
THE EXPLOSION TIME IN STOCHASTIC
DIFFERENTIAL EQUATIONS WITH SMALL

DIFFUSION

PABLO GROISMAN AND JULIO D. ROSSI

Abstract. We consider solutions of a one dimensional stochastic
differential equations that explode in finite time. We prove that,
under suitable hypotheses, the explosion time converges almost
surely to the one of the ODE governed by the drift term when the
diffusion coefficient goes to zero.

1. Introduction

Explosions in one dimensional ODEs is a very well known phenom-
ena. Let u(t) be the solution of

(1.1) u̇ = b(u), u(0) = x0.

If b > 0, there exists a finite time T such that limt↗T u(t) = +∞ if and
only if

∫∞
1/b < +∞. In this case we have an explicit formula for the

explosion time T in terms of b and x0,

(1.2) T =

∫ ∞

x0

1

b(s)
ds.

On the other hand, let us consider the stochastic differential equation

(1.3) dX = b(X) dt + σ(X) dW, X(0) = x0 > 0,

where b and σ are smooth positive functions and W is a (one dimen-
sional) Wiener process defined on a given probability space (Ω,P).

As happens with (1.1), solutions of (1.3) may explode in finite time,
that is, trajectories may diverge to infinity as t goes to some finite time
S that in general depends on the particular sample path.

This phenomena has been considered, for example, in fatigue crack-
ing (fatigue failures in solid materials) with b and σ of power type,
[5]. In this case the explosion time corresponds to the time of ultimate
damage or fatigue failure in the material.
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The Feller Test for explosions (see [3, 4]) gives a precise description
in terms of b, σ and x0 of whether explosions in finite time occur with
probability zero, positive or one. For example, if b and σ behave like
powers at infinity, i.e., b(s) ∼ sp, σ(s) ∼ sq as s → ∞, applying the
Feller test one obtains that solutions to (3.1) explode with probability
one if and only if p > 2q − 1 and p > 1.

There is no simple formula for the explosion time S as (1.2) (although
there exists some expressions for a version of S that involve the scale
function which can be found in [3]). Hence, to estimate S is a nontrivial
task. In order to get information about the stochastic explosion time
one can use adaptive numerical approximations like the ones described
in [1] where the authors provide a numerical method that can be used
to compute a convergent approximation of S.

In this article we find, by theoretical arguments, estimates on the
explosion time S when the diffusion σ is small. That is, we look at
(1.3) as a stochastic perturbation of the ODE (1.1). We prove that,
under adequate hypotheses on b and σ, the stochastic explosion time,
S = S(σ), converges to the deterministic one, T , almost surely when σ
goes to zero. This means that the stochastic explosion times converge
to a constant, T given by (1.2), that can be explicitly computed.

In the statement of the theorem we use the Stratonovich integral
since the proofs are simpler. This is not a restriction thanks to the well
known conversion formula (see below). We consider a family of SDE

(1.4) dX = b(X) dt + σ(X, ε) ◦ dW, X(0) = x0 > 0,

where ε > 0 is a parameter and σ(·, ε) → 0 as ε → 0. We introduce a
function H : R × R+ × R+ → R (R+ = [0, +∞)) defined in this way:
let φ = φε(t, x) the flux associated to the ODE

(1.5) ẏ = σ(y, ε), y(0) = x.

We assume that σ(·, ε) is globally Lipschitz and smooth and therefore
φε is globally defined. Then we define

H(s, x, ε) =
b(φε(s, x))σ(x, ε)

σ(φε(s, x), ε)
.

Theorem 1. Assume

(1) b > 0 in R+ and σ(·, ε) > 0 has continuous bounded derivatives
in R+,

(2) Given s ∈ R, there exists gs ∈ L1(R+) such that 1
H(s,x,ε)

≤ gs(x)

for every x ∈ R+,
(3) H(s, x, ε) ≥ H(t, x, ε) if s ≥ t,
(4) limε→0 H(s, x, ε) = b(x),
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then for almost every ω the (strong) solution of (1.4) explodes in finite
time Sε(ω) for every ε > 0 and

(1.6) lim
ε→0

Sε(ω) = T.

Moreover, if in addition H verifies

(5) For every s ∈ R, there exists fs ∈ L1(R+) such that ∂
∂ε

1
H(s,x,ε)

≤
fs(x) for every x ∈ R+ and 0 < ε < ε0,

then Sε(ω) is Lipschitz continuous at ε = 0 almost surely, that is, there
exist a random variable C = C(ω) such that with total probability

|T − Sε(ω)| ≤ Cε.

Remark 1.1. If a SDE is given in Itô form, we can apply this result
thanks to the conversion formula. In fact, X(t) solves dX = f(X)dt +
g(X)dW if and only if it solves (3.1) with b = f − 1

2
σ′σ, σ = g. In this

case we obtain that also b depends on ε, however the result still holds
and the proof is similar.

Remark 1.2. If b(x)/σ(x, ε) is increasing in x then the monotonicity of
H(s, x, ε) in s, hypothesis (3), holds.

Remark 1.3. If H(s, x, ε) is increasing (or decreasing) in ε then we can
get rid of hypothesis (2), using the Monotone Convergence Theorem
instead of the Dominated Convergence Theorem in the proof.

2. Some simple examples

In this section we consider some simple examples to illustrate the
main ideas used in the proof of Theorem 1 and the principal features
of the problem.

The main idea is to change variables in order to transform the SDE
into a random differential equation. Then we obtain bounds for the
explosion time by using sub and supersolutions given by ODEs.

Example 1: additive noise. Let u(t) be the solution of (1.1) with
b increasing and

∫∞
1/b < +∞. Let X be a solution of the Itô SDE

dX = b(X)dt + εdW, X(0) = x0.

Let Z = X − εW , then Z solves

dZ = dX − εdW = b(Z + εW )dt, Z(0) = x0.

This gives a non-autonomous ODE for each ω such that W (·, ω) is
continuous,

(2.1) Żω(t) = b(Zω(t) + εW (t, ω)), Zω(0) = x0.
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In this equation ω is regarded as a parameter.

Given M > 0, we consider z and z the solutions of

ż(t) = b(z(t) + εM), z(0) = x0

and

ż(t) = b(z(t)− εM), z(0) = x0.

These solutions explode in finite time given by

T ε =

∫ ∞

x0

1

b(s + εM)
ds, T ε =

∫ ∞

x0

1

b(s− εM)
ds,

respectively. Since b is increasing, by the Monotone Convergence The-
orem we get

(2.2) lim
ε→0

T ε = lim
ε→0

T ε = T.

Let

AM =

{
ω : W (·, ω) is continuous and max

0≤t≤T+1
|W (·, ω)| ≤ M

}
.

For ω ∈ AM , z and z are super and subsolutions of (2.1) for 0 < t <
T + 1. Using (2.2), a comparison argument gives

z(t) ≤ Zω(t) ≤ z(t),

as long as all of them are defined. Hence, for ω ∈ AM ,

T ε ≤ Sε(ω) ≤ T ε.

Therefore, by (2.2),

lim
ε→0

Sε(ω) = T.

As

P
( ∞⋃

M=1

AM

)
= 1

we get the desired result.

Example 2: multiplicative noise. Let u(t) be as in Example 1.
Let X be the solution of the Itô SDE

dX = b(X)dt + εXdW, X(0) = x0.

As in the preceding example, we want to get an ODE for each ω. To
do that, let Z = Xe−εW . Using Itô’s rule we get that Z solves

dZ =
(
e−εW b(ZeεW ) + ε2Z

)
dt, Z(0) = x0.
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As before, this gives a non-autonomous ODE for each ω such that
W (·, ω) is continuous,

(2.3) Żω(t) = e−εW (t,ω)b(Zω(t)eεW (t,ω)) + ε2Zω(t), Zω(0) = x0.

Given M > 0, we consider z and z the solutions of

ż(t) = eεMb(z(t)eεM) + ε2z(t), z(0) = x0

and

ż(t) = e−εMb(z(t)e−εM) + ε2z(t), z(0) = x0.

These solutions explode in finite time given by

T ε =

∫ ∞

x0

1

eεMb(seεM) + ε2s
ds, T ε =

∫ ∞

x0

1

e−εMb(se−εM) + ε2s
ds,

respectively. We have

(2.4) lim
ε→0

T ε = lim
ε→0

T ε = T.

Let AM as before. Since b is increasing, for ω ∈ AM , z and z are
super and subsolutions of (2.3) for 0 < t < T + 1 and hence, using
(2.4), we can compare their explosion times

T ε ≤ Sε(ω) ≤ T ε.

Therefore

lim
ε→0

Sε(ω) = T.

and we get the desired result.

3. Proof of the main result

3.1. Pathwise solutions of the SDE. We want to apply the same
ideas used in the previous examples, that is, to transform the SDE in
a non-autonomous ODE where ω plays the role of a parameter. This
is easier when the equation is understand in Stratonovich sense.

The study of pathwise solutions to stochastic differential equations
via an appropriate reduction to an ODE was first done in [2, 6]. We
refer to those works and to [3] for details.

Consider a solution of the Stratonovich SDE

(3.1) dX = b(X)dt + σ(X) ◦ dW.

This solution may explode in finite time or may be globally defined.

Let y be a solution of the ODE

(3.2) ẏ = σ(y), y(0) = x,
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and let φ(t, x) the flux associated to (3.2) which is globally defined and
has continuous derivatives, since σ is smooth and globally Lipschitz.

Consider Zω = Zω(t) the solution of the random differential equation

(3.3)
dZω(t) =

b(φ(W (t, ω), Zω(t)))

φx(W (t, ω), Zω(t))
dt,

Zω(0) = x0.

Then X(t, ω) = φ(W (t, ω), Zω(t)) is a strong solution of (3.1) up
to a possible explosion time Sε. In fact, since (3.1) is interpreted in
Stratonovich sense, we have

dX = φt(W,Zω) dW + φx(W,Zω) dZω = σ(X) dW + b(X) dt,
X(0) = x0.

Note that the explosion time Sε(ω) is the maximal existence time of
(3.3) for each ω. We are going to use this fact to prove Theorem 1.

3.2. Proof of Theorem 1. First of all observe that assumptions (1)
and (2) ensures on the one hand that solutions to (1.1),(1.4) are positive
and on the other hand that solutions to (1.1) explodes in finite time
T given by (1.2). Applying the Feller Test for explosions one can see
that these hypotheses also ensure that (1.4) explodes in finite time
with probability one. Nevertheless we are going to show this fact in
the course of the proof.

For each ω such that W (·, ω) is continuous, consider the ODE

(3.4) Żω(t) =
b(φε(W (t, ω), Zω(t)))

(φε)x(W (t, ω), Zω(t))
, Zω(0) = x0.

Here φε is the flux associated to the ODE (1.5). The equation (3.4)
can be written in terms of H as

(3.5) Żω(t) = H(W (t, ω), Zω(t), ε), Zω(0) = x0.

In fact, integrating (1.5) we get
∫ φε(t,x)

x

dτ

σ(τ, ε)
= t.

Differentiating with respect to x we obtain

(φε)x(t, x)

σ(φε(t, x), ε)
− 1

σ(x, ε)
= 0,

hence

(φε)x(t, x) =
σ(φε(t, x), ε)

σ(x, ε)
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and so

H(s, x, ε) =
b(φε(s, x))

(φε)x(s, x)
.

Given M > 0, we consider z and z the solutions of

ż(t) = H(M, z(t), ε), z(0) = x0

and
ż(t) = H(−M, z(t), ε), z(0) = x0.

These solutions explode in finite time given by

T ε =

∫ ∞

x0

1

H(M, x, ε)
dx, T ε =

∫ ∞

x0

1

H(−M,x, ε)
dx,

respectively. By assumption (2) we can apply the Dominated Conver-
gence Theorem to get

(3.6) lim
ε→0

T ε = lim
ε→0

T ε = T.

Let AM be as in the examples. Since H(s, x, ε) is increasing in the s
variable, for any ω ∈ AM , z and z are super and subsolutions of (3.5)
for 0 < t < T + 1. Using this fact and (3.6), their explosion times can
be compared. Since X(t) = φε(W (t), Zω(t)) and φε is globally defined,
the explosion times of X and Zω coincide a.s. Then we obtain

T ε ≤ Sε(ω) ≤ T ε.

Therefore
lim
ε→0

Sε(ω) = T.

As

P
( ∞⋃

M=1

AM

)
= 1,

we have proved (1.6). It rest to show the Lipschitz continuity. To do
this observe that the Taylor expansion of 1/H(±M,x, ε) at ε = 0 gives

|Sε(ω)− T | ≤
∣∣∣∣
∫ ∞

x0

1

H(±M, x, ε)
dx− T

∣∣∣∣

=

∣∣∣∣
∫ ∞

x0

1

b(x)
dx +

∫ ∞

x0

ε
∂

∂ε

1

H(±M, x, ηε)
dx− T

∣∣∣∣

=

∣∣∣∣
∫ ∞

x0

ε
∂

∂ε

1

H(±M,x, ηε)
dx

∣∣∣∣

≤ ε

∣∣∣∣
∫ ∞

x0

fM(x) dx

∣∣∣∣
≤ Cε.
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This completes the proof. ¤

4. More Examples

In this section we present two additional examples where the result
can be applied.

Example 3: unbounded diffusion. Let u(t) be the solution of
(1.1) and consider the SDE

dX = b(X)dt + εσ(X) ◦ dW, X(0) = x0,

with

b(x) ∼ xp, σ(x) ∼ xq, 0 < q < 1 < p,

for large x and bounded below away from zero.

In this case we have

φε(t, x) ∼
(

x1−q

1− q
+ εt

) 1
1−q

,

for x large and t > 0. Hence, the behavior of H(s, x, ε) at infinity is
given by

H(s, x, ε) ∼ φε(t, x) ∼
(

x1−q

1− q
+ εt

) p−q
1−q

xq ∼ Cxp.

From these expressions it is easy to check hypotheses (1),(2) and (4).
If we assume (3), then we can apply our theorem to get Sε → T almost
surely. Note that (3) holds if we take, for example, b(x) = (1 + |x|)p,
σ(x) = ε(1 + |x|)q. In this case (5) also holds and so Sε is Lipschitz at
ε = 0 almost surely.

Example 4: bounded diffusion. In this last example we consider

dX = b(X)dt + εσ(X) ◦ dW, X(0) = x0,

with a bounded σ, 0 < c1 ≤ σ ≤ C2 and b such that
∫∞

1/b < +∞.
We have

1

H(s, x, ε)
≤ gs(x) :=

C

b(x)
.

If we assume that (3) holds (the rest of the hypotheses can be easily
checked) we obtain again that Sε → T almost surely.
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