THE EXPLOSION TIME IN STOCHASTIC DIFFERENTIAL EQUATIONS WITH SMALL DIFFUSION

PAUL GROISMAN AND JULIO D. ROSSI

Abstract. We consider solutions of a one dimensional stochastic differential equations that explode in finite time. We prove that, under suitable hypotheses, the explosion time converges almost surely to the one of the ODE governed by the drift term when the diffusion coefficient goes to zero.

1. Introduction

Explosions in one dimensional ODEs is a very well known phenomena. Let \(u(t) \) be the solution of
\[
\dot{u} = b(u), \quad u(0) = x_0.
\]
If \(b > 0 \), there exists a finite time \(T \) such that \(\lim_{t \to T} u(t) = +\infty \) if and only if \(\int_1^{+\infty} 1/b < +\infty \). In this case we have an explicit formula for the explosion time \(T \) in terms of \(b \) and \(x_0 \),
\[
T = \int_{x_0}^{+\infty} \frac{1}{b(s)} \, ds.
\]

On the other hand, let us consider the stochastic differential equation
\[
dX = b(X) \, dt + \sigma(X) \, dW, \quad X(0) = x_0 > 0,
\]
where \(b \) and \(\sigma \) are smooth positive functions and \(W \) is a (one dimensional) Wiener process defined on a given probability space \((\Omega, \mathbb{F})\).

As happens with (1.1), solutions of (1.3) may explode in finite time, that is, trajectories may diverge to infinity as \(t \) goes to some finite time \(S \) that in general depends on the particular sample path.

This phenomena has been considered, for example, in fatigue cracking (fatigue failures in solid materials) with \(b \) and \(\sigma \) of power type, [5]. In this case the explosion time corresponds to the time of ultimate damage or fatigue failure in the material.

Key words and phrases. Explosion, stochastic differential equations.

2000 Mathematics Subject Classification: 60H10, 60G17, 34F05.
The Feller Test for explosions (see [3, 4]) gives a precise description in terms of \(b, \sigma \) and \(x_0 \) of whether explosions in finite time occur with probability zero, positive or one. For example, if \(b \) and \(\sigma \) behave like powers at infinity, i.e., \(b(s) \sim s^p, \sigma(s) \sim s^q \) as \(s \to \infty \), applying the Feller test one obtains that solutions to (3.1) explode with probability one if and only if \(p > 2q - 1 \) and \(p > 1 \).

There is no simple formula for the explosion time \(S \) as (1.2) (although there exists some expressions for a version of \(S \) that involve the scale function which can be found in [3]). Hence, to estimate \(S \) is a nontrivial task. In order to get information about the stochastic explosion time one can use adaptive numerical approximations like the ones described in [1] where the authors provide a numerical method that can be used to compute a convergent approximation of \(S \).

In this article we find, by theoretical arguments, estimates on the explosion time \(S \) when the diffusion \(\sigma \) is small. That is, we look at (1.3) as a stochastic perturbation of the ODE (1.1). We prove that, under adequate hypotheses on \(b \) and \(\sigma \), the stochastic explosion time, \(S = S(\sigma) \), converges to the deterministic one, \(T \), almost surely when \(\sigma \) goes to zero. This means that the stochastic explosion times converge to a constant, \(T \) given by (1.2), that can be explicitly computed.

In the statement of the theorem we use the Stratonovich integral since the proofs are simpler. This is not a restriction thanks to the well known conversion formula (see below). We consider a family of SDE

\[
(1.4) \quad dX = b(X) \, dt + \sigma(X, \varepsilon) \circ dW, \quad X(0) = x_0 > 0,
\]

where \(\varepsilon > 0 \) is a parameter and \(\sigma(\cdot, \varepsilon) \to 0 \) as \(\varepsilon \to 0 \). We introduce a function \(H : \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R} (\mathbb{R}_+ = [0, +\infty)) \) defined in this way: let \(\phi = \phi_\varepsilon(t, x) \) the flux associated to the ODE

\[
(1.5) \quad \dot{y} = \sigma(y, \varepsilon), \quad y(0) = x.
\]

We assume that \(\sigma(\cdot, \varepsilon) \) is globally Lipschitz and smooth and therefore \(\phi_\varepsilon \) is globally defined. Then we define

\[
H(s, x, \varepsilon) = \frac{b(\phi_\varepsilon(s, x))\sigma(x, \varepsilon)}{\sigma(\phi_\varepsilon(s, x), \varepsilon)}.
\]

Theorem 1. Assume

1. \(b > 0 \) in \(\mathbb{R}_+ \) and \(\sigma(\cdot, \varepsilon) > 0 \) has continuous bounded derivatives in \(\mathbb{R}_+ \),
2. Given \(s \in \mathbb{R} \), there exists \(g_s \in L^1(\mathbb{R}_+) \) such that \(\frac{1}{H(s, x, \varepsilon)} \leq g_s(x) \) for every \(x \in \mathbb{R}_+ \),
3. \(H(s, x, \varepsilon) \geq H(t, x, \varepsilon) \) if \(s \geq t \),
4. \(\lim_{\varepsilon \to 0} H(s, x, \varepsilon) = b(x) \).
then for almost every ω the (strong) solution of (1.4) explodes in finite time $S_\varepsilon(\omega)$ for every $\varepsilon > 0$ and

(1.6) \[\lim_{\varepsilon \to 0} S_\varepsilon(\omega) = T. \]

Moreover, if in addition H verifies

(5) For every $s \in \mathbb{R}$, there exists $f_s \in L^1(\mathbb{R}_+)$ such that $\frac{\partial}{\partial \varepsilon} H(s, x, \varepsilon) \leq f_s(x)$ for every $x \in \mathbb{R}_+$ and $0 < \varepsilon < \varepsilon_0$,

then $S_\varepsilon(\omega)$ is Lipschitz continuous at $\varepsilon = 0$ almost surely, that is, there exist a random variable $C = C(\omega)$ such that with total probability

$|T - S_\varepsilon(\omega)| \leq C\varepsilon.$

Remark 1.1. If a SDE is given in Itô form, we can apply this result thanks to the conversion formula. In fact, $X(t)$ solves $dX = f(X)dt + g(X)dW$ if and only if it solves (3.1) with $b = f - \frac{1}{2}\sigma'(\sigma, \sigma)$, $\sigma = g$. In this case we obtain that also b depends on ε, however the result still holds and the proof is similar.

Remark 1.2. If $b(x)/\sigma(x, \varepsilon)$ is increasing in x then the monotonicity of $H(s, x, \varepsilon)$ in s, hypothesis (3), holds.

Remark 1.3. If $H(s, x, \varepsilon)$ is increasing (or decreasing) in ε then we can get rid of hypothesis (2), using the Monotone Convergence Theorem instead of the Dominated Convergence Theorem in the proof.

2. SOME SIMPLE EXAMPLES

In this section we consider some simple examples to illustrate the main ideas used in the proof of Theorem 1 and the principal features of the problem.

The main idea is to change variables in order to transform the SDE into a random differential equation. Then we obtain bounds for the explosion time by using sub and supersolutions given by ODEs.

Example 1: additive noise. Let $u(t)$ be the solution of (1.1) with b increasing and $\int_{-\infty}^{\infty} 1/b < +\infty$. Let X be a solution of the Itô SDE

$$dX = b(X)dt + \varepsilon dW, \quad X(0) = x_0.$$

Let $Z = X - \varepsilon W$, then Z solves

$$dZ = dX - \varepsilon dW = b(Z + \varepsilon W)dt, \quad Z(0) = x_0.$$

This gives a non-autonomous ODE for each ω such that $W(\cdot, \omega)$ is continuous,

(2.1) \[\dot{Z}_\omega(t) = b(Z_\omega(t) + \varepsilon W(t, \omega)), \quad Z_\omega(0) = x_0. \]
In this equation \(\omega \) is regarded as a parameter.

Given \(M > 0 \), we consider \(\overline{z} \) and \(\underline{z} \) the solutions of

\[
\dot{\overline{z}}(t) = b(\overline{z}(t) + \varepsilon M), \quad \overline{z}(0) = x_0
\]

and

\[
\dot{\underline{z}}(t) = b(\underline{z}(t) - \varepsilon M), \quad \underline{z}(0) = x_0.
\]

These solutions explode in finite time given by

\[
\overline{T}_\varepsilon = \int_{x_0}^{\infty} \frac{1}{b(s + \varepsilon M)} ds, \quad \underline{T}_\varepsilon = \int_{x_0}^{\infty} \frac{1}{b(s - \varepsilon M)} ds,
\]

respectively. Since \(b \) is increasing, by the Monotone Convergence Theorem we get

\[
(2.2) \quad \lim_{\varepsilon \to 0} \overline{T}_\varepsilon = \lim_{\varepsilon \to 0} \underline{T}_\varepsilon = T.
\]

Let

\[
A_M = \left\{ \omega : W(\cdot, \omega) \text{ is continuous and } \max_{0 \leq t \leq T+1} |W(\cdot, \omega)| \leq M \right\}.
\]

For \(\omega \in A_M \), \(\overline{z} \) and \(\underline{z} \) are super and subsolutions of (2.1) for \(0 < t < T + 1 \). Using (2.2), a comparison argument gives

\[
\underline{z}(t) \leq Z_\omega(t) \leq \overline{z}(t),
\]

as long as all of them are defined. Hence, for \(\omega \in A_M \),

\[
\overline{T}_\varepsilon \leq S_\varepsilon(\omega) \leq \underline{T}_\varepsilon.
\]

Therefore, by (2.2),

\[
\lim_{\varepsilon \to 0} S_\varepsilon(\omega) = T.
\]

As

\[
\mathbb{P}\left(\bigcup_{M=1}^{\infty} A_M \right) = 1
\]

we get the desired result.

Example 2: multiplicative noise. Let \(u(t) \) be as in Example 1. Let \(X \) be the solution of the Itô SDE

\[
dX = b(X)dt + \varepsilon XdW, \quad X(0) = x_0.
\]

As in the preceding example, we want to get an ODE for each \(\omega \). To do that, let \(Z = Xe^{-\varepsilon W} \). Using Itô’s rule we get that \(Z \) solves

\[
dZ = \left(e^{-\varepsilon W}b(Ze^{\varepsilon W}) + \varepsilon^2 Z \right) dt, \quad Z(0) = x_0.
\]
As before, this gives a non-autonomous ODE for each ω such that $W(\cdot, \omega)$ is continuous,

$$\dot{Z}_\omega(t) = e^{-\epsilon W(t, \omega)} b(Z_\omega(t)) e^{\epsilon W(t, \omega)} + \epsilon^2 Z_\omega(t), \quad Z_\omega(0) = x_0.$$

Given $M > 0$, we consider \bar{z} and \underline{z} the solutions of

$$\bar{z}(t) = e^{\epsilon M} b(\bar{z}(t)) e^{\epsilon M} + \epsilon^2 \bar{z}(t), \quad \bar{z}(0) = x_0$$

and

$$\underline{z}(t) = e^{-\epsilon M} b(\underline{z}(t)) e^{-\epsilon M} + \epsilon^2 \underline{z}(t), \quad \underline{z}(0) = x_0.$$

These solutions explode in finite time given by

$$\bar{T}_\epsilon = \int_{x_0}^{\infty} \frac{1}{e^{\epsilon M} b(s e^{\epsilon M}) + \epsilon^2 s} \, ds, \quad T_\epsilon = \int_{x_0}^{\infty} \frac{1}{e^{-\epsilon M} b(s e^{-\epsilon M}) + \epsilon^2 s} \, ds,$$

respectively. We have

$$\lim_{\epsilon \to 0} \bar{T}_\epsilon = \lim_{\epsilon \to 0} T_\epsilon = T.$$

Let A_M as before. Since b is increasing, for $\omega \in A_M$, \bar{z} and \underline{z} are super and subsolutions of (2.3) for $0 < t < T + 1$ and hence, using (2.4), we can compare their explosion times

$$\bar{T}_\epsilon \leq S_\epsilon(\omega) \leq T_\epsilon.$$

Therefore

$$\lim_{\epsilon \to 0} S_\epsilon(\omega) = T.$$

and we get the desired result.

3. Proof of the main result

3.1. Pathwise solutions of the SDE. We want to apply the same ideas used in the previous examples, that is, to transform the SDE in a non-autonomous ODE where ω plays the role of a parameter. This is easier when the equation is understand in Stratonovich sense.

The study of pathwise solutions to stochastic differential equations via an appropriate reduction to an ODE was first done in [2, 6]. We refer to those works and to [3] for details.

Consider a solution of the Stratonovich SDE

$$dX = b(X) dt + \sigma(X) \circ dW.$$

This solution may explode in finite time or may be globally defined.

Let y be a solution of the ODE

$$\dot{y} = \sigma(y), \quad y(0) = x,$$
and let $\phi(t, x)$ the flux associated to (3.2) which is globally defined and has continuous derivatives, since σ is smooth and globally Lipschitz.

Consider $Z_\omega = Z_\omega(t)$ the solution of the random differential equation

$$
\left(3.3\right) \quad dZ_\omega(t) = \frac{b(\phi(W(t, \omega), Z_\omega(t)))}{\phi_x(W(t, \omega), Z_\omega(t))} dt, \\
Z_\omega(0) = x_0.
$$

Then $X(t, \omega) = \phi(W(t, \omega), Z_\omega(t))$ is a strong solution of (3.1) up to a possible explosion time S_ε. In fact, since (3.1) is interpreted in Stratonovich sense, we have

$$
dX = \phi_t(W, Z_\omega) dW + \phi_x(W, Z_\omega) dZ_\omega = \sigma(X) dW + b(X) dt, \\
X(0) = x_0.
$$

Note that the explosion time $S_\varepsilon(\omega)$ is the maximal existence time of (3.3) for each ω. We are going to use this fact to prove Theorem 1.

3.2. Proof of Theorem 1

First of all observe that assumptions (1) and (2) ensures on the one hand that solutions to (1.1),(1.4) are positive and on the other hand that solutions to (1.1) explodes in finite time T given by (1.2). Applying the Feller Test for explosions one can see that these hypotheses also ensure that (1.4) explodes in finite time with probability one. Nevertheless we are going to show this fact in the course of the proof.

For each ω such that $W(\cdot, \omega)$ is continuous, consider the ODE

$$
\left(3.4\right) \quad \dot{Z}_\omega(t) = \frac{b(\phi_{\varepsilon}(W(t, \omega), Z_\omega(t)))}{(\phi_{\varepsilon})_x(W(t, \omega), Z_\omega(t))}, \\
Z_\omega(0) = x_0.
$$

Here ϕ_{ε} is the flux associated to the ODE (1.5). The equation (3.4) can be written in terms of H as

$$
\dot{Z}_\omega(t) = H(W(t, \omega), Z_\omega(t), \varepsilon), \\
Z_\omega(0) = x_0.
$$

In fact, integrating (1.5) we get

$$
\int_x^{\phi_{\varepsilon}(t, x)} \frac{d\tau}{\sigma(\tau, \varepsilon)} = t.
$$

Differentiating with respect to x we obtain

$$
\frac{(\phi_{\varepsilon})_x(t, x)}{\sigma(\phi_{\varepsilon}(t, x), \varepsilon)} - \frac{1}{\sigma(x, \varepsilon)} = 0,
$$

hence

$$
(\phi_{\varepsilon})_x(t, x) = \frac{\sigma(\phi_{\varepsilon}(t, x), \varepsilon)}{\sigma(x, \varepsilon)}.$$
and so
\[H(s, x, \varepsilon) = \frac{b(\phi_\varepsilon(s, x))}{(\phi_\varepsilon)_x(s, x)}. \]

Given \(M > 0 \), we consider \(\bar{z} \) and \(\tilde{z} \) the solutions of
\[\dot{\bar{z}}(t) = H(M, \bar{z}(t), \varepsilon), \quad \bar{z}(0) = x_0 \]
and
\[\dot{\tilde{z}}(t) = H(-M, \tilde{z}(t), \varepsilon), \quad \tilde{z}(0) = x_0. \]
These solutions explode in finite time given by
\[T_\varepsilon = \int_{x_0}^\infty \frac{1}{H(M, x, \varepsilon)} \, dx, \quad T_\varepsilon = \int_{x_0}^\infty \frac{1}{H(-M, x, \varepsilon)} \, dx, \]
respectively. By assumption (2) we can apply the Dominated Convergence Theorem to get
\[\lim_{\varepsilon \to 0} T_\varepsilon = \lim_{\varepsilon \to 0} T_\varepsilon = T. \]

Let \(A_M \) be as in the examples. Since \(H(s, x, \varepsilon) \) is increasing in the \(s \) variable, for any \(\omega \in A_M \), \(\bar{z} \) and \(\tilde{z} \) are super and subsolutions of (3.5) for \(0 < t < T + 1 \). Using this fact and (3.6), their explosion times can be compared. Since \(X(t) = \phi_\varepsilon(W(t), Z(\omega)(t)) \) and \(\phi_\varepsilon \) is globally defined, the explosion times of \(X \) and \(Z(\omega) \) coincide a.s. Then we obtain
\[T_\varepsilon \leq S_\varepsilon(\omega) \leq T_\varepsilon. \]
Therefore
\[\lim_{\varepsilon \to 0} S_\varepsilon(\omega) = T. \]
As
\[\mathbb{P}\left(\bigcup_{M=1}^{\infty} A_M \right) = 1, \]
we have proved (1.6). It rest to show the Lipschitz continuity. To do this observe that the Taylor expansion of \(1/H(\pm M, x, \varepsilon) \) at \(\varepsilon = 0 \) gives
\[|S_\varepsilon(\omega) - T| \leq \left| \int_{x_0}^\infty \frac{1}{b(x)} \, dx - T \right| \]
\[= \left| \int_{x_0}^\infty \frac{1}{b(x)} \, dx + \int_{x_0}^\infty \varepsilon \frac{\partial}{\partial \varepsilon} \left(\frac{1}{H(\pm M, x, \eta_\varepsilon)} \right) \, dx - T \right| \]
\[= \left| \int_{x_0}^\infty \varepsilon \frac{\partial}{\partial \varepsilon} \left(\frac{1}{H(\pm M, x, \eta_\varepsilon)} \right) \, dx \right| \]
\[\leq \varepsilon \left| \int_{x_0}^\infty f_M(x) \, dx \right| \]
\[\leq C\varepsilon. \]
This completes the proof.

4. More Examples

In this section we present two additional examples where the result can be applied.

Example 3: unbounded diffusion. Let \(u(t) \) be the solution of (1.1) and consider the SDE

\[
 dX = b(X)dt + \varepsilon \sigma(X) \circ dW, \quad X(0) = x_0,
\]

with

\[
 b(x) \sim x^p, \quad \sigma(x) \sim x^q, \quad 0 < q < 1 < p,
\]

for large \(x \) and bounded below away from zero.

In this case we have

\[
 \phi_\varepsilon(t, x) \sim \left(\frac{x^{1-q}}{1-q} + \varepsilon t \right)^{\frac{1}{1-q}},
\]

for \(x \) large and \(t > 0 \). Hence, the behavior of \(H(s, x, \varepsilon) \) at infinity is given by

\[
 H(s, x, \varepsilon) \sim \phi_\varepsilon(t, x) \sim \left(\frac{x^{1-q}}{1-q} + \varepsilon t \right)^{\frac{p-q}{1-q}} x^q \sim C x^p.
\]

From these expressions it is easy to check hypotheses (1),(2) and (4). If we assume (3), then we can apply our theorem to get \(S_\varepsilon \rightarrow T \) almost surely. Note that (3) holds if we take, for example, \(b(x) = (1 + |x|)^p, \quad \sigma(x) = \varepsilon (1 + |x|)^q \). In this case (5) also holds and so \(S_\varepsilon \) is Lipschitz at \(\varepsilon = 0 \) almost surely.

Example 4: bounded diffusion. In this last example we consider

\[
 dX = b(X)dt + \varepsilon \sigma(X) \circ dW, \quad X(0) = x_0,
\]

with a bounded \(\sigma \), \(0 < c_1 \leq \sigma \leq C_2 \) and \(b \) such that \(\int_{-\infty}^{\infty} 1/b < +\infty \).

We have

\[
 \frac{1}{H(s, x, \varepsilon)} \leq g_s(x) := \frac{C}{b(x)}.
\]

If we assume that (3) holds (the rest of the hypotheses can be easily checked) we obtain again that \(S_\varepsilon \rightarrow T \) almost surely.

Acknowledgments We want to thank J. A. Langa for several interesting discussions. Supported by Universidad de Buenos Aires under grant X066, ANPCyT PICT No. 03-05009, Fundacion Antorchas and CONICET (Argentina).
REFERENCES

P. Groisman
Instituto de Cálculo, FCEyN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (1428), Buenos Aires, Argentina.
E-mail address: pgroisma@dm.uba.ar
Web page: http://mate.dm.uba.ar/~pgroisma

J. D. Rossi
Instituto de Matemáticas y Física Fundamental Consejo Superior de Investigaciones Científicas Serrano 123, Madrid, Spain,
on leave from Departamento de Matemática, FCEyN UBA (1428) Buenos Aires, Argentina.
E-mail address: jrossi@dm.uba.ar
Web page: http://mate.dm.uba.ar/~jrossi