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The density estimation problem

» X a random variable on R with density f.
» The density f is unknown.

» We have an i.i.d. sample Xi,..., X, drawn from f.

We look for an estimate of f based in the sample. That is, a
mapping f,: RY x (RY)" — R

The density f is assumed to belong to a certain class F.
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For every density function g
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The Maximum Likelihood Estimate (MLE) is defined as the
maximizer of the empirical mean (log-likelihood function)

n n 1/n
Ln(g) = %Z log g(X;) = log (H g(Xi)>
i=1 i=1

over the class F

This problem is not always well posed (depending on the class F)



The parametric case

The class F can be parameterized (by a finite number of parameters)

Example: X ~ N(u,o?)
F ={fluo2).n €R, 0% >0}

1 (x—1)?
f, 2(x) = —e 202
e (x) 2o

The maximizer f, is the density of a gaussian random variable with
parameters

n

=TI Xe =S )
i=1

i=1



The parametric case

Under some (fairly weak) conditions, in the parametric case, the
MLE are known to be

1. Strongly consistent, i.e. f, — f a.s.

2. Asymptotically minimum variance unbiased estimators

3. Asymptotically gaussian.



The MLE make use of the knowledge we have on f since depends
strongly on the class F where we look for the maximizer



The nonparametric case

The class F has infinite dimension

Example: F = {g € L}(R?),g >0, |g||;» = 1}, the class of all
densities.



The nonparametric case

The class F has infinite dimension

Example: F = {g € L}(R?),g > 0,]|g]/;1 = 1}, the class of all
densities.

The MLE method fails since £,(g) is unbounded

Approximations of the identity belong to F
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Alternatives
Kernel density estimates (Parzen and Rosenblatt, 1956)

1« x — X;
fn(X):nhd;K< p )

K>0, [K=1h>0
Very popular. Very flexible.

The kernel K and the bandwidth h must be chosen



Alternatives

The kernel density estimate

The kernel density estimate for different choices of K and h
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Alternatives

The kernel density estimate

The kernel density estimate is a “Universal” estimate. It works for
all densities f. Does not make use of further knowledge on f.



Alternatives
Maximum penalized likelihood estimates, Good and Gaskins (1971)

Idea: Penalize the lack of smoothness

Instead of looking for a maximizer of £,(g), we look for a
maximizer of



Alternatives

Tailor-designed Maximum Likelihood Estimates

If we have some knowledge on f then F is not the class of all
densities and, may be, we can apply MLE techniques
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MLE for Lipschitz densities

We consider F to be the class of densities g with compact support
S(g) that verify

lg(x) —gW)l < rlx=yl,  x,y€5(g)

That is, F is the class of Lipschitz densities with prescribed
Lipschitz constant k. We allow g to be discontinuous at the
boundary of its support.



MLE for Lipschitz densities

We consider F to be the class of densities g with compact support
S(g) that verify

lg(x) —gW)l < rlx=yl,  x,y€5(g)

That is, F is the class of Lipschitz densities with prescribed
Lipschitz constant k. We allow g to be discontinuous at the
boundary of its support.

The support of the density f can be unknown
(In this case we ask S(f) to be convex)



Theorem

(i) There exists a unique maximizer f, of Ln(g) in F. Moreover,
fn is supported in C,, the convex hull of {X1,..., Xy}, and its
value there is given by the maximum of n “cone functions”,
ie.

fa(x) = max (f(Xi) — k|lx — X,-H)+. (1)

1<i<n
(ii) fn is consistent in the following sense: for every compact set
K c S(f)°,
lim [[fy — fl[oo(k) — 0 a.s.
n—oo

(iii) Hence
lim |[fy — fl 1oy — O a.s.



The MLE in dimension d =1




The MLE in dimension d = 2

o F = = £ DA



Proof.

(i) Existence — Picture. Uniqueness — We are looking for a
maximum of a concave function in a convex set.
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Existence — Picture. Uniqueness — We are looking for a
maximum of a concave function in a convex set.

Is a consequence of Huber's Theorem (1967).

Idea:

Use Huber's Theorem we need a sequence f, of (almost)
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The constant A, is chosen to guarantee f fp=1.



Proof.

(i)
(ii)

Existence — Picture. Uniqueness — We are looking for a
maximum of a concave function in a convex set.

Is a consequence of Huber's Theorem (1967).
Idea:
Use Huber's Theorem we need a sequence f, of (almost)

maximizers of £, belonging to a (fixed) compact class.
We construct them us follows

A

fo = An max (£,(X;) — &llx = Xi|)T, for all x € S(f).
1<i<n

The constant A, is chosen to guarantee f fp=1.

And 7, € Lip(, S(f)), which is compact

1o = Fall ooy < [An = 1] Ifall e (i) — O, (2)

since A, — 1 and (||fy]|Lo(k))n is bounded as.



(i) Since
» C, C S(f)
> |S(F)| < o0
> ()] < mdiam(S(f)) + gy

we can find K C S(f) such that
/ [fa(x) — F(x)|dx <
Rd
/ 1£,(x) — F(x)]| dx +/ 1£,(x) — F(x)] dx — <
K S(MH\K



Computing the estimator
We have proved that the estimator lives in a certain
finite-dimensional space and that is determined by its value at the
sample points.
For y € R" we define

Jr
&)= max (yi—lx=XI).  xeCy

Our problem read us
Find

n
argmax, cp H Vi
i=1

P={y € Ry > 0.y x| <wlXi— X0 1), [ & =1}

P is convex and [] y; is concave

To have an efficient method to solve this problem we need to
decide (efficiently) if a point y € P

Easy in d = 1. Notsoeasy if d > 1



Computing the estimator

Dimension d =1

Let (XM, ..., X(M) the order statistics. The Lipschitz conditions
reads us

—a(XH—XD) <y —y; < (XOFD-XD) =1, 01,

And /gy(x) dx =

[ary

3

(Vi1 =) +2(yir1 +yi) (XU = Xx0) — (x (1) — x(0y2,
1

B

1



Computing the estimator

Dimension d=1 - Sample size: n=100.
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Computing the estimator

Dimension d=1 - Sample size: n=100.
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Computing the estimator
Dimension d > 1

» We can not order the sample points

> We have not an explicit formula for the integral [ g, (x) dx



Some problems...

» Too many peaks



Some problems...

» Too many peaks

» An optimization nonlinear problem has to be solved.



An alternative ML type estimator
Dimension one - PLMLE

V=V(Xi,..., X,) =

{g € Lip(, [XM, X)) : g|x0) x+vy is linear / g= 1} ,
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An alternative ML type estimator
Dimension one - PLMLE

V=V(Xi,...,Xy) =

{g e Lip(, [XM), x(M7) - 8lx xu+ny is linear /g = 1} ,
Definition )
The PLMLE is the maximizer f, of L, over V(Xi,...,Xp).

Existence and uniqueness of this estimator is guaranteed since V is
a finite dimensional compact and convex subset of F.

It has lower likelihood than f, but is asymptotically the same



Computation of PLMLE

maximize Hy,- ; subject to
i=1
*BSA)/S% B.y:]'

-1 1 0 0 X2 — X1
0 -1 1
A= R a==k Xi41 — X;
-1 1 0 :
0 0 -1 1 o X1
1
B:E(XQ—xl,X3—x1,...,x,-+1—x,-,l,...,x,,—xn_g,x,,—x,,_l)

The equation —a < Ay < a guarantees the Lipschitz condition and
By = 1 represents the restriction [ f, = 1.



PLMLE demonstration

PLMLE vs. Kernels. Sample size: n=100
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PLMLE vs. Kernels. Sample size: n=100
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Some facts on Delaunay Triangulations

» For sample points of absolutely continuous probabilities is well
defined with probability one.

» Maximizes the mimimum angle of the triangles among all
possible triangulations of the points.

» Useful for the numerical treatment of Partial Differential
Equations by the Finite Element Method.

» Useful to compute the Euclidean Minimum Spanning Tree of
a set of points (Is a subgraph of the Delaunay triangulation).

» Very used in Computational Geometry.



T=A{m,....,7n} The Delaunay Tesselation.



T=A{m,....,7n} The Delaunay Tesselation.

N
C,= U Ti
i=1



T=A{m,....,7n} The Delaunay Tesselation.

N
C,= U Ti
i=1

For any i # j, 7; N 7} is either a point, a (d — 1)—dimensional face,
or the empty set.
We consider now the class of piecewise linear functions on T



T=A{m,....,7n} The Delaunay Tesselation.

N
Cn= U T
i=1

For any i # j, 7; N 7} is either a point, a (d — 1)—dimensional face,
or the empty set.
We consider now the class of piecewise linear functions on T

V=V(X1,. .., X)) =

{g € Lip(k,Cp) : gl is linear, /g = 1} )

Definition ;
The PLMLE f, is the argument that maximizes L, over
V(Xi,...,Xn).



Theorem
For every compact set K C S(f) we have

1o — fll Lo (k) — O

a.s.



Computing the estimator

V is a compact subset of the (finite dimensional) vector space
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Computing the estimator

V is a compact subset of the (finite dimensional) vector space

V=1{g:C,— R:gl|, is linear}
We need a (good) basis for V. We borrow from FEM.




Computing the estimator



Computing the estimator

.....



Computing the estimator

/]Rd dx—/ (Zg )dX—B%
B:(/wl,...,/%) y = (80X .- g(Xn))

We compute B just once!



Computing the estimator

/ =/R< X;)pi(x )>dx:3y,
-/

We also have
Vgln =Y yiVeiln, = A,
i

Ac= (Tl -

(Vealn)").



Computing the estimator

The optimization problem reads us
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maximize Hy; ; subject to
i=1

Ayl <k, 1<k<N, By = 1.



Computing the estimator

The optimization problem reads us

n
maximize Hy; ; subject to
i=1

Ayl <k, 1<k<N, By = 1.

> If |- || = - ||co, all the restrictions are linear.



Computing the estimator

The optimization problem reads us
n

maximize Hyi ; subject to
i=1

Ayl <k, 1<k<N, By = 1.

> If||-|| = - |loo, all the restrictions are linear.

» The size of Ak grows linearly with d



The PLMLE for a “cone” density

Sample size: n=250
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The PLMLE for a Uniform density

Sample size: n=200




The PLMLE for a bivariate sum of uniform variables
Sample size: n=400
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