (7, ..., /i)

Smce B'[cy, ..., ¢ ="[0, ..., 0,det B], equation (16) 1mphes that clf, +
,f "= (det b) f,. Therefore (det B— csj\ l)jje(jl,.. »fs ). Hence ¢ f]3 e
(fY, ... fY). Thus there exist @y, ds eR such that (¢, f—a, f,) SN -alfl
. lf . The regularity of f‘ y ,.f. implies that ¢, f— zz,fyes(fl el l),
i.e., «_s]'e(f1 esisdi)s This flﬂlbht,s the proof of (det By)fe(FY, ..., FiY ‘)

From the inductive hypothesis we conclude now that fe(fi, ..., /s—1), whence

Felfis-=lz). B

4.3. Corollary. Let k be a field and f,,...,[,€kiX),...,X,] be n-variate poly-
nomials which form a complete intersection in A". Let [:=(f\,....f;) and let
feklXp . X,).

Then it can be decided in sequentiai time (d" +deg(/)°'™ and in parallel time
O(n*log?(d" + deg(f)) whether f belongs to I.

Proof. Apply the algorithm described in Section 1 to the sequence fj, ..., f;. Com-
pute A,g,,...,& of Theorem 4.1. For deciding whether f belongs to I test whether
hf belongs to (g,,...,&,) using (parallelizable) Hironaka division. The complexity
bounds are immediate. [

5. The representation problem in the case of a complete intersection ideal

In this section we shall assume that the complete intersection condition (14) of
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Section 4 holds. We are going to describe an algorithmic solution of the representa-
tion problem (RP) for this case. Our algorithm has simply exponential sequential
and polynomial parallel complexity. This yields, in particular, a new algorithmic
solution of (MP) different from the one described in Section 4. It is also parallel-
izable and requires only linear algebra techniques over k.

In the sequel we shall use the same notations as before. r

5.1. Theorem (compare [8.2]). Let fe R be given. Then the following conditions
are equivalent:

(i) fer;

(ii) there exist a;,...,a,eR such that f= Licyss @fy and degla,f)=d*+
deg(f) for 1=sus<s.

Proof (Sketch). (i) = (ii) The proof is essentially the same as the proof of {14,
Theéoreme 1]. Thus we shall point out oniy the (slight) modifications one has to ap-
ply. We shall also adopt the notations introduced in the proof of Théoreme 1
(loc.cit.). From the five steps (‘‘étapes’’) which subdivide the proof of Théoréme 1
(loc.cit.) we need only the second, the third and the fourth. The first step (‘‘lére
étape’’) is obsolete since our polynomials f, ..., f; form a regular sequence.

Let Fek[X), ..., X,] be the homogenization of fand let G, ..., G,e k[X,, ..., X,]
be the homogenizations of £}, ..., f,. As in the proof of Théoréme 1 (loc.cit.), for
I=i<s let B; be the intersection of the primary ideals belonging to (Grsnsza'Gy)
whose radical doesn’t contain Xj. The condition f€ [ implies XONFE (Gy, .-, G) for
some NeNy. Thus Fe B,.

The second and third step (‘‘2éme’” and ‘‘3&éme étape’’) of the proof of Théoréme
1 (loc.cit.) remain unchanged.

The fourth step (‘‘4éme étape’’) must be modified as follows:

For i =i<siet/,c, b, d;e N, be defined as in the proof of Théoréme 1 (loc.cit.).
In the same way as it is done there, inductively one constructs a sequence
R, R;_y, ..., R, of homogeneous polynomials such that, for i=s,s—1,...,1:

(@) RieB;,

(b) deg(R;) =d;+deg(F),

(©) R-X{Fe(G..,,...,G,).

(Note that for i=s (c) implies that R, must be equal to F.)

For i=1 one obtains that

R, - X{'Fe (G, ...,G,).

Since R, € B,=(G)), it follows that X§"Fe(G,,...,G,). Taking into account that
d\=<d°*, one finishes the proof representing Xé’F as a homogeneous linear combina-
tion of (G, ..., G;) and specializing X, to 1. [J

For a more detailed proof we refer the reader to [8].
From Theorem 5.1 one deduces easily
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5.2. Corollary. Let k be a field and let f,, ..., f,e kX, ..., X,] be n-variate poly-
nomials with d :=max, ., . ; (deg(f,)). Assume that f,, ..., f, is a regular sequence in
k[X,...,X,].

If fe(f,....[;), then a representation f= Yisuss Gty With a,eklX;,...; X,)
and deg(a, f,)=d’+deg(f) for 1=u<s can be found in sequential time (dn+
deg())°™ and parallel time O(n*log*(d" + deg(f)).

Remark. The reader should observe that Coroilary 5.2 does nor imply that the con-
struction of a Grobner basis for any complete intersection ideal and any monomial
order can be done in single exponential space (and time). In fact, one easily derives
a counterexample from Mayr-Meyer’s ideal (see [27]).
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