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Chapter 1IntrodutionThese notes are dediated to Ted Harris who taught us how to onstrutpartile systems using random graphs, utting and pasting piees so that toput in evidene, in the most elementary way, the properties of the proess.The purpose of these notes is to explain in an elementary way how ou-pling and regeneration an be used to onstrut and study hains of in�niteorder. These are stohasti proesses taking values on a �nite alphabet inwhih the hoie of eah new symbol depends on the whole past history.This is in ontrast with Markov hains, in whih the hoie depends on onlya �xed �nite number of preeding values. Our approah does not use mea-sure theory as it adopts a onstrutive point of view inherent to the notionof simulation and oupling of random variables or proesses.Chains of in�nite order seem to have been �rst studied by Oniesu andMiho (1935a) who alled them hains with omplete onnetions (hâ�nes �aliaisons ompl�etes). Their study was soon taken up by Doeblin and Fortet(1937) who proved the �rst results on speed of onvergene towards theinvariant measure. The name hains of in�nite order was oined by Harris(1955) . We refer the reader to Iosifesu and Grigoresu (1990) for a ompletesurvey.To ouple two random variables means to onstrut them simultaneouslyusing the same random mehanism. More informally: oupling is just to7



8 CHAPTER 1. INTRODUCTIONsimulate two random variables using the same random numbers. The �rstoupling was introdued by Doeblin (1938) to show the onvergene to equi-librium of a Markov hain. Doeblin onsidered two independent trajetoriesof the proess, one of them starting with an arbitrary distribution and theother with the invariant measure and showed that the trajetories meet in a�nite time. For a desription of Doeblin's ontributions to probability theorywe refer the reader to Lindvall (1991).Perhaps due to the premature and tragial death of Doeblin and the ex-treme originality of his ideas, the notion of oupling only ome bak to theliterature with Harris (1955). Coupling beome a entral tool in interatingpartile systems, subjet proposed by Spitzer (1970), Harris (1972) and thesovieti shool of Dobrushin, Toom, Piatevsky-Shapiro, Vaserstein and oth-ers. This names gave rise to a new area in stohasti proesses developedextensively by Harris, Holley, Liggett, Durrett, Gri�eath, Kipnis and others.We refer the interested reader to the books by Liggett (1985), (1999) and Kip-nis and Landim (1999) for reent developments in the �eld. Liggett (1994)reviews the use of the oupling tehnique for interating Markov systems.Our onstrutive approah omes diretly from the graphial onstrutionof interating partile systems introdued by Harris (1972, 1978). The waywe ouple hains an be traed bak to Dobrushin (1956), even when thereis no oupling in his paper. A oupling approah related to what to do inChapter 8 has been used by Marton (1996).Coupling tehniques had a somehow independent development for \lassi-al" proesses. The books of Lindvall (1992) and the reent book of Thorisson(2000) are exellent soures for these developments.The art of oupling onsists in looking for the best way to simultaneouslyonstrut two proesses or, more generally, two probability measures. Forinstane, to study the onvergene of a Markov hain, we onstrut simulta-neously two trajetories of the same proess starting at di�erent states andestimate the time they need to meet. This time depends on the joint lawof the trajetories. The issue is then to �nd the onstrution \minimizing"the meeting time. In the original Doeblin's oupling the trajetories evolvedindependently. This oupling is a priori not the best one in the sense that it



9is not aimed to redue the meeting time. But one one realizes that ouplingis useful, many other onstrutions are possible. We present some of themin these notes.The entral idea behind oupling an be presented through a very simpleexample. Suppose we toss two oins, and that the probability to obtain a\head" is p for the �rst oin and q for the seond oin with 0 < p < q < 1. Wewant to onstrut a random mehanism simulating the simultaneous tossingof the two oins in suh a way that when the oin assoiated to the probabilityp shows \head", so does the other (assoiated to q). Let us all X and Ythe results of the �rst and seond oin, respetively; X; Y 2 f0; 1g, with theonvention that \head" = 1. We want to onstrut a random vetor (X; Y )in suh a way that P(X = 1) = p = 1� P(X = 0)P(Y = 1) = q = 1� P(Y = 0)X � Y:The �rst two onditions just say that the marginal distribution of X and Yreally express the result of two oins having probabilities p and q of being\head". The third ondition is the property we want the oupling to have.This ondition implies in partiular that the eventfX = 1; Y = 0g;orresponding to a head for the �rst oin and a tail for the seond, hasprobability zero.To onstrut suh a random vetor, we use an auxiliary random variableU , uniformly distributed in the interval [0; 1℄ and de�neX := 1fU � pg and Y := 1fU � qg:where 1A is the indiator funtion of the set A. It is immediate that thevetor (X; Y ) so de�ned satis�es the three onditions above. This ouplingis a prototype of the ouplings we use in this notes.With the same idea we onstrut stohasti proesses (sequenes of ran-dom variables) and ouple them. One important produt of this approah is



10 CHAPTER 1. INTRODUCTIONthe regenerative onstrution of stohasti proesses. For instane, supposewe have a sequene (Un : n 2 Z) of independent, identially distributed uni-form random variables in [0; 1℄. Then we onstrut a proess (Xn : n 2 Z)on f0; 1gZ, using the ruleXn := 1fUn > h(Xn�1)g (1.1)where h(0) < h(1) 2 (0; 1) are arbitrary. We say that there is a regenerationtime at n if Un 2 [0; h(0)℄[ [h(1); 1℄. Indeed, at those times the law of Xn isgiven by P(Xn = 1 j Un 2 [0; h(0)℄ [ [h(1); 1℄) = 1� h(1)h(0) + 1� h(1) (1.2)independently of the past. De�nition (1.1) is inomplete in the sense thatwe need to know Xn�1 in order to ompute Xn using Un. But, if we go bakin time up to �(n) := maxfk � n : Uk 2 [0; h(0)℄ [ [h(1); 1℄g, then we anonstrut the proess from time �(n) on. Sine this an be done for all n 2 Z,we have onstruted a stationary proess satisfying:P(Xn = y jXn�1 = x) = Q(x; y) (1.3)where Q(0; 0) = h(0) Q(0; 1) = 1� h(0)Q(1; 0) = h(1) Q(1; 1) = 1� h(1) : (1.4)Proesses with this kind of property are alledMarkov hains. The prini-pal onsequene of onstrution (1.1) is that the piees of the proess betweentwo regeneration times are independent random vetors (of random length).We use this approah to onstrut perfet simulation algorithms not only forMarkov hain but, more generally, for hains of in�nite order, with a suitablememory-loss rate.Regenerative shemes have a long history, starting with Harris (1956)approah to reurrent Markov hains in non ountable state-spaes passingby the basi papers by Athreya and Ney (1978) and Nummelin (1978). Werefer the reader to Thorisson (2000) for a omplete review. Perfet simulationwas reently proposed by Propp and Wilson (1996) and beome very fast animportant issue of researh. See Wilson (1998) .



11In these notes we adopt the graphi onstrution philosophy introduedby Ted Harris to deal with interating partile systems. Our �rst elementarysystemati presentation of Harris' point of view is ontained in the bookletAoplamento em Proessos Esto�astios in Portuguese for a mini-ourse towof us o�ered at the XXI Coloquio Brasileiro de Matem�atia, held in Rio deJaneiro in July of 1997 (Ferrari and Galves 1997), followed by Constrution ofStohasti proesses, Coupling and Regeneration (Ferrari and Galves 2000),notes for the XIII Esuela Venezolana de Matem�atias. In these referenes,Markov proesses were the main onern. In the present set of letureswe fous instead on reent results on hains of in�nite order presented inBressaud, Fern�andez and Galves (1999a, 1999b) and Comets, Fern�andez andFerrari (2000). We refer the reader to these papers for further tehnialdetails and more extensive referenes.AknowledgementsA number of ollaborators and olleagues helped us to learn and understandmany of the issues of thee notes. We like to express our warm thanks toMiguel Abadi, Xavier Bressaud, Jean-Ren�e Chazottes, Pierre Collet, FranisComets, Denise Duarte, Davide Gabriele, Jes�us Gar��a, Daniela Guiol, NanyLopes Garia, Alejandro Maass, Gr�egory Maillard, Servet Martinez, PeterNey Bernard Shmitt and Paul Shields.This �nal version of the notes has bene�ted from the sharp omments,questions and ritiism of the audiene of the V EBP. We thank speiallyChristian Borgs, David Brillinger, Jennifer Chayes, Tom Kurtz, Steve Lalley,Jesper M�ller, Errio Presutti, . . . . We also thank the enthusiasti studentsthat pointed out a number of errors and impreisions.The authors thank FINEP, FAPESP, CNPq and an agreement USP-COFECUB for support during the writing of these notes.We owe speial thanks to the Zentrum f�ur interdisziplin�aire Forshung(ZiF) of the University of Bielefeld who o�ered us support and an extraordi-nary sienti� and human environment during the ompletion of these notes.



12 CHAPTER 1. INTRODUCTION



Chapter 2Basi de�nitions
2.1 Simulation algorithmsWe onsider an evolution in disrete time Z taking values in a �nite alphabetA. The evolution is random, that is, its possible realizations are desribed bya family of random variables (Xn)n2Z, with images in A, de�ned on a ertainmeasure spae.The existene of a probability spae in whih a given stohasti proessan be de�ned is a basi issue in probability theory. One of the advantagesof Harris' onstrutive approah is that it shows that the proesses onsid-ered in these notes, and many others, an be rigorously onstruted usingonly a double in�nite sequene of independent random variables uniformlydistributed in [0; 1℄. The existene of suh a sequene is the only measure-theoretial fat we will need in these letures. This sequene will be denoted(Un; n 2 Z). In some appliations the uniform variables will be relabelledso that eah Un will in fat orrespond to a N -tuple of independent randomvariables U (1)n ; � � � ; U (N)n , with N �xed. People that do not feel omfortablewith measure theory should simply think these variables as the outomes ofa random number generator in a omputer simulation.The only probability spae we shall be onern with is the one in whihthe variables (Un) are de�ned. Let us all it (
;F ;P) and use E for the13



14 CHAPTER 2. BASIC DEFINITIONSorresponding expetation.The value of Xn is interpreted as the \state" of the proess at \time" n.The outomes of suh an evolution orresponds to strings of symbols x =(xn)n2Z 2 AZ whih we shall all a path of the proess. The theory isdeveloped purely in terms of the path spae AZ, and the spei� hoie forthe spae of de�nition of the Xn plays no role. Formally this is beauseevolutions are desribed in terms of joint laws of the variables Xn.The traditional way to introdue a stohasti proess is starting fromthe family of joint probability distributions or, equivalently, by a probabilitymeasure on AZ orresponding to the joint laws. This has two drawbaks.First, the existene of a proess so de�ned is not an easy matter. Seond,these measures are seldomly diretly aesible. Rather, the starting objetsare onditional probabilities of the formP (Xn+` = xn+`; � � � ; Xn = xnjXn�1 = xn�1; Xn�2 = xn�2; � � �) ; (2.1)whih are either expliitly de�ned from modelling onsiderations or esti-mated from atual outputs. For proess of truly in�nite order, some aremust be taken to give a rigorous meaning to (2.1) beause the ondition-ning usually refers to an event of probability zero. A possible formalization,adopted for instane by Lalley (1986) , is to de�ne a proess as a measure forwhih the onditional probabilities on �nite pasts, P (Xn+` = xn+`; � � � ; Xn =xnjXn�1 = xn�1; � � � ; Xn�s = xn�s) have a well de�ned limit as s ! �1.This is a natural setup when desribing experienes started at some initialtime before whih there is no meaningful past [eg. in Oniesu and Miho(1935a)℄. The limit s! �1 orresponds to pushing this initial time to theremote past. The only oneptual disadvantage of this approah is that thelimit s! �1 depends, in priniple, on the proess onsidered, that is on theinaessible joint measure of the random variables. This makes the approahless diret from the omputational point of view.We introdue now the formal de�nitions neessary for Harris' approah.We leave for Setion 2.2 the presentation of the \traditional" formalism interms of objets like (2.1). The relation between both appraohes is disussedin Setion 2.3.



2.1. SIMULATION ALGORITHMS 15To state the neessary de�nitions we need some notation. For k � n 2 Zlet xnk denote the sequene xk; � � � ; xn, and let Ank denote the set of suhsequenes. Likewise, let xn�1 denote the sequene (xi)i�n |histories up totime n| and An�1 the orresponding spae. Full sequenes will be denotedwithout sub or supersripts, x 2 A. The notation ymn+1xnk indiates thesequene that takes values xk; � � � ; xn; yn+1; � � � ; ym.Remark 2.2 Before starting with the de�nitions, let us insist that in thesenotes we do not wish to make an issue of measurability. We shall mention theword \measurable" only sparingly and always in a ontext suh that: (i) the�-algebra in question is the natural one, and (ii) the measurability require-ment is pratially a formality, as every funtion used for the orrespondingappliation will invariably be measurable. Readers an safely ignore mea-surability issues, and onentrate instead on the algorithmi aspets of ouronstrutions and proofs.Let us now de�ne the entral objets of our approah.De�nition 2.3 A simulation algorithm is a family of measurable fun-tions (fn)n2Z, where fn : [0; 1℄�An�1 �! A.For ompleteness (but see Remark 2.2), let us state for the �rst and lasttime that the �-algebra� of [0; 1℄ is the Lebesgue �-algebra,� of (�nite or in�nite) produts of A is the produt of the disrete �-algebra of A,� of produts of these spaes is the orresponding produt �-algebra.De�nition 2.4 A simulation algorithm (fn) is time-homogeneous if thefuntions fn oinide up to a shift. That is, if xn�1 2 An�1 and yn+1�1 2 An+1�1are suh that xi = yi+1 for i � n, thenfn+1(u; yn+1�1 ) = fn(u; xn�1) : (2.5)In this ase, we will eliminate the subsript from fn.



16 CHAPTER 2. BASIC DEFINITIONSDe�nition 2.6 A stohasti proess with alphabet A is a sequene of A-valued random variables (=measurable funtions) (Xn)n2Z de�ned in our oneand only spae (
;F ;P). The proess is stationary if P(Xn+kn = xk0) isindependent of n for eah k 2 N and eah xk0 2 Ak0.De�nition 2.7 A stohasti proess de�ned by the simulation algo-rithm (fn)n2Z is a sequene of random variables (Xn)n2Z suh thatXn = fn(Un; Xn�1�1 ) : (2.8)The variable Un is, in general, a �nite family U (1)n ; � � � ; U (N)n of uniform ran-dom variables, with N �xed. All the random variables U (i)j are independent.De�nition 2.9 A stohasti proess is aMarkov hain if the fn are loal intheir seond oordinate, that is if there exist a �xed k, suh that fn(u; yn�1) =fn(u; xn�1) whenever xnn�k = ynn�k. The integer k is alled the order of theMarkov hain.Chains of in�nite order are more general proess for whih there mayexist no suh k. They are usually required to satisfy some ontinuity andnon-nullness hypotheses. We defer formal de�nitions to Chapter 3.Presription (2.8) is not enough to onstrut the proess. We need astarting past from whih to apply it iteratively.De�nition 2.10 For ` 2 Z and z�̀1 2 A�̀1, the stohasti proess with�xed past z�̀1 de�ned by the simulation algorithm (fn) is the se-quene of random variables (Xn[z�̀1℄)n2Z de�ned byXn[z�̀1℄ = zn for n � ` ;X`+1[z�̀1℄ = f`+1(U`+1; z�̀1) andXn[z�̀1℄ = fn(Un; Xn�1`+1 [z�̀1℄ z�̀1) for n > `+ 1 : (2.11)While these �xed-past proesses (Xn[z�̀1℄)n>` are always well de�ned,they are not proesses in the sense of De�nition 2.7 beause they verify



2.2. TRANSITION PROBABILITIES 17(2.8) only for times larger than `. The existene problem of the theory ofstohasti proesses is, preisely, to obtain proess without a �xed past forthe given algorithm (fn). That is, to determine variables (Xn)n2Z suh thatXn = fn(Un; Xn�1�1 ) for all n 2 Z. A seond entral issue in the theory ofstohasti proesses, is the uniqueness problem, namely whether there exista unique suh proess (Xn)n2Z or several (phase transitions!). The approahwe shall use here to solve the existene problem is to onstrut the funtionf in suh a way that for eah realization of the uniform random variables(Un) a realization of the proess an be onstruted in any �nite interval.We will show that this onstrution oinides with the proess obtained asa limit of �xed-past proesses. Furthermore, for the proesses onsidered inthese notes, uniqueness orresponds to suh a limit being independent of the�xed past hosen. We shall use two main tools to analyze limits of �xed-pastproesses and their insensitivity to the past: (1) regeneration shemes, and(2) oupling tehniques. The former shemes are the subjet of next hapter.The formal de�nition of the notion of oupling will be disussed in Setion2.4.2.2 Transition probabilitiesTo make the onnetion with the traditional approah, based on the objets(2.1), let us briey formalize the basi de�nitions on whih the latter relies.De�nition 2.12 A system of transition probabilities is a family fPn( � j � ) :n 2 Zg of funtions Pn : A�An�1�1 �! [0; 1℄, suh that the following ondi-tions hold for eah n 2 Z:(i) Measurability: For eah xn 2 A the funtion Pn(xnj � ) is measurablewith respet to the produt �-algebra.(ii) Normalization: For eah xn�1�1 2 An�1�1Xxn2APn(xnjxn�1�1) = 1 : (2.13)



18 CHAPTER 2. BASIC DEFINITIONSIn the following de�nition we onsider exepionally an abstrat proba-bility spae that nevertheless we denote (
;F ;P) as before.De�nition 2.14 A stohasti proess de�ned on (
;F ;P) is onsistentwith a system of transition probabilities (Pn) ifP(Xn = xnjXn�1�1 = xn�1�1) = Pn(xnjxn�1�1) (2.15)for all n 2 Z, x 2 AZ.Equation (2.15) means that the funtions Pn are regular versions of theonditional probabilities with respet to the natural �ltration Fn = �(Xn�1).Equivalently, a stohasti proess is onsistent with a system of transitionprobabilities (Pn) i�Ehg(Xn�1)i = EhXyn2A g(ynXn�1�1 )Pn(ynjXn�1�1 )i (2.16)for every n 2 Z and g measurable with respet to Fn.The transition probabilities of De�nition 2.12 an be thought as next-move transition probabilities. They an be used to onstrut the `-movetransitions (` � 1) probabilitiesP[n;n+`℄(xn+`n jxn�1�1) := Ỳi=1 Pn+i(xn+ijxn+i�1�1 ) : (2.17)[We adopt the onvention P[n;n℄ :=Pn.℄ These transitions satisfy the onsis-teny onditionXxn+`n 2An+`n P[n;n+`℄(xn+`n jxn�1�1) Xyn+jn+i2An+jn+i g(yn+jn+ixn+i�1�1 )P[n+i;n+j℄(yn+jn+i jxn+i�1�1 )= Xxn+`n 2An+`n g(xn+j�1)P[n;n+`℄(xn+`n jxn�1�1) (2.18)



2.2. TRANSITION PROBABILITIES 19for all n 2 Z, i; j; ` 2 N , 0 � i � j � `, x 2 A and all Fn+j-measurablefuntions f . Furthermore, (2.16) implies thatEhg(Xn+`�1 )i = Eh Xyn+`n 2An+`n g(yn+`n Xn�1�1 )P[n;n+`℄(yn+`n jXn�1�1 )i (2.19)for every n 2 Z, ` 2 N , and g measurable with respet to Fn+`. The veri�-ation of formulas (2.17){(2.19) is left as an straightforward exerise to thereader. Condition (2.18) implies that the kernels P[n;n+`℄( � j � ) onstitute theone-sided analogous of a statistial mehanial spei�ation, while identities(2.19) are the analogous of the DLR equations [see, for instane, Georgii(1988) for the statistial mehanial framework℄.The basi mathematial problem of the theory of stohasti proesses is,preisely, to onstrut and haraterize the proesses onsistent with a givensystem of transition probabilities. The omments of the end of Setion 2.1an be transribed in this framework in a natural way. In partiular, we antransribe notions related with �xed pasts.De�nition 2.20 Given a system of transition probabilities fPn( � j � ) : n 2Zg, an ` 2 Z and a z�̀1 2 A�̀1, the system of transition probabilitieswith �xed past z�̀1 is the family of funtionsP z�̀1n : A�An�1�1 �! [0; 1℄ ; (2.21)de�ned asP z�̀1n (xnjxn�1`+1 ) = ( Pn(xnjxn�1`+1 z�̀1) 1[x�̀1 = z�̀1℄ for n � `+ 11[xn�1 = zn�1℄ for n � ` : (2.22)It is simple to hek that these funtions qualify as transition probabilities,as they satisfy requirements (i) and (ii) of De�nition 2.12. It is also easy toverify that suh a system de�nes a unique proess.De�nition 2.23 For ` 2 Z and z�̀1 2 A�̀1, the proess onsistent withthe system (2.22) is alled the stohasti proess with �xed past z�̀1onsistent with a system of transition probabilities (Pn).



20 CHAPTER 2. BASIC DEFINITIONS2.3 Simulation algorithms and transition prob-abilitiesLet us now establish the equivalene of the simulation-oriented (Harris') ap-proah of Setion 2.1 with the transition-probability (\traditional") approahof Setion 2.2.Given a simulation algorithm (fn)n2Z, the presriptionPn(ajxn�1�1) = Pffn(Un; xn�1�1 ) = ag ; (2.24)de�nes a system of transition probabilities (Exerise 2.48).Now let fPn( � j � ) : n 2 Zg be a system of transition probabilities. Weonstrut a simulation algorithm by mimiking the way suh transition prob-abilities would be simulated in a omputer, namely by partitioning the in-terval [0; 1℄ into intervals of length equal to the probabilities. For eah xn�1�1let us onsider a partition of [0; 1℄Pxn�1�1 = fIxn�1�1a : a 2 Ag ; (2.25)eah of the sets Ixn�1�1a being a union of intervals, suh thatlength�Ixn�1�1a � = Pn(ajxn�1�1) : (2.26)The presription fn(u; xn�1) = a i� u 2 Ixn�1�1a (2.27)de�nes a simulation algorithm.The previous onsiderations amount to a proedure to transribe simu-lation algorithms into transition probabilities and vieversa. The followingproposition summarizes its main features. It proofs is basially ontained inthe preeding disussion, exept for some minor mathematial details left tothe reader.Proposition 2.28 (i) For a given a simulation algorithm (fn)n2Z, pre-sription (2.24) de�nes a system of transition probabilities fPn( � j � ) :n 2 Zg



2.3. SIMULATION ALGORITHMS ANDTRANSITION PROBABILITIES21(ii) For a given system of transition probabilities fPn( � j � ) : n 2 Zg, eahhoie of partitions fPxn�1�1 : n 2 Z; xn�1�1 2 An�1�1g satisfying (2.26)de�nes, through (2.27), a simulation algorithm (fn)n2Z suh that:(ii.a) every proess onsistent with (Pn) is de�ned by (fn), and(ii.b) the system of transition probabilities onstruted from suh (fn)by the proedure of part (i) is the original (Pn).Remark 2.29 In part (i) there is no laim that every proess de�ned by(fn)n2Z be onsistent withPn(ajxn�1�1) := Pffn(Un; xn�1�1) = ag (2.30)By (2.16), this would require that suh a proess verifyEhg(Xn�1)i = Ehg�fn(Un; Xn�1�1 ) ; Xn�1�1 )�i (2.31)for n 2 Z and g measurable with respet to Fn. This may fail to be true unlessthe algorithm (fn) satisfy some suitable properties. However, we remark that,by onstrution, the onsisteny (2.31) holds for �xed-past proesses.Proposition 2.28 allows the transription of properties de�ned for simu-lation algorithms to properties of transition probabilities and vieversa. Forinstane, the system of transition probabilities isMarkovian of orderk if for eah xn 2 A the funtion Pn(xnj � ) depends only on the k preedingsymbols, that is ifPn(xnjxn�1n�k yn�k�1 ) = Pn(xnjxn�1n�k zn�k�1 ) =: Pn(xnjxn�1n�k) (2.32)for every yn�k�1 ; zn�k�1 2 An�k�1 . We leave to the reader the exerise of de�ninga time-homogeneous system, transribing property (2.5) (Exerise 2.49).In the sequel we shall only onsider time-homogeneous hains and denotesimply f the funtion in (2.8). In this ase, it is enough to work with thetransitions at time zero, i.e.P (ajx�1�1) = P(X0 = ajX�1�1 = a�1�1) : (2.33)To simplify we shall denote x = x�1�1, X = X�1�1 and A = A�1�1.



22 CHAPTER 2. BASIC DEFINITIONS2.4 Coupling and oupling algorithmsLet us now present the main tool used in these notes.De�nition 2.34 A oupling of the stohasti proesses(X [1℄n )n2Z; � � � ; (X [k℄n )n2Zis a stohasti proess ( eXn)n2Z with alphabet Ak whose marginal distributionsare those of the proesses (X [i℄n ). That is, suh that for eah i = 1; : : : ; k andeah xml 2 Aml , l � m 2 Z, the probabilities of ylinders satisfyP�i-th omponent of eXml = xml � = P�(X [i℄)ml = xml � : (2.35)Couplings will be de�ned via simulation algorithms.De�nition 2.36 A oupling algorithm of stohasti proesses(X [1℄n )n2Z; � � � ; (X [k℄n )n2Zis a simulation algorithm ( efn)n2Z for the proess (X [1℄n ; � � � ; X [k℄n )n2Z. Ex-pliitly, efn is a funtion of the form (f [1℄n ; � � � ; f [k℄n ), with eah f [i℄ : [0; 1℄ �(Ak)n�1 !A, suh thatX [i℄n = f [i℄n �Un; (X [1℄; � � � ; X [k℄)n�1�1� (2.37)for i = 1; � � � ; k, for the ommon (vetor) independent uniform variables Un.Thus, a oupling algorithm produes at time n simultaneously the time-n state of all the proesses (X [i℄n ) using the same random number Un forall of them. There is onsiderable freedom and some potential danger, inthe onstrution of oupling algorithms. On the one hand ondition (2.37)leaves plenty of room for designing algorithms with features suited to eahpartiular appliation. These notes will repeatedly illustrate this fat. On



2.4. COUPLING AND COUPLING ALGORITHMS 23the other hand, the algorithm ( efn) may de�ne several proesses in Ak, andsome of them may fail to be a oupling of the target proesses (X [i℄) |thatis, (2.35) may not hold.>From a onstrutive point of view De�nition 2.36 does not look veryinformative. Indeed, proesses are seldomly given diretly. Rather, in theseletures they are onstruted starting from simulation algorithms. What wewould need, then, are presriptions on how to onstrut a oupling algorithmstarting from the simulation arguments of the individual proesses.Let us settle these issues while doing at the same time the onnetionwith the transition-probability framework.De�nition 2.38 A oupling of the systems of transition probabili-ties P [1℄n ( � j � ); � � � ; P [k℄n ( � j � ) is a system of transition probabilities ePn : Ak �(An�1�1)k �! [0; 1℄ suh thatXx[1℄n ;���;x[j�1℄n 2Ax[j+1℄n ;���;x[k℄n 2A ePn�x[1℄n ; : : : ; x[k℄n ��� (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1� = P [j℄n �x[j℄n ��� (x[j℄)n�1�1�(2.39)for all j = 1; : : : ; k, all x[j℄n 2 A and all (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1 2 An�1�1 .[This de�nition is, in fat, a partiular instane of the notion of ouplingamong probability measures.℄Every oupling of transition probabilities produes a oupling algorithmthrough the presription (2.26){(2.27). First one must hoose partitions of[0; 1℄ in Lebesgue measurable setsnI(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ : a[i℄ 2 A; (x[i℄)n�1�1 2 An�1�1 ; i = 1; : : : ; ko ; (2.40)suh thatlength�I(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ � = ePn�a[1℄; : : : ; a[k℄ ��� (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1� :(2.41)



24 CHAPTER 2. BASIC DEFINITIONSThe oupling algorithm is then de�ned byefn�u; (x[1℄)n�1�1 ; � � � ; (x[k℄)n�1�1� = (a[1℄; � � � ; a[k℄)i� u 2 I(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ : (2.42)A possible strategy to onstrut a oupling algorithm would, in priniple,involve two steps:Step 1: Construt a oupled transition ( ePn) starting from the individualtransition probabilities (P [i℄) (or, equivalently, from the individual sim-ulation algorithms)Step 2: Take the algorithm de�ned in (2.42).We shall adopt, however, a more eonomial graphial proedure whihyield diretly the partitions (2.40), hene the oupling algorithm, bypassingthe de�nition of oupling transitions [whih, of ourse, an be obtained fromthe oupling algorithm by (2.24)℄. Furthermore, the oupling algorithms \fa-tor" in the sense that eah omponent (f [i℄n ) is itself a simulation algorithmof (X [i℄n ). That is, relation (2.37) is satis�ed in the partiular formX [i℄n = f [i℄n �Un; X [i℄� : (2.43)This an be ahieved in the following fashion.First: First, for eah j = 1; : : : ; k and eah (x[1℄)n�1�1 ; : : : ; (x[k℄)n�1�1 2 An�1�1 ,�nd partitions nI(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a : a 2 Ao ; (2.44)formed by unions of intervals suh thatlength�I(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a � = P [j℄n �a ��� (x[j℄)n�1�1� (2.45)whatever the hoie of (x[i℄)n�1�1 for i 6= j.



2.4. COUPLING AND COUPLING ALGORITHMS 25Seond: Take the algorithm de�ned, by (2.42), by the setsI(x[1℄)n�1�1 ��� (x[k℄)n�1�1a[1℄���a[k℄ = k\j=1 I(x[j℄)n�1�1 j (x[1℄)n�1�1 ��� (x[k℄)n�1�1a[j℄ : (2.46)Notie that ondition (2.45) implies (2.43).The sets of the partitions (2.44) an be visualized as obtained by \uttingand pasting" parts of intervals of length P [j℄n (aj(x[j℄)n�1�1) in a manner thatdepends on the other transitions. We observe that the oupling of transi-tion probabilities obtained from the intersetions (2.46) by the presription(2.24) is in general di�erent from the mere produt of the individual tran-sitions. In partiular it gives probability zero to states a[1℄ � � �a[k℄ for whihthe intersetions (2.46) are empty.De�nition 2.47 Partitions de�ned by (2.44){(2.46) are alled a graphialproedure to onstrut a oupling algorithm among proesses onsistent withtransition probabilities (P [1℄n ); � � � ; (P [k℄n ).As ommented above, the graphial proedure does not, in general, settlethe issue of �nding an atual oupling among the target proesses. We mustatually onstrut a proess de�ned by the oupling algorithm. Furthermore,we may have to hoose properly if there are several suh proesses. Thishoie is atually unneessary if eah of the transitions (P [i℄n ) admits a uniqueonsistent proess. This will be the situation for all the proesses studied inthese notes.It is apparent that there is onsiderable freedom in the hoie of thepartitions de�ning a simulation algorithms. This freedom an be exploited todesign partitions adapted to partiular mathematial or numerial purposes.The above tehnique an be applied, without modi�ation, to ountablefamilies of proesses (X [i℄n ) (and ountable alphabets).



26 CHAPTER 2. BASIC DEFINITIONS2.5 ExerisesExerise 2.48 Verify that, if (fn)n2Z is a simulation algorithm, presription(2.30) indeed de�nes a system of transition probabilities.Exerise 2.49 De�ne a time-homogeneous system of transition probabili-ties. Establish the relation with property (2.5) and explain why it is enoughto onsider the objets P (ajx�1�1) de�ned in (2.33).Exerise 2.50 Consider a time-homogeneous system of transition probabil-ities. Show that (2.16) is equivalent to the existene of measures �n on An�1suh that ZAn�1 �n(dxn�1)Pn+1( � jxn�1) = �n+1( � ) : (2.51)Exerise 2.52 (a) Chek that the �xed-past transitions (2.22) verify on-ditions (i) and (ii) of De�nition 2.12.(b) Show that they de�ne a unique onsistent proess.



Chapter 3Types of hains of in�niteorder. ExamplesBefore passing to examples, let us spell out the di�erent types of hypothe-ses we will be demanding for the proesses studied in these notes. Thesehypotheses are best expressed in terms of transition probabilities and theyrefer to (i) ontinuity with respet to histories, and (ii) strit positivity. Inturns, suitable ombinations of these hypotheses give rise to three standardnotions of hains of in�nite order.3.1 Continuity hypothesesDe�nition 3.1 A system of transition probabilities is ontinuous if thefuntions Pn(xnj � ) are ontinuous for eah n 2 Z and eah xn 2 A or,equivalently, if�s := supn2Z supx;y ���Pn(xnjxn�1�1)� Pn(xnjxn�1n�s yn�s�1�1 )����!s!1 0 : (3.2)The sequene (�s)s2N is alled the ontinuity rate.27



28CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESThe existene problem is not a problem for ontinuous transitions:Proposition 3.3 A system of ontinuous transition probabilities has at leastone stohasti proess onsistent with it.Proof. To be written (uses ompatness).The following stronger notion of ontinuity has also been introdued:De�nition 3.4 A system of transition probabilities is log-ontinuous ifs := supn2Z supx;y ���� Pn(xnjxn�1�1)Pn(xnjxn�1n�s yn�s�1�1 ) � 1�����!s!1 0 : (3.5)The sequene (s)s2N is alled the log-ontinuity rate.The strongest notion of ontinuity refers to the `-move transitions (2.17):De�nition 3.6 A system of transition probabilities is multiple-move log-ontinuous if�s := supn2Z;`2N supx;y ���� P[n;n+`℄(xn+`n jxn�1�1)P[n;n+`℄(xn+`n jxn�1n�s yn�s�1�1 ) � 1�����!s!1 0 : (3.7)The sequene (�s)s2N is alled the multiple-move log-ontinuity rate.3.2 Non-nullness hypotheses and types of hainsTwo kinds of non-nullness hypotheses are used.De�nition 3.8 A system of transition probabilities is weakly non-null ifinfn2ZXyn2A infx Pn(ynjxn�1�1) > 0 : (3.9)



3.3. EXAMPLES 29De�nition 3.10 A system of transition probabilities is strongly non-nullif infn2Zinfx Pn(ynjxn�1�1) > 0 : (3.11)We are �nally ready to de�ne the di�erent types of hains to be disussedin the sequel.De�nition 3.12 A stohasti proess is a hain of in�nite order(i) of type A if it is onsistent with a system of transition probabilitiesthat is ontinuous and weakly non-null.(ii) of type B if it is onsistent with a system of transition probabilitiesthat is log-ontinuous and strongly non-null.(iii) of type C if it is onsistent with a system of transition probabilitiesthat is multiple-move log-ontinuous and strongly non-null.Types A and B were already onsidered by Doeblin and Fortet (1937).Type C was introdued, as far as we know, by Lalley (1986).3.3 ExamplesThe following two examples are more than just illustrations. In fat, a entralaspet of these letures is to show that large families of hains an be writtenin any of these forms.Countable mixtures of Markov hains (CMMC) These are hainswhose transition probabilities are ountable onvex ombinations of Markovtransitions of inreasing order. That is, they are of the formP (ajx) = �0 P (0)(a) + 1Xk=1 �k P (k)(ajx�1�k) (3.13)



30CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESwhere �k � 0, P1k=0 �k = 1, and eah P (k)(ajx�1�k) is a Markov transitionof order k for k � 1, while P (0) is a probability measure. The transitions(3.13) an be thought as resulting of two independent random steps. First,an integer k � 0 is hosen with probability �k, and, seond, a symbol ishosen with the order-k transition probability P (k). Thus, eah transitionatually depends on a �nite, but random, number of preeding states. Toour knowledge, an expression like (3.13) |but with k ranging over �nitelymany values and P (k)(ajx�1�k) = g(k)(a; x�k)| was �rst studied by Raftery(1985a, 1985b) under the name of mixture transition distribution (MTD)model (see also Raftery and Tavar�e, 1994)).As we shall see in Chapter 7 that, under suitable hypotheses on the family(�k), a hain onsistent with transitions of the form (3.13) has the renewalproperty : There exists a sequene of random times (ti)i2Z, with independentinrements ti+1� ti, suh that for eah i 2 Z the distribution of the variablesfXn : n � tig is independent of the variables fXn : n < tig. This is anexample of a regeneration sheme. At the same Chapter 7 we shall showthat any hain of in�nite order with not-too-slow ontinuity rates [see (3.2)℄is atually a CMMC.Variable-length Markov hains (VLMC) The transition probabilitiesof these hains also depend on a �nite number of preeding states, but thisnumber is determined by the past history. More preisely, there exists a lagfuntion ` : A �! f0;�1;�2; � � � ;1g (3.14)suh that P (ajx) = P (ajx�1`(x)) (3.15)with the onvention that when `(x) = 0, the transition probability is atuallyindependent of the past.This type of proesses was introdued by B�uhlman and Wyner (1999),albeit for bounded funtions `. In Chapter 7 we shall show that hainsof in�nite order with not-too-slow ontinuity rates an be embedded into aVLMC.



3.3. EXAMPLES 31The following example illustrates the di�erenes between the di�erenttypes of hains introdued above.Sparse VLMC This is an in�nite-order version of example (M5) of B�uhlmanand Wyner (1999). It has a two-symbol alphabet, for instane A = f0; 1g,and a lag funtion`(x) = ` if x�1 = 0 = � � � = x�`; x�`�1 = 1 : (3.16)The transition probabilities are de�ned byP (1jx) = q`(x) (3.17)with 0 < qk < 1. We leave to the reader (Exerise 3.24 the veri�ation of thefollowing fats:(a) If limk qk does not exists or it is di�erent from q1, the system is notontinuous.(b) If limk qk = q1 and there exist onstants 0 <  � d < 1 suh thatqk 2 [; d℄ for all k, then the system is log-ontinuous and stritly non-null.() If limk qk = q1 = 0 then the system is ontinuous but not log-ontinuous.Furthermore, it is weakly but not strongly non-null.Sparse VLMC are losely related to renewal proesses on Z. In fat, letus de�ne (Tk)k2Z the suesive times in whih the sparse VLMC (Xn) takesthe value 1, i.e. ...T0 = supfn � 0 : Xn = 1gT1 = inffn > 0 : Xn = 1gT2 = inffn > T1 : Xn = 1g... (3.18)Then, the point proess (Tk)k2Z is a renewal proess, that is,



32CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLES(i) the random inrements (Tk � Tk�1)k2Z are independent, and(ii) the random inrements (Tk � Tk�1)k 6=0 are identially distributed.We onlude with some well known families of proesses that �t in ourframework.Hidden Markov models (HMM) These models refer to a proess (Xn),with values on an alphabet A, whih is de�ned in terms of a Markov proess(Sn) with values in a �nite set of states S |the hidden proess. This modelssituations in whih there is a simple but inaesible proess ontaining allthe information about the problem, and the observer has aess only to animpoverished ersatz of it.Examples of proesses (Xn) of this type were introdued by Shannon(1948) under the name Markov soures. These proesses are de�ned by theoordinate-by-oordinate transformation Xn = f(Sn) of an order-1 Markovhain (Sn). We leave to the reader the veri�ation that suh a proess maynot be a Markov hain (Exerise 3.25).The proesses were reintrodued, with a di�erent avor, by Baum andPetrie (1966) and were later intensively used in the theory of speeh reog-nition (see, for instane Jelinek, 1999). In this formulation, there is a familyof probability measures f�s : s 2 Sg on A establishing the relation betweenthe proesses (Xn) and (Sn) through the relationsP(Xnm = xnmjSnm = snm) = nYi=m�si(xi) (3.19)valid for eah hoie of xnm 2 Anm and snm 2 Snm, for eah m;n 2 Z, m � n.Therefore the observable proess (Xn) is a oordinate-by-oordinate randomtransformation of the hidden Markov hain (Sn).In fat, Markov soures and hidden Markov models are equivalent notions.The proof of this fat is left as an exerise to the reader (Exerise 3.26below). The fat that hidden Markov models are hains of in�nite order with



3.3. EXAMPLES 33ontinuous transition probabilities is also left as an exerise (Exerise 7.22).The proof uses a regeneration property of Markov hains. This propertyfollows from exerise 6.40 or as a partiular isntane of the muh more generaltheory developed in Chapters 6{4 for hains of in�nite orders.Binary autoregressions Let G be the two-points set, for instane G =f�1;+1g, �0 a real number and (�k; k � 1) a summable real sequene. Letq : R 7!℄0; 1[ be stritly inreasing and ontinuously di�erentiable. De�neP ( � jw) is the Bernoulli law on f�1;+1g with parameter q��0+Xk�1 �kw�k� ;(3.20)i.e., P (+1jw) = q(�0 +Pk�1 �kw�k) = 1 � P (�1jw). Suh a proess is thebinary version of autoregressive (long memory) proesses used in statistisand eonometris. It desribes binary responses when ovariates are historialvalues of the proess (see MGullagh and Nelder, 1989, Set. 4.3). A popularhoie for q is the logisti funtionq(x) = exp x2 osh x = 12(1 + exp�2x) : (3.21)Random systems with omplete onnetions These are proessesformed by pairs of hains evolving in an inter-related manner, used to modela number of pratial problems. Appliations inlude urn models, the theoryof ontinuous funtions, learning models, et. We refer the reader to Iosifesuand Grigoresu (1990) for a survey. Of the two hains, one is Markov, butin a ompliated \alphabet", or with ompliated transition funtions, whilethe other is of in�nite order in a simpler alphabet. The latter hain is, inpratie, used to infer properties of the ompliated Markov hain. As anexample, let us present the Markov hains de�ned by D-ary expansionsThese are proess having the unit interval as \alphabet", I = [0; 1℄, andde�ned through another, auxiliary, proess with a �nite alphabet. Formally,a family of maps is established between sequenes of a �nite alphabet G =



34CHAPTER 3. TYPES OF CHAINS OF INFINITE ORDER. EXAMPLESf0; 1; � � � ; D�1g and real numbers in I via D-ary expansions: For eah n 2 ZXn : GZ �! I(�(i) : i 2 Z) 7! xn =P1j=1 �(n� j)=Dj : (3.22)This map indues a natural map from probability kernels P : G � G�N� 7![0; 1℄ to probability kernels F : I � I�N� 7! [0; 1℄: For eah x 2 I, given anw 2 G�N� with x = X0(w)F�X1 = g + xD ��� X0 = x� = P (gjw) : (3.23)Interest fouses on the existene and properties of measures on the Boreliansof IZ ompatible with suh a probability kernel F .Maps (3.22){(3.23) have been already introdued by Borel in 1909 fori.i.d. �(i). The general ase in whih the �(i) form a hain with long memoryis the objet of Harris (1955) seminal paper.3.4 ExerisesExerise 3.24 Verify fats (a), (b) and () for the spare VLMC de�ned by(3.16){(3.17).Exerise 3.25 Consider a Markov soure, that is a proess (Xn) de�nedby the oordinate-by-oordinate transformation Xn = f(Sn) of an order-1Markov hain (Sn) taking values in a �nite set of states S. Show that, ingeneral, suh a proess is not a Markov hain.Exerise 3.26 Observe that every Markov soure is trivially a HMM. Con-versely, prove that every HMM an be written as a Markov soure. Hint:Consider the proess Zn = (Sn; Xn).Exerise 3.27 Prove that for a sparse VLMC (Xn), the times (Tk) de�nedin (3.18) form a renewal proess. Hint:P(Tk � Tk�1 = `) = q` `�1Yi=1(1� qi) : (3.28)



Chapter 4A regeneration sheme forCMMC
4.1 Random orders and regeneration timesLet us reall that a CMMC is de�ned by a system of transition probabilitieswhih an be deomposed asP (ajx) = �0 P (0)(a) + 1Xk=1 �k P (k)(ajx�1�k) (4.1)where eah P (k)(ajx�1�k) is a Markov transition of order k for k � 1, P (0)is a probability measure, and the �k are non-negative real numbers withP1k=0 �k = 1.We shall use a simulation algorithm for these transitions onstruted onthe basis of a double sequene of uniform random variables (U (1)n ; U (2)n ) whihwe simply denote(Ui; Vi)i2Z.De�nition 4.2 A CMMC simulation algorithm is an algorithm of theform Xn = 1Xk=0 1f�k�1 � Un � �kg f (k)(Vn; Xn�1n�k) : (4.3)35



36 CHAPTER 4. A REGENERATION SCHEME FOR CMMCwhere the f (k) are simulation algorithms of order-k Markov hains and (�k) isan inreasing non-negative sequene with �k % 1. (By onvention ��1 = 0.)We leave the reader the task of verifying that (4.4) is a simulation algo-rithm for a proess (Xn) onsistent with (4.1) if(i) f (k) are the simulation algorithms of the Markov hains with transitionsP (k) [de�ned, for instane, as in (2.26){(2.27)℄, and(ii) �k = kXi=0 �i : (4.4)(Exerise 4.49).In this setion we shall study properties of proesses de�ned by this sim-ulation algorithm. In Setion 4.2 we disuss the existene problem and the(non-trivial) issue of whether suh proesses are in fat onsistent with (4.1).In fat, the variables (Un) de�ne in (4.3) an auxiliary proess whih playsa key role in the sequel.De�nition 4.5 Let us all random orders, or random-order proess tothe independent random variables (Ln)n2Z, de�ned asLn = 1Xk=0 k 1f�k�1 � Un � �kg : (4.6)It is ruial to observe that the random orders are onstruted with totalindependene of the rest of the proedure. The variable Ln indiates howmany instants in the past are atually used to determine Xn: substitutingthe de�nition of Ln in (4.3), the simulation algorithm readsXn = 1Xk=0 1fLn = kg f (k)(Vn; Xn�1n�k) : (4.7)



4.1. RANDOM ORDERS AND REGENERATION TIMES 37In other words, Ln = k implies Xn = f (k)(Vn; Xn�1n�k) (4.8)if k � 1, while for k = 0Ln = 0 implies Xn = f (0)(Vn) (4.9)whih is independent of the past. The variables Ln an be visualized asarrows pointing from the instant n to the instant n�Ln. Eah realization ofrandom orders determines the \genealogy" of the state at eah instant. Thestate at time n is determined by the on�guration on the interval [n�Ln; n℄;eah i 2 [n � Ln; n℄ is in turns determined by the states at the interval[i � Li; i℄ and so on. This bak-referening proedure an lead us to one oftwo situations:(i) the proedure ontinues forever and take us to �1,(ii) the proedure atually stops at a time � [n℄ suh that no arrow startingfrom n or its \anestors" rosses it. In partiular, the on�guration at� [n℄ must be independent of the past, that is L� [n℄ = 0.In the seond ase, the values assumed by the proess before � [n℄ are irrele-vant for the determination of Xn. This time � [n℄ is a regeneration time forthe instant n.More generally, we an onsider windows (Xl; : : : ; Xm), for two integersl < m and analyze the possibility of onstruting it knowing only a �nitepart of the past history of the proess. In other words, we want to �nd thelosest past time � [l; m℄ suh that the window (Xl; : : : ; Xm) is independent ofthe variables fXi : i < � [l; m℄g. This random time an be bounded throughthe random-order proess (Ln).De�nition 4.10 The regeneration time for the window (Xl; : : : ; Xm)is � [l; m℄ := maxnt � l : t � n� Ln; for all n 2 [t;m℄o (4.11)with the onvention � [l; m℄ = �1 if the set in the right-hand side is empty.In ase l = m we write � [l℄ := � [l; l℄.



38 CHAPTER 4. A REGENERATION SCHEME FOR CMMCNotie that, by the de�nition (4.6) of the variables Ln,� [l; m℄ = maxnt � l : Un � �n�t; for all n 2 [t;m℄o : (4.12)To be sure, de�nition (4.11) refers to the worst-ase senario, where eahorder-k Markov transition probability depends on all the k preeding times.For less drasti dependenes, the atual regeneration times an be loser tothe window than the one de�ned by (4.11). An extreme example is whenthe di�erent Markov transitions depend on only one site in the past |P (k)(ajx�1�k) = g(k)(a; x�k). In this ase, the state at eah time dependsof exatly one anestor and regeneration an take plae at times muh loserthan (4.11).For �xed l, the sequene of regeneration times � [l; m℄ for m � l is de-reasing. In partiular, a regeneration time for a given interval [l; m℄ is not,in general, a regeneration time for a larger interval [l; m0℄ with m0 > m.The monotoniity of the sequene (� [l; m℄)m implies the existene of thelimit � [l;+1[ := limm!1 � [l; m℄ : (4.13)De�nition 4.14 If � [l;+1[<1 we all it a renewal time for the CMMCalgorithm.We remark that � [l; m℄ = minl�i�m � [i℄ (4.15)and � [l;+1[ = infl�i � [i℄ : (4.16)The onsiderations of this setion learly indiate the strategy to followfor the study of CMMC:(1) Determine the distribution of regeneration times. This depends onlyon the random-order proess, that is on the parameters (�k)k�0 in (4.1).



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC39(2) Study the properties of the proess in terms of this distribution.We stress, however, that the deomposition (4.1) of a CMMC is notunique. See the disussion in Setion 4.3 below and Exerise 7.24.We develop this strategy in Chapter 6. We emphasize that this approahis based on the simulation algorithm (4.3). We still have to relate proessde�ned by these algorithms with proess onsistent with CMMC deompo-sitions (4.1). This is done in next setion.4.2 Existene, uniqueness and loss of mem-ory of CMMC4.2.1 Main resultsThis setion is devoted to the proof of the following theorems.Theorem 4.17 (Existene and uniqueness) Consider a CMMC systemof transition probabilities as in (4.1), and the related CMMC simulation al-gorithm (4.3). If P(� [0℄ > �1) = 1 (4.18)then(i) There exists exatly one stohasti proess (Xn)n2Z de�ned by the algo-rithm. The proess an be de�ned almost surely in the following way.To de�ne Xn, start from � [n℄ and determine �rstX� [n℄ = f (0)(V� [n℄) (4.19)and then, indutively, Xi = f (Li)(Vi; X i�1Li ) (4.20)for i 2 [� [n℄ + 1; n℄. [The funtions f (i) are the simulation algorithmsof the Markov omponents of the CMMC used in the algorithm (4.3).℄



40 CHAPTER 4. A REGENERATION SCHEME FOR CMMC(ii) For any z�p�1 2 A�p�1 limp!1Xn[z�p�1℄ = Xn (4.21)P-almost surely for all n 2 Z. [The left-hand side is the proess with�xed past de�ned in (2.11).℄(iii) This proess (Xn) is the only proess onsistent with the CMMC tran-sition probabilities.We remark that by (4.15) and translation invarianeP(� [0℄ > �1) = 1 () P(� [l; m℄ > �1) = 1 8 l � m 2 Z : (4.22)Theorem 4.23 (Loss of memory) (i) If (Xn) is onsistent with a CMMCsystem of transition probabilities,���P�Xj0 = aj0�� P�Xj0 [z�p�1℄ = aj0���� � P�� [0; j℄ � �p� (4.24)for eah j; k 2 N and eah past z�p�1 2 A�p�1.(ii) If ( eXn) and ( bXn) are two proesses onsistent with a CMMC system oftransition probabilities,���eP� eXj0 = aj0�� bP� bXj0 = aj0���� � P�� [0; j℄ > �1� (4.25)for eah j; k 2 N.Inequality (4.24) bounds the speed at whih the proess is \lossing mem-ory" from the original history z�k�1. This bound will be exploited in Chap-ter 6. Inequality (4.25) ould be useful for CMMC exhibiting phase oexis-tene, i.e. with more than one onsistent proess.The proof of these theorems is presented in the next setions.



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC414.2.2 ExisteneProof of part (i) of Theorem 4.17 The proess is de�ned through (4.19)and (4.20).Proof of part (ii) of Theorem 4.17 (onvergene of �xed-past pro-esses) The proess (Xn[z�p�1℄) is de�ned by the �xed-past version of thealgorithm (4.3):Xn[z�p�1℄ = n+p�1Xk=0 1f�k�1 � Un � �kg f (k)�Vn ; Xn�1n�k [z�p�1℄�+ 1Xk=n+p1f�k�1 � Un � �kg f (k)�Vn ; Xn�1�p+1[z�p�1℄ zpn�k� :(4.26)If � [n℄ > �p, the last sum dissapears and we reover the same reursiveequations (??), whih are, in fat, equivalent to (4.19){(4.20). We onludethat Xn[z�p�1℄ 1f� [n℄ > �pg = Xn 1f� [n℄ > �pg (4.27)with Xn de�ned by (4.19){(4.20). Furthermore, via (4.15) this identity gen-eralizes to Xml [z�p�1℄ 1f� [l; m℄ > �pg = Xml 1f� [l; m℄ > �pg : (4.28)In partiular identity (4.27) proves part (ii).Proof of onsisteny in part (iii) of Theorem 4.17 We show now thatthe proess of part (i) is onsistent with the transition probabilitiesP (ajxn�1�1) := PfF (Un; Vn; xn�1�1) = ag (4.29)where F is the funtion in the right-hand side of (4.3). For this we mustverify (2.31) for fn = F for any ylindrial g. Let us onsider g = g(Xnl ).



42 CHAPTER 4. A REGENERATION SCHEME FOR CMMCOur starting point is the onsisteny of the �xed-past proesses. Indeed, bythe remark following (2.31), we have thatEhg(Xnl [z�p�1℄)i = Ehg�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄�i (4.30)for any past z�p�1 2 A�p�1. We shall take the limit p!1 of this expression.By part (ii) of the theorem and dominated onvergeneEhg(Xnl [z�p�1℄)i �!p!1 Ehg(Xnl )i : (4.31)We now insert inside the expetation in the right-hand side of (4.30)1 = 1f� [l; n℄ > �pg+ 1f� [l; n℄ � �pg : (4.32)By (4.28) g�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄� 1f� [l; n℄ > �pg= g�F (Un; Vn; Xn�1�1 ) ; Xn�1�l � 1f� [l; n℄ > �pg�!p!1 g�F (Un; Vn; Xn�1�1 ) ; Xn�1�l � P-a.s. (4.33)The last onvergene is due to hypothesis (4.18) (plus translation invariane).The same hypothesis implies thatEhg�F (Un; Vn; Xn�1�1 [z�p�1℄) ; Xn�1�l [z�p�1℄� 1f� [l; n℄ � �pgi �!p!1 0 : (4.34)>From (4.30){(4.34) we onlude thatEhg(Xnl )i = Ehg�F (Un; Vn; Xn�1�1 ) ; Xn�1�l �i : (4.35)This proves onsisteny. The uniqueness statement in part (iii) is a partiularase of part (ii) of Theorem 4.23. This theorem is proved below.



4.2. EXISTENCE, UNIQUENESS AND LOSS OFMEMORY OF CMMC434.2.3 Loss of memory and uniquenessLet us onsider any proess ( bXn) onsistent with the transition probabilities(4.1). Let's denote (b
; bF ; bP) the orresponding probability spae. Consis-teny means the validity of (2.19) for the orresponding expetation bE andthe CMMC transition probabilities (Pn). Applied to g(Xj�1) = I[Xj0 = aj0℄,the onsisteny ondition implies thatbP� bXj0 = aj0� = bE hP (aj0j bX�1�1)i (4.36)for eah j 2 N. To prove uniqueness we must ondition further the left-handside with respet to a remote past z�p�1 2 A�p�1, p 2 N . That is, we writebP� bXj0 = aj0� = Z b�(dz) bE hP�aj0 ��� bX�1�p+1[z�p�1℄�i ; (4.37)where b� is the law of the proess bX, that is, � is the measure de�ned byR b�(dz)f(z) = bE f( bX) for ylinder funtions f : A1�1 ! R. For eah pastz�p�1, however, there is only one proess onsistent with the �xed-past versionof the CMMC, and it is the proess de�ned by the orresponding CMMCalgorithm (Remark 2.29). We an therefore remove the innermost \hats"and write bP� bXj0 = aj0� = Z b�(dz) EhP�aj0 ��� X�1�p+1[z�p�1℄�i ; (4.38)where now E is our usual expetation on the variables (Un; Vn) and (Xn[z�p�1℄)the �xed-past proess de�ned by (4.26). We an now use the results of ourprevious setions. In partiular, by (4.28)���P�aj0 ��� X�1�p+1[z�p�1℄�� P�aj0 ��� X�1�p+1[w�p�1℄���� � 1f� [0; j℄ � �pg ; (4.39)uniformly in the pasts z�p�1; w�p�1. All the uniqueness results follow from thisformula and (4.38):



44 CHAPTER 4. A REGENERATION SCHEME FOR CMMC(i) To obtain (4.24) we just need to writeP�Xj0 = aj0�� P�Xj0 [z�p�1℄ = aj0�= Z �(dz) EhP�aj0 ��� X�1�p+1[w�p�1℄�� P�aj0 ��� X�1�p+1[z�p�1℄�i (4.40)and use (4.39). Here � is the law of the proess X.(ii) To obtain (4.25) we writeeP� eXj0 = aj0�� bP� bXj0 = aj0�= Z Z e�(dz)b�(dw) EhP�aj0 ��� X�1�p+1[z�p�1℄�� P�aj0 ��� X�1�p+1[w�p�1℄�i ;(4.41)use (4.39) and take the limit p!1. Here b� is the law of the proess bX.4.3 Finiteness of regeneration timesTo �nish this hapter let us state suÆient onditions for the regenerationand renewal times to be �nite.Theorem 4.42 If Xm�0 mYk=0�k = 1 (4.43)then for eah �nite interval [l; m℄,P(� [l; m℄ > �1) = 1 : (4.44)Furthermore, if limm!1 mYk=0�k > 0 (4.45)



4.3. FINITENESS OF REGENERATION TIMES 45then for eah l 2 Z, P(� [l;1[> �1) = 1 : (4.46)Conditions (4.45) and (4.43) impose lower bounds on the speed of theonvergene �k % 1. In partiular both onditions require �0 > 0 [see (4.1){(4.4)℄. In Exerise 4.50 the reader is asked to show that as a result a CMMCwith �j dereasing at least as 1=j2+Æ has �nite renewal times if Æ > 0. Inonstrast, if �j � 1=j2 Theorem 4.42 guarantees only the �niteness of theregeneration times for �nite windows.It is lear that CMMC transition probabilities admit in�nitely many de-ompositions of the type (4.1). For instane, if the parameters (�k)k2N de�nesuh a deomposition with Markovian transitions P (k), then the parameters�0=2; (�k+�0=2k+1)k2N� de�ne another deomposition with Markovian tran-sitions [�0P (0)=2k+1 + �kP (k)℄=(�0=2k+1 + �k). A more drasti manifestationof this fat is shown in Exerise 7.24. It is natural to wonder as to whetherthere is an \optimal" suh deomposition, at least from the point of viewof Theorem 4.42. It is lear that this sense of optimality is related to thefastest possible onvergene �k % 1. In turns, this orresponds to hoosingdistributions (�k) that put as muh weight as possible in the lowest valuesof k. A quik look to the ombination (4.1) reveals that �0 an not exeed�0 � Xa2A infx P (ajx) : (4.47)Furthermore, proeeding indutively,�0 + � � �+ �k � infx�1�k Xa2A infy�k�1�1 P (ajx�1�k y�k�1�1 ) : (4.48)In Chapter 6 we shall expliitely determine, for large families of hains ofin�nite orders, CMMC deompositions that saturate these inequalities.The proof of Theorem 4.42, and of other onsequenes of the regenerationsheme, will be given in Chapter 6. It uses a very simple instane of ouplingtehnique and it relies on an auxiliary Markov hain alled the house-of-ardsproess. The relevant properties of this hain are derived in an \intermezzo"hapter, Chapter 5.



46 CHAPTER 4. A REGENERATION SCHEME FOR CMMC4.4 ExerisesExerise 4.49 Show that the presription Xn = F (Un; Vn; Xn�1) given in(4.3) is indeed a simulation algorithm for the CMMC with transition proba-bilities (4.1). That is, show thatP (ajxn�1�1) = PfF (Un; Vn; xn�1�1) = agwhere the left-hand side is given by (4.1) and the funtion F is de�ned bythe right-hand side of (4.3) for the hoies disussed after De�nition 4.2.Exerise 4.50 Let �k 2 [0; 1℄ form a sequene suh that �k % 1. Write�k=: 1� "k.(a) Show that limm!1 mYk=0�k > 0 () 1Xk=0 "k < 1 : (4.51)(b) Show thatexpn� 1Xk=0 "k � 1Xk=0 "2k=2o � mYk=0�k � expn� 1Xk=0 "ko : (4.52)() Applying (a) and (b) to the ase"k = 1Xj=k+1�j ; (4.53)onlude that a CMMC with �j dereasing at least as 1=j2+Æ has �niterenewal times if Æ > 0, and �nite �nite-window regeneration times ifÆ = 0.Exerise 4.54 Prove the bounds (4.47){(4.48). Any idea about the Marko-vian transitions P (k) that lead to a saturation of these bounds?Exerise 4.55 Prove that (2.16) implies (4.36).



Chapter 5Intermezzo: the house-of-ardsproess
5.1 Reurrene and transieneGiven a set of parameters �0; �1; : : : 2 [0; 1℄, we de�ne the assoiated house-of-ards system of transition probabilities as the order-1 Markovian systemon A = N suh that P (x+ 1jx) = �xP (0jx) = 1� �x (5.1)and P (xjx�1) = 0 otherwise. Thus proesses onsistent with these transitionslimb in a stairase-like fashion and at some instants fall abruptly to theground. Let us now onsider a hain (Wn)n�0 starting from 0 and evolvingwith (5.1). A simulation algorithm for suh a hain is:Wn = ( 0 n � 0(Wn�1 + 1) 1fUn < ��Wn�1g n � 1 : (5.2)The property of interest for our purposes is that this hain is not positive-reurrent.Lemma 5.3 The hain (Wn : n � 0) is47



48 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESS(a) null-reurrent if, and only if, Pn�0Qnk=0 �k =1, and(b) transient if, and only if, Q1k=0 �k > 0.Proof. It is a diret omputation, using the de�niton of null-reurrene andtransiene of a Markov hain.5.2 Return timesAs we shall see, [see formula (6.3) below℄, the distribution of the regenerationtimes of a CMMC is related to the return-time probabilities of the house-of-ards proess �n := P(Wn = 0) (5.4)for all s 2 Z. The following proposition ollets a number of useful propertiesof these quantities.Proposition 5.5 Let (�k)k2N be an inreasing non-negative sequene with�k % 1, and onsider the assoiated house-of-ards proess (Wn) de�ned by(5.2). Let (�n)n2N be the return-time probabilities (5.4). Then(i) Pn�0Qnk=0 �k =1 if, and only if, �n ! 0.(ii) Q1k=0 �k > 0 if, and only if, Pn�0 �n <1.(iii) If (1� �n) dereases exponentially, so does �n.(iv) If Q1k=0 �k > 0 andlim supk!1 supi � 1� �i1� �ki�1=k � 1 ; (5.6)then �n � onst (1 � �n). Condition (5.6) holds, for instane, when�n � 1� (logn)bn� for  > 1.In fat, we shall proof a statement slightly stronger than (iv) (Lemma5.18 below)



5.2. RETURN TIMES 49Proof of (i){(iii). Statement (i) is just part (a) of Lemma 5.3. To proveparts (ii) and (iii) we introdue the �rst-return time� = inf fn > 0;Wn = 0g : (5.7)We see that P(� = 1) = 1� �0 ; (5.8)P(� = n) = (1� �n�1) n�2Yk=0�k for n � 2; (5.9)P(� = +1) = +1Yk=0�k : (5.10)As the house-of-ard proess is Markovian,�n = nXk=1 P(� = k) �n�k : (5.11)Let us now onsider the generating funtionsF (s) = +1Xn=1 P(� = n) sn (5.12)and G(s) = +1Xn=0 �n sn : (5.13)Formula (5.11) implies that these series are related in the formG(s) = 11� F (s) ; (5.14)for all s � 0 suh that F (s) < 1.It is lear that the radius of onvergene of F is at least 1. In fat,F (1) = P(� < +1) : (5.15)



50 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESSMoreover, if Qk�1 �k > 0, the radius of onvergene of F islimn!1 [1� �n℄�1=n : (5.16)This follows from the fat that P(� = n)=(1� �n�1)! P(� = +1) > 0, by(5.9){(5.10).Statement (ii) follows from the hain of equivalenes:1Yk=0�k > 0 () P(� < +1) < 1 () G(1) <1 () Xn�0 �n <1 :(5.17)The �rst equivalene is part (b) of Lemma 5.3, the seond one follows from(5.14) and (5.15), and the last one from the de�nition (5.13) of G.To prove statement (iii) let us assume that 1 � �m � Cm for someonstants C < +1 and 0 <  < 1. In partiular this implies thatQ1k=0 �k >0 [Exerise 4.50 (a)℄ and, hene, by (5.16), that the radius of onvergeneof F is at least �1 > 1. Moreover, by (5.15) and the �rst equivalene in(5.17) we onlude that F (1) < 1. By ontinuity it follows that there existss0 > 1 suh that F (s0) = 1 and, hene, by (5.14), G(s) < +1 for all s < s0.By de�nition of G, this implies that �n dereases faster than �n for any� 2 (s�10 ; 1).The proof of (iv) is a onsequene of the following lemma.Lemma 5.18 If Q1k=0 �k > 0 andlim supk!1 supi � P(� = 1)P(� = ki)�1=k < 1P(� < +1) ; (5.19)then �n � C P(� = n) for some onstant C.To see how (iv) follows from this lemma, observe that hypotesis (5.6)implies that the left-hand side of (5.19) does not exeed 1 [see (5.9){(5.10)℄.This guarantees the validity of (5.19) beause of the �rst equivalene in (5.17).



5.2. RETURN TIMES 51Proof of the lemma. We start with the following expliit relation betweenthe oeÆients of F and G.�n = nXk=1 Xi1; : : : ; ik � 1i1 + � � �+ ik = n kYm=1P(� = im) ; (5.20)for n � 1. This relation an be obtained diretly from (5.14) or, alternatively,by deomposing eah return time as a sum of k times of �rst return andusing Markovianness. Multiplying and dividing eah fator in the rightmostprodut by P(� < +1), this formula an be rewritten as�n = nXk=1 P(� < +1)k Xi1; : : : ; ik � 1i1 + � � �+ ik = n kYm=1 P(� = im j � < +1): (5.21)At this point we observe the following. If i1 + � � � + ik = n, thenmax1�m�k im � n=k and thus, for g inreasingg(n) � g (k imax) ;where imax = max1�m�k im. If we apply this to g(n) = 1=P (� = n), whih isinreasing by (5.9), we obtain1 � P(� = n)P(� = k imax) : (5.22)This inequality, inserted in (5.21), yields the inequality�n � P(� = n) nXk=1 P(� < +1)k� Xi1; : : : ; ik � 1i1 + � � �+ ik = n Qkm=1 P(� = im j � < +1)P(� = k imax) ; (5.23)



52 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESSWe now single out a fator P(� = imaxj� < +1) = P(� = imax)=P(� < +1)from the rightmost produt of (5.23). If there are several ij = imax we hoosethe smaller j. We then use (5.19) plus (5.9){(5.10) to obtain a bound of theform P(� = imax)P(� = k imax) � Æk ; (5.24)valid for k suÆiently large, whereÆ < 1P(� < +1) : (5.25)Expressions (5.23){(5.25) imply the inequality�n � C P(� = n) nXk=1 Æk P(� < +1)k�1 Sk ; (5.26)for some onstant C > 0, whereSk := kXM=1 XiM � 1; `1 � 0; `2 � 0iM + `1 + `2 = n X1 � i1; : : : ; iM�1 < iMi1 + � � �+ iM�1 = `1 Y1�m�M�1P(� = im j � < +1)� X1 � iM+1; : : : ; ik � iMiM+1 + � � �+ ik = `2 YM+1�m�k P(� = im j � < +1) : (5.27)[M is the smallest j for whih ij = imax in eah summand of (5.23).℄To bound this sum we introdue a sequene of independent random vari-ables (� (i))i2N with ommon distributionP(� (i) = j) = P(� = j j � < +1) : (5.28)With this probabilisti interpretation we see thatSk � kXiM=1 n�k+1Xj=1 P� X1�s�k�1s 6=M � (s) = n� j� � k : (5.29)



5.2. RETURN TIMES 53Hene, (5.26) implies�n � C Æ h 1Xk=1 k [Æ P(� < +1)℄k�1iP(� = n)� onstP(� = n) : (5.30)



54 CHAPTER 5. INTERMEZZO: THE HOUSE-OF-CARDS PROCESS



Chapter 6Mixing properties and perfetsimulations for CMMC
6.1 Houses of ards and regenerationIn this hapter we shall use the results of the previous hapter to prove anumber of properties of CMMC, inluding the promised Theorem 4.42. Theanalysis is based on the following graphial proedure. Consider a �xedwindow orresponding to the interval [l; m℄. We �rst hek whether the leftendpoint l is a regeneration time for this window. This would be the ase if,�rst of all, Ll = 0 (the state at l is independent of the past) and, furthermore,Li < i � l for i 2℄l; m℄ (the states at times in ℄l; m℄ depend only on timesnot earlier than l). Equivalently, l is a regeneration time for the windowXl; � � � ; Xm if, and only if, a house-of-ards proess starting at the origin attime l does not return to the origin in the interval ℄l; m℄. If this house-of-ards proess does visit the origin inside the interval, then we rule out l asa regeneration time and perform a similar test to a house-of-ards proessstarting at l� 1. We ontinue this way until we �nd the �rst s � l suh thatthe house-of-ards proess starting there manages to pass over the wholeinterval [s;m℄ without visiting the origin.To formalize this argument, let us onsider a oupled family of house-of-55



56CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCards proesses ((W sn : n � s) : s 2 Z), all de�ned by (5.1) with the samesequene �k % 1 but started at the origin at di�erent times s 2 Z. We ouplethem by running them with the same ommon uniform variables (Un), thatis, through a oupling algorithm (De�nition 2.36)W sn = ( 0 n � s(W sn�1 + 1) 1fUn < ��W sn�1g n � s + 1 : (6.1)The proess (5.2) is (Wn) = (W 0n). Given a CMMC, we shall all the assoi-ated house of ards, the family of proesses (6.1) onstruted with the (�k)given in (4.4).We start with our key identity.Lemma 6.2 The following identity holds between the random-order proessof a CMMC and its assoiated house of ards:n� [l; m℄ < so = [i2[l;m℄nW s�1i = 0o (6.3)for s � l.Proof. The asumed monotoniity of the �k's implies thatW sn � W tn for all s < t � n : (6.4)Hene, W sn = 0 implies that W tn = 0 for s < t � n and, therefore, all thesehains oalese at time n:W sn = 0 =) W sk =W tk; s � t k � n : (6.5)Expression (4.12) tells us that, if s � l,� [l; m℄ < s () 8j 2 [s; l℄; 9n 2 [j;m℄ : W j�1n = 0 : (6.6)By the oalesing property (6.5), the statement on the right-hand-side istrue if, and only if, the same statement is true but with n 2 [l; m℄. By themonotoniity property (6.4) we then onlude� [l; m℄ < s () maxnm < s : 8n 2 [s; t℄;Wmn > 0o < j � 1() 9n 2 [s; t℄ :W j�1n = 0 : (6.7)



6.2. FINITENESS OF RENEWAL AND REGENERATION TIMES 57As an immediate orollary of the key identity (6.3), plus time homogeinity,we obtain the following bound on the distribution of regeneration times.Corollary 6.8 For a CMMCP(� [l; m℄ < s) � mXi=l �i�s+1 (6.9)for s � l � m, where �j are the return times (5.4) of the assoiated house-of-ard proess started at time 0 [de�ned in (5.2)). Estimations for �j aregiven in Proposition 5.5.6.2 Finiteness of renewal and regeneration timesAs a �rst appliation of the key identity we show now how it yields a proofof Theorem 4.42. In view of Lemma 5.3, the following lemma yields suh aproof.Lemma 6.10 The hain (Wn : n � m) [thus, by translation invariane, allthe hains (W sn : n � s)℄ is(a) null-reurrent if, and only if, P(� [l; m℄ > �1) = 1 for eah �niteinterval [l; m℄, and(b) transient if, and only if, P(� [l;1[> �1) = 1 for eah l 2 Z.Proof. By translation invariane, the probability of the right-hand side of(6.3) oinides with P� [i2[l;m℄fW�s+i+1 = 0g� : (6.11)Therefore, by the monotoniity property (6.4) we have thatP(� [l; m℄ < s) 2 hP(Wm�s+1 = 0) ; m�l+1Xi=1 P(Wl�s+i = 0)i : (6.12)



58CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCAs s ! �1 this interval remains bounded away from 0 in the positive-reurrent ase, but shrinks to 0 otherwise. Part (a) of the lemma followsfrom the fat thatP(� [l; m℄ = �1) = lims!�1P(� [l; m℄ < s) : (6.13)The proof of part (b) is analogous but simpler. By translation invarianeand (6.3) we have thatP(� [l;1℄ < s) = P� [i2[l�s+1;1℄fWi = 0g� (6.14)whih goes to zero as s! �1 if, and only if, (Wn) is transient.6.3 Mixing propertiesAnother immediate appliation of the key identity (6.3) is to obtain relax-ation properties, also known as mixing properties, of CMMC. The proedureused in Setion 4.2 to onstrut a CMMC an be thought as a simulationpresription: An initial history is hosen and subsequent states are generatedthrough transition probabilities (through appropriate simulation algorithms.Theorem 4.42 gives onditions guaranteeing that asymptotially this proe-dure yields the proess we are after. Two questions arise naturally at thispoint:(1) Can we estimate how far we are from the equilibrium? That is, howlong we have to wait to see the inuene of the original history beomesmaller than some aeptable level?(2) Can we design an alternative proedure with faster relaxation times?Both questions will be studied in these notes. Here we shall use expression(4.24) to give estimates related with the �rst question. In Setion 6.5 below



6.4. REGENERATION SCHEME 59we shall show that it is possible to give the best oneivable answer to ques-tion (2): The regeneration sheme o� CMMC provides a way to simulatethese hains without relaxation errors.Let us now state the estimations that follow from our previous work.Proposition 6.15 For CMMC a (Xn),���P�Xm+`` = am0 �� P�Xm+`` [z℄ = am0 ���� � mXi=0 �i+` ; (6.16)where �j is the return-time probability (5.4) of the assoiated house-of-ardproess started at time 0. Estimations for �j are given in Proposition 5.5.This proposition follows immediately from the loss-of-memory inequality(4.24) and the bound (6.9) on the distribution of regeneration times.6.4 Regeneration shemeAs a onsequene of Theorem 4.42 and part (b) of Lemma 6.10 we see thatif Q1k=0 �k > 0, almost all realizations of the CMMC exhibit a stritly in-reasing sequene (si) of renewal times. In this ase, the proess may bevisualized as a sequene of independent bloks, of random length si+1 � si.This de�nes a regeneration sheme. The formal statement of this propertyis as follows.Let N 2 f0; 1gZ be the random Boolean variables de�ned byN(j) := 1f� [j;1℄ = jg : (6.17)Let (T` : ` 2 Z) be the ordered time events of N de�ned by N(i) = 1 if andonly if i = T` for some `, T` < T`+1 and T0 � 0 < T1.Corollary 6.18 Let us onsider a CMMC. If Q1k=0 �k > 0, then the proessN de�ned in (6.17) is a stationary renewal proess with renewal distributionP(T`+1 � T` � m) = �m (6.19)



60CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCfor m > 0 and ` 6= 0, where �m is the return time de�ned in (5.4). Further-more, the random vetors �` 2 [n�1An, ` 2 Z, de�ned by �` = (XT`; � � �XT`+1�1)are mutually independent and identially distributed with onditional distri-butionP��` = (aT` ; : : : ; aT`+1�1) ��� (Un)� = P 0(aT`) � � � P (LT`+1�1)(aT`+1�1jaT`+1�2T` ) :(6.20)Shemes of this nature have been obtained by Berbee (1987), in the on-text of hains of Type B (see De�nition 3.12), and by Lalley (1986, 2000)for hains of Type C. The present onstrution, valid for the more generalType A haines, was was done by Ferrari et al (2000).Proof. The stationarity of N follows immediately from the onstrution.Let f(j) := P�N(�j) = 1 jN(0) = 1� (6.21)for j 2 N� . To see that N is a renewal proess it is suÆient to show thatP�N(s`) = 1 ; ` = 1; : : : ; n� = � n�1Ỳ=1 f(s`+1 � s`) (6.22)for arbitrary integers s1 < � � � < sk. [From Poinar�e's inlusion-exlusionformula, a measure on f0; 1gZ is haraterized by its value on ylinder setsof the form f� 2 f0; 1gZ : �(s) = 1; s 2 Sg for all �nite S � Z. For S =fs1; : : : ; skg, a renewal proess must satisfy (6.22).℄ For j 2 Z, j 0 2 Z[f1g,de�ne H[j; j 0℄ := 8<: fUj+` < �`; ` = 0; : : : ; j 0 � jg; if j � j 0\full event"; if j > j 0 (6.23)With this notation, N(j) = 1fH[j;1℄g; j 2 Z: (6.24)and P�N(s`) = 1 ; ` = 1; : : : ; n� = Pn\̀=1H[s`;1℄o (6.25)



6.5. PERFECT SIMULATION 61>From monotoniity we have for j < j 0 < j 00 � 1,H[j; j 00℄ \H[j 0; j 00℄ = H[j; j 0 � 1℄ \H[j 0; j 00℄; (6.26)and then, with sn+1 =1 we see that (6.25) equalsnYi=1 PnH[s`; s`+1 � 1℄o ; (6.27)whih equals the right hand side of (6.22). Hene N is a renewal proess.On the other hand, by stationarity,P(T`+1 � T` � m) = P�� [�1;1℄ < �m + 1 ��� � [0;1℄ = 0� (6.28)and, hene, by the key identity (6.3)P(T`+1 � T` � m) = P(W�m+1�1 = 0) = �m ; (6.29)proving (6.19).The independene of the random vetors �` follows from the de�nitionof T`.6.5 Perfet simulationTo explain what is a perfet-simulation algorithmwe start with the importantde�nition of stopping time.De�nition 6.30 (Stopping time) Let (Un) be a sequene of random vari-ables on some set U. We say that T is a stopping time for (Un : n � 0) ifthe event fT � jg depends only on the values of U1; : : : ; Uj. That is, if thereexist events Aj � Uj suh thatfT � jg = f(U1; : : : ; Uj) 2 Ajg (6.31)



62CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMCExample 6.32 Let  2 (0; 1), U = [0; 1℄, (Un) be a sequene of randomvariables uniformly distributed in U and T := �rst time a Un is less than :T := minfn � 1 : Un < g (6.33)Then T is a stopping time, the sets Aj are de�ned byAj = fU1 > ; : : : ; Uj�1 > ; Uj < g (6.34)and the law of T is geometri with parameter :P(T > n) = (1� )n (6.35)In ontrast, variables whose de�nition involves the last time in whih aertain ondition is satis�ed are not stopping times.De�nition 6.36 A perfet simulation for a proess (Xn) is a familyf(T[l;m℄; F[l;m℄) : l � m 2 Zg, where for eah l � m 2 Z(i) T[l;m℄ is a stopping time on the variables (Um�n)n�0,(ii) P(T[l;m℄ <1) = 1, and(iii) F[l;m℄ : (Ul�T[l;m℄; : : : ; Um)!Aml is suh thatP�Xml = aml � = P�(F[l;m℄)ml = aml � (6.37)for eah aml 2 Aml .Perfet simulations, therefore, allow to obtain, in a �nite time, samplesof windows distributed exatly as the proess, without relaxation errors.The regeneration sheme provides a natural perfet-simulation algorithm forCMMC.



6.6. EXERCISES 63Proposition 6.38 For CMMC with Pm�0Qmk=0 �k = 1 there exist aperfet simulation. The stopping times are T[l;m℄ = m� � [l; m℄ and(F[l;m℄)� [l;m℄ = f (0)(U� [l;m℄)...(F[l;m℄)m = f (Lm)(Um; (F[l;m℄)m�1m�Lm) (6.39)The order-variables (Ln) are de�ned in (4.6), and the f (k) are the simulationalgorithms (4.3).6.6 ExerisesExerise 6.40 Consider a CMMC de�ned byP (ajx) = �0 P (0)(a) + �1 P (1)(ajx�1) (6.41)with �0 + �1 = 1.(a) Show that for any l 2 Z, � [l℄ has a geometri distribution and determineits parameters. Hint: show that� [l℄ = maxfn � l : Ln = 0g : (6.42)(b) Conlude that for all n � l, (Xn+� [l℄)n�0 and (X� [l℄�n)n�0 are indepen-dent.Exerise 6.43 Consider now a CMMCP (ajx) = �0 P (0)(a) + kXi=1 �i P (i)(ajx�1�i ) (6.44)with �0 + �+ �k = 1 and 2 � k <1.(a) Show that formula 6.42 is no longer valid.(b) Show thatP(� [l℄ � l � s) � �0(�0 + �1) � � � (�0 + � � �+ �minfk�1;sg) : (6.45)



64CHAPTER 6. MIXING PROPERTIES AND PERFECT SIMULATIONS FORCMMC



Chapter 7Every hain of in�nite order isa CMMC and a VLMC
7.1 Chains as CMMCThe overall goal of this setion is summarized in the following theorem. [Forthe de�nition of ontinuity and other hypotheses of hains of in�nite ordersee De�nition 3.1. For the de�ntion of CMMC and related notation seeSetion 4.℄Theorem 7.1 Every hain of in�nite order with a ontinuous system oftransition probabilities is a CMMC.The method of proof is of interest in itself. It is based on a rather generalpresription to deompose onditional probabilities as onvex ombinationsof Markovian proesses. This presription, in fat, is very exible and leavesroom for user-de�ned hoies. Our presentation is organized so to lerlyexhibit this exibility, with the hope that readers will put it to good use inspei� appliations.De�nition 7.2 A CMMC partition is a pair (fPx : x 2 Ag; fBk : k 2Ng) where: 65



66CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMC(i) Eah Px is a partition of the interval [0; 1℄ of the form[0; 1℄ = [a2An2N Ixn1a ; (7.3)with sets Ixn1a formed by unions of intervals. These sets may be di�erentfor di�erent x, exept those for n = 0 for whih we use the abusivenotation Ix01a .(ii) The sets Bk form a partition of [0; 1℄(iii) The partitions fPxg and (Bk) are suh that� [a2A0�k�n Ixk1a � � n[k=0Bk (7.4)for eah n 2 N and x 2 A.Proposition 7.5 A CMMC deomposition de�nes an algorithm for a CMMC.Proof. We have to de�ne �k and f (k) in (4.3). For the former we take�k = length(Bk). We then onsider, for eah x 2 A and n 2 N , the setsJxn1a := � [0�k�n Ixk1a � \ Bn : (7.6)Condition (7.4) implies that the sets fJxn1a : a 2 Ag form a partition of[�n�1; �n℄. Finally we de�nef (k)(Vn; xn�1n�k) = a if �kVk 2 Jxn�1n�ka : (7.7)Theorem (7.1) follows from the previous and the following propositions.Proposition 7.8 Every hain of in�nite order with ontinuous transitionprobabilities de�nes a CMMC partition.



7.1. CHAINS AS CMMC 67Proof. For eah x 2 A, the partition Px is de�ned as follows. We �rstdetermine numbers r0(a) := infz2AP (ajz)...rk(ajx�k�1) = infz2AP (ajx�1�k z) ; k � 1 ; (7.9)de�ned for eah k 2 N , g 2 A and x�k�1 2 A�1�k. [These funtions are denotedg(i0ji�1; : : : ; i�k) by Berbee (1987)℄. Then we take the di�erenes�0(a) := r0(g)�k(ajx�1�k) := rk(ajx�1�k)� rk�1(ajx�1�k+1) ; for k � 1 (7.10)for a 2 A. We take now a partition of [0; 1℄ formed by sets Ix�1�na suh that:(i) For a 2 A, k � 0, length�Ix�1�ka � = �k(ajx�1�k) : (7.11)(ii) These intervals are disposed in inreasing lexiographi order with re-spet to a and k in suh a way that the left extreme of one intervaloinides with the right extreme of the preedent.That is, the intervals are disposed, along the interval [0; 1℄ in the formI0a1 ; I0a2; : : : ; I0ajAj ; Ix�1a1 ; Ix�1a2 ; : : : ; Ix�1ajAj ; Ix�1�2a1 ; : : :(jAj is the ardinality of the alphabet). To omplete the algorithm, weonsider the numbers �k := minx�1�k2Ak�1 Xa2A rk(ajx�1�k) ; (7.12)



68CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMCk 2 N . By the ontinuity of the hain, �k % 1. Finally, we take the setsBk = [�k�1; �k℄ (7.13)for k � 1 and a�1 = 0.We observe that the deomposition just obtained saturates the inequali-ties (4.47){(4.48).7.2 Chains with a regeneration sheme as VLMCIt is almost obvious that a hain (Xn) with a regeneration sheme an be em-bedded in a VLMC. Indeed, let for instane Nn be the random Boolean vari-ables de�ned in equation (6.17). We introdue the proess (Zn) = (Xn;Nn)taking values in A� f0; 1g. We then haveP�Z0 = (a; �) ��� (X;N) = (x;n)� = P�Z0 = (a; �) ��� X�1`(N) = x�1`(n)� (7.14)with lag funtion de�ned by`(n) = supfs � 0 : ns = 1g (7.15)with the onvention that when `(x) = 0, the transition probability is atuallyindependent of the past.The observation that a hain with regeneration an be thought as a VLMCis, however, of little pratial value. The extra \ag" variablesNn needed forthe embedding an not be dedued from the values taken by the variablesXn.They are part of the simulation mahinery, exatly as the uniform randomvariables (Un).Let us onlude with an example showing how triky the relation betweenVLMC and CMMC an be. Let us onsider the sparse VLMC introdued inSetion 3.3. This is in fat one of the simplest non-trivial possible VLMC.We reall the reader that this VLMC takes values in A = f0; 1g, and itslag funtion is `(x) = ` if x�1 = 0 = � � � = x�`; x�`�1 = 1. Its transition



7.3. EXERCISES 69probabilities are de�ned by P (1jx) = q`(x) with 0 < qk < 1. Let assume inaddition that 1 > qn & q1 > 0 : (7.16)We onstrut the assoiated CMMC using the presription given in theproof of Proposition 7.8. The results (whose veri�ation is left to the reader)are the following. The parameters of the onvex ombination are�k = � 1� q1 + q1 k = 0qk � qk+1 k � 1 : (7.17)The Markovian transition probabilities for k = 0 are de�ned byp(0)(1) = q1=�0 ; (7.18)while for k � 1 p(k)(1jx�1�k�1) = � 0 if x�1�k�1 = 0�1�k�11 otherwise : (7.19)In partiular, we notie that the deomposition of the transition probabilitiesp(1j0�1�n 1 x�n�2�1 ) involve all Markovian orders, despite the fat that they donot depend on x�n�2�1 .7.3 ExerisesExerise 7.20 Prove that every CMMC is a hain with omplete onne-tions with ontinuous transition probabilities.Exerise 7.21 Prove that every hidden Markov model is a hain of in�niteorder with ontinuous transition probabilities. More spei�ally, let (Xn)be the observable hain and (Sn) the hidden Markov hain. Denote �S0 theregeneration time for S0. Then prove thatsupx;y ���P (ajx)� P (ajx�1s ys�1�1)��� � P(�S0 < s) (7.22)for every a 2 �A and s � 0. This issue was already disussed in Exerise 6.40.What else is needed to make the HMM a hain of type A?



70CHAPTER 7. EVERY CHAIN OF INFINITE ORDER IS A CMMC ANDAVLMCExerise 7.23 Verify that for the sparse VLMC satisfying (7.16), the par-tition on the proof of Proposition 7.8 yields (7.17){(7.19).Exerise 7.24 Consider a CMMC de�ned on A = f0; 1g byP (1jx) = 1Xk=1 �kg(a; x�k) ; (7.25)with 0 � �k � 1, Pk �k = 1 andg(a; x) = (1� ") 1fx = 1g+ " 1fx = 0g : (7.26)(i) Write the deomposition given in Proposition 7.5.(ii) Calling �k the oeÆients or the deomposition obtained in (i), showthat �0 � ". Observe that this is true even if there exists an ` 2 N suhthat �k = 0 for 0 � k � `.



Chapter 8Markov approximations forhains of in�nite order
8.1 IntrodutionThis hapter addresses the following question: How well an we approximatean in�nite-order hain by Markov hains? This leads to a seond, tehni-al, question: Whih distane should we use to measure the quality of anapproximation? We adopt here Ornstein's d-distane.The main result of this hapter is an estimation of the speed of onver-gene |in the d-distane| of the anonial Markov approximation of hainsof in�nite order. If the ontinuity rates of the hain are summable, we showthat the speed of onvergene is at worst proportional to these rates. Ourresult applies to Type A hains with summable ontinuity rates. This is aslight improvement of the result in Bressaud, Fern�andez and Galves (1999a),whih holds for hains of type B with summable log-ontinuity rates.It is known that type B hains with summable log-ontinuity rates areweak Bernoulli (Ledrappier 1974). This implies, by Ornstein theorem (Orn-stein 1974), that the proess is the d-limit of its anonial k-step Markovapproximations. Curiously, this indiret argument appears to be the onlypublished proof of suh d-onvergene. In ontrast, our onstrution below71



72CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDERyields an expliit and diret proof. Ornstein and Weiss (1990) have on-struted a remarkable \guessing sheme" for d-limits of aperiodi Markovproesses, based on observed data. Nevertheless, these approahes do notshed light on how well the hains an be appoximated by Markov proesses.In this hapter we analyze preisely this issue for the hains with om-plete onnetions and the less sophistiated of the approximation shemes:the anonial k-step Markov. Our results show that the ontinuity rates ofthe hain diretly determine |in the summable ase| the speed of onver-gene of the approximation. Our method is onstrutive and straightforward.We exhibit expliit ouplings between the original hain and eah of its k-step approximations. The ouplings are suh that: (i) if the two omponentproesses have been equal for a ertain number of steps, there is a large prob-ability that they will remain so in the next step [formula (8.40)℄, and (ii) if theomponents fail to be equal at some step there is a nonzero probability thatthey will beome equal at the next one [formula (8.41)℄. As a onsequene,the oupled proesses tend to oiide most of the time, and separations donot last too long [formula (8.48)℄. This yields a small d-distane between theoriginal proess and its k-step approximations.8.2 De�nitions and main resultThe �rst de�nition follows Ornstein (1974).De�nition 8.1 The anonial Markov approximation of order k 2 N of aproess (Xn)n2Z is the stationary Markov hain of order k having as transitionprobabilities,P [k℄(b j a1; : : : ; ak) := P(Xk+1 = bjXj = aj; 1 � j � k) (8.2)for all integer k � 1 and a1; : : : ; ak; b 2 A.De�nition 8.3 The distane d between two stationary proesses X and Yis de�ned asd(X; Y ) = inf nP( eX0 6= eY0) : ( eX; eY ) stationary oupling of X and Yo :



8.3. CONSTRUCTION OF THE COUPLING 73We now state our main result.Theorem 8.4 Let X = (Xn)n2Z be a hain of in�nite order of type A withsummable ontinuity rate (�s)s�1. Then there is a onstant K > 0 suh that,for all k � 1, �d(X;X [k℄) � K �k ;where X [k℄ = (X [k℄n )n2Z is the anonial Markov approximation of order k ofthe proess X.8.3 Constrution of the ouplingConsider two time-homogeneours systems of transition probabilities P ( � j � )and Q( � j � ). We want to onstrut a oupling algorithm for them, with thefollowing properties:(a) it loads the diagonal as muh as possible, and(b) eah step of the oupling depends only on the past.This will be done through a graphial proedure (f. De�nition 2.47).Given two pasts x; y and an element a of the alphabet A, let us de�neta(x; y) := P (a j x) ^Q(a j y)ra(x; y) := (P (a j x)�Q(a j y)) _ 0 (8.5)sa(x; y) := (Q(a j y)� P (a j x)) _ 0 :Notie that either ra(x; y) = 0 and sa(x; y) > 0or ra(x; y) > 0 and sa(x; y) = 0 (8.6)and that ta(x; y) + ra(x; y) = P (ajx) (8.7)ta(x; y) + sa(x; y) = Q(ajy) : (8.8)



74CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDER

0 Q(ajy)0 P (ajx)
ta(x; y)� - sa(x; y)� -

(a)
0 Q(ajy)0 P (ajx)

ta(x; y)� - ra(x; y)� -
(b)Figure 8.1: Graphi representation of De�nition (8.5). (a) Case withra(x; y) = 0. (b) Case with sa(x; y) = 0



8.3. CONSTRUCTION OF THE COUPLING 75Figure 8.1 gives a graphi representation of these identities.As a onsequene,Xa2A ta(x; y) +Xa2A ra(x; y) = 1 (8.9)Xa2A ta(x; y) +Xa2A sa(x; y) = 1 : (8.10)Identities (8.9)/(8.10) enable us to de�ne two partitions of [0; 1℄, eah oneformed by the non-empty sets of the following 2jAj intervals:fT x;y1 ; : : : ; T x;yjAj ; Rx;y1 ; : : : ; Rx;yjAjg and fT x;y1 ; : : : ; T x;yjAj ; Sx;y1 ; : : : ; Sx;yjAjg (8.11)These are intervals of lengthsjT x;ya j = ta(x; y) ; jRx;ya j = ra(x; y) and jSx;ya j = sa(x; y) ;for all a 2 AWe de�ne the transition probabilities eP ((a; b) j (x; y)) aseP ((a; b) j (x; y)) := ( jT x;ya j if a = b;jRx;ya \ Sx;yb j if a 6= b (8.12)(see �gure 8.2). The orresponding simulation algorithm isf(u; x; y) = (a; a) if u 2 T x;ya ; (8.13)f(u; x; y) = (a; b) if u 2 Rx;ya \ Sx;yb ; (8.14)with a 6= b in the seond line.The properties of this oupling are summarized in the following theoremTheorem 8.15 If the hains with transition probabilities P and Q are bothof type A, so is the oupling de�ned through (8.12){(8.14). More expliitly,e�s � onst (�Ps _ �Qs ) ; (8.16)
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T x;y1 T x;y2 T x;y3 T x;y4 T x;y5P5i=1 ti(x; y)� --�eP ((1; 1) j (x; y)) -�eP ((2; 2) j (x; y))-�eP ((3; 3) j (x; y))-�eP ((4; 4) j (x; y))-�eP ((5; 5) j (x; y))

Rx;y1 Rx;y2 Rx;y5Sx;y3 Sx;y4-�eP ((1; 3) j (x; y)) -�eP ((2; 3) j (x; y))-�eP ((2; 4) j (x; y))
-�eP ((5; 4) j (x; y))

Figure 8.2: Case jAj = 5, P (ajx) > Q(ajy) for a = 1; 2; 5 and P (ajx) <Q(ajy) for a = 3; 4and Xa;b2A infx;y eP�(a; b) ��� (x; y)� �� hXa2A infx P (ajx)i ^ hXa2A infx Q(ajx)i : (8.17)We remark that, even if the transitions P and Q are hains of type B,this oupling is not in general a hain of type B, beause all pairs (a; b) withinfx;y eP�(a; b) ��� (x; y)� = 0 :This happens whenever Rx;ya \ Sx;yb = ;.Proof.Non-nullnessXa;b2A infx;y eP�(a; b) ��� (x; y)� � Xa2A infx;y eP�(a; a) ��� (x; y)� (8.18)



8.4. PROOF OF THE THEOREM 77But the right-hand side isXa2A infx;yhP (ajx) ^ Q(ajy)i (8.19)� hXa2A infx P (ajx)i ^ hXa2A infx Q(ajx)i : (8.20)Continuity Let us denote�m(a; b) =supx;y;u;w ��� eP�(a; b) ��� (x; y)�� eP�(a; b) ��� (x�1�mu�m�1�1 ; y�1�mw�m�1�1 )���� :(8.21)Case a = b:�m(a; a) = supx;y;u;w���ta(x; y)� ta(x�1�mu�m�1�1 ; y�1�mw�m�1�1 )��� (8.22)Using j� ^ � � �0 ^ � 0j � j�� �0j _ j� � � 0j we get�m(a; a) �supx;y;u;whjP (ajx)� P (ajx�1�mu�m�1�1 )j _ jQ(ajy)�Q(ajy�1�mw�m�1�1 )ji :(8.23)Hene, �m(a; a) � �Pm _ �Qm : (8.24)Case a 6= b: Computations are similar but longer.8.4 Proof of the theoremWe are ready to prove Theorem (8.4).



78CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDER8.4.1 Bound among transition probabilitiesLet P [k℄ be the transition probability de�ned by (8.2). We shall abbreviateour notation and write P [k℄(a j y) instead of P [k℄(a j y�k; : : : ; y�1). We alsodenote x k= y to indiate that x�1�k = y�1�k. In partiularx k= y =) P [k℄(a j y) = P [k℄(a j x) 8 a 2 A : (8.25)The following proposition ontains the only property of the anonialapproximation needed for the result.Proposition 8.26infu : u k=y P (a j u) � P [k℄(a j y) � supu : u k=y P (a j u): (8.27)Remark 8.28 In fat, (8.27) is the only property of the Markov transitionsused in the sequel. Thus, our results apply to any Markov approximationsheme, not neessarily the anonial one, satisfying (8.27).8.4.2 The proofPositive probability of oinideneBy the de�nition of the oupling,P� eX0 = eX [k℄0 ��� (x; y)� = Xa ta(x; y) : (8.29)By (8.17) Xa ta(x; y) � Xa2A infx P (ajx) =: �0 (8.30)whih is positive beause the hain (Xn) is weak non-null.



8.4. PROOF OF THE THEOREM 79Probability of remaining oinidentLet us introdue the following notationDm;n := n\p=mf eXj = eYjg : (8.31)As a onsequene of (8.27)supa;x;y ��P (a j x)� P [k℄(a j x�1�my�m�1�1 )�� � �m^k (8.32)Lemma 8.33 If x m= y thenP� eX0 6= eX [k℄0 ��� (x; y)� � jAj �k^m : (8.34)Proof. By de�nition of the ouplingP� eX0 6= eX [k℄0 ��� (x; y)� = Xa ra(x; y) (8.35)But the right-hand side isXa2A ��P (a j x)� P [k℄(a j y)�� � jAj �k^m (8.36)by (8.32).Let us denote � ��0 = 1� �0��n = min (��0 ; jAj �n) ; (8.37)The previous lemma yields, by straightforward manipulations, the follow-ing bounds:Lemma 8.38 (i) For all integers m;n � 0 and (x; y) with x m= y,P(D0;n j (x; y)) � nYp=0�1� ��k^(m+p)� : (8.39)



80CHAPTER 8. MARKOVAPPROXIMATIONS FORCHAINS OF INFINITE ORDER(ii) For all integers k � 1,P(D0;k�1 j D�k;�1) � �1� ��k�k : (8.40)(iii) For all integers k � 1,P(D0;k�1 j D�k;�1) � +1Yp=0�1� ��p� : (8.41)Lemma 8.42 P� eX0 6= eX [k℄0 � � P(D0;k�1)Pk�1j=1Qk�1m=0(1� ��m) (8.43)Proof. P(D0;k�1) = P� eXk�1 6= eX [k℄k�1�+ k�2X̀=0 P�D`+1;k�1 ��� eX` 6= eX [k℄` � P� eX` 6= eX [k℄` � : (8.44)By translation invariane:P� eX0 6= eX [k℄0 � = P(D0;k�1)1 + Pk�1j=1 P�D1;j ��� eX0 6= eX [k℄0 � : (8.45)Now the onlusion is straightforward, and there is room for fantasy. In-equality (8.43) follows by boundingP�D1;j ��� eX0 6= eX [k℄0 � � j�1Ym=1(1� ��m) : (8.46)To onlude, we observe thatP(D0;k�1) = P(D0;k�1jD�k;�1)P(D�k;�1)+ P(D0;k�1jD�k;�1)P(D�k;�1)� [1� (1� ��k)k℄ + h1� +1Yp=0(1� ��p)iP(D0;k�1) : (8.47)



8.4. PROOF OF THE THEOREM 81Hene P(D0;k�1) � 1� (1� ��k)kQ+1p=0(1� ��p) : (8.48)Plugging (8.48) into (8.43) we �nally getP� eX0 6= eX [k℄0 � � 1� (1� ��k)kQ+1p=0(1� ��p) Pk�1j=1Qk�1m=0(1� ��m) : (8.49)
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