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Darwinian or Adaptive Evolution

The population has the propensity to generate as well to select
individual diversity.

The ability of an individual to survive and reproduce depends on
some genetic characteristics, called traits.

The evolution of the trait distribution results from three basic
mechanisms.

Heredity. Transmission of the ancestral trait to the offsprings.

Mutations. Generate variability in the traits.

Natural selection. Individuals with characteristics which increase
their probability of survival or their reproduction ability will spread
through the population over time.

Evolution consists in successive invasions of successful mutants.



Much of the molecular diversity measured by population
geneticists involve DNA sequences which are selectively neutral
(not submitted to the natural selection), called (neutral) markers.

Example: Molecular phylogeny = genealogy of neutral markers.
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Fossil data

Phylogenetic inference

It is now widely accepted in phylogenies models that evolution
rates among and along the branches can change.

Question: How to explain theses changes by the natural
selection (without the use of external factors)?



(1) Adaptive Dynamics: Successive invasions of successful
mutants.

Hofbauer-Sigmund 1990, Marrow-Law-Cannings 1992,
Metz-Geritz-Meszéna et al. 1992, 1996, Dieckmann-Law 1996.

Focus on the interplay between ecology and evolution and
emphasizes the ecological interactions.

The trait is a phenotypic parameter, with values in a continuum.

The selection comes from a trade-off between reproduction
ability and competition for resources.

Large population and rare mutations.

Individual-based model (birth and death process with mutation
and selection): (Bolker-Pacala 97, Kisdi 99, Dieckmann-Law 00,
Fournier-M. 04, Ferrière-Champagnat-M. 06, Champagnat 06,
Champagnat-M. 10)



(2) Population genetics approach: how neutral diversity is
affected by selection?

The population size and the selection parameter are constant
(and fixed a priori) and independent.

The traits and markers are alleles on different loci.

Abundant literature.

Barton, Etheridge-Pfaffelhüber-Wakolbinger,
Durrett-Schweinsberg.

Our goal: To construct a stochastic dynamics of adaptive trait
and neutral marker driven by eco-evolutionary feedbacks



Individual-based model

Phenotypic trait under selection x in a subset X of Rd (rate of
nutrient intake, body size at maturity, age at maturity . . . ).

Neutral marker u in a subset U of R`.

The type of an individual i : (xi ,ui ).

K scales the size of the population.

pK scales the mutation probability of the traits under selection.

qK scales the mutation probability of the neutral markers.

Population of NK (t) individuals weighted by 1
K .

It is represented by the point measure

νK
t =

1
K

NK (t)∑
i=1

δ(xi ,ui ) ; NK (t) = K 〈νK
t ,1〉.



Transitions
BIRTHS:

Each individual with characteristics (x ,u) gives birth to a single
individual at (inhomogeneous) rate b(x) ; 0 ≤ b(x) ≤ b̄ .

At each birth time:

with probability (1− pK ) (1− qK ), the offsprings inherits of (x ,u).
(Clonal reproduction)

Otherwise mutations on trait and marker occur independently
with probability pK and qK .

Main assumption: the markers mutate much faster than the
traits under selection.

pK ∼ 1
K 2 ; qK = rK pK ; qK → 0 ; rK → +∞.

Trait mutation: the new trait is x + k chosen according to
m(x , k)dk .



Marker mutation: the new marker is u + h chosen according to
GK (u,dh).

∃ (A,D(A)) the infinitesimal generator of a Markovian semigroup
such that ∀g ∈ D(A)

lim
K

sup
u

∣∣∣∣ rK

K

∫
(g(u + h)− g(u))GK (u,dh)− A g

∣∣∣∣ = 0.

Three timescales: ecological births and deaths, marker
mutations, trait mutations.



Examples
Example 1 : U = [u1,u2] and GK ∼ N(µK , σ

2
K ) with µK → 0 and

σK → 0 and limK
rK µK

K
= µ > 0 ; lim

K

rK σ
2
K

K
= σ2. Then

Af = µf ′ +
σ2

2
f ′′ for f ∈ C2 and f ′(u1) = f ′(u2) = 0.

Example 2 : U = R and GK Pareto law with index α ∈ (1,2)

renormalized by K
η
α such that η < 1, lim

K

rK

K 1+η = r̄ and

Af = r̄
∫

(f (u + h)− f (u)− hf ′(u)1|h|≤1)
dh
|h|1+α

.

Example 3 : U = {0,1} and

GK (u,dh) = 1u=0 q0 δ1(dh) + 1u=1 q1 δ−1(dh) ; limK
rK

K
= r̄ .

Then

Af (u) = r̄
(

1u=0 q0
(
f (1)− f (0)

)
+ 1u=1 q1

(
f (0)− f (1)

))
.



DEATHS:

Each individual with characteristics (x ,u) dies at rate

d(x) +
1
K

NK (t)∑
i=1

C(x − xi ) = d(x) + C ∗ νK
t (x).

The term C ∗ νK
t (x) describes the competition pressure for

external resources.

Assumptions:

(i)
b(x)− d(x) > 0 ; C(x − y) ≥ c > 0.

(ii) The ecological functions b, d , C are bounded continuous and the
mutation measures m(., k)dk and GK (.,h)dh are continuous.

Moment conditions propagate and imply the existence and
uniqueness of the process.



Marker and trait population process

νK
t =

1
K

NK (t)∑
i=1

δ(xi ,ui ) ∈

{
1
K

n∑
i=1

δ(xi ,ui ) ; n ≥ 0, (x1,u1), · · · , (xn,un) ∈ X × U

}
.

Trait marginal measure (on X ):

X K
t (dx) =

1
K

NK (t)∑
i=1

δxi =

∫
U
νK

t (dx ,du).

Marker distribution (probability on U) for a given trait value x :

πK
t (x ,du) =

∑NK (t)
i=1 1xi=xδui∑NK (t)

i=1 1xi=x

.

We get
νK

t (dx ,du) = X K
t (dx)πK

t (x ,du).

Behavior when K tends to infinity?



Numerical Example

Inspired by a model of beak’s size (Dieckmann-Doebeli 1999).

X = [−2,2] ; U = [−2,2] .

pK = 1
K 2 ; rK = K 3/2 ; qK = 1√

K
.

m ∼ N(0,10−1) and GK ∼ N(0, 1√
K

) are two Gaussian laws
conditioned to [−2,2].

b(x) = exp(−x2/2σ2
b) ; σb = 0.9, maximum at 0.

Symmetric competition for resources.

C(x − y) = exp(−(x − y)2/2σ2
C) , σC = 0.8.



Simulation of the trait process



Simulations of genealogies in a long time scale



The hitchhiking effect

replacement of a resident population by a mutant population.



Coexistence case.



Asymptotics of a monomorphic population size

All individuals have the same trait x .

Theorem

Assume that X K
0 (dy) =

NK
0

K
δx (dy) and

NK
0

K
→ n0.

Then the process (
NK

t

K
, t ≥ 0) converges to (nt , t ≥ 0), where nt is

the solution of the (deterministic ) logistic equation

ṅt =
(
b(x)− d(x)− C(0)nt

)
nt ,

which converges when t tends to infinity to n̂x =
b(x)− d(x)

C(0)
.

No trait mutations at this scale.

To see something, we consider the process at the much longer
trait mutation scale: Kt .



Asymptotic behavior of the trait process (X K
Kt)

Remark that ∀V > 0, ln K � K t � exp(VK ), for large K .

Trait Substitution Sequence (Metz et al. 1996; Champagnat 06)

Theorem
Assume that X K

0 = nK
0 δx0 with limK→∞ nK

0 = n̂x0 .

Until the first trait coexistence time, the trait population process
(X K

Kt , t ≥ 0) converges to the pure jump process (n̂Yt δYt ; t ≥ 0) on
monomorphic states, issued from n̂x0δx0 .

The process (n̂Yt δYt ; t ≥ 0) jumps from n̂x δx to n̂x+k δx+k at rate

b(x) n̂x
[f (x + k ; x)]+

b(x + k)
m(x , k)dk .



The invasion fitness function is given by the growth rate

f (x + k ; x) = b(x + k)− d(x + k)− C(k)n̂x .

Each jump corresponds to the successful invasion of a new
mutant trait.

The selection process has sufficient time between two
(sufficiently slow) trait mutations to eliminate disadvantaged
traits.

Succession of phases of trait mutant invasion, and phases of
competition between traits.
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Genetical bottleneck
Let us consider a mutant (x + k , v) appearing in a monomorphic
population with trait x and marker distribution πK (x ,du). Assume that
f (x + k ; x) > 0.

Proposition
There exists ε > 0 such that for (tK ; K ∈ N∗) with log K � tK � K ,

lim
K→+∞

P
(
〈νK

tK ,1x+k 〉 > ε
)

=
f (x + k ; x)

b(x + k)
;

lim
K→+∞

P
(
〈νK

tK ,1x+k 〉 = 0
)

= 1− f (x + k ; x)

b(x + k)
;

lim
K→+∞

P
(
πK

tK (x + k ,du) = δv (du)
)

=
f (x + k ; x)

b(x + k)
.

The fixation of the mutant creates a genetical bottleneck.



The marker distribution
νK

0 (dy ,dv) = nK
0 δ(x,u)(dy ,dv) and nK

0 → n̂x .

Proposition
Before the first trait mutation, the process (πK

Kt (x ,dv), t ≥ 0)
converges in law to the Fleming-Viot process (F u

t (x ,dv), t ≥ 0)
started at δu and parametrized by x.

The Fleming-Viot process (F u
t (x , .), t ≥ 0) is a probability

measure-valued process on U starting at δu such that for g ∈ D(A),∫
U

g(v) F u
t (x ,dv) = g(u) + b(x)

∫ t

0
〈F u

s (x , .),Ag〉ds + M(x,u)
t (g).

M(x,u)(g) is a continuous square integrable martingale with quadratic
variation

2 b(x)

n̂x

∫ t

0

(
〈F u

s (x , .),g2〉 − 〈F u
s (x , .),g〉2

)
ds.



Slow-fast dynamics of traits and markers
Substitution Fleming-Viot Process

Theorem
Assume νK

0 (dy ,dv) = nK
0 δ(x0,u0)(dy ,dv) with limK→∞ nK

0 = n̂x0 .

Until the first trait-coexistence, the population process (νK
Kt , t ≥ 0)

converges on MF (X × U) to the process (Vt , t ≥ 0) defined by

Vt (dy ,dv) = n̂Yt δYt (dy) F Ut
t (Yt ,dv).

The process (Yt ,Ut ) started at (x0,u0) jumps from (x ,u) to (x + k , v)
with the jump measure

b(x) n̂x
[f (x + k ; x)]+

b(x + k)
F u

t (x ,dv) m(x , k)dk .

The convergence holds in the sense of finite dimensional distributions
on MF (X × U) and in the sense of occupation measures.



Evolutionary Wright-Fisher process

Discrete marker space U = {A,a}, probabilities q0 and q1 to mutate
from A to a and from a to A. The process (νK

Kt )t converges to

n̂Yt

(
W a

t δ(Yt ,a)(dy ,du) + (1−W a
t ) δ(Yt ,A)(dy ,du)

)
,

where

dW a
t = r̄ b(Yt )

(
q0(1−W a

t )− q1W a
t
)
dt +

√
2b(Yt )

n̂Yt

W a
t

(
1−W a

t

)
dBt .

The limiting process jumps with the TSS (Yt )t and at jump time t , the
process (W a

t ,1−W a
t ) goes to (1,0) with probability W a

t and to (0,1)
with probability 1−W a

t .





Extension to co-existing traits

(Polymorphic Evolution Sequence, Champagnat-M. PTRF 2011).

Between the jumps of the PES, the marker distribution is the sum of
independent Fleming-Viot processes parametrized by the coexisting
traits and the total size at equilibrium.


