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Integrable probability

An integrable probabilistic system has two main properties:
1. It is possible to compute concise formulas for averages of a
rich class of observables.
2. Taking limits of the system, observables and formulas, it is
possible to access detailed descriptions of universal classes.

[ will focus on a few examples in the Kardar-Parisi-Zhang class
and describe how their integrability springs from connections to

representation theory and quantum integrable systems.
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Basic reason that these wmodels turn out to be analyzable is the
existence of a large family of observables whose averages are explicit.

Example 1: g-TASEP [Borodin-C, 2011]

Xo(£) X,(t) gop=S %, ()
o0 e  0<4<|
A A
rate 1-73@
Theorem [B-C'11], [B-C-Sasamoto'12] For step initial data {Xn(O)z-n}mi
F[ (XN(£\+N1)+ xN(e)»rNkl (1)& g & n Zp" g % . 3 dz;
— 7’ o @royt A<p TATYTB )= 2N %J

<N_4_>/ N> ZNKB * 0 {i‘“' @%@i’ }%1
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Let us briefly explain why such formulas are useful for asymptotics.

For g-TASEP with step initial data, one specialfzes to g-moments
1, Ntz

_<ﬂ,’<~(ﬂ+N U) q, g f Zp 28 ﬂ g dz‘

A(B %A 126 )=1 B J

mp— -""’W)Sk = det (A+K
E [1(1-3979%) - %: (1-9) -+ (-g%) t (4+K)

with m30
K (r\,‘ My W0 3 A w1j}’b~fz, ) o)< CENY

The result is suitable for taking various limits.



Example 2: semi-discrete Brownian polymer [O'Connell-Yor, 2001 ]

Taking a suitable scaling limit of the g-TASEP as g—1,

one arrives at the following partition functions ()
N mw/l/’lw//hwm y
N B, (0,5)+ B, (5,52) +- + By (Sy-1,t) ALY
(£) = f @ ds,...ds,_, fmxmwf

0<s,<..<S, <t 2
2
Brownian increments B, («,p)= B, (p)- B, () L J y

N, N,
Theorem [B-C, B-C-Ferrari, 2011-12] Set F(+ ) = &g Zz (79) GUE Tracy-Widom
e aistribution describes the
& N N . - largest ejgenvalue of a large
/& US ) 'F'ae Lr = (3‘23 > Y- Gaussian Hermitian matrix
N— oo NG GUE 2

Here one cannot use the moment expansion of the Laplace transform because it is divergent!

Leads to the (non-rigorous) replica trick. Using q-TASEP provides a rigorous replica trick.
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Example 3: SHE/KPZ equation/continuum polymer

A weak-noise limit yields the continuum po(gmer partltlom function

Lt x)=

Equivalently, the stochastic heat equation: 7 L =-71-_AZ + 7 ¥s
or setting b= gog (Z), the KPZ equation: fLé‘-‘— -‘iﬁﬁu +—‘2—(V[1, >l+’7

g "7(8 B(S)>Js

B rowinian paﬂ\s B(o)= 0, B(t)=x

f'/z’ fluctuations, KPZ class statistics shown in works of

rigorous: [Amir-C-Quastel, '10], [C-Quastel '11], [B-C-Ferrari, '12], [B-C-Fervari-Veto '14]
non-rigorous: [Sasamoto-Spohn, '10], [Dotsenko, '10+], [Calabrese-Le Doussal-Rosso, '10+], [Sasamoto -lmamura, '11]
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KPZ class integrable probabilistic systems

Late '90s: Asymptotic analysis of some H”jd%t‘:‘i

totally asymmetric / zero temperature models in KPZ class
(PNG/LIS, TASEP/LPP) [Baik-Deift-Johansson 'a9] [Johansson 'a4].

Early '00s: Determinantal point process framework developed

(Schur processes, free Fermions, non-intersecting paths).

Late 'O0s-present: Beginning with [Tracy-Widom '07-'049] some

non-determinantal, partially asymmetric / positive temperature

models have been discovered and studied asymptotically.

Developed in parallel: Probabilistic means to study KPZ exponents.
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Some non-determinantal models which have been analyzed

'y

¢, 241 ((g-Hahn TASEP) Stochastic 6-vertex
/ type processes

@C rete time q-TASE @ ' | [Borodin-C-Gorin '14]
q —PMSI/\ASEP [Borodin-Petrov '13],
/ [C-Petrov, '13]

[Borodin-C, '13]

[Borodin-C, '11], [Borodin-C-Sasamoto, '12], l

[Fervari-Veto, '12], [Barraquand '14] )
R CED L
. Tracy-Widom, '07-'04],

[Borodin-C-Sasamoto, '12]

[O'Connell, '04], [Borodin-C, '11+],
[Borodin-C-Ferrari, '12]

[Amir-C-Quastel, '10], [Sasamoto-Spohn, '10],
[Dotsenko, '10+], [Calabrese-Le Doussal-Rosso, '10+],
[C-Quastel '11], [Sasamoto -Imamura, '11],
[Borodin-C-Ferrari, '12], [Borodin-C-Ferrari-Veto]

CKPZ fixed point (Tracy-Widom distributions, Airy processesD

SPA Page 8



Structures behind KPZ class integrable probabilistic systems

Integrable Syﬁ
Quantum lmtegmb@

Rep resemtatiozfm e
@ Fumctio%

@{ble Probability

Probability
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S(N)

Macdonald polynomials P?\ (s, ) € Q@pﬁ [, -, X
with partitions A= (V20,2 .20 2 0) form a basis in symmetric
polynomials in N variables over () CcLH They diagonalize

(D) ey = 2 T el (CHRPEI

:i d*"

with (generically) pairwise different eigenvalues
EDiPQ\ = (OL R (>‘ N5 +<1/9‘“>P} .

They have many remarkable properbies that include orthogonality
(dual basis ®, A ) simple reproducing kernel (Cauchy type identity),
Pieri and branching rules, index/variable duality, explicit generators
of the algebra of (Macdonald) operators commuting with D, etc.
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(Ascending) Macdonald processes are probability measures on
interlacing triangular arrays (Gelfand -Tsetlin patterns)

(N) (NY (N) )
f>\ ,\’ (\)N“i - : . 9\2 O\L
r Ve \Y (N-1) \r CN'\) l//
(N- = - - -
A N_': 9\ N-2 9\&
. . . | P 9\ | C: Z
(2) (2) ) >0
>\ 2 >\ 1 g
\Y %
) 9\(“ 7 Macdonold

///"// potgnomials
,>\(4q (qﬂ_) ak» Q (*Q (@ \

f\_ (91)--')Q£')1‘)&,-.-,@M>

hormabswﬁom/ T~
Constant +wo groups of pavameters

\ <O€<\>:P
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Macdonald processes

Integrable structure of Macdonald polynomials translates into
probabilistic content enabling us to:

1. Describe nice (2+1) dimensional Markov chains which preserve

the class of measures and have interesting marginals

2. Compute formulas for averages of a rich class of observables

Initiated in [Borodin-C '11+]; many other developments involving

Bufetov, Fervari, Gorin, O'Connell, Pei, Petrov, Remenik, Seppalainen,

Shakirov, Shkolnikov, Veto, Zygouras...
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Macdonald processes g, tefo,1)

Ruijsenaars-Macdonald system
Representations of Double Affine Hecke Algebras

/

q-Whittaker processes
2d dynamics t=0

~deformed quantum Toda lattice

U, )

Hall-Littlewood processes

Random matrices over finite fields

—
-

Spherical functions for p-adic groups

9
Representations of ,3}/(> N

Bl
General RMT t°9 =1

Random matrices over [R C [
Calogero-Sutherland, Jack polynomials

Spherical functions for Riem. Symm. Sp.

Whittaker processes Kingman partition structures

: = . ( d tati =
Directed polymers and their hierarchies]™ CH? es of V’alf\ o p'erw.\bu a' ons 2’_ ?
Quantum Toda lattice, repr. OFGL(n, ) ( Poisson-Dirichlet distributions

R) |
Schur processes 1:5\

Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, @

Characters of symmetric, unitary groups
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: >
Markov process preserving t=0 Macdonald process ™ =
a——
Each coordinate of the triangular 96:); — oM
array jumps by 1 to the right - -
independently of the others with 9\4@ . ) b1

- Q,CD%‘::;’-'A";‘J)U_ I)‘Z‘—%‘ZL“)

( 1 — ')(:}- 9\(:")) Other dynamics preserve Macdonald process
q/ [O'Connell-Pei '12], [Borodin-Petrov '13]

rate (N

: (
The set of coordinates { 9\;1)- “’l} forms q-TASEP

m> 4
o0 o o ° a
rate = 1-@8 P ﬂé\
® L L ®
S\’ ¢ omo S e _——+o S °
PY ° |

8&?:2 30-13'-0 30».’):1
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Evaluation of Macdonald process averages

- d, D

?\ ;
(%E xh IN) Z ’_\ kx — 'c(xl) 111.) 'xﬂ) CJ-DP = (‘1/ {Ni e NZ +1/)N>P}.

Lidsls

Take an operator diagonal in Macdonald poly's: Q) P

Apply it to the Cauchy type identity > P ) Q,®) = T\ asb)
D

- _ (a8
to obtain E{O\D\i( — SDU@E,Q,Q’

Since all ingredients are explicit, we obtain meaningful probabilistic

information without explicit formulas for Macdonald polynomials.

When t=0, 0(}‘—*1/9‘“ and this yields the q-TASEP moment formulas!
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Basic reason that these wmodels turned out to be analyzable is the
existence of a large family of observables whose averages are explicit.

Example 1: g-TASEP [Borodin-C, 2011]

Xo(£) X,(t) gop=S %, ()
00 CC 8O U< 4 < j
A A
rate 1-7W
Theorem [B-C'11], [B-C-Sasamoto'12] For step initial data {Xn(O)z-n}mi
F[ (XN(£\+N1)+ xN(e)»rNkl (1)& g & n Zp" g % . 3 dz;
l 7’ (Tt A<p TAT4ZB 2N %‘j

<N_4_>/ N> ZNKB * 0 {i‘“' @%@i’ }%1
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Quantum integrable systems approach

[t is not hard to check that the g-TASEP moments

VN, N = [ gt ]

satisty [B-C-Sasamoto '12] the g-Boson system [Sasamoto-Wadati 'a7]

fét\/(%; N) = Z (ldci/q) [\/(t‘ N/C,Ec.; ) ‘\f(t’{v)]

ﬁ

i

f—

clusters
[t is easy to verify that the contour oo o 1 %st‘ce g
integral formulas satisfy this (closed) 1% O _ 'te

. e o L o N/ e
system with desired initial data, thus @ o ® O W'. o

-3 9 -4 O 1 92 3

proving them in an elementary way.
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(Local) stochastic quantum integrable systems

This approach can be made less ad hoc: ><“J _ \’><

L
=— —0

|

® QISM / algebraic Bethe ansatz [Faddeev '74]
is a rich source of exactly solvable 2d lattice/vertex models
and (1+1)-dimensional quantum spin chains [Baxter '82].

¢ For 6-vertex/XXZ type systems there exist commuting

stochastic transfer matrices which produce interacting particle
systems (directly or via Markov dualities) [Borodin-C-Gorin '14].
¢ Completeness: Plancherel theory for Bethe ansatz yields moment

formulas for general initial data [Borodin-C-Petrov-Sasamoto '13].
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What structures degenerate? (ot s ) (o

@ ete time q TASEPs WED typep e
Under the limit to the SHE, — /d
0g-Gamma discrete
z 1[: = Ji Az + 77 ' Z 72 (0’ X\ = S(X\, simi—a:irscrete Brownian /

< KPZ equation/SHE/continuum polyW\D

z (t) Xi)"‘ixk) - [Z <{:1 X-‘— Z(‘E X{D] (C_kPZ fixed point (Tracy- Wdimdst ibutions, Airy processes) )

satisfies the delta-Bose gas evolution [Molchanov '86], [Kardar '87]

rbkz = _17: (A+ ZS(XL-XJ\)_?

L+ |

which is solvable via Bethe ansatz [Lieb-Liniger '3, Bethe '31]

(completeness proved in [Oxford ‘74, Heckman-Opdam 'a7]).
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A Baelan )
(Non-local) stochastic quantum integrable systemn =2 v

A7
cmc,&_;:

diffusion, with generator [O'Connell '09]

(\/C(ass one GL(N)

-~ | N“ | X = X )
% (;%,A T Z e i L) 0 Whittaker function

L=\

which is a soft / positive temperature version of

Dyson's Brownian motion: % X, ()
Vandermonde

-
\/ Aoirnchle+\/</\ determinant %Xﬁ)

Geometric lifting of RSK correspondence gives path interpretation for
all X;() [O'Connell '0a], [C-O'Connell-Seppalainen-Zygouras '13]

reflection

symmetry
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Limiting structure: KPZ/Airy line ensembles [C-Hammond 11,'13]
% R m
X, )/_/\/\\/\/\
Ay

Sample paths of Careful limit yields Conj: As t>00 [imit is
Vo (zA~ % e —X)Wo KPZ line ensemble: Airy line ensemble (ALE)

are invariant in law  Invariance survives  with hard Gibbs prop.
under soft Brownian  giving reqularity of  Conj: ALE is the unique
bridge exponential R, -), even as t>00  trans. invariant ergodic

energy resampling under KPZ scaling. [C-Sun '14] Gibbs meas.
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Summary

¢ Integrable examples provide detailed information about
universality classes, expand their scope, refine their properties.

¢ They originate from algebraic origins, two of which are
representation theory (sym. functs) and int. systems (QISM).

¢ Building bridges from these areas to probability gives us tools to
discover and analyze many new systems.

¢ The examples considered have revealed much about KPZ class.

¢ There remain many challenges and further directions to explore.

We are at the De Moivre/Laplace stage and not yet Lyapunov.
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