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Overview

Part I: Picking surfaces at random

1. Discrete: random planar maps

2. Continuum: Liouville quantum gravity

3. Conjectured relationship

Part II: Quantum Loewner evolution

1. New universal family of growth processes

2. Tool to relate random planar maps to Liouville quantum gravity

3. Connected to many different topics in probability:
RPM, LQG, TBM, GFF, SLE, DLA, FPP, DBM, KPZ, KPZ
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Part I: Picking surfaces at random
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Quadrangulations

Start out with a sheet of paper
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Quadrangulations

P
E
N

Get out pen and ruler
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Quadrangulations

P
E
N

Measure and mark squares squares of equal size
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Quadrangulations

Get out scissors
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Quadrangulations

Cut into squares
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Quadrangulations

GLUE

Get out bottle of glue
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Quadrangulations

GLUE

Attach squares along boundaries with glue to form a surface “without holes.”
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Quadrangulations

What is the structure of a typical quadrangulation when the number of faces is large?
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Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
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Background

(Simulation due to J.F. Marckert)

First studied by Tutte in 1960s while working on the
four color theorem

I Combinatorics: enumeration formulas

I Probability: “uniformly random surface,”
Brownian surface

I Physics: statistical physics models: random
walks, percolation, Ising model, uniform
spanning tree, etc ...
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Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Structure of large random planar maps

(Simulation due to J.F. Marckert)

I RPM as a metric space. Is there a limit?

I Diameter is n1/4 (Chaissang-Schaefer)

I Rescaling by n−1/4 gives a tight sequence of
metric spaces (Le Gall)

I Subsequentially limiting space is a.s.:

I 4-dimensional (Le Gall)
I homeomorphic to the 2-sphere (Le Gall

and Paulin, Miermont)

I Exists metric space limit called: the Brownian
map (Le Gall, Miermont)

Important tool: bijections which encode the surface
using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di

Francesco-Guitter, S.,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 8 / 37



Random quadrangulation

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.

Jason Miller and Scott Sheffield (MIT) Random Surfaces and QLE July 30, 2014 9 / 37



Red tree

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Red and blue trees

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Red and blue trees alone do not determine the map structure

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Random quadrangulation with red and blue trees

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Path snaking between the trees. Encodes the trees and how they are glued together.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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How was the graph embedded into R2?

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Sampled using H-C bijection.

Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Circle pack the resulting triangulation.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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What is the “limit” of this embedding? Circle packings are related to conformal maps.

Sampled using H-C bijection. Packed with Stephenson’s CirclePack.
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Picking a surface at random in the continuum
Uniformization theorem: every simply connected Riemannian surface can be
conformally mapped to either the unit disk, the plane, or the sphere S2 in R3

ψ

Isothermal coordinates: Metric for the surface takes the form eρ(z)dz for some smooth
function ρ where dz is the Euclidean metric.
⇒ Can parameterize the space of surfaces with smooth functions.

I If ρ = 0, get the same surface

I If ∆ρ = 0, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat

metric, natural to choose ρ as the canonical perturbation of a harmonic function.
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The Gaussian free field

I The discrete Gaussian free field (DGFF) is a
Gaussian random surface model.

I Measure on functions h : D → R for D ⊆ Z2 and
h|∂D = ψ with density respect to Lebesgue
measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I Natural perturbation of a harmonic function

I Fine mesh limit: converges to the continuum GFF,
i.e. the standard Gaussian wrt the Dirichlet inner
product

(f , g)∇ =
1

2π

∫
∇f (x) · ∇g(x)dx .

I Continuum GFF not a function — only a
generalized function
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Liouville quantum gravity

I Liouville quantum gravity: eγh(z)dz
where h is a GFF and γ ∈ [0, 2)

I Introduced by Polyakov in the 1980s

I Does not make literal sense since h
takes values in the space of
distributions

I Can be made sense of as a random
area measure using a regularization
procedure

I Can compute areas of regions
and lengths of curves

γ = 0.5

(Number of subdivisions)
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Paper with Duplantier/Miller gives form of convergence

ψ

(Simulation due to J.-F. Marckert)

Tabula rasa: GT

THIS PAPER

LQG surface

Peanosphere

Brownian map
Add metric space

Add space-filling SLE

Add exploration

Add conformal
LQG with space-filling SLE

PROGRAM IN PROGRESS, REQUIRES γ =
√

8/3

structure

structure

structure
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Continuum space-filling path

Space-filling SLE6 on a LQG surface. Random path which encodes the limit of a RPM.
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Part II:
Quantum Loewner Evolution
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Recap

Two natural ways to pick surfaces at random

I Discrete: random planar maps

I Continuum: Liouville quantum gravity eγh(z)dz , h a GFF

I Conjectured to be the same for γ =
√

8/3

I LQG only made sense of so far as a measure space

Next part: describe new growth process which can be used to endow
√

8/3-LQG with a

metric space structure
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Detour: first passage percolation (FPP)
I Associate with a graph (V ,E) i.i.d. exp(1)

edge weights

I Introduced by Eden (1961) and
Hammersley and Welsh (1965)

I On Z2?

I Question: Large scale behavior of shape of
ball wrt perturbed metric?

I Cox and Durrett (1981) showed that the
macroscopic shape is convex

I Computer simulations show that it is not a
Euclidean disk

I Z2 is not isotropic enough

I Vahidi-Asl and Weirmann (1990) showed
that the rescaled ball converges to a disk if
Z2 is replaced by the Voronoi tesselation
associated with a Poisson process
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Markovian formulation
Rather than sampling all of the edge weights at once, can explore the FPP metric ball

starting from a point in a Markovian way.

C0

Due to the memoryless property of the exponential distribution, can sample the cluster

Cn+1 from Cn by selecting an edge uniformly at random on ∂Cn, and then adding the

vertex which is attached to it.
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First passage percolation on random planar maps I
I Random planar map, random vertex x . Perform FPP from x .

Important observations:

I Conditional law of map given ball at time n only depends on the boundary lengths of
the outside components.

Exploration respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric
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First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

I We do not know how to take a continuum limit of FPP on a random planar map
and couple it directly with LQG

I Explain a discrete variant of FPP that involves two operations that we do know how
to perform in the continuum:

I Sample random points according to boundary length
I Draw (scaling limits of) critical percolation interfaces (SLE6)
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First passage percolation on random planar maps III

Variant:

I Pick two edges on outer boundary
of cluster

I Color vertices between edges blue
and yellow

I Color vertices on rest of map blue
or yellow with prob. 1

2

I Explore percolation (blue/yellow)
interface

I Forget colors

I Repeat

I This exploration also respects the Markovian structure of the map.

I If we work on an “infinite” planar map, the conditional law of the map in the
unbounded component only depends on the boundary length.

I Expect that at large scales this growth process looks the same as FPP, hence the
same as the graph metric ball
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Continuum limit ansatz

I Sample a random planar map

and two edges uniformly at random

I Color vertices blue/yellow with probability 1/2

and draw percolation interface

I Conformally map to the sphere

Ansatz Image of random map converges to a
√

8/3-LQG surface and the image of the

interface converges to an independent SLE6.
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Continuum analog of first passage percolation on LQG

I Start off with
√

8/3-LQG surface

I Fix δ > 0 small and a starting point x

I Draw δ units of SLE6

I Resample the tip according to
boundary length

I Repeat

I Know the conditional law of the LQG
surface at each stage

QLE(8/3, 0) is the limit as δ → 0 of this growth process. It is described in terms of a

radial Loewner evolution which is driven by a measure valued diffusion.

QLE(8/3, 0) is SLE6 with tip re-randomization.
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Discrete approximation of QLE(8/3, 0). Metric ball on a
√

8/3-LQG
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What is QLE(γ2, η)?

QLE(8/3, 0) is a member of a two-parameter family of processes called QLE(γ2, η)

I γ is the type of LQG surface on which the process grows

I η determines the manner in which it grows

Let µHARM (resp. µLEN) be harmonic (resp. length) measure on a γ-LQG surface. The
rate of growth (i.e., rate at which microscopic particles are added) is proportional to(

dµHARM

dµLEN

)η
dµLEN.

I First passage percolation: η = 0

I Diffusion limited aggregation: η = 1

I η-dieletric breakdown model: general values of η
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Simulation of Euclidean DLA
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DLA in nature: “A DLA cluster grown from a copper sulfate solution in an electrodeposition

cell” (from Wikipedia)
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DLA in nature: Magnese oxide patterns on the surface of a rock. (Halsey, Physics Today 2000)
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DLA in art: “High-voltage dielectric breakdown within a block of plexiglas” (from Wikipedia)
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DLA in physics

Introduced by Witten and Sander in 1981 as a model for crystal growth

An active area of research in physics for the last 33 years:
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DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically
much more well understood.)

Open questions

I Does DLA have a “scaling limit”?

I Is the shape random at large scales?

I Does the macroscopic shape look like a tree?

I What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on Z2

Schramm 2006 ICM proceedings:

What about DLA on random planar maps and Liouville quantum gravity surfaces?
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Discrete approximation of QLE(2, 1). DLA on a
√

2-LQG
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QLE(γ2, η) processes we can construct

γ2

η

0

1

−1

1 2 3 4

(2, 1)

(8/3, 0) (4, 1/4)

Each of the QLE(γ2, η) processes with (γ2, η) on the orange curves is built from an

SLEκ process using tip re-randomization.
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Results

What we can do:

I Existence of QLE(γ2, η) on the orange curves as a Markovian exploration of a
γ-LQG surface.

I Derive an SPDE which the measure valued diffusion satisfies

I Continuity of the outer boundary of the growth at a given time

I Phases for sample path behavior: which QLEs are trees, have holes, and fill space

Work in progress:

I Show that QLE(8/3, 0) endows
√

8/3-LQG with a distance function

I This metric space is isometric to the Brownian map: LQG = TBM

I Mating trees: LQG plus space-filing SLE as mating of continuum random trees.

What we would like to do: construct and study QLE(γ2, η) for (γ2, η) pairs off the

orange curves
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QLE is connected to other topics in probability

Quantum

RPM

LQG GFF

SLE

DLA

DBMFPP

TBM

Loewner
Evolution

(QLE)

KPZ2
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ψ

Thanks!
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