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Abstract

We prove upper bounds on the order and degree of the polynomials involved in a resolvent representation of
the prime differential ideal associated with a polynomial differential system for a particular class of ordinary
first order algebraic-differential equations arising in control theory. We also exhibit a probabilistic algorithm
which computes this resolvent representation within time polynomial in the natural syntactic parameters
and the degree of a certain algebraic variety related to the input system. In addition, we give a probabilistic
polynomial-time algorithm for the computation of the differential Hilbert function of the ideal.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of a resolvent representation of a prime differential ideal in a ring of differential
polynomials was introduced by Ritt (see [28,27]) as a tool towards an algebraic elimination theory
in the realm of differential equations, although it can be traced back to the work of Kronecker
(see [24]). Roughly speaking, a resolvent representation of a prime differential ideal provides
a parametrization of the generic zeros of the ideal by the general zeros of a single irreducible
differential polynomial. This construction can be interpreted in several contexts, including the
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primitive element for field extensions, the cyclic vector for linear first order differential systems,
and the shape lemma in algebraic and analytic geometry.

In order to illustrate the notion of resolvent representation, let us consider the following simple
differential algebraic system (�) consisting of four equations in the four unknowns X1, X2, X3, U

(see [29, Section 4.4.2] or [6]):

(�) :=

⎧⎪⎪⎨⎪⎪⎩
Ẋ1 = �X1

Ẋ2 = �X2

Ẋ3 = �X3 + UX1
Y = X2 + X3

where �, � ∈ Q, the variable Y is regarded as a parameter and the system is considered over the
ground differential field Q(t) equipped with the usual derivation t ′ = 1. Set � := X1 + tX2.
Then, all the variables appearing in (�) can be written, using the equations of the system and their
derivatives, as rational functions in Q(t, Y, Ẏ )(�, �̇):

X1 = (1 + t�)� − t �̇,

X2 = �̇ − ��,

X3 = Y − �̇ + ��,

U = (� − �)�̇ + (�2 − ��)� + Ẏ − �Y

−t �̇ + (1 + t�)�
.

In addition, � verifies the differential equation

�(2) − 2��̇ + �2� = 0,

which is called the minimal equation for �. The set consisting of the irreducible polynomial
giving this minimal equation and those providing the rational identities above is called a resolvent
representation of the system (�) and � its associated primitive element (for more examples of
resolvent representations see [5]).

The present paper deals with the computation of resolvent representations of prime differ-
ential ideals associated with certain differential systems coming from control theory (see, for
instance, [6,7]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)

Y1 = g1(X, U, U̇)
...

Yr = gr(X, U, U̇)

where f1, . . . , fn ∈ k[X, U ] and g1, . . . , gr ∈ k[X, U, U̇ ] are polynomials in the variables
X := {X1, . . . , Xn} and U := {U1, . . . , Um} with coefficients in a zero-characteristic differential
field k and total degrees bounded by an integer d , and Y := {Y1, . . . , Yr} is another set of
variables. The variables X, U are the unknowns of the system, while the variables Y are regarded
as parameters. Given a differential equation system as above, we consider the prime differential
ideal � generated by the polynomials fi − Ẋi , i = 1, . . . , n, and gj − Yj , j = 1, . . . , r , in the
differential polynomial ring k{Y, X, U}.
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We prove the existence of a resolvent representation for the ideal � consisting of polynomials
which involve derivatives of order at most 2n + 2r and whose degrees are bounded by the degree
of the algebraic variety V defined by the input polynomials and their derivatives up to order
2n+2r −1 (see Theorem 36). The Bezout inequality implies that deg(V) can always be bounded
by d2(n+r)2

.
In addition, if k = Q(t), we construct a bounded error probability algorithm which computes

a resolvent representation of �. If the input polynomials are given by a straight-line program of
length L over Q (see Section 2.2 for the definition of this data structure), the complexity of this
algorithm is linear in L and polynomial in n, m, r, d and deg(V) (see Theorem 48). We remark
that the upper bound for deg(V) due to the Bezout inequality leads to a single exponential worst-
case complexity bound for our algorithm. The error probability of the algorithm is controlled by
means of the Zippel–Schwartz zero test and degree upper bounds for the polynomials giving the
genericity conditions under which our algorithm works.

As a byproduct, we present a probabilistic algorithm for the computation of the differential
Hilbert function of the ideal � within complexity polynomial in n, m, r, d and linear in L (see
Theorem 26), extending the results in [26] to positive-dimensional situations.

Our overall strategy consists in translating a differential (non-noetherian) problem into
an algebraic (noetherian) one. In this sense, some finiteness results on characteristic sets of
differential ideals appearing in [30,29] play a fundamental role. In a first step, we compute a
differential transcendence basis of the differential field extension induced by our system in
order to turn to a zero-dimensional differential situation, which is achieved by applying
some techniques described in [26]. Then, we give an effective and algorithmic version of
Seidenberg’s proof of the existence of a primitive element (see [34]) in our situation, reducing
the problem to the computation of an eliminating polynomial in an algebraic-geometric
context. Finally, we apply an elimination procedure based on [17,31] to make our main
computations.

The approach to differential polynomial equation systems through resolvent representations has
been known to be effective since its origins in [28]. Ritt’s treatment of the subject as well as its
subsequent generalizations (see [5,4]) are based on rewriting techniques, namely Gröbner bases
and characteristic sets. Even though a single exponential complexity upper bound was proved
in [9] for the computation of a resolvent representation using these methods in the algebraic
(non-differential) context, no complexity analysis is presented in any of the works concerning its
differential counterpart. However, the complexity results on the computation of characteristic sets
in the differential setting given in [30] seem to yield single exponential complexity bounds for a
probabilistic algorithm computing a resolvent representation (see [4]) for the specific systems we
consider.A different approach to effective elimination over ordinary differential fields can be found
in [15], where a general quantifier elimination procedure with doubly exponential complexity
bounds is exhibited.

We point out that our algorithms do not require the computation of Gröbner bases or char-
acteristic sets. Based on the computation of algebraic eliminating polynomials, our approach
enables us to obtain complexity estimates in terms of a geometric invariant, which are more pre-
cise than those depending only on syntactic parameters (see Example 38). Complexity bounds
depending on this kind of parameters appeared before in several algebraic elimination procedures
(see, for instance, [13,17,14,12]). We observe also that, in terms of the parameters n, m, r, d, the
complexity of our algorithm is of order (nmr)O(1)dO((n+r)2), improving the complexity estimate
(n + r)O((n+m)(n+r))dO((n+m)3(n+r)3) of the rewriting procedure presented in [30, Theorem 28]
when applied to our particular equation systems.
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We hope that our techniques and results would contribute to the symbolic treatment of systems
where the parameters Y ’s are replaced with given functions. We also expect that these results
could be extended to more general cases such as partial derivative equation systems or positive
characteristic differential fields (see [35]).

The paper is organized as follows: in Section 2, we recall some basic notions and results from
differential algebra and we present the algorithmic model we will adopt. In Section 3, we in-
troduce the differential equation systems we will consider and we show some elementary facts
about them. Section 4 deals with the computation of the differential Hilbert function of the ideal
associated with the system and of a differential transcendence basis of the induced differen-
tial field extension. In Section 5 we recall the notion of a resolvent representation of a prime
differential ideal and we prove upper bounds for the orders and degrees of the involved polyno-
mials. Section 6 is devoted to the algorithmic computation of resolvent representations. Finally,
in Section 7 we present a slight generalization of the algorithmic results stated in the previous
sections.

2. Preliminaries

This section gathers some basic notions from differential algebra that will be needed throughout
the paper and presents the algorithmic model and the data structure we will use.

2.1. Differential algebra

We recall in this subsection some definitions and basic facts about differential rings and fields.
For a more detailed account of the subject, we refer the reader to [28,21] (see also [20]).

2.1.1. Differential rings and fields
A derivation � of a ring A is an additive map � : A → A satisfying the Leibniz rule �(a · b) =

�(a) · b + a · �(b) for all a, b ∈ A. A ring (respectively, a field) equipped with (at least) a
derivation � is called a differential ring (respectively, a differential field). We will work over rings
and fields equipped with a single derivation, that is, ordinary differential rings and fields, and in
the characteristic zero case. If � is an element of the differential ring (A, �), �(�) will be denoted
by �̇, and for i�2, �i (�) will be denoted by �(i).

Let A be a differential ring. An ideal I of A is a differential ideal if �(a) ∈ I for every a ∈ I.
If � is a subset of A, the differential ideal generated by � (that is, the minimal differential ideal
of A containing �) will be denoted by [�].

Given a differential field (K, �), we can construct the ring of differential polynomials in the
indeterminates X1, . . . , Xn over K , which we denote K{X1, . . . , Xn}, by considering the com-
mutative polynomial ring over K in the infinite set of indeterminates {X(i)

j , i ∈ N0, 1�j �n}
and extending the derivation of K by letting �(X

(i)
j ) = X

(i+1)
j . We will write X := {X1, . . . , Xn}

and, for every i ∈ N, X(i) := {X(i)
1 , . . . , X

(i)
n }. For a polynomial p ∈ K{X}, we define the order

of p with respect to Xj as ord(p, Xj ) := max{i ∈ N0 : X
(i)
j appears in p}, and the order of p

as ord(p) := max{ord(p, Xj ) : 1�j �n}.
A differential field extension F ↪→G consists of two differential fields (F, �F ) and (G, �G) such

that �F is the restriction to F of �G .
Let F ↪→G be a differential field extension.An element � ∈ G is said to be differentially algebraic

over F if the family of its derivatives {�(l)}l∈N0 is algebraically dependent over F ; otherwise, it
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is said to be differentially transcendental over F . The differential extension F ↪→ G is said to be
differentially algebraic if every element of G is differentially algebraic over F . Given a subset �
of G, F〈�〉 will denote the minimal differential subfield of G containing F and �. A subset � of G
is differentially algebraically independent over F if the set {�(l) : � ∈ �, l ∈ N0} is algebraically
independent over F , and it is called a differential transcendence basis of F ↪→ G if it is a
minimal subset of G such that the differential extension F〈�〉 ↪→ G is differentially algebraic. All
the differential transcendence bases of a differential extension F ↪→ G have the same cardinality
[21, Chapter II, Section 9, Theorem 4], which is called the differential transcendence degree of
F ↪→ G and will be denoted by difftrdegF (G).

Let K be a differential field, let X be a set of differential indeterminates (that is, a differentially
algebraically independent set) over K and let I ⊂ K{X} be a prime differential ideal. A subset
W ⊂ X is a maximal independent set modulo I if I ∩ K{W } = 0 and I ∩ K{W, Xj } 	= 0 for all
Xj /∈ W . Let us observe that a maximal independent set modulo I is a differential transcendence
basis of the differential extension K ↪→ Frac(K{X}/I). Thus, we define the differential dimension
of the ideal I, denoted by diffdim(I), as the transcendence degree of this extension or, equivalently,
as the cardinality of a maximal independent set modulo I.

2.1.2. Rankings and characteristic sets
Let K be a differential field and let X be a set of differential indeterminates over K . A ranking

on K{X} is a total order 
 on the set �X := {X(l) : l ∈ N0} satisfying u̇ 
 u for every u ∈ �X

and u̇ 
 v̇ if u 
 v for u, v ∈ �X. A ranking on K{X} is an orderly ranking or derivation
ranking if X

(r)
i 
 X

(s)
j for r > s, and it is an elimination ranking if X

(r)
i 
 X

(s)
j for i > j . If

Y and Z are two sets of differential indeterminates and 
Y and 
Z are rankings on K{Y } and
K{Z}, respectively, the induced elimination block ranking with Z?Y is the ranking on K{Y ∪Z}
defined by the conditions that any element of �Z is greater than any element of �Y and two
elements of �Y (respectively, �Z) are ordered according to 
Y (respectively, 
Z).

Assume that a ranking on K{X} is fixed. Let p ∈ K{X} \ K . The leader of p, denoted by
�(p), is the greatest element of �X appearing in p. The leading coefficient of p in the variable
�(p), denoted by Ip, is called the initial of p, and Sp := �p/��(p) is the separant of p. If �(p)

is a derivative (possibly of order 0) of the variable Xj , then Xj is called the leading variable
of p, and it is denoted by vp(p). A polynomial q ∈ K{X} is reduced with respect to p if
deg�(p)(q) < deg�(p)(p) and no proper derivative of �(p) appears in q.

A subset A ⊂ K{X} \ K is an autoreduced set if every element p ∈ A is reduced with respect
to all the elements of A \ {p}. If A = {A1, . . . , Ar} ⊂ K{X} \ K is an autoreduced set, for
every differential polynomial f ∈ K{X}, it is possible to obtain, by means of differentiations and
pseudo-divisions, a differential polynomial g ∈ K{X} reduced with respect to A (that is, reduced
with respect to every element of A), and non-negative integers �1, . . . , �r , �1, . . . , �r , such that

I
�1
A1

S
�1
A1

. . . I
�r

Ar
S

�r

Ar
f − g ∈ [A1, . . . , Ar ] (see [21, Chapter I, Section 9, Proposition 1]).

A characteristic set of an ideal I ⊂ K{X} is an autoreduced subset C of I with the property
that no element of I is reduced with respect to all the elements of C.

It follows from the definition that the leading variables of the elements of a characteristic set
are pairwise different. If C = {C1, . . . , Cr} is a characteristic set of a differential ideal I, the
separants SCj

and the initials ICj
do not lie in I. Moreover, if I is a prime ideal, the variables

that are not leading variables of any element of C form a maximal differentially independent set
modulo I. Furthermore, if H := ∏r

j=1 ICj
SCj

, the reduction process mentioned above implies
that I coincides with the saturation [C] : H∞ := {f ∈ K{X} : Hnf ∈ [C] for some n ∈ N0}.
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More precisely, it can be shown that if f ∈ I is a differential polynomial with ord(f, vp(Cj ))� l

for every 1�j �r , then f lies in the polynomial ideal (C
(k)
j ; 1�j �r, 0�k� l) : H∞ of K{X}

(see [28, Chapter I, Section 6]).

2.1.3. Differential Hilbert function
Definition 1. Let K be a differential field and let I be a prime differential ideal of K{X}. The
differential Hilbert function HI,K : N0 → N0 of I with respect to K is defined as

HI,K(i) = trdegK

(
Frac(K[X, . . . , X(i)]/I ∩ K[X, . . . , X(i)])

)
.

The behavior of this function resembles that of the standard Hilbert function from algebraic
geometry: if {C1, . . . , Cr} is a characteristic set of a prime differential ideal I for an orderly
ranking, for every i� max{ord(Cj ), 1�j �r}, we have

HI,K(i) = diffdim(I) (i + 1) + ordK(I),

where ordK(I) := ∑r
j=1 ord(Cj ) (see [21, Chapter II, Section 12, Theorem 6]). Let us observe

that the equality holds, in particular, for every i�ordK(I).
The integer ordK(I), which is called the order of the ideal I, is an invariant of I: it does not

depend on either the characteristic set or the orderly ranking. Combining [29, Proposition 4.1.2]
and [5, Theorem 4.11] we have the following well-known estimate:

Proposition 2. Let I = [f1, . . . , fs] be a prime differential ideal of K{X} generated by
polynomials f1, . . . , fs ∈ K[X, . . . , X(l)] (that is, ord(fj )� l for every 1�j �s). Then,
ordK(I)� l (#{X} − diffdim(I)).

2.2. Data structures and algorithmic model

The algorithms we consider in this paper are described by arithmetic networks over the field
Q. An arithmetic network is represented by means of a directed acyclic graph. The external nodes
of the graph correspond to the input and output of the algorithm. Each of the internal nodes of the
graph is associated with either an arithmetic operation in Q or a comparison (= or 	=) between
two elements in Q followed by a selection of another node.

We assume that the cost of each operation and comparison is 1 and so, we define the complexity
of the algorithm as the number of internal nodes of its associated graph. We will make use of
some well-known subroutines to deal with polynomials and matrices. As our interest is mostly
theoretical, it will be sufficient for us to apply the more naive procedures. For more advanced
complexity results see [2] or [3].

Our algorithms work (that is, they compute the desired output) under certain genericity condi-
tions depending on parameters whose values are chosen randomly. In this sense, we say that they
are probabilistic. More precisely, each genericity condition is induced by a non-zero multivariate
polynomial F (not necessarily explicitly given) such that every a with F(a) 	= 0 leads to a correct
computation. Probability is introduced by choosing the coordinates of the parameter a at random
with equidistributed probability in a set {0, . . . , N −1} for a positive integer N , which is achieved
by means of a procedure that chooses the binary digits of an integer at random. The complexity of
this procedure is O(log N), where here and in the sequel, log denotes logarithm in base 2. Thus,
the error probability of the algorithm can be estimated by means of the Zippel–Schwartz zero-test
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(see [36,32]), which states that, under the previous hypotheses, Prob
(
F(a) = 0

)
�deg(F )/N .

This estimation enables us to reduce the error probability of the algorithm as much as desired by
choosing N big enough.

The objects our algorithms deal with are multivariate polynomials with coefficients in the
base field Q. The data structure we adopt to represent them is the (division-free) straight-line
program encoding. Roughly speaking, a straight-line program over Q encoding a polynomial
f ∈ Q[X1, . . . , Xn] is a program which enables one to evaluate f at any given point in Qn.
Each of the instructions in this program is an addition, subtraction or multiplication between
two pre-calculated elements in Q[X1, . . . , Xn], or an addition or multiplication by a scalar. The
number of instructions in the program is called the length of the straight-line program. For the
precise definitions and basic properties we refer the reader to [3] (see also [19]).

3. Generic algebraic-differential systems

Here, we introduce the objects we will deal with: we present the differential polynomial systems
we will consider and their associated differential ideals.

We will use the following notation throughout the paper:

Notation 3. Let K be a differential field and let Z := {Z1, . . . , Z�} be a differentially alge-
braically independent set over K . For every i�0, Z(i) will denote the set Z

(i)
1 , . . . , Z

(i)
� . For

simplicity, we will write Z = Z(0) and Ż = Z(1). Finally, for every i�0, Z[i] will denote
the set Z, Ż, . . . , Z(i). We will adopt a similar notation for differential polynomials: if H :=
{H1, . . . , H�} ⊂ K{Z}, for every i�0, we will write H(i) := H

(i)
1 , . . . , H

(i)

� and H [i] :=
H, Ḣ , . . . , H (i), where H = H(0) and Ḣ = H(1).

3.1. Definitions and basic properties

Let k be a differential field of characteristic 0 and let X := {X1, . . . , Xn} and U := {U1, . . . ,

Um} be two families of differential indeterminates over k.
Let f1, . . . , fn be polynomials in k[X, U ], let r be a positive integer, r �m, and let g1, . . . gr ∈

k[X, U, U̇ ]. We consider a new family of differential indeterminates Y := {Y1, . . . , Yr} over the
differential fraction field k〈X, U〉 and the “generic” differential system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)

Y1 = g1(X, U, U̇)
...

Yr = gr(X, U, U̇)

(1)

We will work for the time being under the following assumption on the system, which will be
removed later in Section 7:

Assumption 4. The polynomials g1, . . . , gr are differentially algebraically independent in
Frac(k{Y, X, U}/[f1 − Ẋ1, . . . , fn − Ẋn]) over k.
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We will deal with a differential ideal and some algebraic ideals associated with the system:

Notation 5. Let Fi := fi − Ẋi ∈ k[X, Ẋ, U ] (1� i�n) and Gj := gj − Yj ∈ k[Y, X, U, U̇ ]
(1�j �r), and let � := [F, G] ⊂ k{Y, X, U} be the differential ideal generated by the polyno-
mials F := F1, . . . , Fn and G := G1, . . . , Gr . For every l ∈ N, let Al be the polynomial ring
Al := k[Y [l−1], X[l], U [l]] and let �l ⊂ Al be the ideal of this ring generated by F [l−1], G[l−1].
Finally, set A0 := k[X, U ].

The following notation will be useful in the sequel:

Notation 6. For i = 1, . . . , n, let f̃
(0)
i (X, U) := fi(X, U). Recursively, for k > 0 and i =

1, . . . , n, let f̃
(k)
i (X, U [k]) be the polynomial obtained from f

(k)
i (X[k], U [k]) by substituting

X
(l)
h = f̃

(l−1)
h (1�h�n, 1� l�k). Finally, we define polynomials g̃

(k)
j (X, U [k+1]) by replacing

X
(l)
h = f̃

(l−1)
h (1�h�n, 1� l�k) in the polynomials g

(k)
j .

Due to the particular structure of the polynomials F, G and their derivatives, it is easy to
characterize the quotients Al/�l , for l ∈ N, and k{Y, X, U}/�:

Remark 7. Let l, i, s, t be positive integers with i� l, 1�s�n and 1� t �r , and let pi,s and qi,t
be the ideals of Al defined as

pi,s := (F, G, F (1), G(1), . . . , F (i−2), G(i−2), F
(i−1)
1 , . . . , F (i−1)

s ),

qi,t := (F, G, F (1), G(1), . . . , F (i−2), G(i−2), F (i−1), G
(i−1)
1 , . . . , G

(i−1)
t ).

In the quotient ring Al/pi,s , we have that X
(j)
h = f̃

(j−1)
h (1�j � i − 1, 1�h�n and j =

i, 1�h�s) and Y
(j)
d = g̃

(j)
d (0�j � i − 2, 1�d �r), and similar identities hold in Al/qi,t .

Therefore,

Al/pi,s 
 k[Y (i−1), . . . , Y (l−1), X, X
(i)
s+1, . . . , X

(i)
n , X(i+1), . . . , X(l), U [l]],

Al/qi,t 
 k[Y (i−1)
t+1 , . . . , Y (i−1)

r , Y (i), . . . , Y (l−1), X, X(i+1), . . . , X(l), U [l]]
and so, pi,s and qi,t are prime ideals of Al . In particular, �l is prime, Al/�l 
 k[X, U [l]] and
hence, its Krull dimension is n + (l + 1)m.

With similar arguments, we deduce that the differential ideal � = [F, G] ⊂ k{Y, X, U} is
prime and the differential ring k{Y, X, U}/� is isomorphic to the differential ring k[X]{U} with
the derivation induced by Ẋj := fj (X, U).

Roughly speaking, Assumption 4 states that the set of variables Y is differentially algebraically
independent modulo � (see also Proposition 8), and so, it seems quite reasonable to regard them
as elements of an extended ground field. Then, we will be interested in the differential ideal
generated by the polynomials F, G in the ring k〈Y 〉{X, U}.

We begin by considering some related polynomial ideals.

Proposition 8. Under the same notation and assumptions as in Remark 7, we have that k[Y [l−1]]∩
pi,s = 0, k[Y [l−1]]∩qi,t = 0, and the ideals k〈Y 〉⊗pi,s and k〈Y 〉⊗qi,t are prime ideals of the ring
k〈Y 〉⊗Al (here, the tensor product denotes scalar extension). In particular, k〈Y 〉⊗�l is a prime
ideal of k〈Y 〉 ⊗ Al and there is a ring inclusion k[X, U [l]] 
 Al/�l ↪→ k〈Y 〉 ⊗ Al/k〈Y 〉 ⊗ �l .
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Proof. Let us prove that k[Y [l−1]] ∩ pi,s = 0 (the result for qi,t follows similarly): if p ∈
k[Y [l−1]] ∩ pi,s , there exist polynomials aq,h, bj,k ∈ Al satisfying

p(Y [l−1]) =
i−2∑
h=0

n∑
q=1

aq,h F (h)
q +

s∑
q=1

aq,i−1 F (i−1)
q +

i−2∑
k=0

r∑
j=1

bj,k G
(k)
j .

Substituting Y
(k)
j for g

(k)
j (1�j �r, 0�k� l − 1) in this identity, we deduce that

p(g1, . . . , gr , ġ1, . . . , ġr , . . . , g
(l−1)
1 , . . . , g(l−1)

r ) ∈ (F [i−1]) ⊂ Al

and so, the differential independence of g1, . . . , gr in the differential extension k ↪→
Frac(k{Y, X, U}/[F ]) implies that p = 0.

Therefore, the extensions of the prime ideals pi,s and qi,t to k(Y [l−1]) ⊗ Al are also prime
ideals; and the same happens to their extensions to the ring k〈Y 〉 ⊗ Al , since the Y (j), with j � l,
are transcendental over k(Y [l−1]) ⊗ Al . �

From now on, we will use the same notation as in the previous proposition: the symbol ⊗ will
denote scalar extensions that will be clear from the context.

Corollary 9. For every positive integer l, we have that F, G, F (1), G(1), . . . , F (l−1), G(l−1) is a
regular sequence in k〈Y 〉 ⊗ Al .

Proof. Remark 7 enables the straightforward computation of the dimensions of Al/pi,s and
Al/qi,t for every i� l, 1�s�n and 1� t �r , which turn to drop successively by one when
adding each polynomial of the sequence to the ideal generator set. Due to Proposition 8, the same
happens for the corresponding prime ideals in k〈Y 〉 ⊗ Al , which implies the statement. �

The differential analogue of Proposition 8 is the following:

Proposition 10. Let � = [F, G] ⊂ k{Y, X, U} be the differential ideal introduced in Notation
5. Then � ∩ k{Y } = 0 and k〈Y 〉 ⊗ � is a prime ideal of k〈Y 〉{X, U}.

According to Remark 7 and Proposition 10, the differential ideals � and k〈Y 〉 ⊗ � are prime
ideals. Now, we will compute their differential dimensions.

Notation 11. Let F denote the common fraction field of the integral domains k{Y, X, U}/� and
k〈Y 〉{X, U}/k〈Y 〉 ⊗ �.

Proposition 12. The differential transcendence degree of the differential field extension k〈Y 〉↪→F
is m − r .

Proof. Due to Remark 7, there is an isomorphism between F and the differential field k(X)〈U〉
with the derivation induced by Ẋj := fj for j = 1, . . . , n, and so,

difftrdegk(F) = difftrdegk(k(X)〈U〉) = #U = m.

On the other hand, we have that difftrdegk(k〈Y 〉) = r . Now, applying [21, Chapter II, Sec-
tion 9, Corollary 2] to the tower of differential fields k ↪→ k〈Y 〉 ↪→ F , we conclude that
difftrdegk〈Y 〉(F) = m − r . �
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The above proposition and the fact that the ideal k〈Y 〉⊗� is generated by polynomials of order
less than or equal to 1 enable us to derive the following estimate by means of Proposition 2:

Remark 13. The order of the ideal k〈Y 〉 ⊗ � satisfies: ordk〈Y 〉(k〈Y 〉 ⊗ �)�n + r .

3.2. Algebraic ideals vs. differential ideals

In this subsection we will establish a relation between contractions of the differential ideal
k〈Y 〉⊗� and contractions of the algebraic polynomial ideals k〈Y 〉⊗�l to the polynomial rings Ai .
This relation is crucial to go from non-finitely generated algebraic ideals to finitely generated ones.

Lemma 14. For every i�0, we have (k〈Y 〉⊗�)∩(k〈Y 〉⊗Ai) = (k〈Y 〉⊗�i+n+r )∩(k〈Y 〉⊗Ai).

Proof. We will show that (k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ Ai) ⊂ (k〈Y 〉 ⊗ �i+n+r ) ∩ (k〈Y 〉 ⊗ Ai) holds
(the converse is immediate from the fact that �i+n+r ⊂ �).

First, let us observe that {F1, . . . , Fn, G1, . . . , Gr} is a characteristic set of the ideal � for an
elimination block ranking on k{Y, X, U} with Y?X?U , and that SFh

= IFh
= SGj

= IGj
=

−1, ord(Fh) = 1 and ord(Gj )�1 for every 1�h�n, 1�j �r .
Fix now an elimination block ranking 
 with X?U?Y . From [30, Theorem 27], the previous

conditions imply that there exists a characteristic set C := {C1, . . . , C�} of � with respect to 

such that Cl ∈ (F [n+r−1], G[n+r−1]) for l = 1, . . . , �. Set H := ∏

l ICl
SCl

.
Let f ∈ (k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ Ai) and let q ∈ k{Y }, q 	= 0, with qf ∈ � ⊂ k{Y, X, U}.

Since � ∩ k{Y } = 0, for l = 1, . . . , �, we have that vp(Cl) ∈ {X1, . . . , Xn, U1, . . . , Um}
and so, ord(qf, vp(Cl))� i. Thus, qf ∈ (C[i]) : H∞, where the ideal is taken in the ring
k{Y, X, U} (see Section 2.1.2). Now, (C[i]) : H∞ ⊂ (F [i+n+r−1], G[i+n+r−1]) : H∞ =
(F [i+n+r−1], G[i+n+r−1]), since this last ideal is prime and it does not contain H . Therefore,
qf ∈ (F [i+n+r−1], G[i+n+r−1]) and so, f ∈ (F [i+n+r−1], G[i+n+r−1])k〈Y 〉{X, U}.

Finally, notice that if f = ∑i+n+r−1
k=0 (

∑n
h=1 ah,kF

(k)
h + ∑r

j=1 bj,kG
(k)
j ) with ah,k, bj,k ∈

k〈Y 〉{X, U}, evaluating X(l) = 0 and U(l) = 0 for l > i + n + r (these variables appearing only
in ah,k, bj,k), we deduce that f ∈ (F [i+n+r−1], G[i+n+r−1])(k〈Y 〉 ⊗ Ai+n+r ) = k〈Y 〉 ⊗ �i+n+r ,
which completes the proof. �

4. Hilbert function and differential transcendence bases

This section is devoted to the computation of the differential Hilbert function of the ideal
k〈Y 〉⊗� and a differential transcendence basis of the extension k〈Y 〉↪→F (see Notations 5 and 11).

The differential Hilbert function is obtained by means of the computation of Jacobian matrix
ranks (see also [33,26]), relying on the well-known Jacobian criterion from commutative algebra
[25, Chapter VI, Section 1, Theorem 1.15]. Regarding the computation of a differential transcen-
dence basis, our results are based on a finiteness criterion proved in [30] concerning the order of
characteristic set elements for an ideal, along with the above mentioned Jacobian criterion.

4.1. Hilbert function of k〈Y 〉 ⊗ � over k〈Y 〉

As stated in Definition 1, the differential Hilbert function of the ideal k〈Y 〉 ⊗ � ⊂ k〈Y 〉{X, U}
is the function Hk〈Y 〉⊗�, k〈Y 〉 : N0 → N0 defined by

Hk〈Y 〉⊗�, k〈Y 〉(i) := trdegk〈Y 〉
(

Frac(k〈Y 〉 ⊗ Ai

/
(k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ Ai))

)
.
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Due to Proposition 12 and Remark 13, we have that

Hk〈Y 〉⊗�, k〈Y 〉(i) = (m − r)(i + 1) + ordk〈Y 〉(k〈Y 〉 ⊗ �) for every i�n + r (2)

(see Section 2.1.3); so, the function Hk〈Y 〉⊗�, k〈Y 〉 is completely determined by the values it takes
at i = 0, . . . , n + r .

In order to compute this function we will deal with Jacobian matrices. We introduce here a
notation that will be used in the sequel:

Notation 15. If Z = {Z1, . . . , Z�} is a set of differential indeterminates over a field K and
H = {H1, . . . , H�} is a set of differential polynomials over K depending on the variables Z,

for every l, k�0 we will denote by �H(l)

�Z(k) the Jacobian matrix of the polynomials H
(l)
1 , . . . ,

H
(l)

� with respect to the variables Z
(k)
1 , . . . , Z

(k)
� , that is,

(
�H(l)

�Z(k)

)
ij

:= �H
(l)
i

�Z
(k)
j

for 1� i��,

1�j ��. Similarly, for every 0� l1 � l2, 0�k1 �k2, �H [l1, l2]
�Z[k1,k2] will denote the Jacobian block

matrix(
�H [l1, l2]

�Z[k1,k2]

)
ij

:= �H(i+l1−1)

�Z(j+k1−1)
(1� i� l2 − l1 + 1, 1�j �k2 − k1 + 1).

For the sake of simplicity, we will write �H [l]
�Z[k] = �H [0, l]

�Z[0,k] .

Now, the differential Hilbert function of k〈Y 〉 ⊗ � can be written in terms of ranks of suitable
Jacobian matrices:

Proposition 16. For i = 0, . . . , n+ r , let Ji be the Jacobian matrix Ji := �{F,G}[i, 2n+2r−1]
�{X,U}[i+1, 2n+2r] . Then,

the differential Hilbert function of the ideal k〈Y 〉 ⊗ � over k〈Y 〉 is the function Hk〈Y 〉⊗�, k〈Y 〉 :
N0 → N0 defined by

Hk〈Y 〉⊗�, k〈Y 〉(i)

=
{

(n + m)(i + 1) − (2n + 2r)(n + r) + rank(Ji) if i�n + r,

(m − r)(i + 1) + rank(Jn+r ) − (n + r)(n + r − 1) if i�n + r,

where the ranks of the matrices Ji are taken over the ring k〈Y 〉 ⊗ (A2n+2r/�2n+2r ).

Proof. Lemma 14 applied to i = n + r states that

(k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ An+r ) = (k〈Y 〉 ⊗ �2n+2r ) ∩ (k〈Y 〉 ⊗ An+r ).

Then, for every i�n + r , since Ai ⊂ An+r , we deduce that

(k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ Ai) = (k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ An+r ) ∩ (k〈Y 〉 ⊗ Ai)

= (k〈Y 〉 ⊗ �2n+2r ) ∩ (k〈Y 〉 ⊗ Ai)

holds and so, we have the following ring inclusion:

k〈Y 〉 ⊗ Ai/(k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ Ai) ↪→ k〈Y 〉 ⊗ (A2n+2r/�2n+2r ).

Set Fi := Frac(k〈Y 〉⊗Ai/(k〈Y 〉⊗�)∩ (k〈Y 〉⊗Ai)) and G := Frac(k〈Y 〉⊗ (A2n+2r/�2n+2r )).
The above ring inclusion induces a field extension k〈Y 〉 ↪→ Fi ↪→ G, which implies that
Hk〈Y 〉⊗�, k〈Y 〉(i) = trdegk〈Y 〉(Fi ) = trdegk〈Y 〉(G) − trdegFi

(G).
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By Corollary 9, the polynomials F, G, . . . , F (2n+2r−1), G(2n+2r−1) are a regular sequence in
k〈Y 〉 ⊗ A2n+2r . Therefore, trdegk〈Y 〉(G) = (2n + 2r + 1)(n + m) − (2n + 2r)(n + r). In order
to compute trdegFi

(G), notice that G can be regarded as the fraction field of the quotient ring

Fi[X(i+1), . . ., X(2n+2r), U(i+1), . . ., U(2n+2r)]/(F (i), . . ., F (2n+2r−1), G(i), . . ., G(2n+2r−1)).

Then, the Jacobian criterion [25, Chapter VI, Section 1, Theorem 1.15 and Proposition 1.5]
implies that trdegFi

(G) = (2n + 2r − i)(n + m) − rank(Ji), where the rank is computed in
k〈Y 〉 ⊗ (A2n+2r/�2n+2r ). We conclude that Hk〈Y 〉⊗�, k〈Y 〉(i) = (n + m)(i + 1) − (2n + 2r)(n +
r) + rank(Ji) for i�n + r .

In particular, Hk〈Y 〉⊗�, k〈Y 〉(n + r) = (n + m)(n + r + 1) − (2n + 2r)(n + r) + rank(Jn+r )

and then, by identity (2), we deduce that ordk〈Y 〉(k〈Y 〉 ⊗ �) = rank(Jn+r ) − (n + r)(n + r − 1)

and, therefore, Hk〈Y 〉⊗�, k〈Y 〉(i) = (m − r)(i + 1) + rank(Jn+r ) − (n + r)(n + r − 1) for every
i�n + r . �

4.2. Differential transcendence basis

Here we will show how to obtain a differential transcendence basis of the differential field
extension k〈Y 〉 ↪→ F . Taking into account the literature on algebraic observability (see, for
instance, [33]), we will look for a differential transcendence basis involving only variables U ,
which is not restrictive as it is shown in the following:

Lemma 17. There exists a differential transcendence basis W of the extension k〈Y 〉 ↪→ F with
W ⊂ U .

Proof. Let W be a maximal subset of U being differentially algebraically independent in k〈Y 〉 ↪→
F . Then, the field subextension k〈Y, U〉 of k〈Y, W 〉 ↪→ F is differentially algebraic over k〈Y, W 〉.
On the other hand, the extension k〈U〉 ↪→ F is also differentially algebraic, since F 
 k(X)〈U〉,
and so, the same holds for k〈Y, U 〉 ↪→ F . Therefore, the extension k〈Y, W 〉 ↪→ F is differentially
algebraic. �

The next proposition provides a finiteness criterion of differential transcendence in F .

Proposition 18. The element Ul is differentially transcendental in k〈Y 〉 ↪→ F if and only if the
family {Ul, . . . , U

(n+r)
l } is algebraically independent in k〈Y 〉⊗An+r/(k〈Y 〉⊗�2n+2r )∩(k〈Y 〉⊗

An+r ) over k〈Y 〉.

Proof. Assume that {Ul, . . . , U
(n+r)
l } ⊂ k〈Y 〉 ⊗ An+r/(k〈Y 〉 ⊗ �2n+2r ) ∩ (k〈Y 〉 ⊗ An+r ) is

algebraically independent over k〈Y 〉.
Consider an elimination ranking on k〈Y 〉{X, U} with Ul>{X, U} \ {Ul}. By [30, Lemma 19

and Theorem 24], there exists a characteristic set C of the ideal k〈Y 〉 ⊗ � with respect to this
ranking, such that ord(C)�ordk〈Y 〉(k〈Y 〉⊗�)�n+r for every C ∈ C (Remark 13). Now, if Ul is
differentially algebraic in k〈Y 〉 ↪→ F , there exists C ∈ C with C ∈ (k〈Y 〉⊗�)∩ k〈Y 〉[U [n+r]

l ] ⊂
(k〈Y 〉 ⊗ �) ∩ (k〈Y 〉 ⊗ An+r ) = (k〈Y 〉 ⊗ �2n+2r ) ∩ (k〈Y 〉 ⊗ An+r ) (see Section 2.1.2), where
the last identity is due to Lemma 14, contradicting the hypothesis of algebraic independence of
Ul, . . . , U

(n+r)
l . �
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In order to apply the previous result we will use the following well-known technical lemma
from commutative algebra:

Lemma 19. Let K be a field of characteristic 0 and let ℘ ⊂ K[Z1, . . . , Z�] be a prime ideal
generated by polynomials f1, . . . , fs . Set R for the ring K[Z1, . . . , Z�]/℘ and denote by J ∈
Rs×� the Jacobian matrix of the system f1, . . . , fs . For j = 1, . . . , �, set JZj ∈ Rs×(�−1)

for the submatrix of J obtained by removing the column corresponding to derivatives with re-
spect to the variable Zj . Then, Zj ∈ R is transcendental over K if and only if rankR(JZj ) =
rankR(J ).

Proof. Assuming that Zj is transcendental modulo ℘, we have inclusions K(Zj ) ⊂ R⊗K(Zj ) ⊂
Frac(R). Therefore, by the Jacobian criterion (see [25, Chapter VI, Section 1, Theorem 1.15]),
we have rankR(JZj ) = (� − 1) − trdegK(Zj )(Frac(R)) = � − 1 − (trdegK(Frac(R)) − 1) =
� − trdegK(Frac(R)) = rankR(J ).

In order to prove the converse, assume that there exists a non-zero polynomial fs+1 ∈ ℘

pure in the variable Zj with minimal degree. The rank of the Jacobian matrix J of the sys-
tem f1, . . . , fs, fs+1 equals that of the Jacobian matrix J , since both are the codimension of
℘. On the other hand, we have that rankR(J ) = rankR(JZj ) + 1. Therefore, rankR(J ) =
rankR(JZj ) + 1. �

Now we are able to prove our main result on the computation of differential transcendence
bases:

Proposition 20. Let J be the Jacobian matrix J := �{F,G}[2n+2r−1]
�{X,U}[2n+2r] (see Notation 15). Then, a set

W := {Ul1 , . . . , Ulm−r } with m − r elements is a differential transcendence basis of k〈Y 〉 ↪→ F if
and only if the columns of J corresponding to derivatives with respect to variables in W [n+r] can be
removed with no change in rank (here, the ranks are taken over the ring k〈Y 〉⊗(A2n+2r/�2n+2r )).

Proof. Due to Proposition 18, an element Ul (1� l�m) belongs to a differential transcendence
basis of k〈Y 〉 ↪→ F if and only if the set {Ul, . . . , U

(n+r)
l } is algebraically independent in k〈Y 〉⊗

An+r/(k〈Y 〉⊗�2n+2r )∩(k〈Y 〉⊗An+r ) over k〈Y 〉. Since the ring inclusion k〈Y 〉⊗An+r/(k〈Y 〉⊗
�2n+2r ) ∩ (k〈Y 〉 ⊗ An+r ) ⊂ k〈Y 〉 ⊗ (A2n+2r/�2n+2r ) holds, this condition is equivalent to the
algebraic independence of {Ul, . . . , U

(n+r)
l } in k〈Y 〉 ⊗ (A2n+2r/�2n+2r ), which is met in turn if

and only if the columns of the matrix J corresponding to derivatives with respect to variables in
U

[n+r]
l can be removed with no change in rank (Lemma 19).
Set l1 for the minimum l (1� l�m) such that the last condition holds for Ul (its existence is

ensured by Lemma 17 and the previous arguments).
Then, we can replace the differential base field k〈Y 〉 with the differential field k〈Y, Ul1〉 and

look for a differential transcendence basis of the extension k〈Y, Ul1〉 ↪→ F , whose transcendence
degree is m − r − 1. That is, we consider the same problem on the input differential equation
system regarded as a system in k〈Ul1〉{Y, X, U \ {Ul1}}, and we repeat the process. �

4.3. The algorithms and their complexities

In this subsection, we present probabilistic algorithms for the computation of the differential
Hilbert function of the ideal k〈Y 〉 ⊗ � and of a differential transcendence basis of the extension
k〈Y 〉 ↪→ F following the theoretical results stated in Propositions 16 and 20.
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Before going on, we show a very elementary example to illustrate how these results can be
applied. Consider the differential system{

Y1 = U1 + U̇2 + U̇3

Y2 = U̇1 + U2 + U3

In this case, n = 0, r = 2 and m = 3. Therefore, the matrix J defined in Proposition 20 is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Clearly, rank(J0) = 8, rank(J1) = 6 and rank(J2) = 4, where J0, J1 and J2 are the distinguished
submatrices of J defined in Proposition 16, and then

Hk〈Y 〉⊗�, k〈Y 〉(i) = (i + 1) + 2 for i�0.

In order to apply the result in Proposition 20, we observe that the matrix J has full row rank
and the same remains true when the columns corresponding to derivatives with respect to either
the variables U2, U̇2, U

(2)
2 or U3, U̇3, U

(2)
3 are removed; however, the rank drops when remov-

ing the columns corresponding to U1, U̇1, U
(2)
1 . Therefore, both {U2} and {U3} are differential

transcendence bases, but {U1} is not (in fact we have U
(2)
1 − U1 − Ẏ2 + Y1 = 0).

Now, we start with the description of the algorithms. For technical and algorithmic reasons, we
will assume throughout this subsection that the base differential field k is the rational effective field
Q(t) (with the standard derivation), and that the polynomials defining system (1) have coefficients
in Q[t].

Our algorithms will deal not only with the input polynomials f, g (which will be encoded by
straight-line programs), but also with their successive derivatives ḟ , ġ, f (2), g(2) and so on. As
pointed out in [26, Section 5.2], one can obtain short slp’s for these successive derivatives from
slp’s for the input polynomials:

Lemma 21. Let Z := {Z1, . . . , Z�} be a set of differential indeterminates over Q(t) and let
f ∈ Q[t][Z, Ż] be a polynomial encoded by a straight-line program of length L. Let � ∈ N. Then,
there exists a straight-line program of length O(�2(��+L)) which computes f (j) for every j < �.

Proof. Let T be a new variable. For i = 1, . . . , �, let �i (T ) := ∑�
k=0

Z
(k)
i

k! T k . Denote � :=
(�1, . . . , ��) and set S(T ) := f (T + t, �, �̇) ∈ Q[t, Z, Ż, . . . , Z(�)][T ]. The chain rule im-

plies that �j
S

�T j = f (j)(T + t, �, �̇, . . . , �(j+1)) for j = 0, . . . , � − 1, and so, specializing

T = 0, we obtain �j
S

�T j (0) = f (j)(t, Z, Ż, . . . , Z(j+1)) for j = 0, . . . , � − 1. Then, if S(T ) =∑�
j=0 sj (t, Z, Ż, . . . , Z(j+1))T j , the following identities hold:

f (j)(t, Z, Ż, . . . , Z(j+1)) = j ! sj (t, Z, Ż, . . . , Z(j+1)), j = 0, . . . , � − 1. (3)
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These identities enable us to obtain an slp for the computation of these polynomials:
The first step consists in the computation of an slp encoding S(T ): we compute the monomials

T k

k! = T
k

T k−1

(k−1)! for k = 2, . . . , � recursively with 2� − 2 operations, and then we obtain slp’s for
the polynomials �i , �̇i for i = 1, . . . , � by multiplying these monomials by the corresponding
coefficients Z

(k)
i and adding the results. This requires �(4� − 2) additional operations. Finally,

an slp encoding S(T ) is obtained as the composition of the slp encoding f , an slp of length 1
computing T + t , and those obtained for �i , �̇i (1� i��). The total length of this slp is L :=
2� − 1 + �(4� − 2) + L.

In a second step, the procedure described in [22, Lemma 13] is applied to obtain an slp of
length �2L encoding all the coefficients sj , j = 0, . . . , � − 1, of S(T ). Finally, the coefficients
sj are multiplied by the corresponding constant factors according to (3) in order to obtain the slp
for the polynomials f (j), j = 0, . . . , � − 1. The total length of the slp obtained is bounded by
6 �3� + �2L. �

Notice that, due to the ring inclusion Q(t)[X, U [2n+2r]] ↪→ Q(t)〈Y 〉 ⊗ (A2n+2r/�2n+2r )

(see Proposition 8), the rank computations involved in Propositions 16 and 20 amount to rank
computations in the polynomial ring Q[t, X, U [2n+2r]]: for i = 0, . . . , n + r , let J̃i be the matrix
with entries in Q[t][X, U [2n+2r]] which is obtained by substituting X

(l)
j = f̃

(l−1)
j (see Notation

6) for j = 1, . . . , n, l = 1, . . . , 2n + 2r in the entries of the matrix Ji defined in Proposition 16.
Finally, set J̃ for the matrix with entries in Q[t][X, U [2n+2r]] obtained by making this substitution
in the Jacobian matrix J introduced in Proposition 20. Then, rankQ(t)〈Y 〉⊗(A2n+2r /�2n+2r )(Ji) =
rankQ[t][X,U [2n+2r]](J̃i), and the same holds for J and J̃ .

Now, Propositions 16 and 20 can be restated as follows:

Corollary 22. The Hilbert function of the ideal Q(t)〈Y 〉 ⊗ � over Q(t)〈Y 〉 is H : N0 → N0,

H(i) =
{

(n + m)(i + 1) − (2n + 2r)(n + r) + rank(J̃i) if i�n + r,

(m − r)(i + 1) + rank(J̃n+r ) − (n + r)(n + r − 1) if i�n + r,

where the ranks of the matrices J̃i are taken over the polynomial ring Q[t, X, U [2n+2r]].
Corollary 23. A set W ⊂ U with m − r elements is a differential transcendence basis of the
differential extension Q(t)〈Y 〉 ↪→ F if and only if the columns of J̃ corresponding to derivatives
with respect to variables in W [n+r] can be removed with no change in rank (where the ranks are
taken over the ring Q[t, X, U [2n+2r]]).

The rank computations over a polynomial ring involved in the previous corollaries will be
reduced to rank computations over Q by means of the next result which follows easily from the
Zippel–Schwartz zero-test (see Section 2.2):

Lemma 24. Let Z := {Z1, . . . , Z�} be a set of indeterminates over Q and let A ∈ Q[Z]p×q

be a matrix whose entries satisfy deg(Aij )�Di for i = 1, . . . , p. Then, if the coordinates of a
point z := (z1, . . . , z�) are chosen at random in the set {0, . . . , N − 1}, we have rankQ[Z](A) =
rankQ(A(z)) with error probability bounded by 1

N

∑p
i=1 Di .

This lemma provides a straightforward probabilistic algorithm for the computation of the rank
of a polynomial matrix: under the previous assumptions and notations, the algorithm chooses at
random the coordinates of the point z in a set of type {0, . . . , N − 1} for a sufficiently big integer
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N and computes the rank of the matrix A(z) ∈ Qp×q applying any of the well-known algorithms
for the computation of the rank of a matrix with rational entries. The random choice of the element
z can be made within complexity O(� log(N)), while the complexity of computing rank(A(z))

may be estimated as O((p + q)3) (see, for instance, [2, Chapter 2, Section 2, Problem 2.10]).
In order to estimate the error probability of our algorithms we will need an upper bound on the

degrees of the polynomials involved:

Remark 25. For h = 1, . . . , n, j = 1, . . . , r and l ∈ N0, let f̃
(l)
h , g̃

(l)
j be the polynomials

introduced in Notation 6. A recursive computation shows that, if deg(fh)�d and deg(gj )�d for

every 1�h�n and 1�j �r , then d + l(d − 1) is an upper bound for the degrees of f̃
(l)
h and g̃

(l)
j

for every l ∈ N0.

Now, we are ready to prove our algorithmic result on the computation of the differential Hilbert
function. We keep the same notations and assumptions as in Section 3.1:

Theorem 26. Assume that f1, . . . , fn ∈ Q[t, X, U ] and g1, . . . , gr ∈ Q[t, X, U, U̇ ] have de-
grees bounded by d and are encoded by a straight-line program of length L. Then, there is a
probabilistic algorithm which computes, for every ε ∈ (0, 1), the differential Hilbert function
of the ideal Q(t)〈Y 〉 ⊗ � over Q(t)〈Y 〉 with error probability bounded by ε within complexity
O((log(1/ε) + log(d))(n + m)3(n + r)8L).

Proof. The algorithm is based on Corollary 22. Thus, for i = 0, . . . , n + r , it computes the rank
of the matrix J̃i ∈ (Q[t][X, U [2n+2r]])(n+r)(2n+2r−i)×(n+m)(2n+2r−i).

Fix i with 0� i�n + r . From the definition of J̃i and Remark 25, we deduce that for l =
0, . . . , 2n + 2r − i − 1 and j = 1, . . . , n + r , the entries in the (l(n + r) + j)th row of J̃i

are polynomials in Q[t, X, U [2n+2r]] with degrees bounded by d + (l + i)(d − 1). Therefore,
by Lemma 24, the rank of the matrix J̃i can be computed with error probability bounded by
pi := 1

N

∑2n+2r−i−1
l=0 (n + r)(d + (l + i)(d − 1))� 4

N
d(n + r)3 by choosing the coordinates of

a point zi := (zi,t , zi,X, zi,U [2n+2r]) at random from the set {0, . . . , N − 1}. This random choice
can be made within complexity O(m(n + r) log(N)). Then, once the matrix J̃i (zi) is obtained,
its rank can be computed within complexity O((n + m)3(n + r)3).

In order to compute the entries of the matrices J̃i (zi), we proceed as follows: first, we derive
slp’s of length O((n+r)2((n+r) (n+m)+L)) for the polynomials F

[2n+2r−1]
h , G[2n+2r−1]

j from
the slp’s encoding f1, . . . , fn, g1, . . . , gr , as stated in Lemma 21. The complexity of this step is of
order O((n+r)3((n+r)(n+m)+L)). Then, we compute slp’s for the partial derivatives of these
polynomials with respect to the variables {X, U}[2n+2r].A result due to Baur and Strassen (see, for
instance, [3, Section 7.2]) enables us to obtain slp’s of length O((n+r)2((n+r) (n+m)+L)) for
these partial derivatives within complexity O((n+r)4((n+r) (n+m)+L)). Now, we obtain an slp
of length O(n(n+ r)3((n+ r) (n+m)+L)) for the polynomials f̃

(l)
h (1�h�n, 0� l�2n+2r)

and then, slp’s of the same order for the entries of J̃i , by composition. Finally, we compute the
entries of J̃i (zi) by specializing the slp’s encoding the entries of J̃i into zi . This can be done
within complexity O(n(n + r)6(n + m)((n + r)(n + m) + L)), which dominates the complexity
of the whole computation.

Thus, we obtain the differential Hilbert function of the ideal Q(t)〈Y 〉 ⊗ � with probability at
least

∏n+r
i=0 (1−pi)�1−∑n+r

i=0 pi �1−∑n+r
i=0

4
N

d(n+r)3 �1− 8
N

d(n+r)4 within complexity
O(m(n + r)2 log(N) + (n + m)3(n + r)8L).
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In order that the error probability of the algorithm is bounded by ε, we take N := �1/ε�8d(n+
r)4.With this choice, the overall complexity of the procedure is of order O((log(1/ε)+log(d))(n+
m)3(n + r)8L). �

The computation of a differential transcendence basis of Q(t)〈Y 〉 ↪→ F follows the recursive
procedure leading to the proof of Proposition 20. In fact, we will compute the minimal index
differential transcendence basis of Q(t)〈Y 〉 ↪→ F , which we define to be the differentially alge-
braically independent subset {Ul1 , . . . , Ulm−r } that is minimal with respect to the lexicographical
ordering of the variables U in which U1 < U2 < · · · < Um.

Theorem 27. There is a probabilistic algorithm which computes, for every ε ∈ (0, 1), the minimal
index differential transcendence basis of Q(t)〈Y 〉 ↪→ F with error probability bounded by ε within
complexity O((log(1/ε) + log(d))m(n + m)3(n + r)7L).

Proof. Let J̃ be the matrix introduced in the paragraph preceding Corollary 22. Note that, due
to Corollary 9, J̃ has full row rank. In a first step, the algorithm chooses the coordinates of
a point z := (zt , zX, zU [2n+2r]) at random from the set {0, . . . , N − 1} for a sufficiently big
integer N and computes rank(J̃ (z)). If J̃ (z) has not full row rank, it returns an error message.
Otherwise, the algorithm proceeds recursively, starting with the set of variables W being the
empty set.

For k�m, the kth recursive step is as follows: if #W < m − r , the algorithm computes the
rank of the matrix J̃ (z)W∪{Uk} which is obtained by removing the columns of J̃ (z) corresponding
to derivatives with respect to the variables (W ∪ {Uk})[n+r]. If rank(J̃ (z)W∪{Uk}) = rank(J̃ (z)),
the variable Uk is added to the set W . Otherwise, W is not modified. When #W = m − r , the
algorithm outputs the set W .

If the recursion finishes with #W < m − r , the algorithm returns an error message.
Now let us estimate the error probability of this procedure: let W be the minimal index differ-

ential transcendence basis of Q(t)〈Y 〉 ↪→ F . Then, the matrix J̃ W which is obtained from J̃ by
removing the columns corresponding to derivatives with respect to the variables W [n+r] has full
row rank, and so, it has a square submatrix of size (n + r)(2n + 2r) with non-zero determinant
P0. Therefore, any point z := (zt , zX, zU [2n+2r]) satisfying P0(z) 	= 0 leads to a matrix J̃ (z) with
full row rank for which the algorithm computes the desired minimal index differential transcen-
dence basis. Since deg P0 �4d(n + r)3 (this estimate follows as in the proof of Theorem 26), we
conclude that the error probability of the algorithm is at most 4

N
d(n + r)3.

In order that the error probability of the algorithm is bounded by ε, we chooseN := �1/ε�4d(n+
r)3. The complexity bound can be obtained as in the proof of Theorem 26. �

Remark 28. The algorithm in Theorem 27 may fail to compute the minimal index differential
transcendence basis of the extension, but any set W output by the algorithm is a differential
transcendence basis of Q(t)〈Y 〉 ↪→ F . If the algorithm is unable to obtain a set W with m − r

elements, it will return an error message.

5. Resolvent representation

This section is concerned with the notions of a primitive element of a differentially algebraic
field extension and of a resolvent representation of a prime differential ideal introduced by Ritt
(see [27]). We present these concepts following [34] in Section 5.1 and then, in the remaining
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subsections, we study quantitative aspects, namely order and degree of these objects, for our
particular system (1).

5.1. Existence of a primitive element and a resolvent representation

In this subsection we recall the notion of primitive element of a finite differentially algebraic
field extension and the closely related concept of resolvent representation of a prime differential
ideal.

Let K be a differential field with char(K) = 0 containing a non-constant element � (i.e.
�̇ 	= 0), and let Z := {Z1, . . . , Z�} be a set of differential indeterminates over K . Let I be
a prime differential ideal of K{Z} with diffdim(I) = 0. Set F := Frac(K{Z}/I) and con-
sider the differential field extension K ↪→ F . Then, a differential analogue of the well-known
theorem of the primitive element holds (see [28,34]). We include Seidenberg’s proof [34, The-
orem 1] since the arguments therein are the basis for several effective results we will prove
later.

Theorem 29. With the previous assumptions and notations, there exists � ∈ F such that F =
K〈�〉. Moreover, � can be chosen as a linear combination � = 	1Z1 + · · · + 	�Z�, where 	i is a
polynomial in Q[�] ⊂ K for i = 1, . . . , �.

Proof. Let � := {�1, . . . ,��} be a set of indeterminates over K〈Z〉. Let us observe that F〈�〉
is the fraction field of K〈�〉{Z}/K〈�〉 ⊗ I and K〈�〉 ↪→ F〈�〉 is a differentially algebraic field
extension. Then, if � := �1Z1 + · · · + ��Z�, the set of derivatives {�(l) : l ∈ N0} ⊂ F〈�〉
is differentially algebraically dependent over K〈�〉 and so, there exists a differential polynomial
X in K〈�〉{T }, where T is a new differential indeterminate over K〈�〉, satisfying X (�) = 0
in F〈�〉. Assume X to be of minimal order h and of minimal degree among the differential
polynomials of order h vanishing at �.

Without loss of generality we may assume that the coefficients ofX are polynomials inK{�} and
thatX (�, �̇, . . . ,�(h)) ∈ K{�}⊗I.Then, for i = 1, . . . , �, we have that�X (�, . . . ,�(h))/��(h)

i ∈
K{�} ⊗ I, that is,

�X
�T (h)

(�, . . . ,�(h)) Zi + �X
��(h)

i

(�, . . . ,�(h)) ∈ K{�} ⊗ I. (4)

Let Q := �X
�T (h) (T , . . . , T (h)) ∈ K{�}{T }. The minimality conditions set on X imply that, special-

izing the differential variableT into�, we obtain a non-zero polynomialQ� := �X
�T (h) (�, . . . ,�(h))

in F{�}. Since � ∈ F is a non-constant element, a result in [28, Chapter 2, Section 22] shows
the existence of elements 	i ∈ Q[�] for i = 1, . . . , �, with Q�(	1, . . . , 	�) 	= 0. Now, if we take
� := 	1Z1 + · · · + 	�Z� ∈ F , we deduce from identity (4) that Zi ∈ K〈�〉 ⊂ F for i = 1, . . . , �,
which implies that F = K〈�〉. �

Under the previous assumptions, an element � ∈ F such that F = K〈�〉 will be called a
primitive element of the differential field extension K ↪→ F .

The following result shows that the order of a zero-dimensional prime differential ideal is an
upper bound for the number of derivatives of the primitive element involved in a representation
of an arbitrary element of the field extension.
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Proposition 30. Let � be a primitive element of the extension K ↪→ F as above. Let s ∈ N be
the maximum positive integer such that {�, . . . , �(s−1)} ⊂ F is algebraically independent over K .
Let T be a new differential variable. Then:

(i) For every � ∈ F , there exist polynomials P� and Q� ∈ K[T [s]] such that � = P�(�
[s])/Q�(�

[s])
in F . In particular, {�, . . . , �(s−1)} is a transcendence basis of K ↪→ F and F = K(�, . . . ,
�(s−1), �(s)).

(ii) s = ordK(I).

Proof. In order to prove (i), let � ∈ F . Since F = K〈�〉, there exist polynomials P, Q ∈ K{T }
such that � = P(�)/Q(�) in F .

Now, the assumption on s implies the existence of a polynomial M ∈ K[T [s]] with M(�[s]) = 0
in F . We may assume M to be of minimal degree in the variable T (s) so that �M

�T (s) (�
[s]) 	= 0 in F .

Let IM ∈ K[T [s−1]] be the leading coefficient of M in the variable T (s) and let SM := �M

�T (s) ∈
K[T [s]]. We have IM(�) 	= 0 and SM(�) 	= 0.

By a derivation and division process (see Section 2.1.2), it follows that there exist non-negative
integers a1, b1, a2, b2 and polynomials RP , RQ ∈ K[T [s]] such that I a1

M S
b1
M P−RP and I

a2
M S

b2
M Q−

RQ belong to the differential ideal [M] ⊂ K{T }. Since M(j)(�) = 0 in the differential field
F for every j �0, we have that the identities RP (�[s]) = I

a1
M (�)Sb1

M (�)P (�) and RQ(�[s]) =
I

a2
M (�)Sb2

M (�)Q(�) hold in F . Thus, defining P� := I
a2
M S

b2
M RP ∈ K[T [s]] and Q� := I

a1
M S

b1
M RQ ∈

K[T [s]] we obtain the identity � = P�(�
[s])/Q�(�

[s]) in F , which finishes the proof of the first
part of the proposition.

To prove (ii), we observe that the elements �, . . . , �(s) can be regarded as elements of
L� := Frac(K[Z[�]]/I ∩ K[Z[�]]) ⊂ F for � big enough and so, we deduce from (i)
that L� = F . Therefore, s = trdegK(F) = trdegK(L�) = HI,K(�) = ordK(I), for � big
enough, where the last equality is due to the fact that I is a zero-dimensional differential
ideal. �

Let � ∈ K{Z} be such that its class in F is a primitive element of the differential field ex-
tension K ↪→ F . Set s := ordK(I). By Proposition 30, {�, . . . , �(s−1)} is a transcendence
basis of K ↪→ F . Multiplying the minimal (monic) polynomial of �(s) in the algebraic field
extension K(�, . . . , �(s−1)) ↪→ F by a non-zero element in K(�, . . . , �(s−1)) and renaming
the variables �, . . . , �(s−1) as T , . . . , T (s−1), we can obtain an irreducible polynomial M ∈
K[T , . . . , T (s−1), T (s)] with M(�, . . . , �(s−1), �(s)) = 0 in F . Any irreducible polynomial M ∈
K[T , . . . , T (s)] with M(�, . . . , �(s)) = 0 in F will be called a minimal polynomial of �
in K ↪→ F .

Notice that, if P ∈ K[T , . . . , T (s)] is a polynomial with P(�, . . . , �(s)) = 0 in F , then a
minimal polynomial M of � divides P in K(T , . . . , T (s−1))[T (s)] and, M being primitive, it also
divides P in K[T , . . . , T (s−1), T (s)]. Then, the set of all polynomials P ∈ K[T , . . . , T (s)] with
P(�, . . . , �(s)) = 0 in F is a principal ideal of K[T , . . . , T (s)] which is generated by any minimal
polynomial of � in K ↪→ F . Thus, a minimal polynomial of � in K ↪→ F is uniquely determined
up to scalar factors in K \ {0}.

On the other hand, for i = 1, . . . , �, there exist polynomials pi(T ), qi(T ) ∈ K{T } with
qi(�) 	= 0 in F , such that Zi = pi(�)/qi(�) in F . In other words, qi(�)Zi − pi(�) ∈ I for
i = 1, . . . , � (in fact, due to Proposition 30, there exist polynomials pi, qi of order bounded by s

satisfying these conditions).
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Definition 31. Under the previous assumptions and notation, the set {M, q1(T )Z1 − p1(T ),

. . . , q�(T )Z� − p�(T )}, where M is a minimal polynomial of � in K ↪→ F , is called a resolvent
representation of the zero-dimensional prime differential ideal I with respect to the primitive
element �.

This notion can be extended to the positive-dimensional case: let K be a differential field con-
taining a non-constant element and let I be a prime differential ideal of K{Z} with diffdim(I) = r .
Consider a differential transcendence basis W ⊂ Z of K ↪→ F . Setting K := K〈W 〉 and Z̄ :=
Z\W , the ideal K ⊗I of K{Z̄} has differential dimension zero and the field F is the fraction field
of K{Z̄}/K ⊗I. Then, the previous assumptions hold and so, there exist a primitive element � of
the extension K ↪→ F and a resolvent representation {M, q1(T )Z̄1 −p1(T ), . . . , q�−r (T )Z̄�−r −
p�−r (T )} of the ideal K ⊗I. Without loss of generality, we may assume that M ∈ K{W }{T }, and
also that qi, pi ∈ K{W }{T } for 1� i��. The set {M, q1(T )Z̄1 − p1(T ), . . . , q�−r (T )Z̄�−r −
p�−r (T )} ⊂ K{W }{T } is called a resolvent representation of the prime differential ideal I with
respect to the transcendence basis W and the primitive element �.

A generalization of the notion of resolvent representation for the class of regular differential
ideals, which will not be considered in this paper, can be found in [4,5].

5.2. Bounds for the order and degree of a minimal polynomial of a primitive element

In what follows, we go back to our particular situation arising from the differential equation
system (1). We keep the same notations and assumptions as in Sections 3 and 4. We will assume
further that our differential base field k contains a non-constant element and that a differential
transcendence basis W ⊂ U of k〈Y 〉 ↪→ F has been fixed.

First, we will prove an upper bound for the total order of a minimal polynomial of a primitive
element of the extension k〈Y, W 〉 ↪→ F . Then, we will show that this polynomial can be regarded
as an eliminating polynomial associated to a suitable linear projection of a certain algebraic
variety, which will enable us to deduce a degree upper bound.

Denote Ū := U \W and K := k〈Y, W 〉. Then, K ⊗� is a zero-dimensional prime differential
ideal of K{X, Ū}. Let � := 	1X1 + · · · + 	nXn + 	n+1Ū1 + · · · + 	n+r Ūr ∈ k[X, Ū ] be a linear
form such that its class in F is a primitive element of the differential field extension K ↪→ F .
Set s := ordK(K ⊗ �); so, a minimal polynomial M of � in K ↪→ F lies in K[T , . . . , T (s)] (see
Proposition 30).

Now, we will show the existence of a minimal polynomial of � in K ↪→ F with ‘low’ order
also in the variables Y, W .

Lemma 32. There exists a minimal polynomial M ∈ K[T , . . . , T (s)] of � in K ↪→ F such that
M ∈ k[Y [2n+2r−1], W [2n+2r]][T [s]] and M(�, . . . , �(s)) ∈ �2n+2r .

Proof. As in the proof of Proposition 30 (ii), since � has order 0 and s�n + r , we have that
the field F coincides with the fraction field Frac(K ⊗ An+r/(K ⊗ �) ∩ (K ⊗ An+r )). Then, if
P ∈ K[T , . . . , T (s)] is a minimal polynomial of � in K ↪→ F , we have that P(�, . . . , �(s)) ∈
(K ⊗ �) ∩ (K ⊗ An+r ). Multiplying it by a non-zero element of K , we may assume P ∈
k{Y, W }[T [s]].

Now, with a proof analogous to that of Lemma 14, it can be shown that (K⊗�)∩(K⊗An+r ) ⊂
K ⊗�2n+2r and so, P(�, . . . , �(s)) ∈ (K ⊗An+r )∩ (K ⊗�2n+2r ). Thus, there exist polynomials
aik, bjk ∈ K ⊗ A2n+2r (1� i�n, 1�j �r, 0�k�2n + 2r − 1) such that P(�, . . . , �(s)) =
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k=0 (

∑n
i=1 aikF

(k)
i +∑r

j=1 bjkG
(k)
j ). Multiplying this identity by a polynomial in k{Y, W },

we may assume that aik, bjk ∈ k[Y [l], W [l], X[2n+2r], Ū [2n+2r]] and P ∈ k[Y [l], W [l]][T [s]] for
some l ∈ N.

Let IP ∈ k[Y [l], W [l], T [s−1]] be the leading coefficient of the polynomial P in the
variable T (s), and let y0 := (y2n+2r , . . . , yl), w0 := (w2n+2r+1, . . . , wl) be rational vectors
such that IP (Y [2n+2r−1], y0, W

[2n+2r], w0, T
[s−1]) 	≡ 0. Making this substitution in all the

coefficients of P and in the polynomials aik, bjk , we obtain a non-zero polynomial
M ∈ k[Y [2n+2r−1], W [2n+2r]][T [s]] satisfying M(�, . . . , �(s)) ∈ �2n+2r . In particular,
M(�, . . . , �(s)) = 0 in F , and it follows straightforwardly that M is a minimal polynomial of
� in K ↪→ F . �

From the proof of the previous lemma, we can restate our result as follows:

Remark 33. Let 
 be the minimum integer such that the identity (K ⊗ �) ∩ (K ⊗ Ai) =
(K ⊗ �i+
) ∩ (K ⊗ Ai) holds for every i ∈ N. Then, there is a minimal polynomial M ∈
k[Y [s+
−1], W [s+
]][T [s]] such that M(�, . . . , �(s)) ∈ �s+
. Note that 
�n + r (see proof of
Lemma 32) and s�n + r (see Proposition 2).

Lemma 32 enables us to characterize a minimal polynomial of a primitive element as any
defining equation of an algebraic variety and thus, to estimate its degree.

In the sequel, unless otherwise stated, we will consider affine spaces over the field k̄ equipped
with their Zariski topologies over k, which will be denoted simply by A.

Notation 34. Let N1 := r(2n+ 2r)+ (n+m)(2n+ 2r + 1) and let V ⊂ AN1 be the irreducible
variety defined by the ideal �2n+2r ⊂ A2n+2r (see Remark 7).

Arbitrary points of the corresponding affine spaces will be denoted by

y := (y1, . . . , yr , . . . , y
(2n+2r−1)
1 , . . . , y(2n+2r−1)

r ) ∈ Ar(2n+2r),

w := (w1, . . . , wm−r , . . . , w
(2n+2r)
1 , . . . , w

(2n+2r)
m−r ) ∈ A(m−r)(2n+2r+1),

x := (x1, . . . , xn, . . . , x
(2n+2r)
1 , . . . , x(2n+2r)

n ) ∈ An(2n+2r+1),

ū := (ū1, . . . , ūr , . . . , ū
(2n+2r)
1 , . . . , ū(2n+2r)

r ) ∈ Ar(2n+2r+1). (5)

Let N2 := r(2n+ 2r)+ (m− r)(2n+ 2r + 1)+ s + 1 and consider the linear map � : V → AN2

defined by �(y, w, x, ū) = (y, w, �(x, ū), . . . , �(s)(x, ū)), where, for l = 0, . . . , s,

�(l) =
l∑

k=0

(
l

k

) ⎛⎝ n∑
i=1

	(k)
i X

(l−k)
i +

r∑
j=1

	(k)
n+j Ū

(l−k)
j

⎞⎠. (6)

Proposition 35. The Zariski closure �(V) is an irreducible hypersurface in AN2 , and any irre-
ducible polynomial M ∈ k[Y [2n+2r−1], W [2n+2r], T [s]] defining �(V) is a minimal polynomial of
� in the differential extension k〈Y, W 〉 ↪→ F .

Proof. Since V is an irreducible subvariety of AN1 , the Zariski closure �(V) is an irreducible
subvariety of AN2 .
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In order to prove that it is a hypersurface, let us observe first that if a non-zero polynomial P ∈
k[Y [2n+2r−1], W [2n+2r], T [s−1]] vanishes over �(V), then P(�, . . . , �(s−1)) = 0 in F , contradict-
ing the algebraic independence of �, . . . , �(s−1) in k〈Y, W 〉 ↪→ F (recall that � ∩ k{Y, W } = 0).
This implies that �(V) has codimension at most 1. On the other hand, due to Lemma 32, there is
a non-zero polynomial M ∈ k[Y [2n+2r−1], W [2n+2r]][T [s]] such that M(�, . . . , �(s)) ∈ �2n+2r .
Then, �(V) ⊂ {M = 0} and so, its codimension is at least 1.

It is clear that any irreducible polynomial defining �(V) is a minimal polynomial of � in
k〈Y, W 〉 ↪→ F . �

Using [16, Lemma 2 and Theorem 1], we obtain an upper bound on the degree of the minimal
polynomial given by the previous proposition:

Theorem 36. Let � = 	1X1 + · · · + 	nXn + 	n+1Ū1 + · · · + 	n+r Ūr be a primitive element
of the differential field extension k〈Y, W 〉 ↪→ F . Then, there is a minimal polynomial M ∈
k[Y [2n+2r−1], W [2n+2r], T [s]] of � with total degree bounded by deg(V). In particular, if d :=
max{deg(fi), deg(gj ); 1� i�n, 1�j �r}, due to the Bezout inequality, we have deg(M)�
d2(n+r)2

.

Following Remark 33, we are able to give a more precise degree upper bound for a minimal
polynomial of a primitive element as in the previous theorem:

Remark 37. If Vs+
 denotes the variety defined by the ideal �s+
, there is a minimal polynomial
M ∈ k[Y [s+
−1], W [s+
], T [s]] with deg(M)� deg(Vs+
)�d(n+r)(s+
).

The following example proves that the upper bounds stated in our previous results are optimal.
In addition, it shows that for certain particular systems, our geometric upper bounds may be
considerably smaller than the syntactic single exponential ones.

Example 38. Let us consider the following system over the differential field k = Q(t):⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẋ1 = X2

1
Ẋ2 = X2

1
...

Ẋn = X2
1

Here, r = m = 0. It is easy to see that s = ordk(�) = n and that � ∩ Ai = �i for every
i ∈ N (and so, 
 = 0). On the other hand, the degree of the variety Vn defined by the ideal �n is
n+1. Therefore, Remark 37 implies that any linear primitive element � has a minimal polynomial
M ∈ k[T [n]] with deg(M)� deg(Vn) = n + 1.

Actually, it is not too difficult to show that � := X2 + tX3 +· · ·+ tn−2Xn is a primitive element
of k ↪→ Frac(k{X}/�) and that if Q := 1 + t + · · · + tn−2,

M := −nn
(
T (n−1)

)n+1 +
n−2∑
j=0

(n − 1)!
j ! Q(j)

(
nT (n−1)

)j

(T (n))n−j

is a minimal polynomial of �. Let us observe that ord(M) = n = ordk(�) and deg(M) = n+1 =
deg(Vn).
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5.3. The minimal polynomial of a generic primitive element

The algorithm we will present in Section 6 for the computation of a resolvent representation
follows closely Seidenberg’s proof of Theorem 29 relying on a construction based on the minimal
polynomial of a generic primitive element. For this reason, we will need estimates for the order
and degree of this polynomial also in the variables corresponding to the coefficients of this generic
primitive element.

Let � := {�1, . . . ,�n+r} be a set of new differential indeterminates over k. We change our
base field k by k� := k〈�〉. Let �� ⊂ k�{Y, X, U} be the differential ideal generated by the dif-
ferential polynomials F, G and let F� := F〈�〉, which is the fraction field of k�{Y, X, U}/��.
The differential transcendence basis W of k〈Y 〉 ↪→ F continues to be a differential transcen-
dence basis of k�〈Y 〉 ↪→ F� and so, by considering K� := k�〈Y, W 〉, we obtain a differential
field extension K� ↪→ F� which is finite and differentially algebraic. Furthermore, F� is the
fraction field of K�{X, Ū}/K� ⊗ ��, and the class in F� of � := �1X1 + · · · + �nXn +
�n+1Ū1 + · · · + �n+r Ūr ∈ k�[X, Ū ] is a primitive element of K� ↪→ F� (see the proof of
Theorem 29).

Due to Proposition 30, {�, . . . ,�(s−1)} is a transcendence basis of K� ↪→ F�, where s =
ordK�(K�⊗��) = ordK(K ⊗�), and F� coincides with the fraction field of K�⊗An+r/(K�⊗
��) ∩ (K� ⊗ An+r ). Thus, Lemma 32 ensures the existence of a minimal polynomial M�
of � in K� ↪→ F�, such that M� ∈ k�[Y [2n+2r−1], W [2n+2r]][T [s]] and M�(�, . . . ,�(s)) ∈
(��)2n+2r := (F [2n+2r−1], G[2n+2r−1]) ⊂ k�[Y [2n+2r−1], X[2n+2r], U [2n+2r]]. Finally, Theo-
rem 36 states that such a minimal polynomial M� can be chosen with total degree bounded by
the degree of the variety defined by the ideal (��)2n+2r in the corresponding affine space over an
algebraic closure of k�.

Moreover, with the same arguments of specialization as in the proof of Lemma 32, the fol-
lowing result concerning the order in the variables � of a minimal polynomial M� of � can be
proved:

Proposition 39. There is a minimal polynomial M� of the generic primitive element � of the
extension K� ↪→ F� satisfying the degree upper bound of Theorem 36 in the variables
Y [2n+2r−1], W [2n+2r], T [s], such that M� ∈ k[�[s], Y [2n+2r−1], W [2n+2r]][T [s]] is irreducible,
and M�(�, . . . ,�(s))∈(F [2n+2r−1], G[2n+2r−1]) ⊂ k[�[s], Y [2n+2r−1], X[2n+2r], U [2n+2r]].

As in the previous subsection, we will show that the polynomialM� can be seen as an eliminating
polynomial, which will enable us to give an upper bound on its degree.

Let N1 and N2 be as before and let V� ⊂ AN1(k(�[s])) be the irreducible variety defined

by the polynomials F [2n+2r−1], G[2n+2r−1]. Consider the linear map � : V� → AN2(k(�[s]))
defined by �(y, w, x, ū) = (y, w, �(x, ū), . . . ,�(s)(x, ū)).

Then, from Proposition 39, we deduce the following analogue of Proposition 35:

Proposition 40. The Zariski closure �(V�) ⊂ AN2(k(�[s])) is an irreducible hypersurface,
and any irreducible polynomial M� ∈ k(�[s])[Y [2n+2r−1], W [2n+2r], T [s]] defining �(V�) is a
minimal polynomial of � in K� ↪→ F�.

Now we will obtain an upper bound for the total degree of a minimal polynomial of the generic
primitive element �.
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Theorem 41. Let M� ∈ k[�[s], Y [2n+2r−1], W [2n+2r], T [s]] be as in Proposition 39 and let V ⊂
AN1 be the algebraic variety introduced in Notation 34. Then, the total degree of M� is bounded
by (n + 1 + m(2n + 2r + 1)) deg(V).

Proof. First, let us observe that {Y [2n+2r−1], W [2n+2r], �[s−1]} is an algebraically independent
set in k� ↪→ Frac(k� ⊗A2n+2r/(��)2n+2r ), which is a field extension with transcendence degree
equal to n + m(2n + 2r + 1) (see Remark 7). Then, there is a set E ⊂ {X, Ū [2n+2r]} with
n + r − s elements such that {Y [2n+2r−1], W [2n+2r], �[s−1], E} is a transcendence basis of this
extension.

Throughout the proof, we will use the notation � := (y, w, x, ū) for the elements of AN1

(keeping the notation introduced in (5)), and 	 := (	1, . . . , 	n+r , . . . , 	
(s)
1 , . . . , 	(s)

n+r ) for the
elements of the affine space A(n+r)(s+1).

Let N0 := n + 1 + m(2n + 2r + 1), and let �1 : A(n+r)(s+1) × AN1 → A(n+r)(s+1) × AN0 be
the (non-linear) map defined by �1(	, �) = (	, y, w, �(	, x, ū), . . . , �(s)(	, x, ū), e). Consider
the irreducible variety V1 := A(n+r)(s+1) × V ⊂ A(n+r)(s+1) × AN1 .

Notice that {�[s], Y [2n+2r−1], W [2n+2r], �[s−1], E} is a transcendence basis of k(V1) over
k. This implies that �1(V1) is a hypersurface in A(n+r)(s+1) × AN0 . On the other hand, it is
straightforward to check that a minimal polynomial M� ∈ k[�[s], Y [2n+2r−1], W [2n+2r], T [s]]
as in Proposition 39 vanishes over �1(V1), and so, �1(V1) ⊂ {M� = 0}. We conclude that
�1(V1) = {M� = 0}, both varieties being irreducible hypersurfaces. Therefore, deg(M�) =
deg(�1(V1)).

In order to estimate deg(�1(V1)), we will give an alternative description of �1(V1). First, let
us observe that dim(V) = N0 − 1.

For i = 1, . . . , N0, let Ci be a set of N1 + 1 new variables indexed by Y [2n+2r−1], W [2n+2r],
X[2n+2r], Ū [2n+2r] and 0 which stand for the coefficients of a generic affine linear form Li in
these variables (Ci0 corresponds to the constant term of Li). Consider the map � : A(N1+1)N0 ×
V → A(N1+1)N0 × AN0 defined by �(c, �) = (c, L1(c1, �), . . . , LN0(cN0 , �)), where c :=
(c1, . . . , cN0).

The Zariski closure of �(A(N1+1)N0 × V) is a hypersurface in A(N1+1)N0 × AN0 , which is
defined by a multihomogeneous polynomial of degree deg(V) in each group of variables Ci for
i = 1, . . . , N0 (see [23, Section 2.3.1]). Thus, deg(�(A(N1+1)N0 × V)) = N0 deg(V).

We will show that the variety �1(V1) can be obtained as a linear projection of the intersection
of �(A(N1+1)N0 × V) with a linear variety.

First, we define a linear variety L ⊂ A(N1+1)N0 whose points correspond to the coefficient
vectors of families of linear forms of type Y [2n+2r−1], W [2n+2r], �[s], E; that is, a point c is in L if
and only if its first coordinates are the coefficient vectors of the linear forms Y [2n+2r−1], W [2n+2r],
its last coordinates are the coefficients of the linear forms E, and the remaining ones are the
coefficients of �, �̇, . . . , �(s) for the derivatives �(l) of some linear form as in (6). Set i0 :=
r(2n + 2r) + (m − r)(2n + 2r + 1), i1 := i0 + s + 1. Identifying �(l) with Ci0+1+l,{X,Ū} for l =
0, . . . , s, the variety L can be defined by means of the following equations (where 
1, . . . , 
N1+1
denote the vectors of the canonical basis of kN1+1):

• For i = 1, . . . , i0: Ci = 
i .
• For i = i0+1, . . . , i1: Ci,Y [2n+2r−1] = Ci,W [2n+2r] = 0, Ci,{X,Ū}(j) = 0 for j � i−i0, Ci,{X,Ū}(j) =(

i−i0−1
j

)
Ci−j,{X,Ū}(0) for j < i − i0 (see identity (6)).

• For i = i1+1, . . . , N0: Ci := 
ji−i1
, where 
jk

is the vector of the canonical basis corresponding
to the coefficient vector of Ek for k = 1, . . . , n + r − s.
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Let �� : A(N1+1)N0 ×AN0 → A(n+r)(s+1)×AN0 be the linear projection defined by ��(c, b) =
(ci0+1,{X,Ū}, . . . , ci1,{X,Ū}, b).

Then, we have the following equality ��
(
�(A(N1+1)N0 × V) ∩ (L × AN0)

) = �1(V1).
Taking into account that the degree of a variety does not increase when intersecting it with an

affine linear space [16, Remark 2] or under a linear projection [16, Lemma 2], we conclude that
deg(M�) = deg(�1(V1))� deg(�(A(N1+1)N0 × V) ∩ (L × AN0))� deg(�(A(N1+1)N0 × V)) =
(n + 1 + m(2n + 2r + 1)) deg(V). �

5.4. The resolvent representation

In this subsection we deduce some results concerning the choice of a primitive element of the
extension K ↪→ F (see Section 5.2) and the order and degrees of the polynomials involved in a
resolvent representation of the prime differential ideal �.

Let M� ∈ k[�[s], Y [2n+2r−1], W [2n+2r]][T [s]] be a minimal (irreducible) polynomial of the
generic primitive element � = �1X1 +· · ·+�nXn +�n+1Ū1 +· · ·+�n+r Ūr of K�↪→F� as in
Proposition 39. Let us observe that the polynomial X appearing in the proof of Theorem 29 can be

taken as X=M�. Since Q�:= �M�
�T (s) (�, . . . ,�(s)) is a polynomial in k[�[s], Y [2n+2r−1], X[2n+2r],

U [2n+2r]] which is a non-zero element in F�, the proof of Theorem 29 provides a resolvent rep-
resentation of the ideal K� ⊗ � by computing the partial derivatives of M�(�, . . . ,�(s)) with
respect to �(s)

i for i = 1, . . . , n + r (see condition (4) in that proof). In particular, all the polyno-
mials involved in this resolvent representation are elements of k[�[s], Y [2n+2r−1], W [2n+2r], T [s]]
and have degrees bounded by that of M�.

In addition, the proof of that theorem shows that a sufficient condition for an element � =
	1X1 + · · · + 	nXn + 	n+1Ū1 + · · · + 	n+r Ūr to be a primitive element of K ↪→ F is the non-
vanishing in F of the specialization of the differential polynomial Q� ∈ F{�} at (	1, . . . , 	n+r ).
As the order of Q� in the variables � is bounded by s, the arguments in the proof of [28, Chapter
2, Section 22] imply:

Corollary 42. Let � ∈ k ⊂ K be a non-constant element. There exists a primitive element � of
the extension K ↪→ F of type � = 	1X1 +· · ·+	nXn +	n+1Ū1 +· · ·+	n+r Ūr where 	i ∈ Q[�]
is a polynomial of degree bounded by s = ordK(K ⊗ �) for i = 1, . . . , n + r .

Now, let 	 := (	1, . . . , 	n+r ) be an (n + r)-tuple with Q�(	) 	= 0 in F . Then, by consid-
ering a minimal polynomial M of � := �(	) as in Proposition 35 and specializing the differ-

ential variables � into 	 in the polynomials Q := �M�
�T (s) (T , . . . , T (s)) ∈ K{�, T } and Pi :=

− �M�

��(s)
i

(T , . . . , T (s)) ∈ K{�, T } appearing in the generic resolvent representation, we obtain

a resolvent representation of the ideal � with respect to the transcendence basis Y, W and the
primitive element �. We conclude:

Theorem 43. There is a resolvent representation {M, q X1 − p1, . . . , q Xn − pn,

q Ū1 −pn+1, . . . , q Ūr −pn+r} of the prime differential ideal � with respect to the transcendence
basis Y, W and a primitive element � = 	1X1 + · · · + 	nXn + 	n+1Ū1 + · · · + 	n+r Ūr of the
differential field extension k〈Y, W 〉 ↪→ F satisfying: M, q, pi ∈ k[Y [2n+2r−1], W [2n+2r], T [s]]
for i = 1, . . . , n + r and their total degrees are bounded by deg(V).
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6. Algorithmic computation of a resolvent representation

The main goal of this section is the computation of a resolvent representation of the differential
ideal � associated to system (1) (see Notation 5).

As in Section 4.3, we will consider the ground differential field k to be the rational effective
field Q(t) (with the standard derivation). Furthermore, in order to make the presentation of our
algorithm simpler, we will assume that the polynomials defining system (1) have coefficients in
Q. This assumption is not restrictive, since we may replace our original system over Q[t] by an
equivalent one over Q by adding a new differential variable t and the equation ṫ = 1.

In the previous section we proved that the minimal polynomial of a primitive element can
be seen as an eliminating polynomial of a suitable linear projection in the classical algebraic
geometry context. Now, we will apply some well-known algorithmic techniques from computer
algebra (mainly from [17,31]) to the computation of this polynomial.

6.1. Computing the generic minimal polynomial

As in Section 5.2, fix a differential transcendence basisW⊂U of the field extension Q(t)〈Y 〉↪→F
(see Notation 11), and consider the differentially algebraic field extension Q(t)〈Y, W 〉 ↪→ F . This
transcendence basis W can be obtained by applying the algorithm underlying Theorem 27. Denote
Ū := U \ W and K := Q(t)〈Y, W 〉. We introduce a new set � := {�1, . . . ,�n+r} of differential
indeterminates over K and set k� := Q(t)〈�〉, �� := [F, G] ⊂ k�{Y, X, U}, K� := k�〈Y, W 〉
and F� := F〈�〉.

This subsection focuses on the computation of the minimal polynomial M� of the generic
primitive element � := �1X1 + · · ·+�nXn +�n+1Ū1 + · · ·+�n+r Ūr in K� ↪→ F� satisfying
the degree upper bound stated in Theorem 41.

First, we compute s := ordK(K ⊗ �). We point out that, for an arbitrary differential tran-
scendence basis W , ordQ(t)〈Y,W 〉(Q(t)〈Y, W 〉 ⊗ �)�ordQ(t)〈Y 〉(Q(t)〈Y 〉 ⊗ �), and the equality
may not hold. The computation of s can be made using the same techniques as those applied in
Section 4 for the computation of the Hilbert function of Q(t)〈Y 〉 ⊗ � over Q(t)〈Y 〉: taking into
account that diffdim(K ⊗ �) = 0, we deduce from Proposition 2 that s = HK⊗�,K(n + r). In
order to compute this Hilbert function value we apply the following analogue of Lemma 14 that
holds in our new framework with a similar proof: for every i�0, we have (K ⊗�)∩ (K ⊗Ai) =
(K ⊗ �i+n+r ) ∩ (K ⊗ Ai).

Arguing as in the proofs of Proposition 16 and Corollary 22, we obtain:

Proposition 44. Let JW
n+r := �{F,G}[n+r, 2n+2r−1]

�{X, U\W }[n+r+1, 2n+2r] (see Notation 15). Then, the following identity

holds: HK⊗�, K(n + r) = rank(JW
n+r ) − (n + r)(n + r − 1), where the rank is taken over the

polynomial ring Q[t, X, U [2n+2r]].
Let E ⊂ {X, U [2n+2r]} be a set with n + r − s elements such that {Y [2n+2r−1], W [2n+2r],

�[s−1], E} is a transcendence basis of the field Frac(k� ⊗ A2n+2r/(��)2n+2r ) over k�. As in
Notation 34, let N1 = r(2n + 2r) + (n + m)(2n + 2r + 1). Let us consider the variety V ⊂
A(n+r)(s+1) × AN1 × As defined as

V := {(	, y, w, x, ū, �) ∈ A(n+r)(s+1) × AN1 × As : F [2n+2r−1](w, x, ū) = 0,

G[2n+2r−1](y, w, x, ū) = 0, �(	, x, ū) = �0, . . . ,�
(s−1)(	, x, ū) = �s−1},

which is irreducible of dimension � := (n + r)(s + 1) + m(2n + 2r + 1) + n. We have the
ring inclusion Q

[
�[s], Y [2n+2r−1], W [2n+2r], E, T [s−1]] ↪→ Q[V] and that the cardinality of the
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family �[s], Y [2n+2r−1], W [2n+2r], E, T [s−1] is �. Thus, the linear projection � : V → A� defined
by �(	, y, w, x, ū, �) = (	, y, w, e, �) is a dominant map with generically finite fibers.

Let � : V → A� × A1 be defined by �(	, y, w, x, ū, �) = (�(	, y, w, x, ū, �), �(s)(	, x, ū)).
Then, the Zariski closure �(V) is a hypersurface and any square-free polynomial defining �(V)

is a minimal polynomial for the generic primitive element �.
We will consider the polynomial equation system defining V as a parametric system, where the

parameters are P := (�[s], Y [2n+2r−1], W [2n+2r], E, T [s−1]) and the variables—the set of which
will be denoted Z in the sequel—are those variables in X[2n+2r], Ū [2n+2r] that are not in the set
of variables E. Thus, we obtain a polynomial system with 2(n+r)2 +s equations in 2(n+r)2 +s

unknowns defining a zero-dimensional variety VK over the algebraic closure K of K := Q(P ). Let
us observe that the ideals I := (F [2n+2r−1], G[2n+2r−1], �−T , . . . , �(s−1)−T (s−1)) ⊂ Q[P, Z]
and IK := K ⊗ I ⊂ K[Z] are the (prime) ideals of the varieties V and VK, respectively.

The following result relates the minimal polynomial M� we want to compute to the minimal
polynomial of a K-linear map.

Lemma 45. Let m�(s) : K[Z]/IK → K[Z]/IK be the K-linear map defined as m�(s) (f ) =
�(s) · f and let M0 ∈ K[T (s)] be its minimal polynomial. Then, there exists Q0 ∈ Q[P ] − {0}
such that M� = Q0 · M0.

Proof. First, let us observe that M�(�(s)) ∈ I and so, M�(�(s)) ∈ IK. Therefore, M0 divides
M� in Q(P )[T (s)]. On the other hand, since M0(�(s)) ∈ IK, there exists Q ∈ Q[P ] − {0} with
Q · M0(�(s)) ∈ I. Then, the fact that M� is the polynomial with minimal degree in Q[P, T (s)]
satisfying M�(�(s)) ∈ I implies that M� divides Q · M0 in Q[P, T (s)]. The lemma follows now
from the irreducibility of M� and the fact that M0 is a monic polynomial. �

Since IK is a zero-dimensional prime ideal of K[Z], its extension IK to K[Z] is a zero-
dimensional radical ideal. Then, the linear map m�(s) : K[Z]/IK → K[Z]/IK is diagonalizable

and its characteristic polynomial isX := ∏D
i=1(T

(s)−�(s)(Ri )) ∈ K[T (s)], whereD := deg(VK)

and R1, . . . ,RD ∈ K2(n+r)2+s
denote the points in VK. Therefore, the minimal polynomial M0

of m�(s) can be obtained as the square-free part of X .
Our algorithm for the computation of the polynomial M� is based on an extension of the results

in [17] (which hold for a finite morphism) to the case of a dominant map, which is achieved by
using the techniques described in [31].

Proposition 46. With the same notation as before, assume that f1, . . . , fn ∈ Q[X, U ], g1, . . . ,

gr∈Q[X, U, U̇ ] have degrees bounded by d and are encoded by an slp of length L. Then, there
is a probabilistic algorithm which computes the minimal polynomial of the generic primitive
element � in K� ↪→ F� with error probability bounded by ε, with 0 < ε < 1, within complexity
O(log(1/ε)(n + r)20(n + m)6d2 deg(V)10L), where V is the algebraic variety introduced in
Notation 34.

Proof. First, we present a sketch of the algorithm:

(1) Take a point p ∈ Q� at random and compute a geometric resolution of �−1(p), that is, a
family of 2(n + r)2 + s + 1 univariate polynomials q, v1, . . . , v2(n+r)2+s with coefficients in
Q(P ) such that �−1(p) = {p} × {(v1(�), . . . , v2(n+r)2+s(�)), q(�) = 0}.
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(2) Applying a symbolic version of Newton’s algorithm to the geometric resolution, compute a
polynomial X� ∈ Q(P )[T (s)] whose coefficients approximate the coefficients of the poly-
nomial X as power series in Q̄[[P − p]] with prescribed precision 2� for a suitably chosen
� ∈ N.

(3) Compute a polynomial Υ� ∈ Q(P )[T (s)] whose coefficients approximate the coefficients of
the square-free polynomial red(X ) := X

gcd(X , �X /�T (s))
∈ Q(P )[T (s)] with precision 2� in

Q[[P − p]].
(4) By means of a Padé approximation type procedure, compute relatively prime polynomials �1

and �2 in Q[P, T (s)] such that red(X ) = �1/�2. The minimal polynomial M� ∈ Q[P, T (s)]
is the numerator �1.

Now, we detail the procedures underlying each of the above mentioned steps of the algorithm,
compute their complexities and estimate their error probability.

The first step of the algorithm consists in the computation of a geometric resolution of a fiber
�−1(p) for a randomly chosen point p ∈ Q�. This point is chosen at random so that with high
probability the fiber �−1(p) is zero-dimensional and unramified. In order to compute the geomet-
ric resolution of �−1(p), we apply the procedure for the resolution of zero-dimensional systems
described in [18], which takes a reduced regular sequence as input (alternatively, this first step
could be achieved by means of any algorithm solving zero-dimensional algebraic systems). We
will also need the following technical assumption on the point p: #{�(s)(�) : � ∈ �−1(p)} =
#{�(s)(R) : R ∈ VK} (or, equivalently, the polynomial M�(p) is square-free). Both these con-
ditions also hold for a generic p ∈ A�. Moreover, there is a non-zero polynomial H0 ∈ Q[P ] of
degree bounded by 6d4(n+r)2+2s such that all the previous conditions hold for any point p ∈ A�

with H0(p) 	= 0 (see [31, Section 3.4]). Thus, if we choose the coordinates of p at random in a
set of cardinality 12 d4(n+r)2+2s[1/ε], the conditions hold with error probability bounded by ε/2.
These random choices can be made within complexity O((n + r)2 log(d) + log(1/ε)).

Recall that the polynomials F [2n+2r−1], G[2n+2r−1] can be encoded by slp’s of length O((n +
r)3(n + m)L) (see Lemma 21). Assume that the randomly chosen point p ∈ A� satisfies all the
genericity conditions stated above. Then, if � is the maximum of the degrees of the varieties suc-
cessively defined by the equations of �−1(p), a geometric resolution of �−1(p) can be computed
with error probability bounded by ε/4 within complexity O(log(1/ε)(n+m)(n+r)10d �4L) (see
[18, Theorem 1]). Let us observe that � is bounded by the maximum of the degrees of the varieties
successively defined by the ideals pi,s , qi,l for 1� i�2n + 2r , 1�s�n, 1� l�r , introduced in
Remark 7. It is easy to see that the degrees of these varieties form a non-decreasing sequence and
so, their maximum is the degree of the last variety. Therefore, �� deg(V), and the complexity of
step (1) can be estimated as O(log(1/ε)(n + m)(n + r)10d deg(V)4L).

Denote q, v1, . . . , v2(n+r)2+s ∈ Q[T ] the polynomials appearing in the geometric resolution

of �−1(p). Let S := (F [2n+2r−1], G[2n+2r−1], �−T (0), . . . ,�(s−1) −T (s−1)) be the polynomial
system defining V . Let DS(Z) be the Jacobian matrix of S with respect to the variables Z and let
JS be its Jacobian determinant.

Our assumptions on p ∈ A� state that the fiber �−1(p) is a zero-dimensional variety with
exactly D = deg(VK) points and that, for every � ∈ �−1(p), we have JS(p, �) 	= 0. Then, by
the implicit function theorem (see, for instance, [17, Lemma 3] for a proof in this context), for
every � ∈ �−1(p) there exists R� ∈ Q̄[[P − p]]2(n+r)2+s such that R� ∈ VK and R�(p) = �.
This implies that {R� : � ∈ �−1(p)} = VK, since both sets have the same cardinality. Moreover,
the proof of [17, Lemma 3] shows that, for every � ∈ �−1(p), the corresponding point R� ∈
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Q̄[[P − p]]2(n+r)2+s can be ‘approximated’ by applying successively to � the Newton operator
associated to the system S, defined as NS(Z)t := Zt − DS(Z)−1S(Z)t .

If N�
S denotes the �th iteration of NS and (P −p) is the maximal ideal of Q̄[[P −p]], we have

that N�
S (�) ∈ Q̄[[P −p]]2(n+r)2+s and (R�)i−(N�

S (�))i ∈ (P −p)2�
for i = 1, . . . , 2(n+r)2+s,

that is, the ith coordinate of N�
S (�) approximates with precision 2� the ith coordinate of R� in

the sense that their power series expansions coincide up to degree 2� − 1. We conclude that the
coefficients of the polynomial

∏
�∈�−1(p)(T

(s) − �(s)(N�
S (�))) approximate the coefficients of X

with precision 2�.
From the algorithmic viewpoint, we cannot apply Newton’s operator to the points � ∈ �−1(p),

since we cannot compute these points. However, we can obtain all the approximations ‘simulta-
neously’ in order to compute an approximation X� of the characteristic polynomial X by applying
it to a geometric resolution of the fiber �−1(p).

Let h0, h1, . . . , h2(n+r)2+s ∈ Q[P, Z] be polynomials with N�
S =

(
h1
h0

, . . . ,
h2(n+r)2+s

h0

)
and

h0(p, �) 	= 0 for every � ∈ �−1(p). Let v := (v1, . . . , v2(n+r)2+s) and let Cq be the com-
panion matrix of the polynomial q. Then, the matrix h0(P, v(Cq)) is invertible and, if Ni :=
h0(P, v(Cq))−1hi(P, v(Cq)) for i = 1, . . . , 2(n + r)2 + s, the characteristic polynomial of
�(s)(P , N1, . . . ,N2(n+r)2+s) equals

∏
�∈�−1(p)(T

(s) − �(s)(N�
S (�))) (see [17, Lemma 6]). In or-

der to approximate this polynomial we first obtain straight-line programs of length O(� d2(n +
r)17(n+m)L) for the polynomials h0, h1, . . . , h2(n+r)2+s by means of the procedure underlying
[12, Lemma 30] and then we proceed as in [17, Proof of Theorem 2] to obtain a matrix whose
entries approximate those of �(s)(P , N1, . . . ,N2(n+r)2+s) with the desired precision, but avoid-
ing matrix inverse computations. Finally, we compute the characteristic polynomial X� of this
matrix, whose coefficients approximate the coefficients of X in Q[[P − p]] with precision 2�.
The overall complexity of this step is O(� 2�d2(n + r)17(n + m)D4L), which is also the length
of the slp obtained for the coefficients of the polynomial X�.

Now, we describe the procedure to achieve the third step of our algorithm. The hypothesis
#{�(s)(�) : � ∈ �−1(p)} = #{�(s)(R) : R ∈ VK} ensures that, considering X and �X

�T (s) as

polynomials in the variable T (s), deg(gcd(X , �X
�T (s) )) = deg(gcd(X (p),

�X (p)

�T (s) )). Thus, we can

obtain this degree by computing the characteristic polynomial of �(s) with respect to �−1(p)

from the geometric resolution of �−1(p) and subresultants of X (p) and �X (p)

�T (s) within complexity

O(D5) (see, for instance, [1, Section 8.3]). By [1, Corollary 10.14], once this degree is known,
the coefficients of a scalar multiple Υ of red(X ) can be obtained by computing determinants of
square submatrices of the Sylvester matrix of X and X ′, and, making the same computations
with the Sylvester matrix of X (p), the polynomial Υ (p) is obtained. Since Υ and Υ (p) have the
same degree, we conclude that the scalar factor is an invertible element of Q[[P − p]]. Note that
the previous procedure involves only polynomial computations in the coefficients of X . Then,
we apply it to the polynomial X� instead of X to obtain a polynomial Υ� whose coefficients
approximate the coefficients of Υ with precision 2�. The complexity of this computation does
not increase the order of the complexity of the previous steps.

In order to compute the polynomials �1 and �2 of step (4), we apply a slightly modified version
of the multivariate Padé approximation procedure described in [31, Section 4.3.1], adapted to
deal with the straight-line program encoding of polynomials. In fact, our main change consists
in replacing the Euclidean extended algorithm with subresultant computations (see [11, Section
5.9, Corollary 6.49]). Note that the upper bound on the degree of the polynomial M� proved
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in Theorem 41 implies that the total degrees of the polynomials �1 and �2 are bounded by
(n + 1 + m(2n + 2r + 1)) deg(V). Therefore, they can be computed from the Taylor expansion
centered at P = p, T (s) = 0 of red(X ) up to degree 2(n + 1 + m(2n + 2r + 1)) deg(V), which
can be obtained from the corresponding Taylor expansion of Υ� divided by its leading coefficient
provided that ���log(2(n + 1 + m(2n + 2r + 1)) deg(V))� + 1. Then, the input for the Padé
approximation procedure is the set of graded parts up to the required degree of Υ� divided by its
leading coefficient, which is computed within complexity O((n+r)20(n+m)4d2 deg(V)2D4L).

The complexity of the entire step (4) is O(log(1/ε)(n + r)20(n + m)6d2 deg(V)6D4L) and its
output is an slp of length O((n + r)20(n + m)6d2 deg(V)6D4L) encoding �1 and �2 with error
probability bounded by ε/2 provided that the previous computations are correct.

The announced complexity bound for the whole procedure follows by adding up the complex-
ities of steps (1) to (4) and taking into account that D� deg(V). �

6.2. Computation of a primitive element

In what follows we show how to compute a primitive element of the differential field extension
induced by system (1) with respect to a fixed differential transcendence basis within complexity
polynomial in n, m, r, d, deg(V) and linear in L. The procedure follows closely the arguments in
Section 5.4. We keep our previous assumptions and notations.

Let M� ∈ Q[�[s], Y [2n+2r−1], W [2n+2r], T [s]] be the minimal polynomial of the generic linear
form � = �1X1 + · · · + �nXn + �n+1Ū1 + · · · + �n+r Ūr in the differential field extension

K�↪→F�, and let Q� := �M�
�T (s) (�, . . . ,�(s)) ∈ Q[�[s], Y [2n+2r−1], X[2n+2r], U [2n+2r]]. As ex-

plained in Section 5.4, in order for a linear form � = 	1X1 +· · ·+	nXn +	n+1Ū1 +· · ·+	n+r Ūr

to be a primitive element, it suffices that Q�(	1, . . . , 	n+r ) 	= 0 in F . Furthermore, for every
1� i�n + r , 	i can be chosen to be a polynomial in Q[t] of degree bounded by s.

For i = 1, . . . , n+ r , let Aij (0�j �s) be new indeterminates which stand for the coefficients

of a generic polynomial
∑s

j=0
Aij

j ! tj of degree s. Set A := {Aij : 1� i�n + r, 0�j �s}. If we
substitute the variables �i (1� i�n+ r) in the polynomial Q� by these generic polynomials, we
obtain a new polynomial Q0 ∈ Q[t, A][Y [2n+2r−1], X[2n+2r], U [2n+2r]] with the property that,
for any specialization of the variables A in a set of rational numbers a := (aij ) with Q0(a) 	= 0
in F , the polynomials 	i := ∑s

j=0
aij

j ! tj are the coefficients of a primitive element of the field
extension K ↪→ F .

Let us observe that substituting t = 0 in Q0 has the same effect as renaming �(j)
i = Aij in

Q�. This implies that any family of rational numbers a with Q�(a) 	= 0 in F yields a primitive
element of the extension K ↪→ F . The procedure to test the non-vanishing of Q� in F relies on the
isomorphism F 
 Q(t)(X, U [2n+2r]): we substitute X

(l)
h = f̃

(l−1)
h (1�h�n, 1� l�2n + 2r)

and Y
(k)
j = g̃

(k)
j (1�j �r, 0�k�2n+2r −1) in the polynomial Q� to obtain a new polynomial

Q̃� (see Notation 6), and we look for a tuple (a, x, u[2n+2r]) of rational numbers that does not
annihilate Q̃� (this is done probabilistically by choosing their coordinates at random). The vector
a of the first coordinates of this tuple yields the desired primitive element.

Assuming that the polynomial M� is given, we obtain the following complexity result:

Proposition 47. Assume that a differential transcendence basis W of the differential field exten-
sion induced by system (1) is fixed and that the minimal polynomial M� with respect to W of
the generic primitive element � is given by an slp of length L. Then, we can compute a primitive
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element of the differential field extension Q(t)〈Y, W 〉 ↪→ F , with error probability bounded by
ε, within complexity O(L + log(deg(V)/ε)(n + r)4(n + m)L), where L is the length of an slp
encoding f1, . . . , fn, g1, . . . , gr .

Taking into account the complexity estimate for the computation of M� stated in Proposition
46, we can obtain complexity bounds for the probabilistic computation of a primitive element of
the differential extension (see Theorem 48).

6.3. Computing a resolvent representation of the system

As it was shown in Proposition 47, a primitive element � of the differential extension
Q(t)〈Y, W 〉↪→F can be computed algorithmically. Let us observe that specializing the generic
minimal polynomial M� into the coefficients 	1, . . . , 	n+r ∈ Q[t] of �, we obtain a differential
polynomial M	 ∈ Q[t][Y [2n+2r−1], W [2n+2r], T [s]] such that M	(�) = 0 in F but, unfortunately,
this polynomial need not be the minimal polynomial of �.

However, the arguments in Section 5.4 give an algorithmic procedure, based on the com-
putation of derivatives of M� and specialization, to compute polynomials q, p1, . . . , pn+r in
Q[t][Y [2n+2r−1], W [2n+2r], T [s]] such that q(�)Xi − pi(�) ∈ � for i = 1, . . . , n and q(�)Ūj −
pn+j (�) ∈ � for j = 1, . . . , r .

Therefore, in order to obtain a resolvent representation of the ideal � with respect to the
differential transcendence basis Y, W and the primitive element �, only a minimal polynomial of
� remains to be computed. This can be achieved using the algorithm described in the previous
subsections for the computation of the minimal polynomial of a generic primitive element within
the same complexity.

Combining this procedure with Theorem 27 and Propositions 46 and 47, we deduce our main
result:

Theorem 48. Let f1, . . . , fn ∈ Q[t][X, U ], g1, . . . , gr ∈ Q[t][X, U, U̇ ] polynomials with de-
grees bounded by d and encoded by an slp of length L. Let � be the differential ideal associated
with system (1) and let V be the algebraic variety defined by �2n+2r introduced in Notation 34.
Then, there is a probabilistic algorithm which computes

• a differential transcendence basis W of Q(t)〈Y 〉 ↪→ Frac(Q(t){Y, X, U}/�),
• a primitive element � of Q(t)〈Y, W 〉 ↪→ Frac(Q(t){Y, X, U}/�),
• a resolvent representation of the differential ideal � with respect to the differential transcen-

dence basis Y, W and the primitive element �,

with error probability bounded by ε, 0 < ε < 1, within complexity O(log(1/ε)(n + r)20(n +
m)6d2 deg(V)10L). In particular, the complexity of the algorithm can be estimated as ((n +
r)(n + m)d(n+r)2

)O(1) log(1/ε)L.

We point out that our complexity upper bound in terms of a geometric invariant (namely, deg(V))
is more accurate than the one that can be stated using only syntactic parameters, as illustrated by
the system considered in Example 38. In this case, deg(V) = 2n + 1; leading to a polynomial
complexity bound for our algorithm. However, the upper bound 22n2

for this parameter would
imply a single exponential complexity bound.
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7. Over-determined differential systems

In the previous sections, we focused on the computation of a resolvent representation of the
generic differential system (1) under Assumption 4 on the differential algebraic independence of
the polynomials g1, . . . , gr , which played a crucial role in our arguments. Now, we will drop that
assumption. More precisely, we will consider a differential system of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ1 = f1(X, U)
...

Ẋn = fn(X, U)

Y1 = g1(X, U, U̇)
...

Y� = g�(X, U, U̇)

(7)

where f1, . . . , fn ∈ k[X, U ] and g1, . . . g� ∈ k[X, U, U̇ ] are arbitrary polynomials in the vari-
ables X := {X1, . . . , Xn} and U := {U1, . . . , Um}.

Our aim is to compute an alternative (resolvent-like) representation of system (7). In order to
do this, we will modify the system so that the condition in Assumption 4 is met and compute a
resolvent representation of the modified system together with a family of additional polynomials
giving further information on the original system.

Since most of the proofs in this section are similar to those of the results we have presented so
far, we will not give the details, but we will outline the main ideas involved.

7.1. Independent equations

Keeping our previous notation (see Section 3), let Fi := fi −Ẋi ∈ k[X, Ẋ, U ] for i = 1, . . . , n,
and Gj := gj − Yj ∈ k[Y, X, U, U̇ ] for j = 1, . . . , �.

Let � ⊂ k{Y, X, U} be the differential ideal [F1, . . . , Fn, G1, . . . , G�]. For every l ∈ N, let
Al := k[Y [l−1], X[l], U [l]] and �l := (F [l−1], G[l−1]) ⊂ Al .

The following analogues of Remark 7, Proposition 12 and Remark 13 hold in this context:

Remark 49. For every l ∈ N, the ideal �l ⊂ Al is prime and Al/�l 
 k[X, U [l]]. The differential
ideal � is prime and k{Y, X, U}/� 
 k[X]{U} with the derivation induced by Ẋj = fj (X, U).
Moreover, diffdim(�) = m and ordk(�)�n + �.

The fact that the ideal � might contain a non-zero polynomial involving only the variables
Y1, . . . , Y� (since Assumption 4 is no longer valid) prevents us from considering these variables
as being part of a differential transcendence basis of k ↪→ G := Frac(k{Y, X, U}/�). Now we
will show how to obtain a maximal differentially independent subset of the set {Y1, . . . , Y�}.

In order to turn to a non-differential situation we will use the following technical result whose
proof is straightforward: for every positive integer l, we have � ∩ Al = �l .

Now, following the proof of Proposition 18, we are able to derive an algebraic condition for a
set Y ⊂ {Y1, . . . , Y�} to be differentially algebraically independent in the differential extension
k ↪→ G:

Proposition 50. The set Y ⊂ {Y1, . . . , Y�} is differentially algebraically independent in k ↪→ G
if and only if Y [n+�] is algebraically independent in An+�+1/�n+�+1 over k.
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Combining this proposition with Lemma 19, we deduce the following algorithmic criterion:

Proposition 51. Let J0 be the Jacobian matrix J0 :=
(

�{F,G}[n+�]
�{X,U}[n+�+1]

∣∣∣ �{F,G}[n+�]
�Y [n+�]

)
. Then, Y ⊂

{Y1, . . . , Y�} is a differentially algebraically independent set in k ↪→ G if and only if the
columns of J0 corresponding to derivatives with respect to variables in Y [n+�] can be removed
with no change in rank. Here, the ranks are taken over the polynomial ring k[X, U [n+�]] 

k[Y [n+�], X[n+�+1], U [n+�+1]]/(F [n+�], G[n+�]).

In the case when k = Q(t), this result enables us to obtain a maximal differentially algebraically
independent subset Y ⊂ {Y1, . . . , Y�} by means of a probabilistic recursive procedure (similar to
the algorithm underlying the proof of Theorem 27) within complexity polynomial in the number
of variables and equations, and linear in the logarithm of the maximum degree of the input
polynomials and the length of a straight-line program encoding them.

7.2. Extended resolvent representation

In the sequel, we will assume that a maximal differentially algebraically independent subset
Y ⊂ {Y1, . . . , Y�} in k ↪→ G has been chosen. In order to simplify notations, will assume that
this set is Y = {Y1, . . . , Yr}.

The differential equation system obtained by removing from system (7) the equations corre-
sponding to Yr+1, . . . , Y� satisfies Assumption 4 and so, it can be characterized by means of a
resolvent representation as shown in Sections 5 and 6.

Furthermore, for j = r + 1, . . . , �, there is a non-zero polynomial Mj ∈ k{Y}{T } with

Mj(Yj ) ∈ �. Due to Proposition 50, {Y [n+�], Y [n+�]
j } is algebraically dependent in

An+�+1 / �n+�+1 and so, we can choose Mj ∈ k[Y [n+�]][T [n+�]] with Mj(Y [n+�], Y [n+�]
r+j ) ∈

�n+�+1. An irreducible polynomial Mj ∈ k[Y [n+�]]{T } of minimal order in the variable T

satisfying the previous condition will be called a minimal polynomial for Yj .
We will be interested in providing a representation of system (7) of the following type:

Definition 52. An extended resolvent representation of system (7) consists of:

• A maximal differentially algebraically independent subset Y ⊂ {Y1, . . . , Y�} in the differential
extension k ↪→ Frac(k{Y, X, U}/[F1, . . . , Fn, G1, . . . , G�]).

• Assuming Y = {Y1, . . . , Yr}, a differential transcendence basis W of the extension k〈Y〉 ↪→
F := Frac(k{Y, X, U}/[F1, . . . , Fn, G1, . . . , Gr ]) and a primitive element � of k〈Y, W 〉 ↪→
F .

• A resolvent representation of the ideal [F1, . . . , Fn, G1, . . . , Gr ] with respect to the transcen-
dence basis W and the primitive element �.

• Minimal polynomials Mr+1, . . . , M� ∈ k{Y}{T } for the variables Yr+1, . . . , Y�.

Denote G := {G1, . . . , Gr}. For j = r + 1, . . . , �, let �j ⊂ k{Y, Yj , X, U} be the differential

ideal [F, G, Gj ] and, for every non-negative integer l, let �j
l := (F [l−1], G[l−1], G[l−1]

j ) be the

polynomial ideal defined in k[Y [l−1], X[l], U [l]][Y [l−1]
j ].

Let sj be the minimum non-negative integer h such that {Y [n+�], Y [h]
j } is algebraically depen-

dent in An+�+1/�n+�+1. The fact that for a minimal polynomial for Yj we have Mj(Y [n+�], Y [sj ]
j )

∈ �n+�+1 implies straightforwardly that this polynomial is in �j
n+�+1, since it does not
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depend on the variables Y
(h)
k with k > r, k 	= j . Thus, in order to find the polynomial Mj it

is enough to consider the differential system F = 0, G = 0, Gj = 0 and its associated ideals

�j and �j
l , l�0. This implies, in turn, the existence of a minimal polynomial Mj ∈ k[Y [n+r]]

[T [sj ]] for Yj with sj �n + r and Mj(Y [n+r], Y [sj ]
j ) ∈ �j

n+r+1.
Finally, we can estimate the total degree of the minimal polynomials Mj , j = r + 1, . . . , �,

by characterizing them as the defining equations of certain hypersurfaces. To do so, let n1 :=
(n+m+ r +1)(n+ r +1)+n+m. Fix j , r +1�j ��, let Vj be the irreducible variety defined

in An1 by the ideal �j
n+r+1 and consider the linear map �j : Vj → Ar(n+r+1)+sj +1 defined by

�j (y
[n+r], x[n+r+1], u[n+r+1], y[n+r]

j ) = (y[n+r], y[sj ]
j ).

Proposition 53. Under the previous assumptions and notations, for j = r +1, . . . , �, the Zariski
closure �j (Vj ) is an irreducible hypersurface of Ar(n+r+1)+sj +1 and any irreducible polynomial
Mj ∈ k[Y [n+r], T [sj ]] defining �j (Vj ) is a minimal polynomial for Yj .

We deduce:

Corollary 54. For j = r+1, . . . , �, a minimal polynomial Mj ∈ k[Y [n+r], T [sj ]] for Yj satisfies:

sj �n + r , Mj(Y [n+r], Y [sj ]
j ) ∈ �j

n+r+1 and deg(Mj )� deg(Vj ).

From the algorithmic point of view (assuming k = Q(t)), the order sj of the minimal poly-
nomial Mj can be computed with the same techniques of matrix rank computations as those

used in Section 4 as the minimum non-negative integer h such that {Y [n+r], Y [h]
j } is algebraically

independent in k[Y [n+r], X[n+r+1], U [n+r+1], Y [n+r]
j ]/�j

n+r+1 (using the Jacobian matrix of the

generator system of �j
n+r+1). Then, a minimal polynomial Mj can be computed as a polynomial

defining �j (Vj ) following the procedure underlying the proof of Proposition 46.
Therefore, we obtain a probabilistic algorithm that computes an extended resolvent represen-

tation of system (7) within the same order of complexity as for the computation of a resolvent
representation under Assumption 4:

Corollary 55. The computational complexity of an extended resolvent representation of system
(7) is polynomial in the number of variables, the number of input polynomials, an upper bound
for their degrees and the degree of an algebraic variety defined by these polynomials and their
derivatives up to a fixed order, and linear in the length of a straight-line program encoding them.
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