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COMPETITION INTERFACES AND SECOND CLASS PARTICLES1

BY PABLO A. FERRARI AND LEANDRO P. R. PIMENTEL

Universidade de São Paulo

The one-dimensional nearest-neighbor totally asymmetric simple
exclusion process can be constructed in the same space as a last-passage per-
colation model in Z2. We show that the trajectory of a second class particle in
the exclusion process can be linearly mapped into the competition interface
between two growing clusters in the last-passage percolation model. Using
technology built up for geodesics in percolation, we show that the competi-
tion interface converges almost surely to an asymptotic random direction. As
a consequence we get a new proof for the strong law of large numbers for the
second class particle in the rarefaction fan and describe the distribution of the
asymptotic angle of the competition interface.

1. Introduction. The relation between the totally asymmetric nearest-
neighbor simple exclusion process in dimension one and two-dimensional last-
passage percolation models is well known since the seminal work of Rost [19].
The macroscopic behavior of the density profile of the exclusion process is gov-
erned by the Burgers equation [1, 17]. This corresponds to the “shape theorem” in
last-passage percolation [19, 20]. An important property of the exclusion process
is that the so-called second class particles (that follow roughly the behavior of a
perturbation of the system) are asymptotically governed by the characteristics of
the Burgers equation. When there is only one characteristic, the second class par-
ticle follows it [5, 18, 21]; when there are infinitely many, the particle chooses
one of them at random to follow [6]. These results hold when the initial distribu-
tion is a product measure with densities λ ∈ (0,1], ρ ∈ [0,1), to the left and right
of the origin, respectively. The existence of infinitely many characteristics occurs
at points where the solution of the Burgers equation is a rarefaction front. The
rescaled position of the second class particle converges almost surely to a random
variable uniformly distributed in the interval [1 − 2λ,1 − 2ρ] as time goes to in-
finity [14]. A similar phenomenon has been observed in first-passage percolation
starting from two growing clusters competing for space: the rescaled competition
interface converges almost surely to a random direction [16] with a so far unknown
distribution. Motivated by this we investigate the relation between the second class
particle and the competition interface in last-passage percolation. We conclude that
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one object can be mapped into the other (as processes) realization by realization.
Indeed, the difference of the coordinates of the competition interface at time t is
exactly the position of the second class particle at that time (see Proposition 3 and
Lemma 6). We show a law of large numbers for the competition interface in the
positive quadrant (Z+)2; this corresponds to λ = 1 and ρ = 0. Our mapping then
permits to describe the distribution of the angle of the competition interface in last-
passage percolation (Theorem 1) and to give a new proof of the strong law of large
numbers for the second class particle (Theorem 2, for the moment restricted to the
case λ = 1 and ρ = 0; we comment in the final remarks what should be done in
the other cases). A key tool to prove the asymptotic behavior of the competition
interface is the study of the geodesics, random paths maximizing the passage time.
We show that each semi-infinite geodesic has an asymptotic direction and that two
semi-infinite geodesics with the same direction must coalesce. The approach fol-
lows Newman [15] who proved analogous results for first-passage percolation (see
also [9, 10]).

In Section 2 we introduce the models, state the results and prove them. In
Section 3 we show properties of the geodesics needed for the proofs.

2. Last-passage percolation and simple exclusion. Let W = (w(z), z ∈ Z2)

be a family of independent random variables with exponential distribution of
mean 1. Let P and E be the probability and expectation induced by these variables
in the product space � = (R+)Z2

.
Given z = (i, j), z′ = (i ′, j ′) in Z2 with i ≤ i′ and j ≤ j ′, we say that

(zk, k = 1, . . . , n) is an up/right path from z to z′ if z1 = z, zn = z′ and zk+1 − zk ∈
{(0,1), (1,0)} for k = 1, . . . , n− 1. Let �(z, z′) be the set of up/right paths from z

to z′. The maximal length between z and z′ is defined by

G(z, z′) := max
π∈�(z,z′)

{ ∑
z′′∈π

w(z′′)
}
.(1)

This model is called last-passage percolation. Since we are interested in the paths
starting at (1,1), we use the notation G(z) = G((1,1), z). This function satisfies
the recurrence relation

G(z) = w(z) + max
{
G

(
z − (0,1)

)
,G

(
z − (1,0)

)}
(2)

with G(i, j) = 0 if either i = 0 or j = 0. We say that a point z is infected at time t

if z ∈ Gt , where

Gt := {z ∈ (Z+)2 :G(z) ≤ t}
is called the infected region. Let Q(i, j) := (i −1, i]× (j −1, j ] be the unit square
having (i, j) as north-east vertex. The set Gt := ⋃

z∈Gt
Q(z) describes the subset

of (R+)2 attained by the infection at time t . The random process Gt is called a
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spatial growth model and describes a growing Young tableau. The growth interface
is defined by

γt := {(i, j) ∈ (Z+)2 :G(i, j) ≤ t and G(i + 1, j + 1) > t}.(3)

The polygonal curve interpolating the points of γt that are at distance 1 separates
the infected region Gt and its complement.

Rost [19] proved a “shape theorem” for Gt : with P probability 1, for all ε > 0
there exists a t0 such that for all t > t0,

t (1 − ε)M ⊂ Gt ⊂ t (1 + ε)M(4)

where M := {(u, v) ∈ (R+)2 :µ(u, v) ≤ 1} and

µ(u, v) := (√
u + √

v
)2

.(5)

The interface γt converges to {(u, v) :µ(u, v) = 1} in the same sense: with P

probability 1, for all ε > 0 there exists a t0 such that for all t > t0,

γt ⊂ [t (1 + ε)M] \ [t (1 − ε)M].(6)

Competing spatial growth. The sets of points infected through (2,1) and
(1,2), respectively, are defined by

G21
t := {

z ∈ (Z+)2 :G(z) ≤ t and G(z) = w(1,1) + G
(
(2,1), z

)}
,

G12
t := {

z ∈ (Z+)2 :G(z) ≤ t and G(z) = w(1,1) + G
(
(1,2), z

)}
.

The process (G21
t ,G12

t ) describes a competing spatial growth model between two
different infections (see Figure 1). For related models in first-passage percolation

FIG. 1. Growth and competition interfaces.
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see [3, 8, 16]. One can see that the regions G21
t ,G12

t are connected, Gt =
{(1,1)} ∪ G21

t ∪ G12
t and that the competition interface ϕ = (ϕ0, ϕ1, . . .) between

G21∞ and G12∞ can be defined inductively as follows: ϕ0 = (1,1) and for n ≥ 0,

ϕn+1 =
{

ϕn + (1,0), if ϕn + (1,1) ∈ G21∞,

ϕn + (0,1), if ϕn + (1,1) ∈ G12∞.
(7)

So that, if we paint blue the squares Q(z) with z ∈ G21∞ and red the squares Q(z)

with z ∈ G12∞, the line obtained by linear interpolation of ϕ0, ϕ1, . . . separates the
blue and red regions. The square Q(1,1) gets no color. Definition (7) is equivalent
to

ϕn+1 = arg min
{
G

(
ϕn + (1,0)

)
,G

(
ϕn + (0,1)

)}
, n ≥ 0.(8)

Note that given G(z) for all z, the interface ϕ chooses locally the shorter step to
go up or right. We prove that ϕ has an asymptotic (random) direction and compute
the law of the direction:

THEOREM 1.

lim
n→∞

ϕn

|ϕn| = eiθ , P-a.s.(9)

where θ = θ(W) is a random angle in [0,90◦] with law

P(θ ≤ α) =
√

sinα√
sinα + √

cosα
.(10)

Second class particles in simple exclusion. The one-dimensional nearest-
neighbor totally asymmetric simple exclusion process is a Markov process (ηt ,

t ≥ 0) in the state space {0,1}Z. ηt (x) indicates if there is a particle at site x at
time t ; only one particle is allowed at each site. At rate 1, if there is a particle
at site x ∈ Z, it attempts to jump to x + 1; if there is no particle in x + 1
the jump occurs, otherwise nothing happens. To construct a realization of this
process à la Harris, one considers independent one-dimensional Poisson processes
N = (Nx(·), x ∈ Z) of intensity 1; let Q be the law of N . The process (ηt , t ≥ 0)

can be constructed as a deterministic function of the initial configuration η and
the Poisson processes N as follows: if s is a Poisson epoch of Nx and there is a
particle at x and no particle at x + 1 in the configuration ηs−, then at time s the
new configuration is obtained by making the particle jump from x to x + 1. This
construction is well defined; see [4], for instance. Let � be the function that takes
η and N to (ηt , t ≥ 0). Let η0 and η1 be two arbitrary configurations. The basic
coupling between two exclusion processes with initial configurations η0 and η1

respectively is the joint realization (�(η0,N ),�(η1,N )) = ((η0
t , η

1
t ), t ≥ 0)

obtained by using the same Poisson epochs for the two different initial conditions.
Liggett [11, 12] are the default references for the exclusion process.
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FIG. 2. Second class particle. The first line is η0 and the second one is η1.

Let η0 and η1 be two configurations defined by

η0(x) = 1{x ≤ −1}, η1(x) = 1{x ≤ 0}.(11)

These configurations are full to the left of the origin and empty to the right of
it and differ only at the origin (see Figure 2). Call X(0) = 0 the site where both
configurations differ at time zero. With the basic coupling, the configurations at
time t differ only at the site X(t) defined by

X(t) := ∑
x

x1{η0
t (x) �= η1

t (x)}.

(X(t), t ≥ 0) is the trajectory of a “second class particle.” The process
((η0

t ,X(t)), t ≥ 0) is Markovian but the process (X(t), t ≥ 0) is not. The motion of
X(t) depends on the configuration of η1

t in its neighboring sites. The second class
particle jumps one unit to the right at rate 1 if there is no η1 particle in its right
nearest neighbor and it jumps one unit to the left at rate 1 if there is an η1 particle
in its left nearest-neighbor site, interchanging positions with it. Ferrari and Kipnis
[6] proved that X(t)/t converges in distribution to a uniform random variable as
t → ∞ for initial configurations distributed according to product measures with
densities λ > ρ to the left and right of the origin, respectively. In these cases,
Mountford and Guiol [14] proved almost sure convergence. Our approach gives an
alternative proof to Mountford and Guiol in the case λ = 1 and ρ = 0:

THEOREM 2. Let (X(t), t ≥ 0) be the trajectory of a second class particle
put initially at the origin in the one-dimensional totally asymmetric nearest-
neighbor simple exclusion process starting with the configuration η1 defined by
η1(x) = 1{x ≤ 0}. Then

lim
t→∞

X(t)

t
= U, Q-a.s.(12)

where U = U(N ) is a random variable with uniform distribution in [−1,1].

Pair representation of the second class particle. It is convenient to represent
the second class particle with a pair hole–particle. For that we consider the initial
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FIG. 3. Pair representation of the second class particle.

configuration η01 defined by

η01(x) =




η1(x), if x ≤ −1,

η1(x − 1), if x > 1,

0, if x = 0,

1, if x = 1.

(13)

This configuration has a particle at site 1 called *particle and a hole at site 0
called *hole. The pair *hole–*particle is called *pair (see the configuration before
jump in Figure 3). The process η01

t is constructed using the Poisson marks as
before; ignoring the *pair, the process is just the exclusion process starting with
the configuration η01. On top of it we define the evolution of the *pair as follows:
when a particle (from the left) jumps over the *hole, the *pair moves one unit
to the left (giving rise to the configuration after the jump in Figure 3); when the
*particle jumps to the right (over a hole), the *pair moves one unit to the right.
This is the same behavior as that of the second class particle; the difference is that
the second class particle occupies only one site while the *pair occupies two sites.
Call P ∗(t) and H ∗(t) the position of the *particle and *hole respectively at time t ;
clearly P ∗(t) = H ∗(t) + 1 for all times. If we collapse again the *pair to one site
by defining η̄t (x) = η01

t (x) for x < H ∗(t), η̄t (x) = η01
t (x + 1) for x ≥ P ∗(t), then

the process
(
η̄t ,H

∗(t), t ≥ 0
)

has the same law as
(
η1

t ,X(t), t ≥ 0
)
.(14)

In Lemma 6 we give an explicit construction which maps these processes for
almost all realizations.

Growth model and simple exclusion. Rost [19] showed that the simple
exclusion process can be constructed in the probability space induced by W ,
where the oriented percolation model is defined. This can be done for any initial
configuration; we do it for the process with initial configuration η01 as follows. Let

P1(0) = 1, H1(0) = 0;
(15)

Pi(0) = −i + 1 and Hi(0) = i, i ≥ 2,
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be the positions of the particles of η01
0 labeled from right to left and the positions

of the holes, labeled from left to right. We construct Pi(t) and Hi(t), the position
of the ith particle, respectively ith hole, at time t as a function of the random
variables G01(z) := G(z) − w(1,1). The rule is:

at time G01(i, j) the j th particle and the ith hole interchange positions.(16)

The initial ordered labels of the holes and particles make that after the (j − 1)st
particle has interchanged positions with the ith hole and the j th particle has
interchanged positions with the (i − 1)st hole, the j th particle must wait an
exponential time of parameter 1 to interchange positions with the ith hole. This
is the particle–hole interpretation of the recurrence relation (2).

Rule (16) is well defined in this case because only a finite number of exponential
random variables is involved in the definition of each next move. Indeed, the
variables G01(z) are well ordered, inducing a (random) order on the sites of (Z+)2,
say z1, z2, . . . with G01(zk) < G01(zk+1). In particular z1 ∈ {(1,2), (2,1)}, for
example. Starting with the minimum between G(1,2) and G(2,1), say G(1,2) <

G(2,1), then z1 = (1,2) and at time G01(z2) the second particle and the first
hole interchange positions (see Figure 4 ignoring the parentheses and the stars).
Inductively, if zn = (i, j), then at time G01(zn), the j th particle and the ith hole
interchange positions. Call Pi(G

01(zn)) and Hi(G
01(zn)) the positions at time

G01(zn) of the ith particle and hole, respectively. For i ≥ 1 define(
Pi(t),Hi(t)

) = (
Pi(G

01(zn)),Hi(G
01(zn))

)
(17)

if t ∈ [
G01(zn),G

01(zn+1)
)
.

The resulting process ((Pi(t),Hi(t)), i ≥ 1, t ≥ 0) is the exclusion process in the
sense that, if one disregards the labels, the process (ζ 01

t , t ≥ 0) defined by

ζ 01
t (Pi(t)) = 1, ζ 01

t (Hi(t)) = 0, i ≥ 1,(18)

has the same law as the process (η01
t , t ≥ 0) = �(η01,N ), defined with the

Poisson processes. We call ϒ(η01,W) = (ζ 01
t , t ≥ 0) the deterministic function

that constructs ζ 01
t using W .

The second class particle in the competition model. In the previous paragraph
we have constructed a simple exclusion process starting with a particle at site 1 and
a hole at site 0. In this construction we keep track of the position of each particle
and hole. We now want to track the *pair, the *hole and *particle initially at sites
0 and 1, respectively, whose evolution is described after Theorem 2. The labels
of the *particle and *hole change with time. At time 0 the *particle has label 1
and so does the *hole: P ∗(0) = P1(0) and H ∗(0) = H1(0) and hence the labels
of the *pair are represented by the point ϕ0 = (1,1), the initial value of the
competition interface. Suppose in the next step, say G(1,2) < G(2,1), the second
particle jumps over the *hole before the *particle jumps over the second hole (see
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FIG. 4. Labels of particles, holes and *pair. The particle configuration and the jump are the same
as in Figure 3.

Figure 4). In this case, the labels of the *pair at time G(1,2) are (1,2), which is
exactly the argument that minimizes {G(2,1),G(1,2)}, so that, after the first jump
of the *pair, its labels are given by ϕ1 [recall (8)]. By recurrence, ϕn gives exactly
the labels of the *pair after its nth jump. More precisely, let τ0 := 0 and define

τn := G01(ϕn)(19)

where (ϕn, n ≥ 0) is the competition interface defined in (7). The labels of the
*pair are given by the coordinates of the competition interface:(

H ∗(τn),P
∗(τn)

) = (
Hin(τn),Pjn(τn)

)
(20)

where in and jn are the coordinates of ϕn: (in, jn) := ϕn. Define the process
(ψt , t ≥ 0) = (I (t), J (t), t ≥ 0) ∈ (Z+)2 by

ψt := ϕn if t ∈ [τn, τn+1).(21)

By definition (3) of γt , it is clear that ψt belongs to both the growth interface and
the competition interface (see Figure 1):

ψt ∈ ϕ ∩ γt+w(1,1) and
(
H ∗(t),P ∗(t)

) = (
HI(t)(t),PJ(t)(t)

)
.(22)

On the other hand, when the *pair jumps to the right the *hole increments its label
by one, and when the *pair jumps to the left, the *particle increments its label by
one. Hence, (

H ∗(t),P ∗(t)
) = (

I (t) − J (t), I (t) − J (t) + 1
)
.(23)

Combining (23) with (14), we get the following result.

PROPOSITION 3. The processes ((η̄t , I (t) − J (t)), t ≥ 0) and ((η1
t ,X(t)),

t ≥ 0) are identically distributed.

We construct simultaneously both processes in such a way that they are identical
almost surely. See Lemma 6.

Using the technology of geodesics and the ergodicity of the last-passage
percolation model we prove in Section 3 the following proposition (this is
Theorem 1 without identifying the limit).
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PROPOSITION 4.

lim
t→∞

ϕn

|ϕn| = eiθ , P-a.s.(24)

where θ = θ(W) is a random angle in [0,90◦].

Propositions 3 and 4 and (22) are the keys to characterize the long time behavior
of (ψt , t ≥ 0) as a line with a random angle and identify the distribution of the
limiting angle:

PROPOSITION 5. The following limits hold P-a.s.:

lim
t→∞

ψt

|ψt | = eiθ ,(25)

lim
t→∞

ψt

t
= eiθ /µ(eiθ ),(26)

lim
t→∞

I (t) − J (t)

t
= f (θ),(27)

where θ = θ(W) is the random angle in [0,90◦] given by Proposition 4,

f (θ) :=
√

cos θ − √
sin θ√

cos θ + √
sin θ

(28)

and f (θ) is distributed uniformly in [−1,1]:
P

(
f (θ) ≤ u

) = 1
2(u + 1).(29)

PROOF. Since ψt ∈ γt+w(1,1) and by (6) inf{|z| : z ∈ γt } is of the order of t

[indeed, this infimum divided by t converges to 1/
√

8, the distance between
the origin and the curve {µ(u, v) = 1}], |ψt | → ∞ as t → ∞ and (25) follows
from (24).

The limit (26) follows from (25), (22), the shape theorem (6) and (5). Indeed,
the shape theorem (6) and the limit (25) imply that ψt/t converges P-almost
surely to g(θ)eiθ , where g(θ) is the distance from the origin to the intersection
of the limiting curve M = {(u, v) ∈ (R+)2 :µ(u, v) = 1} with the line {(u, v) ∈
(R+)2 : tan θ = u/v} (the line with inclination θ ). Hence by the definition (5) of µ,√

g(θ) cos θ + √
g(θ) sin θ = 1, from where (26) is derived.

The limit in (27) is an immediate consequence of (25) and (26). It is a uniform
random variable as consequence of Proposition 3—that identifies the difference
between the coordinates of the interface with the second class particle—and Ferrari
and Kipnis [6], who proved that the asymptotic law of the second class particle is
uniform in [−1,1]. �

We finish this section by proving Theorems 1 and 2.
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PROOF OF THEOREM 1. The P-a.s. convergence follows from Proposition 4.
Since by (29) f (θ) is uniformly distributed in [−1,1] and f (α) is decreasing in α,

P(θ ≤ α) = P
(
f (θ) ≥ f (α)

) = 1

2

(
1 − f (α)

) =
√

sinα√
sinα + √

cosα
.(30) �

The proof of Theorem 2 requires the following lemma.

LEMMA 6. There exists a map R :N �→ W such that if the trajectory of
the second class particle (X(t), t ≥ 0) as a function of N is well defined, then
it is identical to the trajectory of (I (t) − J (t), t ≥ 0) as a function of R(N ).
Furthermore, if N has law Q, then R(N ) has law P.

PROOF. Let N be a family of Poisson processes. Let ((η1
t ,X(t)) : t ≥ 0) be

the exclusion process starting with the configuration full of particles to the left of
the origin, empty to the right of the origin and with one second class particle in the
origin constructed using N .

Let N be a Poisson process independent of N . Let τn(N ) be the times of jumps
of the second class particle X(t) with τ0 = 0. Then define N ′ = (N ′

x(t) : t ≥ 0) as
a function of N and N as follows:

N ′
x[τn, τn+1) :=




Nx(τn, τn+1], if x < X(τn),

N(τn, τn+1], if x = X(τn),

Nx−1(τn, τn+1], if x > X(τn).

(31)

Here Nx(s, t] is the Poisson process Nx in the interval (s, t] (as a counting
measure), and analogously for N . By the strong Markov property, N ′ has the same
law as N .

Let η01 be the configuration defined in (13). Label its particles as in (15). Let the
*pair be the *hole and the *particle initially at sites 0 and 1, respectively. Realize
the process η01

t as a function of N ′. For this evolution track the position of the
labeled particles Pi(t) and holes Hi(t) and the *pair (H ∗(t),P ∗(t)) as a function
of the particle jumps as described after display (13). In this way we construct the
processes (η01

t ;Pi(t),Hi(t), i ≥ 1;H ∗(t),P ∗(t); t ≥ 0) as a function of N ′. Call
(I (t), J (t)) the labels of the *hole–*particle at time t , so that (H ∗(t),P ∗(t)) =
(HI (t)(t),PJ(t)(t)); of course these are also function of N ′.

Then, for all t :

X(t)(N ) = HI(t)(N
′) = I (t)(N ′) − J (t)(N ′),(32)

that is, the second class particle in the system governed by N is in the same place
as the *hole in the system governed by N ′. Collapsing the *hole–*particle in
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the system governed by N ′, one obtains the particle configuration of the system
governed by N :

η01
t (N ′)(x) :=




η1
t (N )(x), if x < X(t)(N ),

0, if x = X(t)(N ),

1, if x = X(t)(N ) + 1,

η1
t (N )(x − 1), if x > X(t)(N ) + 1.

(33)

Define G′(1,1) = 0 and for i, j ≥ 1 let G′(i, j) = G′(N ′)(i, j) be the time the
j th η01 particle jumps over the ith hole. Define w′(N ′)(1,1) as an exponential
random variable independent of N ′ and w′ = w′(N ′) by w′(i, j) = G′(i, j) −
max{G′(i − 1, j),G′(i, j − 1)}. Since w′(i, j) is the time the ith particle waits
to jump over the j th hole when they are neighbors, w′(i, j) are independent and
identically distributed exponential of rate 1 (again strong Markov property). Hence
R(N ) := W ′ = (w′(N ′)(i, j) : {(i, j) ∈ N2}) has the same law as W .

It is immediate to check that

(I (t), J (t))(W ′) = (I (t), J (t))(N ′) for all t ≥ 0.(34)

That is, the *pair evolution described after (22) using the exponential times W ′ is
exactly the same as the *pair evolution constructed as a function of the Poisson
processes N ′. Notice that the auxiliary Poisson process N used in the definition
(31) of N ′ as a function of N plays no role in the *pair evolution. This is also true
for w′(1,1). �

PROOF OF THEOREM 2. The convergence P-a.s. is established in Proposi-
tion 5. The convergence Q-a.s. is a consequence of Lemma 6. �

3. Geodesics. In this section we prove Proposition 4. We introduce the notion
of geodesics in last-passage percolation and explore its connection with the
competition interface. Let π = (zk; k = 1, . . . , n) be an up/right path from z to z′.
We say that π is a geodesic from z to z′ if

G(z, z′) = ∑
z′′∈π

w(z′′).(35)

Of course this is not a “geodesic” in the sense that it is the shortest way between
two points. Indeed our geodesic is the longest oriented path between two points.
For all z, z′ ∈ Z there exists P-a.s. a unique geodesic from z to z′ which is denoted
by π(z, z′). If u = (u1, u2) and v = (v1, v2) belongs to R2 and uk ≤ vk for k = 1,2,
then we define G(u,v) = G(zu, zv) where u ∈ Q(zu) and v ∈ Q(zv), where we
recall Q(z) is the unit square with north-east point z. Analogously, we define
π(u, v) = π(zu, zv). Let πz = (zk; k = 1, . . .) be an up/right semi-infinite path
starting at z = z1. For each α ∈ [0,90◦] we say that πz has direction α if

lim
k→∞

zk

|zk| = eiα.
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We say that πz is a uni-geodesic if for all i < j the geodesic from zi to zj is
exactly (zi, . . . , zj ). For each α ∈ [0,90◦] we say that πz is an α-geodesic if it is a
uni-geodesic and has direction α. Proposition 4 is a consequence of the following
propositions concerning geodesics. The proofs follow Newman [15], Licea and
Newman [10] and Howard and Newman [9] who proved analogous results for
two-dimensions first-passage percolation models. Martin [13] has independently
proved these results for the model under consideration.

Let z ∈ Z2 and N2
z = z + N2 (N = {0,1,2, . . .}). Define R(z) = ⋃

z′∈N2
z
π(z, z′).

Since P-a.s. finite geodesics do exist and are unique, R(z) can be seen as a tree
spanning all N2

z . The set of vertices of the tree is N2
z and the set of edges is

{(z′′, z′) : z′′ − z′ = 1 and z′′ ∈ π(z, z′)}.

PROPOSITION 7. For z ∈ Z2 let �1(z) be the event “every uni-geodesic
πz ⊆ R(z) is an α-geodesic for some α = α(πz) ∈ [0,90◦] and there exists at least
one α-geodesic for each α ∈ [0,90◦].” Then P(�1(z)) = 1.

PROPOSITION 8. For z ∈ Z2 and α ∈ [0,90◦] let �2(z,α) be the event “there
exists at most one α-geodesic in R(z)” and let � be the Lebesgue measure in
[0,90◦]. Then there exists a set D ⊆ [0,90◦] of full Lebesgue measure such that
for all α ∈ D, P(�2(z,α)) = 1.

We recall that D does not depend on the realization of the exponential
times W . Indeed, a stronger version of Proposition 8 holds: for every α ∈
(0,90◦) there is only one α-geodesic in R(z) with probability 1 [13]. On the
other hand, with probability 1 there are directions with more than one geodesic:
P(

⋂
α∈(0,90◦) �2(z,α)) = 0.

For α ∈ D let πz(α) be the unique α-geodesic starting at z. This is P-a.s. well
defined by Propositions 7 and 8.

PROPOSITION 9. For α ∈ D let �3(α) be the event “for all z, z′ ∈ Z2, there
exists a random point cα = c(α, z, z′) ∈ Z2 such that πz(α) = π(z, cα) ∪ πcα(α)

and πz′(α) = π(z′, cα) ∪ πcα (α).” Then P(�3(α)) = 1.

As a consequence of the above propositions we get that for all α ∈ D, P-a.s. for
all z, z′ ∈ Z2, z �= z′, there exists a random cα = c(α, z, z′) and r0 > 0 such that for
all r > r0

G(z, reiα) − G(z′, reiα) = G(z, cα) − G(z′, cα) �= 0.(36)

Indeed, from Propositions 7 and 8, if we fix α ∈ D, then P-a.s. for all z ∈ Z2

limr→∞ π(z, reiα) = πz(α). This means that for all z̄ ∈ πz(α) there exists r0 > 0
such that for all r > r0, π(z, z̄) ⊆ π(z, reiα). This together with Proposition 9
implies that for all z, z′ ∈ Z2 there exists cα ∈ Z2 and r0 > 0 such that for all r > r0,
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π(z, reiα) = π(z, reiα) ∪ π(cα, reiα) and π(z′, reiα) = π(z′, reiα) ∪ π(cα, reiα),
which yields (36).

PROOF OF PROPOSITION 4. Let G21∞ := ⋃
z∈G21∞ Q(z), G12∞ := ⋃

z∈G12∞ Q(z).

For each α ∈ [0,90◦] and r > 0 let lαr = {seiα; s > r}. Define the random
decomposition of [0,90◦] by

I21 = {
α ∈ [0,90◦]; ∃ r0 so that lαr0

⊆ G21∞
}
,

I12 = {
α ∈ [0,90◦]; ∃ r0 so that lαr0

⊆ G12∞
}
,

and I = (I21 ∪ I12)
c. Notice that 0 ∈ I21, 90◦ ∈ I12, and since G21∞,G12∞ are

connected regions of {(x, y); x > 0, y > 0}, then I21 and I12 are intervals in
[0,90◦]. This implies that I is also an interval in [0,90◦]. Thus if we denote
ϕn = |ϕn|eiθn , then (

lim inf
n

θn, lim sup
n

θn

)
⊆ I.(37)

Let D0 be an enumerable subset of D that is dense in (0,90◦) (recall that D has
full Lebesgue measure). By (36), P-a.s., for all α ∈ D0,

lim
r→∞

(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

(38)
= G

(
(2,1), cα

) − G
(
(1,2), cα

) �= 0.

Notice also that if α ∈ I , then

lim inf
r→∞

(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

(39)
≤ 0 ≤ lim sup

r→∞
(
G

(
(2,1), reiα) − G

(
(1,2), reiα))

,

because the line lα0 alternates infinitely often its color and this implies (39). Thus
(38) and (39) imply that

P(I ∩ D0 = ∅) = 1.(40)

Now, (40) implies that P-a.s. I has empty topological interior and this together
with (37) implies that (θn)n∈N converges. �

The following lemma, proven in the end of this section, is the main ingredient to
prove Proposition 7. It gives an upper bound for the fluctuations of the geodesics.
Let d(z,A) be the Euclidean distance between z ∈ R2 and the set A ⊂ R2.

LEMMA 10. There exists ε0 > 0 such that for all ε ∈ (0, ε0), there exist
constants C1,C2,C3 > 0 and δ > 0 such that for all z ∈ N2 with |z| > C1,

P

(
sup

z′∈π(0,z)

d(z′, [0, z]) ≥ |z|3/4+ε

)
≤ C2 exp(−C3|z|δ).



1248 P. A. FERRARI AND L. P. R. PIMENTEL

PROOF OF PROPOSITION 7. By translation invariance we can assume z =
(0,0). For z̄, z′ ∈ N2 \ {(0,0)}, denote by ang(z̄, z′) the angle in [0,90◦] between
z̄ and z′ and let C(z̄, ε) = {z′; ang(z̄, z′) ≤ ε}. Let R be an infinite connected tree
with vertices in N2 and nearest-neighbor oriented edges. Assume also that (0,0)

and z̄ ∈ N2 are vertices of R. We denote by Rout[z̄] the set of vertices z′ of R such
that the path in R between (0,0) and z′ touches z̄. Let h : R+ → R+. We say that R

is h-straight if for all but finitely many vertices z̄ of R, Rout[z̄] ⊆ C(z̄, h(|z̄|)). By
Proposition 2.8 of [9], if R is h-straight with h satisfying limL→∞ h(L) = 0, then
every semi-infinite path in R starting from (0,0) has a direction α ∈ [0,90◦] and
for every α ∈ [0,90◦] there exists at least one semi-infinite path in R starting from
(0,0) and with direction α. Let δ ∈ (0,1) and set hδ(L) = L−δ . By Lemma 2.7
of [9], to prove that for all δ ∈ (0,1/4), R((0,0)) is hδ-straight it is sufficient
to prove that for all sufficiently small ε > 0, the number of z ∈ N2 such that
supz′∈π(0,z) d(z′, [0, z]) ≥ |z|3/4+ε is P-a.s. finite. Therefore, by Borel–Cantelli,
Proposition 7 is a consequence of Lemma 10. �

PROOF OF PROPOSITION 8. Again we can assume that z = (0,0). Let e =
(z, z + (1,0)) be an edge of the tree R((0,0)) such that z + (1,0) has infinitely
many descendants. We inductively define a uni-geodesic πe in R((0,0)) as follows.
Put z0 = z and z1 = z + (1,0). For each n ≥ 1, if zn has exactly one child,
say z′

n, with infinitely many descendants, then put zn+1 = z′
n; otherwise put

zn+1 = zn + (0,1). If there are two distinct α-geodesics starting from (0,0), say
π1 and π2, then they have to bifurcate at some z ∈ R((0,0)) going, respectively, to
z + (1,0) and z + (0,1) in their next steps. In this case, πe with e = (z, z + (1,0))

is caught between π1 and π2. Hence πe is an α-geodesic because we are in two
dimensions. Therefore, �2((0,0), α) must occur unless the event B(e,α) := [πe

is an α-geodesic] occurs for some e = (z, z + (1,0)). Thus

1 ≥ P
(
�2((0,0), α)

) ≥ 1 − ∑
e=(z,z+(1,0))

P(B(e,α)).(41)

For each e = (z, z + (1,0)), πe cannot be an α-geodesic for more than one α, and
so

∫
1B(e,α)�(dα) = 0 for each realization of the exponential times. By Fubini,∫

P(B(e,α))�(dα) =
∫ [∫

1B(e,α)�(dα)

]
dP = 0.(42)

Integrating (41) with respect to �(dα) and using (42) completes the proof of
Lemma 8. �

PROOF OF PROPOSITION 9. By Proposition 8, for fixed α ∈ D P-a.s., if
πz(α) and πz′(α) are not site disjoint, then they must coalesce. Therefore we
must show that there is zero probability that there exist disjoint α-geodesics. Let
S(α) = ⋃

z∈Z2 πz(α) be the set of α-geodesics emanating from z ∈ Z2. Then S(α)
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FIG. 5. Local modification.

is a forest composed by a random number N(α) ∈ {1, . . . ,+∞} of connected
trees. The event “there are not disjoint α-geodesics” is equivalent to the event
“N(α) = 1” and with this formulation we can apply the Burton and Keane [2]
argument. This argument is based on a local modification idea that is formalized
as follows. Let y1 < · · · < yk be points in Z, and let A(y1, . . . , yk) be the event
“π(0,y1)(α), . . . , π(0,yk)(α) are disjoint and every site touched by π(0,yj ) after its
initial site at (0, yj ) has strictly positive first coordinate” (see Figure 5). We claim
that

if P
(
N(α) ≥ 2

)
> 0 �⇒ ∃y1, y2, y3;P

(
A(y1, y2, y3)

)
> 0.(43)

Indeed, if the right-hand side of (43) holds, then there exist y1, y2 such that
the probability of A(y1, y2) is positive. For i = 1,2 and l ∈ Z let yl

i =
yi + l(y1 − y2). By translation invariance, the probability of A(yl

1, y
l
2) does

not depend on l. This together with Fatou implies that for some l1 < l2

the probability of A(y
l1
1 , y

l2
2 ) ∩ A(y

l2
1 , y

l2
2 ) is also positive, although π

y
l1
1

can-

not intersect π
y

l2
1

or π
y

l2
2

because otherwise it must intersect π
y

l1
2

(by pla-

narity). Thus A(y
l1
1 , y

l2
2 ) ∩ A(y

l2
1 , y

l2
2 ) ⊆ A(y

l1
1 , y

l2
1 , y

l2
2 ) which proves (43). Let

Aδ
m(y1, y2, y3) := A(y1, y2, y3) ∩ Bδ ∩ Cm, where Bδ is the event “w(z) > δ for

all z ∈ [(−1, y1), (−1, y3)] ∪ [(−1, y3), (m,y3)]” and Cm is the event “π(0,y1)(α)

intersects the point (m,y3).” Since α ∈ (0,90◦), (43) implies that, if the right-hand
side of (43) holds, then for some m > 0 and δ > 0,

P
(
Aδ

m(y1, y2, y3)
)
> 0.(44)

Consider the event A = Aδ
m(y1, y2, y3) appearing in (44). Let z2 be the first

intersection between π(0,y2)(α) and [(0, y3), (m,y3)], and let π1 be the piece of
π(0,y1)(α) between the points (0, y1) and z1 := (m,y3) (see Figure 5). Consider
the bounded region � (not including the boundary) limited by [(−1, y1), (−1, y3)],
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[(−1, y3), (m,y3)] and π1. Thus we define a mapping � on subsets B of A by first
letting W(ω) = {z ∈ �; w(z) > δ} and then setting

�(B) = ⋃
ω∈B

[ ∏
z/∈W(ω)

{w(z)} × ∏
z∈W(ω)

(0, δ)

]
.

Heuristically, � alters each ω ∈ B into an ω′ ∈ �(B) by changing each
w(z) > δ with z ∈ � to some value w′(z) ∈ (0, δ) [it may happen that �(B)

is nonmeasurable]. Since the w(z)’s with z ∈ π(0,y1)(α), or z ∈ π(0,y3)(α), or
z ∈ πz2(α), were unchanged while the others decreased or stayed as before, it
follows that each one of the paths π(0,y1)(α), π(0,y3)(α) and πz2(α) continues to be
an α-geodesic for ω′ ∈ �(A). Similarly, ω′ continues to belong to Bδ . Although,
since for each z ∈ � we have w′(z) < δ and for each z ∈ [(−1, y1), (−1, y3)] ∪
[(−1, y3), (m,y3)] we have w′(z) > δ, then for all z ∈ [(−1, y1), (−1, y3)] and
z′ ∈ [(−1, y3), (m,y3)] the geodesic π(z, z′) for ω′ either will be the path which
starts at z, goes vertically until it reaches (−1, y3) and then goes horizontally
until it reaches z′, or π(z, z′) ∩ π1 �= ∅. Let z3 := (m,y′) be the point where the
geodesic from (0, y3) crosses the vertical line {m} × Z. Therefore, any α-geodesic
for ω′, starting at u = (x, y) /∈ [0,m] × [y1, y

′] with x < m, cannot touch the
middle path πz2(α) without first intersecting π(0,y1) or π(0,y3) and this leads to
a contradiction because in such a case, by Proposition 8, they must coalesce. Thus,
�(A) ⊆ F where F denotes the event that some tree in S(α) touches the rectangle
[0,m] × [y1, y

′] but no other site in the half-plane {(x, y); x < m}. Since to
each site we attached an exponential random variable and P(A) > 0 [inequality
(44)], by Lemma 3.1 of [10], there exists a measurable set Ā ⊆ �(A) such that
P(Ā) > 0, which implies that P(F ) > 0. Now consider a rectangular array of
nonintersecting translates �z of the rectangle �0 = [0,m] × [y2, y3] indexed by
z ∈ Z, and consider the corresponding translated events Fz of F0 = F . Notice that,
if Fz and Fz′ both occur, with z �= z′, then the corresponding trees in S(α) must be
disjoint. Let nL be the number of �z’s in [0,L]2 and let NL be the number of the
corresponding Fz’s which occur. By translation invariance ENL = nLP(F ). The
number of disjoint trees in S(α) which touch [0,L]2 cannot exceed the number of
boundary sites in [0,L]2 and this together with P(F ) > 0 yields a contradiction
for large L because nL is of order L2. Therefore, we have proved that P(F ) = 0
and this together with (43) and (44) implies that P(N(α) ≥ 2) = 0. This together
with Proposition 7 implies that P(N(α) = 1) = 1 which completes the proof of
Proposition 9. �

The proof of Lemma 10 is based on the following lemma that provides an upper
bound for moderate deviations of G(0, z) from its asymptotic value µ(z).

LEMMA 11. There exists ε0 > 0 such that for all ε ∈ (0, ε0), there exist
constants C4,C5,C6 > 0 such that for all z ∈ N2 with |z| > C4, for any r ∈
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[|z|1/2+ε, |z|3/2−ε]
P

(|G(0, z) − µ(z)| ≥ r
) ≤ C5 exp(−C6r/|z|1/2).

We prove this lemma after the proof of Lemma 10.

PROOF OF LEMMA 10. Let Cε(z) = {z′; d(z′, [0, z]) ≥ |z|3/4+ε} and let
�(z, z′) = µ(z) − µ(z − z′) − µ(z′). If supz′∈π(0,z) d(z′, [0, z]) ≥ |z|3/4+ε , then
there exists z′ ∈ ∂Cε(z) such that G(0, z) = G(0, z′) + G(z′, z). By summing
�(z, z′) in both sides of the last equality and using the translation invariance of
the model, we obtain

P

(
sup

z′∈π(0,z)

d(z′, [0, z]) ≥ |z|3/4+ε

)

≤ P
(|G(0, z) − µ(z)| ≥ |�(z, z′)|/3

)
(45)

+ P
(|G(0, z′) − µ(z′)| ≥ |�(z, z′)|/3

)
+ P

(|G(0, z − z′) − µ(z − z′)| ≥ |�(z, z′)|/3
)
.

If z = (z1, z2), z
′ = (z′

1, z
′
2), then

�(z, z′) = 2
(√

z1z2 − √
z′

1z
′
2 − √

(z1 − z′
1)(z2 − z′

2)
)
.

This implies that (see Lemma 2.1 of [23]) there exist constants A1,A2,A3 > 0
such that for all z ∈ N2 with |z| ≥ A1, for all z′ ∈ ∂Cε(z)

A2|z|1/2+2ε ≤ �(z, z′) ≤ A3|z|3/4+ε.(46)

Notice that (46) implies that there exists M > 0, such that for all z ∈ N2 with
|z| > M , �(z, z′) ∈ [z̄1/2+2ε, z̄3/4+ε], where z̄ = z, or z̄ = z′, or z̄ = z − z′. By
choosing ε > 0 small enough and using (45), together with Lemma 11 we complete
the proof of Lemma 10. �

PROOF OF LEMMA 11. Since for all z = (z1, z2) ∈ N2, for all π ∈ �(0, z)

(the set of all up-right paths connecting 0 to z), |π | = z1 + z2 + 1, where |π | is the
number of sites in π , it is a consequence of Corollary 8.2.4 of [22] that there exist
constants A1,A2,A3 > 0 such that for all z ∈ N2, for all x ∈ [0,A1|z|],

P
(|G(0, z) − EG(0, z)| > x

√|z| ) ≤ A2 exp(−A3x).(47)

To replace EG(0, z) by µ(0, z) in (47) we need to consider some technical details.
First, we claim that (47) implies that there exist constants A4,A5 such that for all
z ∈ N2 with |z| ≥ A4,

EG(0,2z) ≤ 2EG(0, z) + A5
√|z| log(|z|).(48)
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Indeed, let Hz = {z′; |z′| = |z|} ∩ N2 (|z| = |z1| + |z2|). By the definition of G and
by the translation invariance of the model,

EG(0,2z) ≤ 2E max
z′∈Hz

G(0, z′).(49)

Now assume that Y z
i for 1 ≤ i ≤ n(z) are nonnegative random variables on a

common probability space such that for some a,M0,C0,C1,C2,C3 ∈ (0,+∞),
for all z ∈ N2 with |z| > M0,

E(Y z
i ) ≤ |z|a and n(z) ≤ C0|z|,(50)

and

P
(|Y z

i − E(Y z
i )| > x

) ≤ C1 exp(−C2x) for x ≤ C3|z|.(51)

Then, for some M1,C4 > 0 (see Lemma 4.3 of [9]), for all z ∈ N2 with |z| > M1,

E max
1≤i≤n(z)

(
E(Y z

i ) − Y z
i

) ≤ C4 log |z|.(52)

Therefore, to conclude the proof of (48) we order the points z′ ∈ H(z) by
z1, . . . , zn, where n depends on z but n ≤ C0|z| for some constant C0. Take
Y z

i = G(0, zi)/
√|z| and note that the hypotheses (50), (51) are satisfied with

a = ε + 1/2, C0 as before, and M0,C1,C2,C3 given by (47). Thus, (52) together
with (49) completes the proof of (48). Now, we claim that the superadditivity of
EG(0, z) and (48) imply that for some constant A6 > 0

EG(0, z) − A6
√|z| log(|z|) ≤ µ(z) ≤ EG(0, z).(53)

Indeed, the right-hand side of (53) is an immediate consequence of superadditivity.
To prove the left-hand side, assume that h : R+ → R and g : R+ → R+ satisfy
the following conditions: lims→∞ h(s)/sµ ∈ R, lims→∞ g(s)/s = 0, h(2s) ≥
2h(s) − g(s) and φ = lim sups→∞ g(2s)/g(s) < 2. Then, for any c > 1/(2 − φ),
h(s) ≤ µs + cg(s) for all large s (see Lemma 4.2 of [9]). Therefore, if we fix
a direction ẑ = z/|z| and take h(s) = −EG(0, sẑ), g(s) = A5

√
s log(s), then this

last claim together with (48) completes the proof of (53). Thus, (53) and (47) imply
that for some constants A7,A8,A9,A10 > 0, for all x ∈ [A7 log |z|,A8|z|],

P
(|G(0, z) − µ(z)| > 2x

√|z| ) ≤ A9 exp(−A10x).(54)

Taking r = 2x
√|z| and adjusting the constants, (54) yields Lemma 11. �

4. Final remarks. We have shown a law of large numbers for the competition
interface in last-passage percolation in the positive quadrant (Z+)2. A crucial step
in this proof was Proposition 9 which establishes that uni-geodesics starting at
different fixed points with the same direction must coalesce. The law of large
numbers for the competition interface also holds for other random regions as a
consequence of the law of large numbers for the second class particle of Mountford
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and Guiol [14] and Lemma 6. These regions are limited to the south-west by a
random curve γ = (γn, n ∈ Z) ⊂ Z2 defined by γ0 = (1,1), γ1 = (1,0), γ−1 =
(0,1) and then γn − γn−1 = (η(n)− 1,−η(n)), for n ∈ Z \ {0,1} and η distributed
according to the product measure with densities λ to the left of the origin and ρ

to the right of it. Since Lemma 6 can be extended to any region obtained as a
transformation of the initial configuration of the simple exclusion process, the law
of large numbers for the competition interface also holds in this case [7]. However,
it would be nice to have an autonomous proof using geodesics. To extend the result
to the regions considered by Mountford and Guiol one should be able to show
that when the point is asymptotically beyond the corresponding characteristic the
“point to semi-line” geodesic is realized in the limit by a random location in the
semi-line. More precisely, let Lρ be a random semi-line starting at (0,0) doing
independent steps at right with probability 1 − ρ and down with probability ρ.
This interface corresponds to the right initial configuration for the simple exclusion
process chosen with the product measure with density ρ. Let zn = (xn, yn) be a
sequence of points in N2 such that xn, yn → ∞ and xn

yn
→ (

ρ
1−ρ

)2 − ε for some
ε > 0, as n → ∞. Let gn be the location in Lρ that realizes the zn to Lρ geodesic.
Then one needs to show that as n → ∞, gn → g, a random location, almost surely.
The inclination (

ρ
1−ρ

)2 corresponds to the asymptotic behavior of the second class

particle under this initial measure: X(t)
t

→ (1 − 2ρ) = (1 − ρ)2 − ρ2, as t → ∞.
An anonymous referee and Christoffe Bahadoran asked the authors about the

resemblance between our Proposition 3 which identifies the second class particle
and the competition interface determined by looking, in the last-passage picture,
from which side of point (1,1) the maximizing paths of different points emanate.
The referee says: “This bears a curious resemblance to Proposition 4.1 in [21]:
that result also identifies the position X(t) of the second class particle by looking
at which side of the initial position X(0) come the maximizers in the variational
formula of the process. One wonders whether these two representations are two
sides of the same coin.” We leave this investigation for future work.
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