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Definition: the classical Ising model

» Underlying geometry: A = finite 2D grid. '8

» Set of possible configurations:
a={x1}*
(each site receives a plus/minus spin)

» Probability of a configuration o € Q)
given by the Gibbs distribution:

1
( u(o) = Z(ﬁ) exp (ﬁ D o(x)a(y)ﬂ

~

Inverse

Partition
fanction ] temperature
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The classical Ising model

|y (u(a) e exp(ﬁ ) a(x)a(y)) foro € O = {+1}AW

> Larger f favors configurations with
aligned spins at neighboring sites.

» Spin interactions: local, justified by rapid
decay of magnetic force with distance.

» The magnetization is the (normalized) sum of spins:

|
M(o) = W;J(x)

» Distinguishes between disorder (M = 0) and order.
» Symmetry: E[M(o)] = 0. What if we break the symmetry?
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The Ising phase-transition

» Ferromagnetism in this setting: [recall M(0) = T = a(x)]

» Condition on the boundary sites b .

all having plus spins.
> Let the system size |A| tend — o
(=~ a magnetic field with effect - 0). ¥ N
» What is the typical M (o) for large |A| ? | B
» Does the effect of plus boundary Vamsh in the limit? ”
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The Ising phase-transition (cd.)

» Ferromagnetism in this setting: [recall M(0) = I%I 5 o]
= » Condition on the boundary sites N |
| all having plus spins.
> Let the system size |A| tend — oo
4 N

» Phase-transition at some critical f,:
(0 ifB<B) g

fim, =gl =

(mﬁ > M B> ,BC> ;5

rﬂl-plus] \spontmzeous]
_boundary _magnetization
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Static vs. stochastic Ising

> Expected behavior for the Ising distribution:

]E+[M(a)] —— 0 E*[M(0)] —— ¢ > 0

| » Expected behavior for the mixing time of dynamics:
B<B. B __ B>B
logarithmic power @ exponential
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Glauber dynamics for Ising

(a.k.a. the Stochastic Ising model)

» Introduced in 1963 by Roy Glauber. (leat-bath version; famous |
other tlavor: Metropolis)

Time-dependent statistics of the Ising model
RJ Glauber — Journal of mathematical physics, 1963 Cited by 2749

» One of the most commonly used
samplers for the Ising distribution u:

> Update sites via IID Poisson(1) clocks

> Each update replaces a spinatx € V
by a new spin ~ u given spins at V' \ {x}.

» How long does it take it
to converge to u ?
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Measuring convergence to equilibrium

| » Mixing time : (according to a given metric).
Standard choice: L! (total-variation) mixing time
to within distance ¢ is defined as

(mlx(e) = lnf{  max [Pt o) — |, < gp

(where it = Vllew = sup [u(4) - v(A)])

» Dependence on ¢ : (cutoff phenomenon [DS81], [A83],[ADS6])
We say there is cutoff @(tmlx (e) ~ tmix (") V fixed ¢, gw

|
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Glauber dynamics for 2D Ising

» Fast mixing at high temperatures:
* [Aizenman, Holley "84] 1
* [Dobrushin, Shlosman "87] |

[Holley, Stroock "87, "89] |

[Holley "91]

[Stroock, Zegarlinski "92a, "92b, "92c]

[Lu, Yau "93]

[Martinelli, Olivieri "94a, ‘94b]

[Martinelli, Olivieri, Schonmann "94]

» Slow mixing at low temperatures:
* [Schonmann "87] o B> B, _free b.c.

= logn

* [Chayes, Chayes, Schonmann "87] d—1
« [Martinelli ‘94] A e(Tpto()n
= [Cesi, Guadagni, Martinelli, Schonmann "96] @

» Critical power-law:

= simulations: [Ito "93],[Wang, Hatano, Suzuki "95],[Grassberger '95],...: n>17-
* Jower bound: [Aizenman, Holley "84], [Holley "91]
er bound (polynomial mixing): [L., Sly “12 [

L =

C
I‘I‘ll)(s'n’2
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> forany g < B, = %log(l +/2):

1
> High temperature in 2D:

Glauber dynamics for 2D Ising

[O(logn) ]

. C
Sim R

> |L., Sly “13]: cutoff

[tmix(e) = %A;,l logn + 0(loglog n)]

> Method caveat: needs strong spatial mixing; :
e.§., breaks on 3D Ising for f close to f..
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High temperature unknowns (l)

4 (High temperature <« Infinite temperature: ) ;L
Qualitatively, B < B believed to behave ~ as g = 0.

) [Martinelli, Olivieri ‘94],
[Aizenman, Holley "84]

> B = 0: (independent spins) one of the first examples of cutoff:

t()=clogn+ 0(1 ] [Aldous "83], [Diaconis Shahshahani ‘87]
[ mIX( ) & T ( ) [Diaconis, Graham, Morisson “90]

> = expect cutoff Vf < . (conj. [Peres ‘04]) & with 0(1)-window

» Concretely: for 3D Ising (e.g. on a torus) at f = 0.99 3, :
ekv Foes the dynamics exhibit cutoff? w
' ?

if so, where & what is the window
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High temperature unknowns (II)

¥ Warm (random) start vs. cold (ordered) startw
random start is better than ordered

0 v v v

Ll Random Start ——
Ordered Stan
Exact

05

ey ¥ e

™ NARHOY CHAIN
MONTE CARLO

tasavatises sad Agplicatians

( 0 = inf{t : |||_111|Zxopt(x° = u"w < g} ?
‘how does it compare with ¢, (€) ? ) @
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High temperature unknowns (lll)

» ( Universality of cutoff:
on any locally finite geometry there should be cutoff

if the temperature is high enough (function of max-degree) /

> 3cy > 0: The Ising model on any graph G on n vertices with
maximal degree d at § < ¢p/d has t,jx = O(logn)
[Dobrushin “71],[Holley "72],[Dobrushin-Shlosman ‘85], [Aizenman-Holey’87]

» = expect cutoff Vf < k/d, and with 0(1)-window.

» Concretely: for Ising on a binary tree at f = 0.01:

{ does the dynamics exhibit cutoff? W %r any gxpander

P— 2

if so, where & what is the window?




Recipe for stochastic Ising analysis

» Traditional approach to sharp mixing results !‘
1. Establish spatial properties of static [sing measure |

| 2. Use todrive a multi-scale analysis of dynamics.

» Example: best-known results on 2D Ising (torus Z3):

> |L., Sly “13]: cutoff at W= B.=5log(1+2)

= used log-Sobolev ineq. & strong spatial mixing,.
> [L., Sly “12]: power-law at @

= used SLE behavior of critical interfaces.

qua51—polynom1al mixing under all plus b.c.

= uses interface convergence to Brownian bridges
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New framework for the analysis

» Traditional approach to sharp mixing results e

1. Establish spatial properties of static [sing measure
2. Use to drive a multi-scale analysis of dynamics.

» New approach: study these simultaneously examining
information percolation clusters in the space-time slab:

> track update lineage back in time. l
» update either (a) branches out,
or (b) terminates (“oblivious”) 8

» analyze RED/GREEN/BLUE clusters... | (@ (b)
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Results: cutoff up to B, in 3D Ising

» Confirm Peres’s conj. on Z& for any d, with 0(1)-window.
~|» THEOREM: ([L.-Sly "14+])

Vd = 1 and f < f3. there is cutoff with an O(1)-window at

ty = inf{t : E,[M(c)] < +/nd}

L]

[recall M(o) = IAIZG(JC)] .

|» Examples:

T — . —_— 1
>»d=1: t, = S (—anhZE)) logn.

» B =0:t,= élogn (matching [Aldous ‘83]) F
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Results: initial states

» Warm start is twice faster:

» All-plus starting state is worst (up to an additive 0(1))
[but twice faster than naive monotone coupling bound].

> Uniform initial state = twice faster than all-plus.

> Almost V deterministic initial state ~ as bad as all-plus. |

|» Example: the 1D Ising model (Z,,):
THEOREM: (|L.-Sly "14+])

1

Fixf>0and 0 <e<1;sett, ~ 2(1-tanh(2B))

logn.
1. (4Annealed) t() () ~ —t

mix

2. (Quenched) t( o) el t(+) (¢) ~ t,, for almost Vx,

mix
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Results: universality of cutoff

) Paradigm: cutoff for any locally finite geometry at high
| enough temperature (including expanders, trees, ...)

|» THEOREM: ([L.-Sly "14+])

1k > 0 so that, if ¢ 1s any n-vertex graph with degrees < d
and f < k/d, then 3 cutoff with an O(1)-window at

= inf{t : Y E, [M(at(x))?'] < 1} .

» Moreover:
(U) (x0) <

i i < G+ &g)ty yet t0) = (1 —g5)t,, ae xo.
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The new framework (revisited)

» Information percolation clusters in the space-time slab:
> track update lineage back in time.
» update either (a) branches out,
or (b) terminates (“oblivious”)

7500 cluster
(top/side view)
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Information percolation clusters

BLUE: RED:
dies out quickly top spins are
in space & time. ' affected by

initial state.
» Rough idea: condition on GREEN, let the effect of RED
clusters vanish among BLUE (show E [2|R”R | | G] = 1).

ﬁ
b+
p «

]
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Example: the framework in 1D

» In1D: 8 = P(oblivious update) = 1 — tanh 23
» Update history: continuous-time RW Kkilled at rate 6.
» P(surviving to time t,,) is = 1/+/n.

‘ﬁxi‘rﬁfﬁ{ S
%

» Cutoff at t,, = %logn

» Effect of the initial
state on the final state is

in terms of the bias
of the cont.-time RW....

the 3 cluster classes (R/G/B) in Z,<¢
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Example: random initial state

» Handling a uniform (IID) starting configuration:

» Compare the dynamics directly with Ising measure:
develop history to time —oo (coupling from the past).
» Redefine RED clusters (coalesce before time 0).

reprEeT T '! i 5 ' SLl TSI YR LN

..“ A% {r f {k#,).

i




Losing red clusters in a blue sea
» LEMMA: ([Miller, Peres "12]) |

Let u be a measure on g € () = {£+1}" as follows:

1. draw a random variable R C [n] via a law i ;
2. let og ~ some law ¢z and gxc ~ IID Bernoulli {*1 e

-1 1/2
!
= llu =%, < E[2/R%1] - 1

' v=uniform
measire

> the set R embodies the nontrivial part of u

» it has a negligible effect on provided the exponential
moment can be controlled...
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Open problems

» High temperature regime for other spin-systems
(Potts / Independent sets /Legal colorings / Spin glass,...):

» asymptotic mixing on the lattice up to S,
» cutoff on a transitive expander

» asymptotic mixing from random starting states
(e.g., compare ordered/disordered start in Potts)

» 3D Ising:
%4 > no cutoff at criticality
¥4 > power-law behavior at criticality

¥ > sub-exponential upper bound at
low temperatures under all-plus b.c.
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