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Preface

These notes present in an elementary way a set of notions, results and basic
models useful to work with stochastic processes. The approach does not use
Measure Theory as it adopts a constructive point of view inherent to the
notion of simulation and coupling of random variables or processes.

To couple two random variables means to construct them simultaneously
using the same random mechanism. More informally: coupling is just to
simulate two random variables using the same random numbers. The first
coupling was introduced by Doeblin (1938) to show the convergence to equi-
librium of a Markov chain. Doeblin considered two independent trajectories
of the process, one of them starting with an arbitrary distribution and the
other with the invariant measure and showed that the trajectories meet in a
finite time.

Perhaps due to the premature and tragical death of Doeblin and the ex-
treme originality of his ideas, the notion of coupling only come back to the
literature with Harris (1955). Coupling become a central tool in Interacting
particle systems, subject proposed by Spitzer (1970) and the sovietic school
of Dobrushin, Toom, Piatvisky-Shapiro, Vaserstein and others. These names
give rise to a new area in stochastic processes, the so called Interacting Parti-
cle Systems, then developed extensively by Holley, Liggett, Durrett, Griffeath
and others. We refer the interested reader to the books by Liggett (1985),
(1999) and Durrett (1988) and (1997) and Kipnis and Landim (1999) for re-
cent developments in the field. We learned and used coupling and construc-
tive techniques from those authors when working in particle systems as the
exclusion and contact processes. Our constructive approach comes directly
from the graphical construction of interacting particle systems introduced by

vii
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Harris (1972).

Coupling techniques had a somehow independent development for “classi-
cal” processes. The books of Lindvall (1992) and the recent book of Thorisson
(2000) are excellent sources for these developments.

The art of coupling consists in looking for the best way to simultaneously
construct two processes or, more generally, two probability measures. For
instance, to study the convergence of a Markov chain, we construct simulta-
neously two trajectories of the same process starting at different states and
estimate the time they need to meet. This time depends on the joint law
of the trajectories. The issue is then to find the construction “minimizing”
the meeting time. In the original Doeblin’s coupling the trajectories evolved
independently. This coupling is a priori not the best one in the sense that it
is not aimed to reduce the meeting time. But once one realizes that coupling
is useful, many other constructions are possible. We present some of them
in these notes. A discussion about the velocity of convergence and of the so
called Dobrushin ergodicity coefficient is presented in Chapter 3.

The central idea behind coupling can be presented through a very simple
example. Suppose we toss two coins, and that the probability to obtain a
“head” is p for the first coin and q for the second coin with 0 < p < q < 1. We
want to construct a random mechanism simulating the simultaneous tossing
of the two coins in such a way that when the coin associated to the probability
p shows “head”, so does the other (associated to q). Let us call X and Y
the results of the first and second coin, respectively; X, Y ∈ {0, 1}, with the
convention that “head” = 1. We want to construct a random vector (X, Y )
in such a way that

P(X = 1) = p = 1− P(X = 0)

P(Y = 1) = q = 1− P(Y = 0)

X ≤ Y.

The first two conditions just say that the marginal distribution of X and Y
really express the result of two coins having probabilities p and q of being
“head”. The third condition is the property we want the coupling to have.
This condition implies in particular that the event

{X = 1, Y = 0},
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corresponding to a head for the first coin and a tail for the second, has
probability zero.

To construct such a random vector, we use an auxiliary random variable
U , uniformly distributed in the interval [0, 1] and define

X := 1{U ≤ p} and Y := 1{U ≤ q}.

where 1A is the indicator function of the set A. It is immediate that the
vector (X, Y ) so defined satisfies the three conditions above. This coupling
is a prototype of the couplings we use in these notes.

With the same idea we construct stochastic processes (sequences of ran-
dom variables) and couple them. One important product of this approach is
the regenerative construction of stochastic processes. For instance, suppose
we have a sequence (Un : n ∈ Z) of independent, identically distributed uni-
form random variables in [0, 1]. Then we construct a process (Xn : n ∈ Z)
on {0, 1}Z, using the rule

Xn := 1{Un > h(Xn−1)} (1)

where h(0) < h(1) ∈ (0, 1) are arbitrary. We say that there is a regeneration
time at n if Un ∈ [0, h(0)]∪ [h(1), 1]. Indeed, at those times the law of Xn is
given by

P(Xn = 1 | Un ∈ [0, h(0)] ∪ [h(1), 1]) =
1− h(1)

h(0) + 1− h(1)
(2)

independently of the past. Definition (1) is incomplete in the sense that we
need to know Xn−1 in order to compute Xn using Un. But, if we go back
in time up to τ(n) := max{k ≤ n : Uk ∈ [0, h(0)] ∪ [h(1), 1]}, then we can
construct the process from time τ(n) on. Since this can be done for all n ∈ Z,
we have constructed a stationary process satisfying:

P(Xn = y |Xn−1 = x) = Q(x, y) (3)

where Q(0, 0) = h(0), Q(0, 1) = 1 − h(0), Q(1, 0) = h(1) and Q(1, 1) =
1− h(1).
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Processes with this kind of property are called Markov chains. The prin-
cipal consequence of construction (1) is that the pieces of the process between
two regeneration times are independent random vectors (of random length).
We use this idea to construct perfect simulation algorithms of the Markov
chain.

Regenerative schemes have a long history, starting with Harris (1956)
approach to recurrent Markov chains in non countable state-spaces passing
by the basic papers by Athreya and Ney (1978) and Nummelin (1978). We
refer the reader to Thorisson (2000) for a complete review. Perfect simulation
was recently proposed by Propp and Wilson (1996) and become very fast an
important issue of research. See Wilson (1998).

Markov chains are introduced in Chapter 1, further properties are proven
in Chapter 2. Coupling is discussed in Chapter 3 and the regeneration scheme
in Chapter 4.

A Markov chain is a process with short memory. It only “remembers”
last state in the sense of (1). In processes with “long memory” the value
the process assumes at each step depends on the entire past. These kind
of processes has been introduced in the literature by Onicescu and Mihoc
(1935) with the name chains with complete connections (châınes à liaisons
complètes), then studied by Doeblin and Fortet (1937), Harris (1955) and
the Rumanian school. We refer the reader to Iosifescu and Grigorescu (1990)
for a complete survey. In Chapter 6 we show a regeneration scheme and a
stationary construction of these processes.

In Chapter 8 we treat continuous time Markov processes. Here the role
of the uniform random variables Un is played by a bi-dimensional Poisson
process. The study of Poisson processes is done in Chapter 7.

We conclude the description of contents of the book with an important
remark. In this text we tried to remain at an elementary level. We assume
without further discussion that there exists a double infinite sequence of
independent random variables uniformly distributed in [0, 1]. This is all we
need to construct all the processes studied here.

In these notes we adopt the graphic construction philosophy introduced
by Ted Harris to deal with interacting particle systems. He taught us how to
construct particle systems using random graphs, cutting and pasting pieces
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so that to put in evidence, in the most elementary way, the properties of the
process. For all this influence and inspiration, we dedicate these notes to
him.

These notes are originated in part from the courses in Stochastic Processes
we give in the Instituto de Matemática e Estat́ıstica da Universidade de São
Paulo. Part of these notes appeared as the booklet Acoplamento em processos
estocásticos in Portuguese for a mini-course we offered in the XXI Coloquio
Brasileiro de Matemática, held in Rio de Janeiro in July of 1997 [Ferrari
and Galves (1997)]. Besides a revision of errors and misprints, these notes
contain two new chapters: Chapter 4, Regeneration and perfect simulation
and Chapter 6, Chains with complete connections. To keep the focus we
omitted two chapters of the Portuguese version: one about Queueing Theory
and the other about Interacting Particle Systems.
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Chapter 1

Construction of Markov chains

1.1 Markov chains.

A stochastic process is a family (Xt : t ∈ T) of random variables. The label
t represents time. Informally speaking, a stochastic process describes the
history of some random variable which evolves in time. In the first chapters
of this book we concentrate in discrete time, i.e. T = N or T = Z. We
assume that the process takes its values in the set X , called state space. We
assume X finite or countable.

When T is discrete, the law of a stochastic process is characterized by
the finite-dimensional distributions

P(Xt = xt : t ∈ T ) (1.1)

for arbitrary T ⊂ T and xt ∈ X , t ∈ T .

Let U = (Un, n ∈ Z) be a double infinite sequence of independent random
variables with uniform distribution in the interval [0, 1[. From now on we
refer to P and E for the probability and the expectation with respect to the
sequence (Un).

Definition 1.2 (Markov Chain) A process (Xa
n)n∈N with state-space X

is a Markov chain with initial state a ∈ X if there exists a function F :

1
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X × [0, 1]→ X such that Xa
0 = a and for all n ≥ 1,

Xa
n = F (Xa

n−1; Un) . (1.3)

In the sequel we may drop the super label a when the initial state is not
relevant for the discussion. The above definition refers to time homogeneous
Markov chains. In non homogeneous Markov chains the transitions depend
on time: these chains would be characterized by a family (Fn)n∈T and the
definition would be Xa

n = Fn(Xa
n−1; Un). But in these notes we will treat

only the homogeneous case.

Example 1.4 Let X = {0, 1} and

F (x; u) = 1{u > h(x)} , (1.5)

where h(0) and h(1) are arbitrary numbers in [0, 1]. Informally speaking,
at each instant n the process updates its value to 0 or 1, accordingly to Un

being less or bigger than h(Xn−1).

Example 1.6 Let X = {0, 1},

F (x; u) =
{

1− x, if u > g(x)
x otherwise

(1.7)

where g(0) and g(1) are arbitrary numbers in [0, 1]. Informally speaking,
at each instant n the process decides to change or keep the current value
according to Un being bigger or smaller than g(Xn−1).

Basic properties. These examples will serve as a laboratory to present
some of the central results of the theory. We present now some of their basic
properties. Let

Q(x, y) = P(Xn = y |Xn−1 = x) , (1.8)

for n ≥ 1 and x, y ∈ {0, 1}.
Let Qh and Qg be the conditional probabilities corresponding to the first

and second example respectively. If h(0) = h(1), then

Qh(0, y) = Qh(1, y). (1.9)
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In this case the Markov chain corresponding to the function h is just a se-
quence of independent and identically distributed (iid in the sequel) random
variables.

On the other hand, if h(0) = g(0) and 1− h(1) = g(1), then

Qg(x, y) = Qh(x, y) (1.10)

for all x and y. This identity means that if we choose the same initial state
for the chains defined by (1.5) and (1.7), then the processes have the same
joint law: calling Xa

t and Y b
t the processes constructed with the functions

(1.5) and (1.9) and initial states a and b respectively,

P(Xa
t = xt , t ∈ T ) = P(Y a

t = xt , t ∈ T ) (1.11)

for any finite set T ⊂ N and arbitrary values xt ∈ X . From this point of
view, the constructions are equivalent. Sometimes definition (1.5) is more
useful because it is related to the notion of coupling. We give the formal
definition of coupling in Chapter 3, but to give the reader the taste of it, we
present a simple example.

Example of Coupling. Let (X0
n)n∈N and (X1

n)n∈N be two chains con-
structed with the function (1.3) using the same sequence U1, U2, . . . of uniform
random variables with initial states 0 and 1 respectively. That is

(X0
0 , X

1
0 ) = (0, 1)

(X0
n, X1

n) = (F (X0
n−1; Un), F (X1

n−1; Un)) (1.12)

Let τ 0,1 be the meeting time of the chains. That is,

τ 0,1 := min{n ≥ 1 : X0
n = X1

n} (1.13)

Lemma 1.14 Assume the chains (X0
n, X1

n) are constructed with the proce-
dure described by (1.12) using the function F defined in (1.5) with 0 < h(0) <
h(1) < 1 and denote ρ := h(1)− h(0). Then

P(τ 0,1 > n) = ρn , (1.15)

that is, τ 0,1 has geometric distribution with parameter ρ. Furthermore

n ≥ τ 0,1 implies X0
n = X1

n (1.16)



4 CHAPTER 1. CONSTRUCTION OF MARKOV CHAINS

In other words, after a random time with geometric distribution the chains
(X0

n)n∈N and (X1
n)n∈N are indistinguishable. This result is the prototype of

loss of memory.

Proof. It is left as an exercise for the reader.

We computed above the conditional probability for the process to be at
some state at time n given it was at another state at the previous time. We
obtained a function Q : X × X → [0, 1]. This type of function is useful to
characterize Markov chains.

Definition 1.17 (Transition matrix) A function Q : X × X → [0, 1] is
called a transition matrix if for all element x ∈ X ,

∑
y∈X Q(x, y) = 1. In

other words, if the sum of the entries of each row of the matrix equals one.

In the examples (1.5) and (1.7) the property
∑

y∈X Q(x, y) = 1 for all
fixed x is a consequence of the fact that Q(x, ·) was a conditional probability.

We use the matrix representation of the function Q. For instance, if
X = {1, 2} and Q(1, 1) = p, Q(1, 2) = 1− p, Q(2, 1) = 1− q and Q(2, 2) = q,
for some p and q in [0, 1], then it is natural the representation

Q =

(
p 1− p

1− q q

)
(1.18)

Proposition 1.19 Each transition matrix Q on X and a ∈ X defines a
Markov chain (Xa

n)n∈N with transition probabilities given by Q and initial
state a. That is, there exists a function F such that the Markov chain (1.3)
satisfies (1.8).

Proof. We need to exhibit the function F : X × [0, 1] → X of definition
(1.3) with the property

P(F (x; U) = y) = Q(x, y) (1.20)

We saw in the examples that there are various different manners of construct-
ing such a F . We propose now a general construction.
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For each x ∈ X we construct a partition of [0, 1]: let (I(x, y) : y ∈ X )
be a family of Borel sets (in these notes I(x, y) will always be a finite or
countable union of intervals) satisfying

I(x, y) ∩ I(x, z) = ∅ if y 6= z ,⋃
y∈X

I(x, y) = [0, 1] (1.21)

Calling |I| the Lebesgue measure (length) of the set I, we ask

|I(x, y)| = Q(x, y) (1.22)

For instance, in (1.5) the partition is I(x, 0) = [0, h(x)) and I(x, 1) =
[h(x), 1].

There are many ways of defining the partitions. The simplest is just to
order the states of X —we can identify X = {1, 2, . . .}— and concatenate
intervals of length Q(x, y).

With the partition in hands we define the function F as follows.

F (x; u) =
∑
y∈X

y 1{u ∈ I(x, y)} . (1.23)

In other words, F (x; u) = y, if and only if u ∈ I(x, y). We construct the
chain (Xa

n)n∈N using definition (1.3) with the function defined in (1.23). To
see that this chain has transition probabilities Q, compute

P(Xn = y |Xn−1 = x) = P(F (x; Un) = y) (1.24)

By construction, this expression equals

P(Un ∈ I(x, y)) = |I(x, y)| = Q(x, y). (1.25)

Proposition 1.19 says that for any process (Yn)n∈N satisfying (1.8) it is
possible to construct another process (Ȳn)n∈N with the same law using the
algorithm (1.3). Many of the results in the following chapters rely on a smart
construction of the partitions ((I(x, y) : y ∈ X ) : x ∈ X ). Proposition 1.19
motivates the following theorem.
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Theorem 1.26 (Markov Chain) A stochastic process (Yn)n∈N with
state space X is a Markov chain with transition matrix Q, if for all n ≥ 1
and every finite sequence x0, x1, · · · , xn contained in X such that P(Y0 =
x0, · · · , Yn−1 = xn−1) > 0, it holds

P(Yn = xn | Y0 = x0, · · · , Yn−1 = xn−1) (1.27)

= P(Yn = xn | Yn−1 = xn−1) (1.28)

= Q(xn−1, xn). (1.29)

Proof. Follows from Proposition 1.19.

The theorem says that, in a Markov chain, the forecast of the next step
knowing all the past is as good as when one knows only the current value
of the process. The statement of the theorem is what most books take as
definition of Markov chain.

As a consequence of Theorem 1.26, the joint law of a Markov chain is
given by:

P(Y0 = x0, · · · , Yn−1 = xn−1, Yn = xn)

= P(Y0 = x0) P(Y1 = x1, · · · , Yn−1 = xn−1, Yn = xn |Y0 = x0)

= P(Y0 = x0) Q(x0, x1) . . . Q(xn−1, xn) (1.30)

1.2 Examples

We finish this chapter with some important examples.

Example 1.31 (Random walk in the hypercube) Let N be a positive
integer and X = {0, 1}N . If N = 2 we can think of X as being the set of
vertices of a square. When N = 3 we can think of X as the set of vertices
of a cube. When N ≥ 4 we think of X as the set of vertices of a hypercube.
Let ξ = (ξ(1), · · · , ξ(N)) be an element of X . The neighbors of ξ are those
elements of X having all but one coordinates equal to the coordinates of ξ.
If j is an integer in [1, N ], we call ξj the element of X having all coordinates
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equal to ξ but the j-th:

ξj(i) =

{
ξ(i) if i 6= j,
1− ξ(j) if i = j.

(1.32)

In this way the neighbors of ξ are the elements ξ1, . . . , ξN .

This induces a natural notion of distance between elements of X :

d(ξ, ζ) =
N∑

i=1

|ξ(i)− ζ(i)|

for ξ, ζ ∈ X . The distance between ξ and ζ is the number of coordinates
for which ξ and ζ are different. This is know as Hamming’s distance. Two
elements of X are neighbors when they are at distance one.

Now we want to construct a Markov chain on X with the following be-
havior. At each time the process decides to change state (or not) according
to the result of a fair coin. If it decides to change, then it jumps to one of
its neighbors with equal probability. This process can be constructed in the
following way:

For a ∈ {0, 1} let

ξj,a(i) =

{
ξ(i) if i 6= j,
a if i = j,

(1.33)

be a configuration with value a in the j-th coordinate and equal to ξ in the
other coordinates. Let

I(ξ, ζ) :=


[

j−1
N

, j−1
N

+ 1
2N

)
if ζ = ξj,0, j = 1, . . . , N[

j−1
N

+ 1
2N

, j
N

)
if ζ = ξj,1, j = 1, . . . , N

∅ if d(ξ, ζ) > 1

(1.34)

Then use the definitions (1.3) and (1.23). The probability of trial site j at
time n is

P
(
Un ∈

[j − 1

N
,

j

N

))
= 1/N

and the probability to assign the value 0 to the chosen site is

P
(
Un ∈

[j − 1

N
,
j − 1

N
+

1

2N

) ∣∣∣ Un ∈
[j − 1

N
,

j

N

))
= 1/2
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Analogously, the probability to assign the value 1 to the chosen site is 1/2.
With these expressions in hand we can compute Q(ξ, ζ). We know that this
is zero if ζ is not neighbor of ξ. Assume ξ(j) = 1 and compute

Q(ξ, ξj) = P
(
U1 ∈

[j − 1

N
,
j − 1

N
+

1

2N

))
=

1

2N
(1.35)

Analogously, assuming ξ(j) = 0,

Q(ξ, ξj) = P
(
U1 ∈

[j − 1

N
+

1

2N
,

j

N
,
))

=
1

2N
(1.36)

Now we want to use this construction for two chains ξt and ξ′t with dif-
ferent initial configurations ξ and ξ′ and compute the meeting time τ = τ ξ,ξ′

as defined in (1.13). The point is that if Un belongs to the interval [ j−1
N

, j
N

[,

then the jth coordinate of the two processes coincide: Un ∈ [ j−1
N

, j
N

[ implies
ξt(j) = ξ′t(j) for all t ≥ n. Hence defining

τj := min{n ≥ 1 : Un ∈ [ j−1
N

, j
N

)} (1.37)

we have
τ ≤ max

j
τj . (1.38)

(If ξ(i) 6= ξ′(i) for all i, then τ = maxj τj). It is ease to see that maxj τj is a
sum of geometric random variables of varying parameter:

max
j

τj = σ1 + . . . , +σN (1.39)

where σ1 = 1, and σi is a geometric random variable of parameter (N − i +
1)/N :

P(σi = k) =
(N − i + 1

N

)(
1−

(N − i + 1

N

))k−1

; i ≥ 1 (1.40)

The variables σi represent the number of new uniform random variables one
needs to visit one of the intervals [ j−1

N
, j

N
[ not previously visited. In this way

Eτ ≤ E(max
j

τj) =
N∑

i=1

N

N − i + 1
= N

N∑
i=1

1

i
∼ N log N (1.41)
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Example 1.42 (Ehrenfest model) The random walk on the hypercube
can be seen as a caricature of the evolution of a gas between two containers.
Initially all the molecules of the gas are confined in one of the containers which
are labeled 0 and 1. The experiment starts when a valve intercommunicating
the containers is open and the molecules start passing from one container to
the other. We have N molecules of gas, each one belonging to one of the
containers. The number of molecules is of the order of 1023. The random
walk describes the position of each one of the N molecules at each instant of
time: the number ξζ

n(i) is the label of the container the molecule i belongs
to at time n when the initial labels are given by ζ. In the example above
ζ(i) = 0 for all i = 1, . . . , N (all molecules belong to container 0). The
transition probabilities are given by

Q(ξ, η) =

{
1
N

if η(j) 6= ξ(j) for exactly one j
0 otherwise

(1.43)

In words: with probability 1/N a particle is chosen and changed from one
container to the other. Sometimes one is interested only on the total number
of molecules in each container at each time. This process has state-space
{0, 1, . . . , N} and is defined by

Zn =
N∑

i=1

ξζ
n(i) . (1.44)

Zn indicates the number of molecules in container 1 at time n. We can say
that the Ehrenfest model is a macroscopic description of the microscopic
model corresponding to the random walk in the hypercube. This process can
be seen as a random walk in {0, . . . , N}.

Example 1.45 (The-house-of cards process) For this process the state
space is X = N. Let (ak : k ∈ N) be a sequence of numbers in [0, 1].
Informally speaking when the process is at site k it jumps with probability
ak to site k + 1 and with probability 1 − ak to site 0. For this process the
partitions are given by

I(k, k + 1) = [0, ak) ; I(k, 0) = [ak, 1] (1.46)
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for k ≥ 0. The name house of cards reflects the following interpretation:
suppose we are constructing a house of cards, additioning one by one a new
card. The house has probability (1 − ak) of falling down after the addition
of the kth card.

Example 1.47 (Polya urn) The state-space is N2. The state (Wn, Bn) at
time n indicates the number of white, respectively black balls in an urn. At
each time a ball is chosen at random from the urn and it is replaced by two
balls of the same color. The partition of state (k, `) has only two intervals
given by

I((k, `), (k + 1, `)) =
[
0,

k

k + `

[
I((k, `), (k, ` + 1)) =

[ k

k + `
, 1
]

(1.48)

The process that keeps track of the number of balls of each color is a Markov
chain. In contrast, the process

sn =
Wn

Bn + Wn

(1.49)

which keeps track of the proportion of white balls in the urn is not Markov.
We ask the reader to prove this in the exercises.

1.3 Exercises

Exercise 1.1 Consider a Markov chain in the state-space X = {1, 2, 3} and
transition matrix

Q =

 1/2 1/4 1/4
1/4 1/4 1/2
1/3 1/3 1/3

 (1.50)

(a) Construct a family of partitions of [0, 1] such that the function F defined
as in (1.23) permits to construct the Markov chain with transition matrix
(1.50).
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(b) Compute P(X2 = 1 |X1 = 2)

(c) Compute P(X3 = 2 |X1 = 1)

(d) Using the function of item (a) and a sequence of random numbers in [0, 1]
simulate 10 steps of the above chain with initial state X0 = 1.

Exercise 1.2 Consider two chains (X0
n)n∈N and (Y 0

n )n∈N in X = {0, 1}.
The chain Xn is defined by the function F (x; u) = 1{u > h(x)} (for fixed
values h(0) and h(1)); the chain Yn is defined by the function F (x; u) =
1 − x, if u > g(x) and F (x; u) = x otherwise (for fixed values g(0) and
g(1)).

(a) Compute

Qh(x, y) = P(Xn = y |Xn−1 = x}
Qg(x, y) = P(Yn = y | Yn−1 = x} (1.51)

where n ≥ 1, and x and y assume values in {0, 1}.
(b) Show that if h(0) = h(1), then Qh(x, y) depends only on y and it is
constant in x. In this case the corresponding Markov chain is just a sequence
of iid random variables.

(c) Simulate 10 instants of the chain Xn with h(0) = 1/3, h(1) = 1/2.

(d) Simulate 10 instants of the chain Yn with g(0) = 1/3, g(1) = 1/2.

Exercise 1.3 (Coupling) Let (X0
n, X1

n)n∈N be the joint construction of the
chains of Lemma 1.14. That is, the two chains are constructed as the chain
(Xn) of the previous exercise with the same sequence U1, U2, . . . of uniform
random variables and initial states 0 and 1 respectively, that is, X0

0 = 0 and
X1

0 = 1. Let τ be the first time the chains meet. That is,

τ := inf{n ≥ 1 : X0
n = X1

n} (1.52)

Assuming 0 < h(0) < h(1) < 1, show that

P(τ > n) = ρn , (1.53)

where ρ = h(1)− h(0).
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Exercise 1.4 Compute the transition matrix of the process (Zn)n∈N defined
in (1.44) (Ehrenfest model).

Exercise 1.5 Compute the transition matrix of the Polya’s urn process
Xn = (Wn, Bn) defined with the partitions (1.48). Show that the process
(Bn/(Bn + Wn)) is not Markov.

1.4 Comments and references

Markov chains were introduced by A. A. Markov at the beginning of the
XX-th century as a linguistic model. The construction of Proposition 1.19 is
inspired in the graphic construction of Harris (1972) for interacting particle
systems. The notion of coupling was introduced by Doeblin (1938). The
Ehrenfest model was introduced by P. and T. Ehrenfest in a famous paper
in defense of the ideas of Boltzmann in 1905. In particular, this model
illustrates how it is possible to have irreversibility (at macroscopic level) and
reversibility (at microscopic level). The example of Polya urn shows the
fact that the image of a Markov chain through some function is not always
Markov.



Chapter 2

Invariant measures

In this chapter we present the notions of invariant measure and reversibility of
Markov chains. We also show Kǎc’s Lemma which establishes a link between
the invariant measure and the mean return time to a given arbitrary state.

2.1 Transition matrices

We start with some linear algebra. As we saw in the previous chapter, the
one-step transition probabilities can be thought of as a matrix. In the next
proposition we see that this is a convenient way to represent them. The state
space X is always a countable space.

Proposition 2.1 Let (Xa
n : n ∈ N) be a Markov chain on X with transition

matrix Q and initial state a. Then, for all time n ≥ 1 and every state b ∈ X
we have

P(Xa
n = b) = Qn(a, b). (2.2)

where Qn(a, b) is the element of row a and column b of the matrix Qn.

Proof. By recurrence. The identity (2.2) is immediate for n = 1, by defini-
tion of Q.

13
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Assume (2.2) is true for some n ≥ 1, then

P(Xa
n+1 = b) =

∑
z∈X

P(Xa
n = z, Xa

n+1 = b) (2.3)

because the family of sets ({Xa
n = z} : z ∈ X ) is a partition of Ω. We write

then the joint probability, conditioning to the position of the chain at time
n, and get:∑

z∈X

P(Xa
n = z, Xa

n+1 = b) =
∑
z∈X

P(Xa
n = z)P(Xa

n+1 = b |Xa
n = z). (2.4)

By Theorem 1.26,

P(Xa
n+1 = b |Xa

n = z) = Q(z, b) .

Hence
P(Xa

n+1 = b) =
∑
z∈X

Qn(a, z)Q(z, b) (2.5)

but this is exactly the definition of Qn+1(a, b):

Qn+1(a, b) =
∑
z∈X

Qn(a, z)Q(z, b), (2.6)

and this finishes the proof.

Example 2.7 Let (Xn : n ∈ N) be a Markov chain on X = {1, 2} and
transition matrix

Q =

(
p 1− p

1− q q

)
(2.8)

To compute P(X1
2 = 1) we need to sum the probabilities along the paths

(X1
1 = 1, X1

2 = 1) and (X1
1 = 2, X1

2 = 1). That is,

P(X1
2 = 1) = Q(1, 1)Q(1, 1) + Q(1, 2)Q(2, 1) = p2 + (1− p)(1− q), (2.9)

which is exactly the element in the first row and first column of the matrix

Q2 =

(
p2 + (1− p)(1− q) p(1− p) + (1− p)q
(1− q)p + q(1− q) q2 + (1− q)(1− p)

)
(2.10)
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For larger values of n the direct computation is messy. To simplify the
notation we write P (n) = P(X1

n = 1). Then

P (n) = P (n− 1)Q(1, 1) + (1− P (n− 1))Q(2, 1)

= P (n− 1)p + (1− P (n− 1))(1− q). (2.11)

This system of finite-differences equations has a simple solution. Indeed,
(2.11) can be written as

P (n) = P (n− 1)(p + q − 1) + (1− q). (2.12)

Substituting P (n− 1) for the equivalent expression given by (2.12) for n− 1
we get

P (n) = [P (n− 2)(p + q − 1) + (1− q)](p + q − 1) + (1− q)

= P (n− 2)(p + q − 1)2 + (1− q)(p + q − 1) + (1− q). (2.13)

Iterating this procedure we obtain

P (n) = P (0)(p + q − 1)n + (1− q)
n−1∑
k=0

(p + q − 1)k. (2.14)

By definition, P (0) = 1. The sum of a geometric series is

n−1∑
k=0

θk =
1− θn

1− θ
. (2.15)

Hence we can write (2.13) as

P (n) = (p + q − 1)n +
(1− q)[1− (p + q − 1)n]

(1− p) + (1− q)

=
1− q

(1− p) + (1− q)
+ (p + q − 1)n 1− p

(1− p) + (1− q)
. (2.16)

This finishes the computation. Observe that P (n) converges exponentially
fast to

1− q

(1− p) + (1− q)
. (2.17)
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Analogous computations show that Qn converges exponentially fast in each
entry to the matrix

1− q

(1− p) + (1− q)

1− p

(1− p) + (1− q)

1− q

(1− p) + (1− q)

1− p

(1− p) + (1− q)

 (2.18)

The situation is in fact harder than it looks. The computation above is
one of the few examples for which the transition probabilities at time n can
be explicitly computed. On the other hand, even in the most complicated
cases, the matrix Qn converges, as n→∞, to an object that in many cases
can be explicitly characterized. We postpone for the next chapter the proof
of convergence. Next we define the limiting object.

2.2 Invariant measures

Let X be a finite or countable set and Q a transition matrix on X . A
probability measure on X is called invariant with respect to Q if for each
element x ∈ X ,

µ(x) =
∑
a∈X

µ(a)Q(a, x) (2.19)

This is just an algebraic definition. In other words, it says that an invari-
ant probability is a left eigenvector of Q with eigenvalue 1. However it has a
deep statistical meaning, as we will see.

The very first question about this definition is: are there invariant mea-
sures for a given transition matrix Q? As we see in the next result, the answer
is positive if the state space X is finite. This is a particular case of a general
theorem for finite positive matrices called Theorem of Perron-Frobenius.

Theorem 2.20 (Perron-Frobenius) If Q is a transition matrix on a finite
state space X then there is at least one invariant distribution µ for Q.
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Proof. Postponed. The traditional proof of this theorem uses the fixed point
theorem which is highly non constructive. A probabilistic proof is proposed in
Exercise 2.7 below. We provide another proof after Theorem 4.45 of Chapter
4; by explicitly constructing an invariant measure.

Besides its natural algebraic meaning, the definition of invariant measure
has an important probabilistic significance, as we see in the next proposition
which says roughly the following. Assume that the initial state of a Markov
chain is chosen randomly using an invariant probability with respect to the
transition matrix of the chain. In this case, the law of the chain at each
instant will be the same as the law at time zero. In other words, the proba-
bility to find the chain at time n in position a will be exactly µ(a), for all n
and a, where µ is the invariant probability with respect to Q used to choose
the initial position.

We introduce now a notation to describe a Markov chain with random
initial state. Let (Xa

n : n ∈ N) be a Markov chain on X with initial state
a ∈ X . Let Xµ

n be the process with law

P(Xµ
n = b) =

∑
a∈X

µ(a)P(Xa
n = b). (2.21)

Proposition 2.22 Let (Xµ
n : n ∈ N) be a Markov chain on X with transi-

tion matrix Q and initial state randomly chosen according to the probability
µ. If µ is invariant with respect to Q, then

P(Xµ
n = b) = µ(b), (2.23)

for any n and b.

Proof. By recurrence. The identity holds for n = 1, by hypothesis. Assume
it holds for some n ≥ 1. Then

P(Xµ
n+1 = b) =

∑
z∈X

∑
a∈X

µ(a)P(Xa
n = z)P(Xa

n+1 = b |Xa
n = z) . (2.24)

(In the countable case the interchange of sums is justified by the Theorem of
Fubini; all summands are positive.) Identity (2.3) says

P(Xa
n+1 = b |Xa

n = z) = Q(z, b). (2.25)
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By induction hypothesis, for all z,∑
a∈X

µ(a)P(Xa
n = z) = µ(z) . (2.26)

Using (2.25) and (2.26) we can rewrite (2.24) as

P(Xµ
n+1 = b) =

∑
z∈X

µ(z)Q(z, b) . (2.27)

Since, by hypothesis, µ is invariant with respect to Q,∑
z∈X

µ(z)Q(z, b) = µ(b) , (2.28)

which finishes the proof.

2.3 Reversibility

Let Q be a transition matrix on X . A probability measure µ on X is called
reversible with respect to Q if for all elements x, y of X

µ(x)Q(x, y) = µ(y)Q(y, x) . (2.29)

Proposition 2.30 If µ is reversible for Q then it is also invariant for Q.

Proof. Just sum over x in (2.29) and use that
∑

x Q(y, x) = 1 to obtain
(2.19).

One advantage of chains with reversible measures is that the system of
equations (2.29) is simpler than the one stated by (2.19). On the other hand,
if one has a probability measure, it is easy to construct a Markov chain having
this measure as reversible. This second property is largely exploited in the so
called Markov Chain Monte Carlo (MCMC) method to simulate probability
distributions.
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Consider a Markov chain with transition matrix Q(x, y) and invariant
measure µ. Define the reverse matrix of Q with respect to µ by

Q∗(x, y) =

{
µ(y)
µ(x)

Q(y, x), if µ(x) > 0

0 if µ(x) = 0
(2.31)

It is easy to see that Q∗ is also a transition matrix for a Markov chain. This
chain is called reverse chain (with respect to µ). An alternative definition of
reversibility is to say that µ is reversible for Q if Q = Q∗, where Q∗ is defined
in (2.31).

Lemma 2.32 Let µ be an invariant measure for Q. Then Q∗ is the reverse
matrix of Q with respect to µ if and only if for all x1, . . . , xn ∈ X

µ(x0)Q(x0, x1) . . . Q(xn−1, xn) = µ(xn)Q∗(xn, xn−1) . . . Q∗(x1, x0). (2.33)

Proof. Follows from definition (2.31).

Lemma 2.32 says that under the invariant measure, if we look at the
process backwards in time, then we see a Markov chain with transition ma-
trix Q∗.

Lemma 2.34 Let Q be a transition matrix on X with invariant measure µ.
Let Q∗ be the reverse matrix of Q with respect to µ defined by (2.31). Then

Q(x0, x1) . . . Q(xn−1, xn) = Q∗(xn, xn−1) . . . Q∗(x1, x0). (2.35)

for any cycle x0, . . . , xn ∈ X with xn = x0.

Proof. If µ is invariant for Q, then (2.33) implies immediately (2.35).

This lemma says that the probability of seeing the chain going along a
closed cycle is the same as to see the reverse chain to make the cycle in the
opposite sense.

When looking for the invariant measure of a transition matrix Q some-
times (but now always) it is easier to guess the measure and the reverse
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process with respect to this measure than to directly solve the set of equa-
tions satisfied by the invariant measure. This is because each equation in
(2.31) involves only two states. The following lemma whose proof is imme-
diate indicates when this is possible.

Lemma 2.36 Let Q be a transition matrix on X . Let Q̃ be a matrix and µ
a probability measure on X such that for all x, y ∈ X ,

µ(x)Q(x, y) = µ(y)Q̃(y, x) (2.37)

Then µ is invariant for Q if and only if Q̃ is a transition matrix, that is∑
y

Q̃(x, y) = 1 (2.38)

for all x ∈ X . In this case µ is also invariant for Q̃ and Q∗ = Q̃, that is, Q̃
is the reverse matrix of Q with respect to µ.

The message of the above lemma is: “do not forget to check that the
guessed reverse matrix is a transition matrix”.

Example 2.39 (The asymmetric random walk in the circle)
Consider an arbitrary natural number n and let the state space be X =
{1, . . . , n}. Let a1, . . . , an be arbitrary numbers in (0, 1) and define the tran-
sition matrix Q by

Q(x, y) =


a(x) if x = 1, . . . , n− 1 and y = x + 1
a(n) if x = n and y = 1
1− a(x) if x = y
0 otherwise

(2.40)

One guesses

Q∗(x, y) =


a(x) if x = 2, . . . , n and y = x− 1
a(1) if x = 1 and y = n
1− a(x) if x = y
0 ortherwise

(2.41)

and

µ(x) =
a(x)−1∑N
z=1 a(z)−1
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The reader will prove in the exercises that µ is invariant for Q and that Q∗

is the reverse matrix of Q with respect to µ.

2.4 Irreducible chains

We study now two questions: When a chain admits an invariant measure?
When a chain admits a unique invariant measure? The following example
shows a chain with more than one invariant measure.

Example 2.42 Let X = {0, 1} and the transition matrix Q be given by

Q =

(
1 0
0 1

)
The chain corresponding to this matrix is the constant chain: Xn ≡ X0 for
all n ≥ 0. Any measure on X is invariant for this matrix. The point is that it
is impossible to go from state 1 to 0 and vice versa: Qn(1, 0) = Qn(0, 1) = 0
for all n ≥ 0.

Example 2.43 Let X = {1, 2, 3, 4} and Q be the transition matrix defined
by:

Q =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


with p, q ∈ (0, 1). In this case it is possible to go from state 1 to 2 and vice
versa and from 3 to 4 and vice versa but it is impossible to go from 1 or 2 to
3 and 4 or from 3 or 4 to 1 and 2. In fact we have two separate chains, one
with state space X1 = {1, 2} and transition matrix

Q1 =

(
p 1− p

1− p p

)
and the other with state space X2 = {3, 4} and transition matrix

Q2 =

(
q 1− q

1− q q

)
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The uniform distribution in Xi is invariant for the transition matrix Qi, i =
1, 2. Any convex combination of those invariant measures, when considered
as measures on X = {1, 2, 3, 4}, is an invariant measure for Q: calling µ1(x) =
1/2 for x = 1, 2, µ1(x) = 0 otherwise, and µ2(x) = 1/2 for x = 3, 4, µ1(x) = 0
otherwise, we have that any measure µ defined by

µ(x) = αµ1(x) + (1− α)µ2(x) (2.44)

with α ∈ [0, 1] is invariant for Q.

The above examples motivate the following definition.

Definition 2.45 A transition matrix Q defined on a finite or countable set
X is called irreducible if for any couple x, y ∈ X there exists a number
n = n(x, y), such that

Qn(x, y) > 0.

2.5 Kǎc’s Lemma

The question of existence of invariant measures is delicate. Perron Frobenius
Theorem 2.20 says that if X is finite, then the system of equations (2.19)
has at least one solution which is a probability. However, if X is infinite,
then there are transition matrices with no invariant probabilities. The next
proposition gives a probabilistic characterization of this algebraic fact. This
is a particular case of a general result proven by Mark Kǎc in the fifties.

Given a Markov chain (Xn : n ∈ N) on X let the hitting time of a state
a ∈ X for the chain starting at b ∈ X be defined by

T b→a := inf{n ≥ 1 : Xb
n = a}. (2.46)

Theorem 2.47 (Kǎc’s Lemma) Let (Xa
n : n ∈ N) be a irreducible Markov

chain on a finite or countable set X with transition matrix Q and initial state
a. Assume that µ is an invariant probability for Q and that µ(a) > 0. Then

E(T a→a) =
1

µ(a)
. (2.48)
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Kǎc’s Lemma says that the mean return time to a given state is inversely
proportional to the invariant probability of this state. The proof of the
theorem is based in three lemmas.

We need the following notation

P(T µ→a = n) :=


∑

b∈X\{a} µ(b)P(T b→a = n), if n > 0

µ(a), if n = 0
(2.49)

Lemma 2.50 Let a ∈ X satisfying µ(a) > 0. Then

P(T µ→a = n) = µ(a)P(T a→a > n). (2.51)

Proof. For n = 0 the identity holds by definition. For n > 0 write

P(T µ→a = n) =
∑

x0∈X\{a}

µ(x0)P(Xx0
1 6= a, · · · , Xx0

n−1 6= a, Xx0
n = a)

=
∑
x0 6=a

∑
x1 6=a

· · ·
∑

xn−1 6=a

µ(x0)Q(x0, x1) . . . Q(xn−1, a).(2.52)

Since by hypothesis µ is invariant for Q, we can use Lemma 2.32 to rewrite
(2.52) as ∑

x0 6=a

∑
x1 6=a

· · ·
∑

xn−1 6=a

µ(a)Q∗(a, xn−1) . . . Q∗(x1, x0), (2.53)

where Q∗ is the reverse matrix of Q. The expression (2.53) equals

µ(a)P((T ∗)a→a > n), (2.54)

where (T ∗)b→a is the hitting time of a starting from b for the reverse chain.
By (2.35), (T ∗)a→a and T a→a have the same law. This finishes the proof of
the lemma.

Lemma 2.55 Let a ∈ X satisfying µ(a) > 0. Then P(T a→a > n) → 0, as
n→∞. Consequently P(T a→a <∞) = 1
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Proof. From Lemma 2.50,

1 ≥
∞∑

n=0

P(T µ→a = n) =
∞∑

n=0

µ(a)P(T a→a > n) , (2.56)

Since by hypothesis, µ(a) > 0, (2.56) implies

∞∑
n=0

P(T a→a > n) <∞. (2.57)

Hence
lim

n→∞
P(T a→a > n) = 0, (2.58)

which proves the first part of the Lemma. Now notice that

P(T a→a =∞) ≤ P(T a→a > n)→ 0 ( as n→∞) (2.59)

which finishes the proof.

Lemma 2.60 Assume µ(a) > 0. Then the probability P(T µ→a > n) goes to
zero as n→∞.

Proof. Initially we verify that the measure µ gives positive mass to any
element of X . Indeed, as the matrix Q is irreducible, for any b ∈ X , there
exists a k such that Qk(a, b) > 0. By invariance of µ we have

µ(b) =
∑
x∈X

µ(x)Qk(x, b) ≥ µ(a)Qk(a, b) > 0 (2.61)

(see Exercise (2.14) below). Since µ(b) > 0, Lemmas 2.50 and 2.55 also apply
to b. Hence, by Lemma (2.55),

P(T b→b <∞) = 1 . (2.62)

Since the process starts afresh each time it visits b, the chain starting in
b comes back to b infinitely often with probability one (see Exercise (2.15)
below). Let T b→b

n be the time of the n-th return to b. Consider the trajectories
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of the process between two consecutive visits to b. Each of these trajectories
includes or not the state a. Since Q is irreducible for each pair a, b ∈ X , there
exist a k ≥ 1, a j ≥ 1 and finite sequences of states (x0, . . . , xk), (y0, . . . , yj)
such that x0 = b = yj and xk = a = y0 such that

Q(b, x1) . . . Q(xk−1, a)Q(a, y1) . . . Q(yj−1, b) = δ > 0, (2.63)

for some δ > 0. By the Markov property (1.27)–(1.29), the events Ak :=
{the chain visits a in the k-th excursion from b to b} are independent and
P(Ak) ≥ δ. This implies

P(T b→a > T b→b
k ) = P( Ac

1 ∩ . . . ∩ Ac
k) ≤ (1− δ)k (2.64)

Since δ > 0, inequality (2.64) implies

lim
n→∞

P(T b→a > n) = 0. (2.65)

To see that, for any k ≥ 0, write

P(T b→a > n) = P(T b→a > n, T b→b
k < n) + P(T b→a > n, T b→b

k ≥ n)

≤ P(T b→a > T b→b
k ) + P(T b→b

k ≥ n)

≤ (1− δ)k + P(T b→b
k ≥ n) (2.66)

By the Markov property T b→b
k is a sum of k independent random variables

each one with the same law as T b→b. By (2.62) P(T b→b
k ≥ n) goes to zero as

n→∞. Hence
lim

n→∞
P(T b→a > n) ≤ (1− δ)k (2.67)

for all k ≥ 0. This shows (2.65).

To conclude the proof write

lim
n→∞

P(T µ→a > n) = lim
n→∞

∑
b∈X

µ(b)P(T b→a > n). (2.68)

Taking the limit inside the sum we get

lim
n→∞

P(T µ→a > n) =
∑
b∈X

µ(b) lim
n→∞

P(T b→a > n) = 0, (2.69)
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We need to justify the interchange of sum and limit in (2.68). For finite X
this is authorized by continuity of the sum. If the space is countable, we need
to call the Monotone Convergence Theorem, a classic theorem in Integration
Theory.

Proof of Theorem 2.47. Lemma 2.60 guarantees

P(T µ→a <∞) = 1. (2.70)

Hence, by Lemma 2.50,

1 =
∞∑

n=0

P(T µ→a = n) = µ(a)
∞∑

n=0

P(T a→a > n).

This concludes the proof because

∞∑
n=0

P(T a→a > n) = E(T a→a) .

2.6 Exercises

Exercise 2.1 Show that if µ is reversible for Q, then µ is invariant for Q.

Exercise 2.2 Show that if µ is invariant for Q, then the matrix Q∗ defined
by

Q∗(x, y) =
µ(y)

µ(x)
Q(y, x). (2.71)

is the transition matrix of a Markov chain.

Exercise 2.3 Show that the identity (2.35) implies that T a→a and (T ∗)a→a

have the same law.

Exercise 2.4 Show that the events An defined after (2.63) are independent.
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Exercise 2.5 Compute the invariant probability measures for the Markov
chains presented in Examples 1.4, 1.6 and in Exemple 2.43.

Exercise 2.6 Prove that the measure µ defined in Example 2.39 is invariant
for Q and that Q∗ given by (2.41) is the reverse matrix of Q with respect to
µ. This is an example of a Markov chain with an invariant measure which is
not reversible.

Exercise 2.7 Let Q be an irreducible matrix on a finite state space X . Let

µ(y) :=
1

E(T x→x)

∑
n≥0

P(Xx
n = y, T x→x > n) (2.72)

In other words, for the chain starting at x, the probability µ(y) is proportional
to the expected number of visits to y before the chain return to x. Show that
µ is invariant for Q. This is an alternative proof of Theorem 2.20.

Exercise 2.8 (Random walk in Z) Let X = Z and U1, U2, . . . be a se-
quence of iid random variables on {−1, +1} with law

P(Un = +1) = p = 1− P(Un = −1),

where p ∈ [0, 1]. Let a be an arbitrary fixed point of Z. We define the random
walk (Sa

n)n∈N, with initial state a as follows:

Sa
0 = a

and
Sa

n = Sa
n−1 + Un, se n ≥ 1.

i) Show

P(S0
n = x) =


(

n
n+x

2

)
p

n+x
2 (1− p)

n−x
2 , if x + n is even and |x| ≤ n ;

0 otherwise.

ii) Assume p = 1
2
. Compute limn→∞ P(S0

n = 0). Hint: use Stirling’s formula.



28 CHAPTER 2. INVARIANT MEASURES

iii) Assume p > 1
2
. Use the law of large numbers and the Borel-Cantelli

Lemma to show that

P(S0
n = 0, for infinitely many n ) = 0.

iv) Is there an invariant measure for the random walk? Establish a connection
among items (iii) and (i)–(ii).

Exercise 2.9 (Birth and death process) The birth and death process is
a Markov chain on N with transition matrix:

Q(x, x + 1) = q(x) = 1−Q(x, x− 1), if x ≥ 1,

Q(0, 1) = q(0) = 1−Q(0, 0),

where (q(x))x∈N is a sequence of real numbers contained in (0, 1). Under
which condition on (q(x))x∈N the process accepts an invariant measure? Spe-
cialize to the case q(x) = p for all x ∈ N.

Exercise 2.10 (Monte Carlo method) One of the most popular Monte
Carlo methods to obtain samples of a given probability measure consists in
simulate a Markov chain having the target measure as invariant measure.
To obtain a sample of the target measure from the trajectory of the Markov
chain, one needs to let the process evolve until it “attains equilibrium”. In
the next chapter we discuss the question of the necessary time for this to
occur. Here we propose a chain for the simulation.

i) Let N be a positive integer and µ a probability measure on {1, . . . , N}.
Consider the following transition probabilities on {1, . . . , N}: for y 6= x,

Q1(x, y) =
1

N − 1

µ(y)

µ(x) + µ(y)
(2.73)

Q1(x, x) = 1−
∑
y 6=x

Q1(x, y) (2.74)

(Choose uniformly a state y different of x and with probability µ(y)/(µ(x)+
µ(y)) jump to y; with the complementary probability stay in x.)

Q2(x, y) =
1

N − 1

[
1{µ(x) ≤ µ(y)}+

µ(y)

µ(x)
1{µ(x) > µ(y)}

]
(2.75)
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Q2(x, x) = 1−
∑
y 6=x

Q2(x, y). (2.76)

(Choose uniformly a state y different of x and if µ(x) < µ(y), then jump
to y; if µ(x) ≥ µ(y), then jump to y with probability µ(y)/µ(x); with the
complementary probability stay in x.)

Check if µ is reversible with respect to Q1 and/or Q2.

ii) Let X = {0, 1}N and µ be the uniform distribution on X (that is, µ(ζ) =
2−N , for all ζ ∈ X ). Define a transition matrix Q on X satisfying the
following conditions:

a) Q(ξ, ζ) = 0, if d(ξ, ζ) ≥ 2, where d is the Hammings’ distance, intro-
duced in the previous chapter;

b) µ is reversible with respect to Q.

iii) Simulate the Markov chain corresponding to the chosen matrix Q. Use
the algorithm used in Definition 1.2. How would you determine empirically
the moment when the process attains equilibrium? Hint: plot the relative
frequency of visit to each site against time and wait this to stabilize. Give an
empiric estimate of the density of ones. Compare with the true value given
by µ(1), where µ is the invariant measure for the chain.

iv) Use the Ehrenfest model to simulate the Binomial distribution with pa-
rameters 1

2
and N .

Exercise 2.11 (i) Prove that if Q is the matrix introduced in Example 2.11,
then Qn converges to the matrix (2.18).

ii) For the same chain compute E(T 1→1), where

T 1→1 = inf{n ≥ 1 : X1
n = 1}.

iii) Establish a relationship between items (i) and (ii).

Exercise 2.12 Let X = N and Q be a transition matrix defined as follows.
For all x ∈ N

Q(0, x) = p(x) and

Q(x, x− 1) = 1 if x ≥ 1,
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where p is a probability measure on N. Let (X0
n)n∈N be a Markov chain with

transition matrix Q and initial state 0.

i) Give sufficient conditions on p to guarantee that Q has at least one invariant
measure.

ii) Compute E(T 1→1).

iii) Establish a relationship between items (i) and (ii).

Exercise 2.13 (Stirring process) The stirring process is a Markov chain
on the hypercube X = {0, 1}N defined by the following algorithm. Let PN

be the set of all possible permutations of the sequence (1, 2, · · · , N), that is,
the set of bijections from {1, 2, · · · , N} into itself. Let π be an element of
PN . Let Fπ:X → X be the function defined as follows. For all ξ ∈ X

Fπ(ξ)(i) = ξ(π(i)).

In other words, Fπ permutates the values of each configuration ξ assigning
to the coordinate i the former value of the coordinate π(i).

Let (Π1, Π2, · · ·) be a sequence of iid random variables on PN . The stirring
process (ηζ

n)n∈N) with initial state ζ is defined as follows:

ηζ
n =

{
ζ, if n = 0;
FΠn(ηζ

n−1), if n ≥ 1.
(2.77)

i) Show that the stirring process is not irreducible (it is reducible!).

ii) Assume that the random variables Πn have uniform distribution on PN .
Which are all the invariant measures for the stirring process in this case?

iii) Let VN be the set of permutations that only change the respective posi-
tions of two neighboring points of (1, 2, · · · , N). A typical element of VN is
the permutation πk, for k ∈ {1, 2, · · · , N}, defined by:

πk(i) =

{
i, if i 6= k, i 6= k + 1,
k + 1, if i = k,
k, if i = k + 1.

(2.78)

In the above representation, the sum is done “module N”, that is, N+1 =
1. Assume that the random variables Πn are uniformly distributed in the set
VN . Compute the invariant measures of the stirring process in this case.

iv) Compare the results of items (ii) and (iii).
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Exercise 2.14 Show that if µ is invariant for Q, then

µ(b) =
∑
x∈X

µ(x)Qk(x, b) (2.79)

for all k ≥ 1.

Exercise 2.15 Let N b =
∑

t≥0 1{Xb
t = b} be the number of visits to b when

the chain starts at b. Compute P(N b ≥ n + 1 |N ≥ n) and show that if
P(T b→b <∞) = 1, then P(N b =∞) = 1.

2.7 Comments and references

The proof of Theorem 2.20 proposed in Exercise 2.7 can be found in Thørisson
(2000) and Hägström (2000), Theorem 5.1.
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Chapter 3

Convergence and loss of
memory

In this chapter we discuss the notions of coupling between two Markov chains
and meeting time of coupled chains. The knowledge of asymptotic properties
of the distribution of the meeting time permits to obtain bounds for the speed
of convergence of the chain to its invariant distribution.

3.1 Coupling

In this Section we first give a formal definition of coupling between Markov
chains. Then we use it as a tool to find conditions on the probability transi-
tion matrix to guarantee convergence to the invariant probability. We show
two different approaches.

A coupling between two Markov chains is defined as follows.

Definition 3.1 Let Q and Q′ be probability transition matrices for processes
Xt and X ′

t on state spaces X and X ′ respectively. A coupling between (Xt :

t ≥ 0) and (X ′
t : t ≥ 0) is characterized by a function F̃ : X × X ′ × U →

X ×X ′ satisfying∑
y∈X

P(F̃ (x, x′; U) = (y, y′)) = Q(x′, y′) for all x ∈ X , x′, y′ ∈ X ′

33
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y′∈X ′

P(F̃ (x, x′; U) = (y, y′)) = Q(x, y) for all x, y ∈ X , x′ ∈ X ′ (3.2)

where U is a random variable or vector on a set U . The coupled process
with initial configuration (a, a′) ∈ X × X ′ is defined as follows. Let (Un)
be a sequence of iid random variables with the same law as U , then define
(X0, X

′
0) = (a, a′) and for n ≥ 1,

(Xn, X
′
n) := F̃ (Xn−1, X

′
n−1; Un) (3.3)

In other words, a coupling is the simultaneous construction of the two
Markov chains in the same probability space. In this case the space is the
one induced by the sequence (Un). Usually we take U as a random variable
uniformly distributed in U = [0, 1] but in some cases we need vectors (this is
not really a constraint, as one can always construct a random vector using a
unique uniform random variable, but to use vectors may facilitate notation).
Conditions (3.2) just say that the marginal law of the first (respectively
second) coordinate is exactly the law of the process with transition matrix Q
(respectively Q′).

In these notes we will only couple two (and later on, more) versions of
the same process. That is, X = X ′ and Q = Q′ in Definition 3.1.

Example 3.4 (Free coupling) Let U = [0, 1], U be a uniform random vari-
able in U and F be a function satisfying (1.20) (corresponding to a Markov
chain). The free coupling is the one defined by (3.3) with

F̃ (x, x′; u) := (F (x; u), F (x′; u)). (3.5)

In words, the components use the same Un to compute the value at each
time.

The following is a coupling recently proposed to simulate the invariant
measure of a Markov chain. It exploits the fact that if U is a random variable
uniformly distributed in [0, 1], then so is 1− U .

Example 3.6 (Antithetic coupling) Let U , U and F be as in Example
3.4. The antithetic coupling is the one defined by (3.3) with

F̃ (x, x′; u) := (F (x; u), F (x′; 1− u)). (3.7)
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In this coupling the components use the same uniform random variable
but each component uses it in a different way.

Example 3.8 (Doeblin coupling) The Doeblin coupling is the first cou-
pling appeared in the literature. It was introduced by Doeblin. Consider
U = [0, 1] × [0, 1], U = (V, V ′), a bi-dimensional vector of independent ran-
dom variables uniformly distributed in [0, 1]. The coupling is defined by (3.3)
with

F̃ (x, x′; v, v′) := (F (x; v), F (x′; v′)) (3.9)

This coupling consists just on two independent chains.

Example 3.10 (Independent coalescing coupling) Consider U = [0, 1]×
[0, 1], U = (V, V ′), a bi-dimensional vector of independent random variables
uniformly distributed in [0, 1]. The coupling is defined by (3.3) with

F̃ (x, x′; v, v′) :=

{
(F (x; v), F (x′; v′)) if x 6= x′

(F (x; v), F (x′; v)) if x = x′
(3.11)

In this case if the components are different, then they evolve indepen-
dently. If the components coincide, then they evolve together. The first time
the components coincide is an important object:

Definition 3.12 The meeting time τa,b of the coupling F̃ is defined by

τa,b =

{
+∞, if Xa

n 6= Xb
n, for all n ≥ 0;

min{n ≥ 1 : Xa
n = Xb

n}, otherwise.
(3.13)

where (Xa
n, Xb

n) is the coupling (3.2) constructed with the function F̃ and
initial states (Xa

0 , Xb
0) = (a, b).

The free and the independent-coalescing couplings have an important
property: the component processes coalesce after the meeting time. This is
the result of next lemma.
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Lemma 3.14 Let F̃ be the function corresponding either to the free coupling
or to the independent-coalescing coupling and (Xa

n, Xb
n) be the corresponding

process with initial states a and b respectively. Let τa,b be the meeting time
of the coupling F̃ . Then

n ≥ τa,b implies Xa
n = Xb

n (3.15)

for all a, b ∈ X .

Proof. Left to the reader.

3.2 Loss of memory

In this section we propose a free coupling between two trajectories of the
same chain, each trajectory having different starting point. We choose a
function F which helps the trajectories to meet as soon as possible. By
Lemma 3.14 we know that after meeting the trajectories coalesce into the
same trajectory. When the meeting time is “small”, we say that loss of
memory occurs. This terminology makes sense because after the meeting
time one cannot distinguish the initial states. A first simple version of this
is given by Theorem 3.19 below. Theorem 3.38 shows then how to use a
loss-of-memory result to deduce the convergence in law of the chain and the
uniqueness of the invariant measure.

Later on, in Theorem 3.54 we propose a more refined coupling to obtain an
improved version of loss of memory. We introduce the Dobrushin ergodicity
coefficient of the chain. Then we present the Convergence result in Theorem
3.63. Before it we introduce the notion of aperiodic chain, needed to state
the hypotheses of the Theorem of Convergence in greater generality.

The first version of the result controls the speed of loss of memory with
the ergodicity coefficient β defined by

Definition 3.16 (Coefficient of ergodicity) The ergodicity coefficient of
a transition matrix Q on the state space X is defined by

β(Q) :=
∑
x∈X

inf
a∈X

Q(a, x). (3.17)
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Theorem 3.18 Let Q be a transition matrix on a countable state space X .
Then there exists a function F : X×[0, 1]→ X such that for the free coupling

defined by (3.3) with the function F̃ given by (3.5),

P
(

sup
a,b∈X

τa,b > n
)
≤ (1− β(Q))n. (3.19)

where τa,b is the meeting time of the coupling F̃ .

Proof. We recall the proof of Proposition 1.19. The construction of the
function F only requires a family of partitions of [0, 1] ((I(x, y) : y ∈ X ) :
x ∈ X ), such that |I(x, y)| = Q(x, y), where |A| is the length (Lebesgue
measure) of the set A ⊂ R. In these notes A will always be a union of
intervals and its length will be the sum of the lengths of those intervals.

The key of the proof is a smart definition of the partitions. The (union
of) intervals I(x, y) must be chosen in such a way that for all x, x′, y the sets
I(x, y)

⋂
I(x′, y) be as big as possible.

Since X is countable, we can assume X = {1, 2, . . .}.
For each y ∈ X let

J(y) := [l(y − 1), l(y)) (3.20)

where

l(y) :=

{
0, if y = 0;
l(y − 1) + infa∈X Q(a, y), if y ≥ 1.

(3.21)

Let l(∞) := limy→∞ l(y). Displays (3.20) and (3.21) define a partition of the
interval [0, l(∞)].

We now define a family of partitions of the complementary interval (l(∞), 1],
indexed by the elements of X . For each x ∈ X let

J̃(x, y) := [l̃(x, y − 1), l̃(x, y)) (3.22)

where

l̃(x, y) :=

{
l(∞), if y = 0;
l̃(x, y − 1) + Q(x, y)− infz∈X Q(z, y) if y ≥ 1.

(3.23)
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Define
I(x, y) := J(y) ∪ J̃(x, y). (3.24)

It is easy to see that
|I(x, y)| = Q(x, y). (3.25)

Finally we define the function F : X × [0, 1]→ X as in 1.23:

F (x; u) :=
∑
y∈X

y 1{u ∈ I(x, y)}. (3.26)

That is, F (x; u) = y, if and only if u ∈ I(x, y). Notice that for all y ∈ X ,⋂
x∈X

I(x, y) = J(y). (3.27)

Hence,

if u < l(∞), then F (x; u) = F (z; u), for all x, z ∈ X . (3.28)

This is the key property of F .

Let F̃ be the free coupling function defined by (3.2) with the function F
defined in (3.26). Let ((Xa

n, Xb
n) : n ≥ 0) be the coupled process constructed

with this F̃ according to (3.3). Define

τ̃ := inf{n ≥ 1 : Un < l(∞)} , (3.29)

Property (3.28) implies
τa,b ≤ τ̃ , (3.30)

for all a, b ∈ X . Notice that τ̃ has geometric distribution:

P(τ̃ > n) = P(U1 > l(∞), · · · , Un > l(∞)) (3.31)

=
n∏

i=1

P(Ui > l(∞)) = (1− l(∞))n. (3.32)

To conclude observe that

l(∞) = β(Q).
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We now deduce convergence theorems from the loss-of-memory result of
Theorem 3.18. The idea is the following. Choose randomly the starting point
of one of the chains of the coupling accordingly to the invariant measure. The
marginal distribution of this chain will be (always) in equilibrium. Then use
this information and the coupling to find an upper bound for the distance
between the invariant measure and the law of the process at time t.

Lemma 3.33 Let Q be a transition matrix on a countable X . For each pair
(a, b) ∈ X ×X , let ((Xa

n, Xb
n) : n ≥ 1) be a coupling of the chains with initial

states a and b, respectively. Let τa,b be the meeting time for the coupling. If
the coupling is such that Xa

n = Xb
n for all n ≥ τa,b, then for all x, z ∈ X ,

|P(Xx
n = y)− P(Xz

n = y)| ≤ sup
a,b

P(τa,b > n) (3.34)

Proof. Rewriting the difference of probabilities in (3.34) as the expectation
of the difference of indicator functions we get:

|P(Xa
n = y)− P(Xb

n = y)| =
∣∣E[1{Xa

n = y} − 1{Xb
n = y}]

∣∣
≤ E

∣∣1{Xa
n = y} − 1{Xb

n = y}
∣∣ . (3.35)

The identity in the above display is the crucial point. It is true because the
chains are constructed in the same probability space. Now,∣∣1{Xa

n = y} − 1{Xb
n = y}

∣∣ ≤ 1{Xa
n 6= Xb

n}. (3.36)

By hypothesis,
1{Xa

n 6= Xb
n} = 1{τa,b > n}. (3.37)

which finishes the proof.

We now use the bounds on the tails of the distribution of the meeting
time to obtain bounds in the speed of convergence to the invariant measure.

Theorem 3.38 Let Q be the transition matrix of a Markov chain with count-
able state space X . Assume β(Q) > 0. Then the chain has a unique invariant
measure µ and

sup
a,y
|P(Xa

n = y)− µ(y)| ≤ (1− β(Q))n. (3.39)
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Proof. We postpone the proof of existence until Theorem 4.45 of Chapter
4. Since µ is invariant, we can write the modulus in the left hand side of
(3.39) as ∣∣∣P(Xa

n = y)−
∑
b∈X

µ(b)P(Xb
n = y)

∣∣∣. (3.40)

Since
∑

b µ(b) = 1, this is bounded from above by∑
b∈X

µ(b)
∣∣P(Xa

n = y)− P(Xb
n = y)

∣∣ . (3.41)

By Lemma 3.33 this is bounded by∑
b∈X

µ(b)P(τa,b > n) ≤ sup
a,b

P(τa,b > n) ≤ (1− β(Q))n. (3.42)

by Lemma 3.18. This finishes the proof of (3.39).

Let µ and ν be two invariant measures for Q. As we did in Lemma 3.33,
we construct two chains Xµ

n and Xν
n with initial states randomly chosen

according with µ and ν, respectively. Then,

|ν(y)− µ(y)| =
∣∣∣∑

x

ν(x)P(Xx
n = y)−

∑
z

µ(z)P(Xz
n = y)

∣∣∣
=

∣∣∣∑
x

∑
z

ν(x)µ(z) (P(Xx
n = y)− P(Xz

n = y))
∣∣∣

≤
∑

x

∑
z

ν(x)µ(z) sup
a,b

P(τa,b > n)

≤ (1− β(Q))n , (3.43)

using Lemma 3.33 in the first inequality and (3.19) in the second. Since the
bound (3.43) holds for all n and β(Q) > 0 by hypothesis, µ = ν. This shows
uniqueness.

The assumption β(Q) > 0 is of course very restrictive. The following
corollary allows us to get a result as Theorem 3.38 in a more general case.
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Corollary 3.44 Let Q be a transition matrix on a countable state space X
satisfying β(Qk) > 0 for some k ≥ 1. Then the chain has a unique invariant
measure µ and

sup
a,y
|P(Xa

n = y)− µ(y)| ≤ (1− β(Qk))n/k. (3.45)

Proof. Left to the reader.

A natural question arises: which are the transition matrices on a count-
able state space X having β(Qj) strictly positive for some j ≥ 1. One
example for the infinite countable case is the house-of-cards process of Ex-
ample 1.45. If for this process there exists an ε > 0 such that ak < 1− ε for
all k, then β(Q) > ε. We do not discuss further the infinite countable case.

A related question in the finite case is the following: which are the tran-
sition matrices on a finite state space X having all entries positive starting
from some power? The examples of irreducible matrices proposed in the pre-
vious section show that the irreducibility condition is necessary. However, as
it is shown in the next section, it is not sufficient.

3.3 Periodic and aperiodic chains

Let us start with an example.

Example 3.46 Let X = {1, 2} and the transition matrix Q be given by

Q =

(
0 1
1 0

)
It is clear that this matrix corresponds to an irreducible process. However,
any power has null entries. Indeed, for all k ≥ 0, we have

Q2k =

(
1 0
0 1

)
and

Q2k+1 =

(
0 1
1 0

)
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The problem of this matrix is that the transitions from 1 to 2 or from 2 to
1 can only occur in an odd number of steps, while the transitions from 1 to
1, or from 2 to 2, are only possible in an even number of steps. Anyway this
matrix accepts a unique invariant measure, the uniform measure in X . This
type of situation motivates the notion of periodicity which we introduce in
the next definition.

Definition 3.47 Assume Q to be the transition matrix of a Markov chain
on X . An element x of X is called periodic of period d, if

mcd {n ≥ 1 : Qn(x, y) > 0} = d.

The element will be called aperiodic if d = 1.

For example, in the matrix of the Example 3.46 both states 1 and 2 are
periodic of period 2.

We omit the proof of next two propositions. They are elementary and of
purely algebraic character and can be found in introductory books of Markov
chains. The first one says that for irreducible Markov chains the period is a
solidarity property, that is, all states have the same period.

Proposition 3.48 Let Q be a transition matrix on X . If Q is irreducible,
then all states of X have the same period.

The proposition allows us to call irreducible matrices of chain of period
d or aperiodic chain

Proposition 3.49 Let Q be an irreducible transition matrix on a finite set
X . If Q is irreducible and aperiodic, then there exists an integer k such that
Qj has all entries positive for all j ≥ k.

Proof. Omitted. It can be found in Häggström (2000), Theorem 4.1, for
instance.

Irreducible periodic matrices induce a partition of the state space in
classes of equivalence. Let Q be a matrix with period d on X . We say that x
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is equivalent to y if there exists a positive integer k such that Qkd(x, y) > 0.
Then X = X1, . . . ,Xd, where Xi contains equivalent states and are called
equivalent classes.

Proposition 3.50 Let Q be a irreducible matrix with period d. Then Qd is
aperiodic in each one of the classes of equivalence X1, . . . ,Xd. Let µ1, . . . , µd

be invariant measures for Qd on X1, . . . ,Xd, respectively. Then the measure
µ defined by

µ(x) :=
1

d

∑
i

µi(x) (3.51)

is an invariant measure for Q.

Proof. It is left as an exercise for the reader.

The last result of this section says that the positivity of all elements of a
power of an irreducible matrix Q implies the positivity of β(Q).

Lemma 3.52 Let Q be a transition matrix on a finite set X . If there exists
an integer k such that Qj has all entries positive for all j ≥ k then β(Qj) > 0.

Proof. It is clear that Qj(x, y) > 0 for all x, y ∈ X implies β(Qj) > 0.

3.4 Dobrushin’s ergodicity coefficient

We present another coupling to obtain a better speed of loss of memory of
the chain. Let X be a finite or countable state space.

Definition 3.53 The Dobrushin’s ergodicity coefficient of a transition ma-
trix Q on X is defined by

α(Q) = inf
a,b

∑
x∈X

min{Q(a, x), Q(b, x)}.
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Theorem 3.54 If Q is a transition matrix on a countable state space X ,
then there exists a coupling (joint construction of the chains) (Xa

n, Xb
n : n ∈

N) constructed with a function F̃ such that the meeting time of the coupling

F̃ satisfies
P(τa,b > n) ≤ (1− α(Q))n. (3.55)

To prove this theorem we use the Dobrushin coupling.

Definition 3.56 (Dobrushin coupling) Let Q be a transition probability
matrix on a countable state space X . We construct a family of partitions of
[0, 1] as in Theorem 3.18. But now we double label each partition, in such
a way that the common part of the families Ia(b, y) ∩ Ib(a, y) be as large as
possible.

We assume again that X = {1, 2, . . .}. For each fixed elements a and b of
X define

Ja,b(y) := [la,b(y − 1), la,b(y)) (3.57)

where

la,b(y) :=

{
0, if y = 0;
la,b(y − 1) + min{Q(a, y), Q(b, y)} if y ≥ 1.

(3.58)

Let la,b(∞) := limy→∞ la,b(y).

Displays (3.57) and (3.58) define a partition of the interval [0, la,b(∞)]. We
need to partition the complementary interval (la,b(∞), 1]. Since the common
parts have already been used, we need to fit the rests in such a way that the
total lengths equal the transition probabilities. We give now an example of
this construction. Define

J̃ b(a, y) = [l̃b(a, y − 1), l̃b(a, y))

where

l̃b(a, y) =

{
la,b(∞), if y = 0;
l̃b(a, y − 1) + max{0, (Q(a, y)−Q(b, y))}, if y ≥ 1.

Finally we define
Ib(a, y) = Ja,b(y) ∪ J̃ b(a, y).
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It is easy to see that for all b the following identity holds

|Ib(a, y)| = Q(a, y).

Define the function F̃ : X × X × [0, 1]→ X ×X as in Definition 3.1:

F̃ (a, b; u) =
N∑

y=1

N∑
z=1

(y, z)1{u ∈ Ib(a, y) ∩ Ia(b, z)}. (3.59)

In other words, F̃ (a, b; u) = (y, z), if and only if u ∈ Ib(a, y)∩Ia(b, z). Notice
that

y = z implies Ib(a, y) ∩ Ia(b, z)

Hence, for any a and b,

if u < la,b(∞), then F̃ (a, b; u) = (x, x) for some x ∈ X . (3.60)

We construct the coupling (Xa
n, Xb

n)n≥0 as follows:

(Xa
n, Xb

n) =

{
(a, b), if n = 0 ;

F̃ (Xa
n−1, X

b
n−1; Un), if n ≥ 1,

(3.61)

where (U1, U2, · · ·) is a sequence of iid uniformly distributed in [0, 1]. The
process so defined will be called Dobrushin coupling.

Proof of Theorem 3.54. With Dobrushin coupling in hands, the rest of
the proof follows those of Theorem 3.18 with the only difference that now the
coincidence interval changes from step to step, as a function of the current
state of the coupled chains. Let

τ̃a,b = min{n ≥ 1 : Un < lX
a
n−1,Xb

n−1(∞)} .

The law of τ̃a,b is stochastically dominated by a geometric random variable:

P(τ̃a,b > n) = P(U1 > lX
a
0 ,Xb

0(∞), · · · , Un > lX
a
n−1,Xb

n−1(∞))

≤ P(U1 > inf
x,y

lx,y(∞), · · · , Un > inf
x,y

lx,y(∞))

=
n∏

i=1

P(Ui > inf
x,y

lx,y(∞))

= (1− inf
x,y

lx,y(∞))n.
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To conclude observe that

inf
x,y

lx,y(∞) = α(Q).

Finally we can state the convergence theorem.

Theorem 3.62 If Q is an irreducible aperiodic transition matrix on a count-
able state space X , then

sup(a,b) |P(Xa
n = b)− µ(b)| ≤ (1− α(Qk))

n
k , (3.63)

where µ is the unique invariant probability for the chain and k is the smallest
integer for which all elements of Qk are strictly positive.

Proof. Follows as in Theorem 3.38, substituting the bound (3.19) by the
bound (3.55).

3.5 Recurrence and transience

We finish this chapter with some concepts useful when dealing with countable
state spaces.

Definition 3.64 We say that a state x is

transient, if P(T x→x =∞) > 0; (3.65)

null recurrent, if P(T x→x =∞) = 0 and ET x→x =∞; (3.66)

positive recurrent, if ET x→x <∞. (3.67)

If the state space is finite, there are no null recurrent states. In words, a
state is transient if the probability that the chain never visit it is positive. A
state is recurrent if it is visited infinitely many often with probability one. A
state is positive recurrent if the expected return time has finite expectation.

For irreducible chains recurrence and transience are solidarity properties.
For this reason we can talk of (irreducible) recurrent or transient chains.
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Example 3.68 (House-of-cards process) This process was introduced in
Example 1.45. Let X = N and Q be the transition matrix on X defined by

Q(x, y) =

{
ax if y = x + 1
1− ax if y = 0

(3.69)

Lemma 3.70 Let (W a
n : n ≥ 0) be a Markov chain on N with the transition

matrix Q defined in (3.69) and initial state a. Then

(a) The chain is non positive-recurrent if and only if

∑
n≥0

n∏
k=1

ak =∞ (3.71)

(b) The chain is transient if and only if

∞∏
k=1

ak > 0 (3.72)

Proof. Omitted in these notes. The reader can find it in Bressaud et al.
(1999).

Observe that the condition (3.71) is weaker than the condition β(Q) > 0
(this last is equivalent to infx ax > 0).

3.6 Exercises

Exercise 3.1 Prove Lemma 3.14.

Exercise 3.2 Independent coalescing coupling. Let Q be a transition matrix
on the finite or countable set X . Define the matrix Q̄ on X × X as follows

Q̄((a, b), (x, y)) =

Q(a, x)Q(b, y), if a 6= b;
Q(a, x), if a = b and x = y;
0, if a = b and x 6= y.

(3.73)
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Verify that Q̄ is a transition matrix. In other words, verify that for all
(a, b) ∈ X × X , ∑

(x.y)∈X×X

Q̄((a, b), (x, y)) = 1.

Observe that the chain corresponding to Q̄ describes two Markov chains of
transition matrix Q which evolve independently up to the first time both
visit the same state. From this moment on, the two chains continue together
for ever.

Exercise 3.3 Independent coalescing coupling. Show that the process de-
fined in Example 3.4 has transition matrix Q defined by (3.73).

Exercise 3.4 Prove Corollary 3.44.

Exercise 3.5 Determine if the chains presented in Examples 1.31, 1.42, 1.45,
2.43 and in Exercises 1.1, 2.8 and 2.13 are periodic and determine the period.
For those matrices that are aperiodic and irreducible, determine the smallest
power k satisfying that all the entries of Qk are strictly positive.

Exercise 3.6 Determine β(Q) and α(Q) for all aperiodic and irreducible
chains Q of Exercise 3.5. In case the computations become complicate, try
to find bounds for α(Q) and β(Q). When α(Q) gives a better convergence
velocity than β(Q)?

Exercise 3.7 Let X = {1, 2} and Q be the following transition matrix

Q =

(
1
3

2
3

2
3

1
3

)
(a) Show that there exists n̄, such that, for all n ≥ n̄,

0, 45 ≤ Qn(1, 2) ≤ 0.55 and

0, 45 ≤ Qn(2, 2) ≤ 0.55.

Find bounds for n̄.

(b) Obtain similar results for Qn(1, 1) and Qn(2, 1).
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3.7 Comments and references

The coupling technique was introduced by Doeblin (1938a), who constructed
two chains which evolved independently. The coefficient α(Q) was introduced
by Dobrushin (1956) and then used by Dobrushin (1968a,b) to show the
existence of a unique Gibbs state.
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Chapter 4

Regeneration and perfect
simulation

In this chapter we propose a somewhat different way of constructing the
process. The construction permits to prove the existence of regeneration
times, that is, random times such that the process starts afresh. It also
induces a perfect simulation algorithm of stationary Markov chains. That
is, an algorithm to obtain an exact sample of the invariant measure for the
transition matrix Q.

4.1 Stopping time

We start with the important definition of stopping time.

Definition 4.1 (Stopping time) Let (Un) be a sequence of random vari-
ables on some set U . We say that T is a stopping time for (Un : n ≥ 0) if
the event {T ≤ j} depends only on the values of U1, . . . , Uj. That is, if there
exist events Aj ⊂ U j such that

{T ≤ j} = {(U1, . . . , Uj) ∈ Aj} (4.2)

51
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Example 4.3 Let c ∈ (0, 1), U = [0, 1], (Un) be a sequence of random
variables uniformly distributed in U and T := first time a Un is less than c:

T := min{n ≥ 1 : Un < c} (4.4)

Then T is a stopping time, the sets Aj are defined by

Aj = {U1 > c, . . . , Uj−1 > c, Uj < c} (4.5)

and the law of T is geometric with parameter c:

P(T > n) = (1− c)n (4.6)

4.2 Regeneration

In this section we show that if there is a constant lower bound for the prob-
ability of passing from any state to any other, then for any measure ν on X ,
then there exists a random time τ such that the distribution of the chain at
that time has law ν. This time is a stopping time for the sequence (Ui) used
to construct the chain.

Theorem 4.7 Let Q be the transition matrix of a Markov chain on a finite
state space X such that there exist c > 0 with Q(x, y) ≥ c for all x, y ∈
X . Let µ be an arbitrary probability measure on X . Let U1, U2, . . . be a
sequence of uniform random variables in [0, 1]. Then there exists a function
F : X × [0, 1]→ X and a random stopping time T for (Un) such that

1. The chain defined by Xn = F (Xn−1; Un) has transition matrix Q.

2. XT has law µ

3. T has geometric distribution with parameter c: P(T > n) = (1− c)n

4. Given the event {T = t; Xi = xi, for i < t}, the chain (Xt+s : s ≥ 0)
has the same law as (Xn : n ≥ 0) with initial distribution µ.
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Remark 4.8 The last item in the theorem is the regeneration statement:
at time T the chain starts afresh with initial distribution µ independently of
the past.

Proof. The point is to construct a family of partitions of [0, 1] with suitable
properties.

We first construct a partition of the interval [0, c]: let l(0) = 0, l(y) =
l(y − 1) + cµ(y) and

J(y) := [l(y − 1), l(y)) (4.9)

The length of J(y) is
|J(y)| = cµ(y) (4.10)

for all y ∈ X .

Then construct a partition of [c, 1] as follows. Define k(x, 0) := c,

k(x, y) := k(x, y − 1) + Q(x, y)− cµ(y),

K(x, y) := [k(x, y − 1), k(x, y)) (4.11)

and
I(x, y) := J(y) ∪K(x, y) (4.12)

Then we have
|I(x, y)| = Q(x, y) . (4.13)

We define
F (x; u) :=

∑
y∈X

y 1{u ∈ I(x, y)} (4.14)

and
Xn := F (Xn−1; Un) (4.15)

With this function, the chain Xn has transition matrix Q. This implies that
Xn satisfies the first item of the theorem.

Let
T := min{n ≥ 1 : Un ≤ c} (4.16)

We saw in Example 4.3 that T is a stopping time for (Un) and that T has
geometric distribution with parameter c. That is, T satisfies the third item
of the theorem.
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Compute

P(XT = y) =
∑

n

P(Xn = y, T = n)

=
∑

n

P(Xn = y, U1 > c, . . . , Un−1 > c, Un ≤ c). (4.17)

By Definition 4.15 of Xn,

{Xn = y} = {Un ∈ J(y) ∪K(Xn−1, y)}.

Since J(y) ⊂ [0, c) for all y ∈ X and K(x, y) ⊂ [c, 1] for all x, y ∈ X , we have

{Xn = y, Un ≤ c} = {Un ∈ J(y)}. (4.18)

Hence, (4.17) equals∑
n≥1

P(U1 > c, . . . , Un−1 > c, Un ∈ J(y))

=
∑
n≥1

P(U1 > c) . . . P(Un−1 > c) P(Un ∈ J(y))

=
∑
n≥1

(1− c)n−1 c µ(y), (4.19)

by (4.10). Since (4.19) equals µ(y), this shows the second item of the theorem.
The last item is left to the reader.

The following lemma shows that if the measure at the regeneration time
T is chosen to be the invariant measure for Q, then, after the regeneration
time the chain is always distributed according to the invariant measure.

Lemma 4.20 Assume the conditions of Theorem 4.7 and that µ is the in-
variant measure for Q. Then

P(Xa
t = b | t ≥ T ) = µ(b) (4.21)



4.2. REGENERATION 55

Proof. Partitioning first on the possible values of T and then on the possible
values of Xn we get

P(Xa
t = b, t ≥ T ) =

t∑
n=1

P(Xa
t = b, T = n)

=
t∑

n=1

∑
x∈X

P(Xa
n = x, Xa

t = b, T = n) (4.22)

=
t∑

n=1

∑
x∈X

P(Xx
t−n = b) P(Xa

n = x, T = n) (4.23)

The last step requires some care. We ask the reader to show it in the exercises.
By item (2) of Theorem 4.7, the above equals

=
t∑

n=1

∑
x∈X

P(Xx
t−n = b) µ(x)P(T = n)

=
∑
x∈X

P(Xx
t−n = b) µ(x)

t∑
n=1

P(T = n)

= µ(b)P(t ≥ T ) (4.24)

because µ is invariant for Q.

Proposition 4.25 Assume the conditions of Theorem 4.7 and that µ is the
invariant measure for Q. Then for any initial state a

sup
x
|P(Xa

n = x)− µ(x)| ≤ (1− c)n. (4.26)

Proof. Partition according to the values of T :

P(Xa
n = x) = P(Xa

n = x, n ≥ T ) + P(Xa
n = x, n < T )

= P(n ≥ T ) µ(x) + P(n < T ) P(Xa
n = x | n < T )

= (1− P(n < T )) µ(x) + P(n < T ) P(Xa
n = x | n < T )
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by Lemma 4.20. Hence,

|P(Xa
n = x)− µ(x)| = P(n < T ) |µ(x) − P(Xa

n = x |n < T )|
≤ P(n < T ) (4.27)

because the difference of two probabilities is always bounded above by 1.
The proposition follows now from item (3) of Theorem 4.7.

4.3 Coupling and regeneration

We compare here regeneration and coupling. Then we extend Theorem 4.7
to the case of countable state space. Let us first define the regeneration
coefficient of a chain with respect to a measure.

Definition 4.28 Let the regeneration coefficient of a transition matrix Q
with respect to a probability measure µ be

C(µ, Q) := inf
y

( infx Q(x, y)

µ(y)

)
(4.29)

In the next theorem we show that the function F of Theorem 4.7 can
be constructed with the regeneration coefficient C(µ, Q) instead of c and the
rate of geometric decay of T will be C(µ, Q). The regeneration coefficient
C(µ, Q) is the maximal geometric rate we can get when the law of the process
with transition matrix Q at regeneration times is µ.

Theorem 4.30 Let Q be the transition matrix of a Markov chain on a
countable state space X . Assume there exists a measure µ on X satisfy-
ing c := C(µ, Q) > 0. Then the conclusions of Theorem 4.7 hold with this µ
and this c.

Proof. We need to check that the construction of the intervals J(y) in
(4.9) and I(x, y) of (4.12) be such that (4.13) hold. For that, it is sufficient
that minx Q(x, y) ≥ cµ(y) for all y. This is guaranteed by the definition of
C(µ, Q).
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By conveniently defining the measure µ at regeneration times we can get
an alternative proof to Theorem 3.38.

Theorem 4.31 Let Q be a transition matrix on a countable state space X .
Assume β(Q) > 0, where β(Q) is defined in (3.17). Define

µ(y) :=
infx Q(x, y)∑
y infx Q(x, y)

(4.32)

Then

1. The regeneration coefficient of Q with respect to this µ is the same as
the ergodicity coefficient β(Q):

C(µ, Q) = β(Q) ; (4.33)

2. The time T constructed in (4.16) with c = C(µ, Q) has geometric law
with parameter β(Q).

3. The following bounds in the loss of memory hold:

|P(Xa
n = x)− P(Xb

n = x)| ≤ (1− β(Q))n (4.34)

for any a, b, x ∈ X .

Proof. Notice first that µ is well defined because the denominator in (4.32)
is exactly β(Q) > 0 by hypothesis.

Identity (4.33) follows from the definition of C(µ, Q). T is geometric by
construction. Inequality (4.34) holds because the left hand side is bounded
above by P(T > n) which by item (2) is bounded by (1− β(Q))n.

The measure µ maximizing the regeneration coefficient of a matrix Q is
the one given by (4.32). In particular we get that the coupling time is less
than the regeneration time:

τa,b ≤ T (4.35)

where τa,b is the meeting time of the free coupling with the function F defined
in the proof of Theorem 3.18 and T is the regeneration time of the chain with
respect to the measure µ defined by (4.32).

If α(Q) > β(Q), then the meeting time of the Dobrushin coupling is less
than the regeneration time of Theorem (4.31).
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4.4 Construction of the invariant measure

In this section we show how to use the regeneration ideas to construct directly
the invariant measure. As a corollary we get a perfect simulation algorithm
for the invariant measure.

Consider a double infinite sequence of uniform random variables (Un :
n ∈ Z).

Definition 4.36 (Regeneration times) Let Q be an irreducible transi-
tion matrix on a countable state space X . Let µ be a measure on X satisfying
c := C(µ, Q) > 0. Define the sequence of random variables

N(i) := 1{Ui ≤ c} (4.37)

Let the regeneration times (τ(n)) with respect to the measure µ be defined
by

τ(n) := max{i ≤ n : Ui ≤ c} (4.38)

The sequence N(i) is a sequence of iid Bernoulli random variables of
parameter c. Observe that

τ(j) = τ(n) for all j ∈ [τ(n), n]. (4.39)

Lemma 4.40 For all n ∈ Z there exists an i ≤ n such that N(i) = 1 with
probability one. Furthermore

P(n− τ(n) > k) = (1− c)k (4.41)

Proof. Immediate.

Definition 4.42 (The stationary process) Let Q, µ, c, (Ui) and N(·) be
as in Definition 4.37. For those i such that N(i) = 1 define

Xi =
∑

y

y 1{Ui ∈ J(y)} (4.43)
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where (J(y)) are defined in (4.9) and satisfy (4.10). The values (4.43) are
well defined because in this case Ui ≤ c and J(y) ⊂ [0, c] for all y ∈ X . To
define Xn for those n such that N(n) = 0 we first notice that Xτ(n) has been
defined using (4.43) because N(τ(n)) = 1. Then use the function F of the
Theorem 4.7 to define the values between τ(n) + 1 and n:

Xτ(n)+1 = F (Xτ(n); Uτ(n)+1) , . . . , Xn = F (Xn−1; Un) . (4.44)

Property (4.39) guarantees that this construction is well defined.

Theorem 4.45 Let Q be a transition matrix on a countable state space X .
Assume there exists a measure µ on X such that C(µ, Q) > 0. Then the
process (Xn : n ∈ Z) defined in Definition 4.42 is a stationary Markov
process with transition matrix Q. The marginal law ν on X defined by

ν(x) := P(X0 = x) (4.46)

is the unique invariant measure for Q.

Proof of Theorem 2.20 Let X̃ be an irreducible class of states of X .
Assume first that X̃ is aperiodic. Then, by Proposition 3.49, there exists a
positive k such that Q̃, the transition matrix restricted to X̃ satisfies

Q̃k(x, y) > 0 for all x, y ∈ X̃ (4.47)

Hence β(Q̃k) > 0 and we can apply Theorem 4.45 to show that the law ν̃ of

X̃0, the value at time zero of the process restricted to X̃ given in Definition
4.42 is an invariant measure for Q̃. Hence the measure ν defined by

ν(x) :=

{
ν̃(x) if x ∈ Q̃
0 otherwise

(4.48)

is invariant for Q.

If X̃ has period d, then by Proposition 3.50, Qd is aperiodic in each of
the equivalence classes X̃1, . . . , X̃d. Use the argument above to construct
invariant measures µ1, . . . , µd for Qd on X̃1, . . . , X̃d, respectively. Then, µ :=
(1/d)

∑
i µi is invariant for Q, by Proposition 3.50.
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Proof of the existence part of Theorem 3.38. If β(Q) > 0 it suffices
to choose µ as in (4.32) and apply Theorem 4.45.

Proof of Theorem 4.45. Let (Xn : n ∈ Z) (Notice: n ∈ Z) be the process
constructed in (4.38)–(4.44). The construction is translation invariant. That
is

P(Xt+1 = x1, . . . , Xt+k = xk) = P(X1 = x1, . . . , Xk = xk) (4.49)

for all t ∈ Z. This implies the process is stationary. The Markov property
follows from (4.44). Hence

P(X1 = y) =
∑

x

P(X1 = y |X0 = x)P(X0 = x) (4.50)

That is,

ν(y) =
∑

x

P(X1 = y |X0 = x)ν(x) (4.51)

which implies ν is invariant for Q.

To show uniqueness let ν and µ be two invariant measures. Then

|ν(y)− µ(y)| (4.52)

=
∣∣∣∑

a

ν(a) P(X0 = y |X−n = a)−
∑

b

µ(b)P(X0 = y |X−n = b)
∣∣∣

≤
∑

a

∑
b

ν(a) µ(b) |P(X0 = y |X−n = a)− P(X0 = y |X−n = b)|

≤
∑

a

∑
b

ν(a) µ(b) P(τ(0) < −n)

= (1− c)n+1 (4.53)

Since (4.52) is independent of n and (4.53) goes to zero as n → ∞, we
conclude that (4.52) must vanish.

Notice that Theorem 4.45 holds for any measure µ in the regeneration
times of Theorem 4.45. To optimize the bounds in (4.26) and (4.53) we can
choose a measure µ which maximizes C(µ, Q). This is

µ(y) :=
minx Q(x, y)∑
y minx Q(x, y)

(4.54)
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and for this µ

C(µ, Q) = β(Q) =
∑

y

min
x

Q(x, y) (4.55)

4.5 Perfect simulation

The above construction naturally gives us an algorithm to perfect simulate
the invariant measure in a minimal number of steps. Let Q be a transition
matrix in a countable probability state space X such that β(Q) > 0.

Algorithm 4.56 (Sample the invariant measure) Perform the follow-
ing steps

1. Choose µ as in (4.54) (To do this compute first β(Q)).

2. Simulate uniform random variables U0, U−1, . . . up to τ(0), the first time
U−n < β(Q). (Here we only need a random geometrically distributed
number of steps).

3. Compute Xτ(0) using (4.43):

Xτ(0) ←
∑

y

y 1{Uτ(0) ∈ J(y)} (4.57)

and Xτ(0)+1, . . . , X0 using (4.44):

Xj ← F (Xj−1; Uj) (4.58)

for j ∈ [τ(0)+1, 0]. Important: in both (4.57) and (4.58) use the same
uniform random variables generated in (2).

4. Output the value X0. End.

Theorem 4.59 The law of X0 generated by Algorithm 4.56 is exactly the
law of the unique invariant measure ν for Q:

P(X0 = x) = ν(x) (4.60)

for all x ∈ X .
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Proof. Immediate.

To generate a piece (X0, . . . , Xn) of the stationary process, first sample
X0 using the previous algorithm and then iteratively the other coordinates:

Algorithm 4.61 (Sample the stationary process) Perform the follow-
ing steps

1. Use Algorithm 4.56 above to generate X0.

2. Generate uniform random variables U1, . . . , Un

3. Set X1, . . . , Xn using (4.58).

4. Output the vector (X0, . . . , Xn). End.

Theorem 4.62 The law of the random vector (X0, . . . , Xn) generated by Al-
gorithm 4.61 is the following

P(Xi = xi , i ∈ {0, . . . , n}) = ν(x0)Q(x0, x1) . . . Q(xn−1, xn) (4.63)

where ν is the unique invariant measure for Q.

Proof. Immediate.

4.6 Coupling from the past

Let Q be an irreducible transition probability matrix on a finite state space
X = {1, . . . , N}. We start with the definition of multi coupling. It is essen-
tially the same as the definition of coupling given in Definition 3.1, but now
we allow as many components as elements are in X .

Definition 4.64 (Multi coupling) Let a function F̃ : XN × U → XN be
such that for all x1, . . . , xN ∈ X , all i = 1, . . . , N and all yi ∈ X :∑

i

P(F̃ (x1, . . . , xN ; U) = (y1, . . . , yN)) = Q(xi, yi) (4.65)
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where
∑

i is the sum over all (N−1)-tuples (y1, . . . , yi−1, yi+1, . . . , yN) and U

is a random variable in U . Such an F̃ will be called a multi coupling function.
A multi coupling process in XN is defined by

(X1
n, . . . , XN

n ) :=

{
(1, . . . , N) if n = 0

F̃ (X1
n−1, . . . , X

N
n−1; Un) if n > 0

(4.66)

where (Un) is a sequence of iid random variables defined on U .

One naturally can extend Definitions 3.4 and 3.8 to the notion of free
multi coupling and independent multi coupling. There is no simple way to
extend the coupling (3.61) to a Dobrushin multi coupling. The reason is that
Dobrushin coupling is a genuine two-coordinates coupling in the sense that
the way one coordinate uses the variable U to compute its value depends on
the value of the other coordinate.

Definition 4.67 Let k ∈ Z be an arbitrary time. Let (X1;k
n , . . . , XN ;k

n ) be a
multi coupling of the Markov chain in X with transition matrix Q, starting
at time k with states (1, . . . , N), defined as follows:

(X1;k
n , . . . , XN ;k

n ) :=

{
(1, . . . , N) if n = k

F̃ (X1;k
n−1, . . . , X

N ;k
n−1; Un) if n > k

(4.68)

Define

κk := min{` ≥ k : Xa;k
` = Xb;k

` for all a, b ∈ {1, . . . , N}} (4.69)

In words, κk is the first time all the components of the multi coupling started
at time k with all possible states meet. Define

τ(n) := max{k ≤ n : κk ≤ n} (4.70)

That is, the configuration at n does not depend on the state of the process
at times less than or equal to τ(n); furthermore there is no time bigger than
τ(n) with this property.
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Theorem 4.71 (Coupling from the past) Let Un be a sequence of iid

random variables in U . Let F̃ be a multi coupling function satisfying (4.65).
Let (((X1;k

n , . . . , XN ;k
n ) : n ≥ k) : k ∈ Z) be a family of multi couplings of

the Markov chain in X with transition matrix Q, starting at all possible times
k ∈ Z with states (1, . . . , N) defined in (4.68) (and with the same sequence
(Un)). Assume τ(0) finite, that is, P(τ(0) > −∞) = 1. Then the matrix
Q admits a unique invariant measure ν, the law of any component of the
process at time zero starting at time τ(0):

P(X
a;τ(0)
0 = y) = ν(y) (4.72)

for all a, y ∈ X .

Before proving the theorem we make a comment and then show how the
result is used for perfect simulation applications. In view of Definition 4.36
one is tempted to guess that τ(0) is a regeneration time for the chains. But
this is not true, because, for the multi coupling time τ(n) (4.39) does not
hold.

The original perfect simulation algorithm proposed by Propp and Wilson
is the following:

Algorithm 4.73 (Coupling from the past) Perform the following steps

1. Fix a moderate time −t < 0 and generate independent random vari-
ables U−t, U−t+1, . . . , U0.

2. With the random variables U−t, . . . , U0 previously generated, construct
a sample of the multi coupling (X1;−t

` , . . . , XN ;−t
` ) for ` = −t, . . . , 0,

using a multi coupling function F̃ .

3. If
Xa;−t

0 = Xb;−t
0 for all a, b ∈ {1, . . . , N} (4.74)

then X1;−t
0 is a perfect sample of the invariant measure ν. Print the

result and finish. If (4.74) does not hold, then generate independent
random variables U−2t, . . . , U−t−1, set

t← 2t (4.75)

and go to (2).
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The meaning of “moderate time” is something only experience can give.
If no a priori estimation exists, just start with an arbitrary value.

The algorithm avoids the explicit computation of τ(0). It starts multi
coupling from time −t to time 0. If all components coincide at time 0, then
the algorithm finishes and the value of a(ny) component at time zero is a
perfect sample of the invariant measure. If some components disagree then,
generate new U random variables from time −2t up to time −t−1 and multi
couple again from time −2t, etc. Use the U variables already generated to
construct the multi coupling in the time interval going from −t to 0: The
crucial point is that once the variable Un is generated, it is used in all future
steps to generate the multi coupling at time n.

Proof of Theorem 4.71 The hypothesis P(τ(n) = −∞) = 0 implies that

X
a,τ(n)
n is well defined and does not depend on a. By definition of τ(n),

X
a,τ(0)
0 = Xa,k

0 , for k ≤ τ(0). (4.76)

By the translation invariance of the construction of X
a,τ(n)
n in function of the

iid vector (Ui, i ∈ Z), we have

ν(y) = P(Xa,τ(n)
n = y) for all n ∈ Z. (4.77)

Finally, it is clear that τ(n) is a non decreasing sequence of random times:

τ(n− 1) ≤ τ(n) for all n ∈ Z (4.78)

Let us check that ν is invariant:

ν(y) = P(Xa,τ(n)
n = y) by (4.77)

= P(Xa,τ(n−1)
n = y) by (4.76) and (4.78)

=
∑

b

P(Xa,τ(n−1)
n = y |Xa,τ(n−1)

n−1 = b) P(X
a,τ(n−1)
n−1 = b)

=
∑

b

P(F̃ ((b, . . . , b); Un−1) = y)ν(b) by (4.68) and (4.77)

=
∑

b

Q(b, y)ν(b) by (4.65) (4.79)
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This shows the invariance of ν. Let us show that ν is the unique invariant
measure. Assume µ is invariant for Q. Then

|µ(y)− ν(y)| =
∣∣∣∑

x

µ(x)Qn(x, y) −
∑

z

ν(z)Qn(z, y)
∣∣∣

≤
∑

x

∑
z

µ(x)ν(z)|Qn(x, y)−Qn(z, y)|

=
∑

x

∑
z

µ(x)ν(z)|P(Xx,−n
0 = y)− P(Xz,−n

0 = y)|

=
∑

x

∑
z

µ(x)ν(z)|E(1{Xx,−n
0 = y} − 1{Xz,−n

0 = y})|

≤
∑

x

∑
z

µ(x)ν(z)|P(τ(0) > −n)|

= P(τ(0) > −n) (4.80)

which goes to zero by hypothesis. Hence µ = ν.

4.7 Exercises

Exercise 4.1 Show that (4.22) equals (4.23).

Exercise 4.2 Compare τ(n) defined by (4.70) for the free coupling with the
τ(n) defined in (4.38) for the same coupling.

Exercise 4.3 Show the last item of Theorem 4.7. That is, show that

P(Xt+s = ys, s = 0, . . . , ` |T = t; Xi = xi, i < t)

= µ(y0)Q(y0, y1) . . . Q(y`−1, y`) (4.81)

for arbitrary `, t ≥ 0 and xi, yj, i ≤ t, j ≤ `.

Exercise 4.4 Show (4.35), that is, show that the meeting time of the free
coupling defined with the function F defined in the proof of Theorem 3.18
is less than the regeneration time of the chain constructed with µ defined by
(4.32).
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Exercise 4.5 Under the conditions of Exercise 4.4, give an example where
the meeting time of τa,b may be strictly smaller than the regeneration time.

Exercise 4.6 Show that the construction proposed in (4.43)-(4.44) is trans-
lation invariant. That is, show (4.49).

Exercise 4.7 Extend Definitions 3.4 and 3.8 to the notion of free multi
coupling and independent multi coupling. How would you define a Dobrushin
multi coupling?

4.8 Comments and references

Theorem 4.7 which uses the fact that there are regeneration times in Markov
chains is due to Athreya and Ney (1978) and Nummelin (1878). Coupling
from the past is an idea introduced by Propp Wilson (1996), see Wilson
(1998) for references. Theorem 4.71 is proven by Foss and Tweedie (2000).
See an exhaustive discussions about background on regeneration times in
Thorisson (2000) and Comets, Fernández and Ferrari (2000).
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Chapter 5

Renewal Processes.

5.1 Renewal processes

We start with the definition of renewal processes

Definition 5.1 (Renewal process) A renewal process is a strictly increas-
ing sequence of random variables

0 ≤ T1 < T2 < · · · < Tk < · · ·

with values in N or R satisfying the following conditions:

1. The random variables T1, T2 − T1,. . . ,Tk+1 − Tk, k ≥ 1 are mutually
independent.

2. The random variables Tk+1 − Tk, k ≥ 1 are identically distributed.

The variables (Tk)k≥1 model the successive occurrence times of some phe-
nomenon which repeats independently from the past history. For instance
the random variables Tk may be interpreted as the successive instants of re-
placement of an electric bulb. Condition (1) somehow express the fact that
the lifetime of each bulb is independent of the others. Condition (2) is ver-
ified only if the conditions of occurrence of the phenomenon are unaltered.

69
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This means that we replace always with bulbs with the same specifications
and that the conditions of the electric network do not change with time.

The reason why we excluded T1 from condition (2) is that the time up to
the first occurrence may depend on other factors related to the observation.
For instance, if we model the arrival times of a “perfect metro”, for which
the time interval between two trains is (for instance) exactly 3 minutes, then
Tk+1 − Tk ≡ 3, for all k ≥ 1. However, T1 depends on the moment we
choose as observation starting time. For example, if one arrives to the metro
station unaware of the schedule and starts counting the time intervals, we
can assume that T1 has uniform distribution in [0, 3]. We present now some
examples.

In this chapter we consider discrete time renewal processes, that is, Tn ∈
N.

Example 5.2 Let U1, U2, . . . be a sequence of iid random variables with
values in {−1, +1} and law

P(Un = +1) = p = 1− P(Un = −1),

where p ∈ [0, 1]. Define

T1 = inf{n ≥ 1 : Un = −1} and

Tk = inf{n ≥ Tk−1 : Un = −1}, for all k ≥ 2.

In this case, the independence of the random variables Un implies imme-
diately the independence condition (1) of the definition and also the fact
that the increments Tk+1 − Tk are identically distributed, for all k ≥ 1. In
this case it is easy to see that the increments, as well as T1, have geometric
distribution.

Example 5.3 Let (Xa
n)n∈N be an irreducible Markov chain on X with initial

state a. Let b ∈ X . Define the successive visits to b:

T a→b
1 = inf{n ≥ 1 : Xa

n = b} and

T a→b
k = inf{n ≥ T a→b

k−1 : Xa
n = b}, for all k ≥ 2.
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The Markov property implies that the increasing sequence (T a→b
n ) satisfies

conditions (1) and (2). Notice that in this case, if a = b, then T a→b
1 and

T a→b
k+1 − T a→b

k have the same law for all k ≥ 1.

Definition 5.4 Given a renewal process (Tn)n≥1, for all pair of times s ≤ t,
define the counting measure N[s, t] as follows

N[s, t] =
∑
k≥1

1{s ≤ Tk ≤ t}.

The measure N[s, t] counts the number of events of the renewal process be-
tween times s and t. We also use the notation

N{t} = N[t, t] =
∑
k≥1

1{Tk = t}.

Lemma 5.5 Let (Tn)n≥1 be a renewal process with values in N and let t ∈ N.
Then ∑

k≥1

1{Tk = t} = 1 {t ∈ {Tk : k ≥ 1}} ,

and hence
P(N{t} = 1) = P (t ∈ {Tk : k ≥ 1}) . (5.6)

Proof. This is just a simple exercise left to the reader.

5.2 Basic questions

In this chapter we study the following basic questions for renewal processes:

Question 5.7 (Stationarity) Determine the law of T1 under which the law
of the counting measure N[s, s + t] is independent of s.

Question 5.8 (Law of Large Numbers) Study the following limit in mean,
in probability and almost sure

lim
t→+∞

N[0, t]

t
.
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Question 5.9 (Key Theorem) Determine the limit

lim
s→+∞

P(N[s, s + t] = n).

for any fixed t and n.

Notice that in Questions 5.8 and 5.9 the existence of the limits must also
be proven.

5.3 Relation with the flea-jump process

In this section we introduce an associated Markov chain with state space
X = N related with the renewal process. For the Markov chain the answers to
questions related to 5.7, 5.8 and 5.9 are just applications of results established
in previous chapters.

Lemma 5.10 (Translation lemma) Let (Tn)n≥1 be a renewal process on
N and ν the common law of the increments Tk+1 − Tk, that is

P(Tk+1 − Tk = n) = ν(n),

for all n ∈ N. Then

N[m, n] =
∑

m≤t≤n

1{Xa
t = 0} and

P(N{t} = 1) =
∑

a

P(Xa
t = 0) P(T1 = a)

where (Xa
n)n∈N is the Markov chain on N with initial state a and transition

matrix Qν defined by:

Qν(0, x) = ν(x + 1), for all x ∈ N; (5.11)

and
Qν(x, x− 1) = 1, for all x ≥ 1. (5.12)
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Proof. This is a graphic proof. At time 0, we mark the point with ordinate
a = T1. Starting from the point (0, a) we draw a 450 line up to the point
(a, 0). Then mark the point (a + 1, D1), where Dk = Tk+1 − Tk − 1, for all
k ≥ 1. Repeat the procedure, drawing a 450 line linking the points (a+1, D1)
and (a + 1 + D1, 0). Then mark the point (a + 2 + D1, D2) and repeat the
procedure, drawing a line up to (a+2+D1 +D2, 0). In general, we mark the
point (a + k +

∑k−1
j=1 Dj, Dk) and draw a line perpendicular to the diagonal

up to the point (a + k +
∑k

j=1 Dj, 0).

For each t ∈ N, define Xa
t as the ordinate of abscise t in the graphic

constructed above. The reader will be able to prove that the process (Xa
t )t∈N

so defined is a Markov chain with transition matrix Qν .

This construction also proves that the points Tk of the renewal process
are exactly the times for which the chain (Xa

t )t∈N visits state 0. This and
Lemma 5.5 finishes the proof.

5.4 Stationarity

In this section we answer Question 5.7. From now on we use the letter ν to
call the common law of the increments Tk+1−Tk and Xν := {i ∈ N : ν(i) > 0}
is the support of the measure ν.

Definition 5.13 Let ν be a probability distribution on {1, 2, · · ·} with finite
mean θ, that is:

θ =
∑
n≥1

nν(n) < +∞.

Define the probability measure Gν on N as follows. For all x ∈ N

Gν(x) =
ν(x, +∞)

θ
, (5.14)

where

ν(x, +∞) =
∑
y>x

ν(y).
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Remark 5.15 The identity

θ =
∑
n≥1

nν(n) =
∑
x≥0

ν((x, +∞)) (5.16)

is proven as the integration by parts formula and is left as an easy exer-
cise to the reader. The identity (5.16) guarantees that Gν is a probability
distribution when θ < +∞.

Proposition 5.17 Let (Tn)n≥1 be a renewal process on N and let ν be the
common law of the increments Tk+1−Tk. Assume θ finite. Then P(N{t} = 1)
is constant in t if and only if T1 has law Gν.

Proof. The Translation Lemma 5.10 implies that

P(N{t} = 1) =
∑
k≥0

P(T1 = k)P(Xk
t = 0), (5.18)

where the super label k indicates the starting state of the chain. On the
other hand, the law of N(t) does not depend on t if and only if

P(N{t} = 1) = P(N{0} = 1) = P(T1 = 0) (5.19)

for all t ≥ 0. Hence the law of N(t) does not depend on t if and only if the
law of T1 satisfies

P(T1 = 0) =
∑
k≥0

P(T1 = k)P(Xk
t = 0) (5.20)

which is exactly the equation an invariant measure for the chain Xt must
satisfy. We have proved that P(N{t} = 1) constant in t is equivalent to the
invariance of the law {P(T1 = k), k ≥ 0} for the chain (Xt)t∈N.

This means that the stationarity of N(t) is equivalent to say that the
starting point of the chain, that is T1, is chosen following the invariant mea-
sure of the matrix Qν , defined in the Translation Lemma.

Notice that Qν is irreducible in the set

{0, sup{x ≥ 0 : ν(x + 1) > 0}}



5.5. LAW OF LARGE NUMBERS 75

and that the condition θ < +∞ is equivalent to positive recurrence of Qν .
This ensures the existence of an invariant measure for Qν . Finally, as the
reader will easily check, the measure Gν is invariant for the transition ma-
trix Qν .

Corollary 5.21 Under the conditions of Proposition 5.17, if T1 has law Gν,
then

P(N{t} = 1) =
1

θ
.

for all t ≥ 0

Definition 5.22 When the law of N{t} is independent of t we will say that
the renewal process is stationary.

5.5 Law of large numbers

We now use the translation lemma to solve Question 5.8.

Proposition 5.23 (Law of large numbers for the averages) Assume
the conditions of Proposition 5.17. If∑

x≥1

xGν(x) < +∞ and E(T1) < +∞,

then

lim
t→∞

E(N[0, t])

t + 1
=

1

θ
.

Proof. The proof is based in a coupling of the renewal process (Tk)k≥1 with
another renewal process (Sk)k≥1, whose increments (Sk+1 − Sk)k≥1 have the
same law ν as the increments (Tk+1 − Tk)k≥1 of the original process but the
initial time S1 has law Gν . By proposition 5.17, (Sk) is a stationary renewal
process. The coupling is performed in such a way that both renewal processes
have the same increments except for the first time interval.
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Let S1 be a random variable with law Gν , independent of the process
(Tk)k≥1. Then, for all k ≥ 2, define

Sk = Sk−1 + Tk − Tk−1.

Let NT [0, t] and NS[0, t] be the counting measures corresponding to the
processes (Tk)k≥1 and (Sk)k≥1, respectively. That is,

NT [0, t] :=
∑
k≥1

1{Tk ≤ t},

NS[0, t] :=
∑
k≥1

1{Sk ≤ t}.

By construction, since we are working with discrete time, the following in-
equality holds

|NT [0, t]−NS[0, t]| ≤ |S1 − T1| ≤ S1 + T1 . (5.24)

This implies

1

t + 1
E|NT [0, t]−NS[0, t]| ≤ 1

t + 1
E(S1 + T1). (5.25)

By hypothesis,

E(T1) < +∞ and E(S1) =
∑
x≥1

xGν(x) < +∞.

Under these conditions (5.24) implies

lim
t→∞

|E(NT [0, t])− E(NS[0, t])|
t + 1

= 0.

It now suffices to observe that since the renewal process (Sk)k≥1 is stationary,

ENS[0, t] =
t∑

s=0

E(NS{s}) = (t + 1)
1

θ
,

which finishes the proof.
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Proposition 5.26 (Law of Large Numbers a.s.) If T1 and Tk+1−Tk as-
sume values in a finite set {1, . . . , K}, then

P
(

lim
t→∞

N[0, t]

t
=

1

θ

)
= 1. (5.27)

In fact Proposition 5.26 holds under the hypothesis ET1 <∞ and E(Tk−
Tk−1) <∞. We prefer to stay in the finite case because the idea of the proof
is the same but much more elementary.

Definition 5.28 If 5.27 holds, we say that N[0,t]
t

converges almost surely to
1/θ.

Proof. In this proof we will use the following law of large numbers. If
{Xi : i ≥ 0} is a sequence of iid random variables, then

P
(

lim
n→∞

∑n
i=1 Xi

n
= EX1

)
= 1.

If we write t = TN[0,t]+1 − T1 + (TN[0,t]+1 − t) + T1, we obtain

t

N[0, t]
=

TN[0,t]+1 − T1

N[0, t]
−

TN[0,t]+1 − t

N[0, t]
+

T1

N[0, t]
. (5.29)

We treat each of these terms separately. The first term may be written as∑N[0,t]
i=1 (Ti+1 − Ti)

N[0, t]
.

Since T1 and Tk+1 − Tk assume values in {1, . . . , K}, we have N[0, t] ≥ t/K,
which implies in particular that N[0, t] goes to infinity as t goes to infinity.
(This can be proven even when E(Tk+1 − Tk) < ∞ and ET1 < ∞). Hence
we can apply the law of large numbers for independent variables to the first
term to prove that this term goes to θ = E(Ti − Ti−1).

Since the law of the inter-renewal times concentrates on a finite set, the
numerator of the second term in (5.29) is bounded; since N[0, t] goes to
infinity, this term converges to zero almost surely.

The last term goes also to zero because it is the quotient between a
random variable and another one that goes to infinity.
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5.6 The Key Theorem

We now solve Question 5.9. This result is generally called Key Theorem or
Renewal theorem. We assume that T1 and Tk+1−Tk assume values in a finite
set Xν .

Theorem 5.30 (Key Theorem – finite version) Assume Xν finite and
Qν an aperiodic transition matrix. Under the conditions of Proposition 5.17,
for any law of T1 on Xν, there exists the limit

lim
t→+∞

P (N{t} = 1) =
1

θ
.

Furthermore, if a1, . . . , an ∈ {0, 1} are arbitrary, then for any k

lim
t→+∞

P (N{t + i− k} = ai, i = 1, . . . , n) = H(a1, . . . , an), (5.31)

where
H(a1, . . . , an) = P (NS{i} = ai, i = 1, . . . , n) .

where NS is the counting measure for the stationary renewal process intro-
duced in Proposition 5.23.

Proof. The Translation Lemma 5.10 says that

P (N{t} = 1) = P(Xt = 0). (5.32)

Since Xν is finite and Qν is irreducible, there exists a k such that Qk
ν(x, y) > 0

for all x, y ∈ Xν . Hence β(Qk
ν) > 0 and we can apply Corollary 3.44 to

conclude that P(Xt = 0) converges to Gν(0), the probability of 0 under the
invariant measure. We have Gν(0) = 1/θ > 0 because θ < +∞. To show
(5.31) use again the translation Lemma to get

P (N{t + i− k} = ai, i = 1, . . . , n) =
∑
bi∈Bi

P(Xt+i−k = bi, i = 1, . . . , n)

(5.33)
where

Bi =

{
{0} if ai = 1
{1, . . . , |Mν | − 1} if ai = 0

(5.34)
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with Mν := max{n : ν(n) > 0}. Since the sum in (5.33) is finite, we can
pass the limit inside the sum. For each term, Corollary 3.44 and the Markov
property imply

lim
t→∞

P(Xt+i−k = bi, i = 1, . . . , n) = Gν(b1)
n−1∏
i=1

Qν(bi, bi+1) . (5.35)

Summing on bi we get H(a1, . . . , an).

Two important concepts in renewal theory are the age and the residual
time of a process. We define the age A(t) and the residual time R(t) of the
process at time t as follows:

A(t) := t− TN[0,t]; R(t) :=

{
TN[0,t]+1 − t if N{t} = 0
0 if N{t} = 1

.

Intuitively, if Ti+1 − Ti represents the lifetime of the ith bulb, then there is
a renewal each time that a bulb is changed. In this case A(t) represents the
age of the bulb currently in function at time t and R(t) represents the time
this bulb will still be working. A consequence of the Key Theorem is that
we can compute the asymptotic law of these variables as t→∞.

Corollary 5.36 Under the hypotheses of the Key Theorem, the laws of A(t)
and R(t) converge to Gν as t→∞.

Proof. Notice that

P(A(t) = k) = P(N{t− k} = 1,N[t− k + 1, t] = 0),

which, by the Key Theorem converges, as t→∞ to

P(NS{0} = 1,NS[1, k] = 0) = P(S1 = 0)P(S2 − S1 > k)

=
1

θ
ν(k,∞) = Gν(k). (5.37)

On the other hand,

P(R(t) = k) = P(N[t, t + k − 1] = 0,N{t + k} = 1),

which, by the Key Theorem, converges as t→∞ to

P(NS[t, t + k − 1] = 0,NS{t + k} = 1) = P(S1 = k) = Gν(k).
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Exponential convergence

A direct construction of the renewal process gives a proof of the Key Theorem,
which holds also for infinite Xν . This construction goes in the vein of the
construction of Markov chains of Chapter 1. The proof is simple but requires
uniform bounds on the failure rate of the inter-renewal distribution. Let ν
be the common law of Ti+1 − Ti for i ≥ 1 and ν ′ the law of T1. Define

ρk :=
ν(k)∑
i≥k ν(i)

; ρ′k :=
ν ′(k)∑
i≥k ν ′(i)

.

The value ρk can be interpreted as the failure rate of the distribution ν at
time k. Let (Ui : i ≥ 1), be a family of iid random variables uniformly
distributed in [0, 1]. Define

T1 := min{n : Un ≤ ρ′n}

and for k ≥ 1,
Tk+1 := min{n > Tk : Un ≤ ρn−Tk

}.

Lemma 5.38 The variables T1 and Tk+1−Tk have law ν ′ and ν respectively
for k ≥ 1. Furthermore they are independent. In other words, the process
(Yn)n≥1 so constructed is a version of the renewal process with laws ν ′ and ν
for T1 and Tk+1 − Tk respectively.

Proof. We prove that P(T1 = k) = ν ′(k).

P(T1 = k) = P(U1 > ρ′1, . . . , Uk−1 > ρ′k−1, Uk ≤ ρ′k).

Since Ui are iid random variables, the above expression equals

P(U1 > ρ′1) . . . P(Uk−1 > ρ′k−1)P(Uk ≤ ρ′k) = (1− ρ′1) . . . (1− ρ′k−1)ρ
′
k.

But 1− ρ′i = ν ′[i + 1,∞)/ν ′[i,∞). Hence we get

ν ′[2,∞)

ν ′[1,∞)
. . .

ν ′[k,∞)

ν ′[k − 1,∞)

ν ′(k)

ν ′[k,∞)
= ν ′(k).

(We have used ν ′[1,∞) = 1.) The rest of the proof follows the same line and
is left to the reader.
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Theorem 5.39 (Key Theorem with rate of convergence) If there ex-
ists a constant γ ∈ (0, 1) such that for all n ≥ 0

P(T1 = n | T1 ≥ n) ≥ γ; P(Tk+1 − Tk = n | Tk+1 − Tk ≥ n) ≥ γ, (5.40)

then

|P(N{t} = 1)− (1/θ)| ≤ (1− γ)t.

Proof. Under the hypotheses (5.40),

ρ′n ≥ γ and ρn ≥ γ,

for all n ≥ 1. On the other hand, for the variable S1 (with law Gν), the
following inequalities hold

P(S1 = n | S1 ≥ n) ≥ γ. (5.41)

To prove them, notice first that they are equivalent to

P(S1 ≥ n + 1)

P(S1 ≥ n)
≤ 1− γ. (5.42)

To show (5.42), notice that

P(S1 ≥ n) =
∞∑

i=n

P(S1 = i) =
1

θ

∞∑
i=n

ν[i,∞). (5.43)

By definition,

ν[i,∞) = P(Tk+1 − Tk ≥ i) ≥ 1

1− γ
P(Tk+1 − Tk ≥ i + 1),

the inequality is true by hypothesis. On the other hand, using again the
definition, the last expression equals

1

1− γ
ν[i + 1,∞).
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Hence

P(S1 ≥ n) ≥ 1

1− γ

1

θ

∞∑
i=n+1

ν[i,∞) =
1

1− γ
P(S1 ≥ n + 1),

This shows (5.41). Defining

ρ′′n =
P(S1 = n)

P(S1 ≥ n)
,

inequalities (5.42) imply ρ′′n ≥ γ.

We couple the process N[0, t] with initial distribution ν ′ with the process
NS[0, t] with initial time S1 distributed according to Gν . We know that this
second process is stationary. This implies that P(NS{t} = 1) = 1/θ for all t.
Define

τ = min{n ≥ 1 : N{n} = 1,NS{n} = 1}.
Then we have

|P(N{t} = 1)− (1/θ)| (5.44)

= |P(N{t} = 1)− P(NS{t} = 1)|
= |E(1{N{t} = 1} − 1{NS{t} = 1} | τ ≤ t)|P(τ ≤ t)

+ |E(1{N{t} = 1} − 1{NS{t} = 1} | τ > t)|P(τ > t)

≤ P(τ > t). (5.45)

The last inequality follows because the absolute value of the difference of
indicator functions cannot exceed one. The expectation of the difference of
indicator functions indicates that both processes are realized as a function of
the same random variables Un. Since for all n, ρn > γ, ρ′n > γ and ρ′′n > γ,
we know that {Un < γ} ⊂ {N{n} = 1,NS{n} = 1}. This implies that τ is
dominated by τ̃ , a geometric random variable with parameter γ:

τ̃ = min{n : Un < γ}.

Hence,
P(τ > t) ≤ P(τ̃ > t) = (1− γ)t

This shows the proposition.
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5.7 Exercises

Exercise 5.1 Let U1, U2, . . . be a sequence of iid random variables with val-
ues in the set {−1, +1} with law

P(Un = +1) = p = 1− P(Un = −1),

where p ∈ [0, 1]. Define

T1 = inf{n ≥ 1 : Un = −1} and

Tk = inf{n > Tk−1 : Un = −1} for all k ≥ 2.

i) Show that the random variables T1, T2− T1, . . . , Tk+1− Tk, . . . are iid with
law

P(T1 = n) = P(Tk+1 − Tk = n) = pn−1(1− p), for all n ≥ 1.

ii) Let m < n be arbitrary elements of N. Compute

P(N[m, n] = k), for all k ∈ N.

Compute
E(N[m, n]).

Exercise 5.2 Let (Xa
n)n∈N be an irreducible Markov chain on X with initial

state a. Let b be an arbitrary fixed element of X . Define the successive
passage times of the chain at b by

T a→b
1 := inf{n ≥ 1 : Xa

n = b} and

T a→b
k := inf{n > T a,b

k−1 : Xa
n = b} for all k ≥ 2.

i) Show that the increasing sequence (T a→b
n )n≥1 is a renewal process.

ii) Assume that the chain is positive recurrent and that the initial point
is chosen according to the invariant measure µ. Let m < n be arbitrary
elements of N. Show that

E(N[m, n]) = (n−m + 1)µ(b).
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Exercise 5.3 Let ν be a probability distribution on {1, 2, · · ·}. Show that

θ =
∑
n≥1

nν(n) =
∑
x≥0

ν((x, +∞)).

which proves the identity (5.16).

Exercise 5.4 Compute the exact form of the law Gν , defined by (5.14) in
the following cases.

i) The distribution ν is degenerated and gives weight one to the point a, that
is,

ν(x) =

{
1 if x = a;
0 if x 6= a.

ii) For all p ∈ (0, 1), ν is the geometric distribution in {1, 2, · · ·} with mean
1

1−p
, that is,

ν(n) = pn−1(1− p), for all n ≥ 1.

Exercise 5.5 Let ν be a probability distribution on {1, 2, · · ·} with finite
mean θ, that is:

θ =
∑
n≥1

nν(n) < +∞.

Let Gν and Qν be the probability measure and the transition matrix defined
by (5.14), (5.11) and (5.12).

i) Show that the matrix Qν is irreducible in the set

Gν = {0, sup{x ≥ 0 : ν(x + 1) > 0}}.

ii) Give examples of sufficient conditions for the aperiodicity of Qν .

iii) Show that Gν is invariant with respect to Qν .

Exercise 5.6 Under the conditions of Corollary 5.21 determine the law of
the counting measure N[t, t + 1], where t is an arbitrary natural number.

Exercise 5.7 (The inspection paradox) Using Corollary 5.36 compute
the law of the length of the interval containing the instant t, as t → ∞.
Show that the expectation of this length is 2θ.
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5.8 Comments and References

The Key Theorem is a famous result of Blackwell (1953). Its proof using
Markov chains is part of the probabilistic folklore but we do not know a
precise reference. The Key Theorem with exponential decay when the fail-
ure rate is uniformly bounded below is clearly not optimal but of simple
proof. Lindvall (1992) presents alternative proofs for the Key Theorem in
the general case using coupling. In particular Lindvall proves that if ν has
exponential decay, then the Key Theorem holds with exponentially fast con-
vergence (as in our Theorem 5.39).
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Chapter 6

Chains with complete
connections

In this chapter we explain how to use the ideas developed in previous chapters
to treat the case of non Markov measures. We start with the notion of
specification, borrowed from Statistical Mechanics.

6.1 Specifications

The state space is finite and denoted by X . Let N∗ = {1, 2, . . .} and −N∗ =
{−1,−2, . . .} be the sets of positive, respectively negative integers. Instead
of transition matrices we work with probability transition functions P : X ×
X−N∗ → [0, 1].

Definition 6.1 We say that a function P : X ×X−N∗ → [0, 1] is a specifica-
tion if it satisfies the following properties:

P (a|w) ≥ 0 for all a ∈ X (6.2)

and ∑
a∈X

P (a|w) = 1 , (6.3)

for each w ∈ X−N∗
.

87



88 CHAPTER 6. CHAINS WITH COMPLETE CONNECTIONS

We start with an existence result analogous to Proposition 1.19 of Chap-
ter 1.

Proposition 6.4 Given an arbitrary “past” configuration w ∈ X−N∗
it is

possible to construct a stochastic process (Xw
t , t ≥ 0) on X N with the property

that for any n ≥ 0 and arbitrary values x0, . . . , xn ∈ X ,

P(Xw
t = xt , t ∈ [0, n] |Xw

i = wi , i ∈ −N∗) =
∏

t∈[0,n]

P (xt |xt−1, . . . , x0, w)

(6.5)
where (xt−1, . . . , x0, w) = (xt−1, . . . , x0, w−1, w−2, . . .).

Proof. First construct a family of partitions of the interval [0, 1]

((B(y|w) : y ∈ X ) : w ∈ X−N∗
) (6.6)

satisfying
|B(y|w)| = P (y|w) ; ∪yB(y|w) = [0, 1] (6.7)

for all w ∈ X−N∗
. This is always possible because of property (6.3) of P .

Then proceed as in the proof of Proposition 1.19: construct the function

F (w; u) :=
∑

y

y 1{u ∈ B(y|w)} (6.8)

and define Xw
t = F (w; U0) and for t ≥ 1,

Xw
t = F (Xw

t−1, . . . , X
w
0 , w; Ut) (6.9)

where (Un : n ∈ Z) is a family of iid random variables uniformly distributed
in [0, 1].

Our second goal is to give sufficient conditions for the existence of the
limits

lim
t→∞

P(Xt+k = xk, k = 1, . . . , n |X−1 = w−1, X−2 = w−2, . . .) (6.10)

for any n and x1, . . . , xn ∈ X and the independence of the limit on the “left
boundary condition” w. This question is analogous to the one answered by
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Theorem 3.38. Before stating this result we introduce some notation and
propose —in the next section— a particular construction of the partitions
B(·|·) for the specification P .

For k ∈ N, y ∈ X and w ∈ X−N∗
define

ak(y|w) := inf{P (y|w−1, . . . , w−k, z) : z ∈ X−N∗}, (6.11)

where (w−1, . . . , w−k, z) = (w−1, . . . , w−k, z−1, z−2, . . .). Notice that a0(y|w)
does not depend on w. For k ∈ N define

ak := inf
w

(∑
y∈X

ak(y|w)
)

. (6.12)

Define

βm :=
m∏

k=0

ak (6.13)

β = lim
m→∞

βm (6.14)

Definition 6.15 A specification P is called of complete connections if
a0 > 0.

Definition 6.16 We say that a measure ν on X Z is compatible with a spec-
ification P if the one-sided conditional probabilities of ν are given by

ν(X ∈ X Z : Xn = y | Xn+j = wj, j ∈ −N∗) = P (y|w) (6.17)

for all n ∈ Z, y ∈ X and w ∈ X−N∗
.

6.2 A construction

In this chapter we will show that if
∑

m≥0 βm = ∞, then the measure ν on

X Z defined by 6.35 below is the unique measure compatible with P . Assume
X = {1, . . . , q} for some positive i nteger q.
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For y ∈ X let b0(y|w) := a0(y|w), and for k ≥ 1,

bk(y|w) := ak(y|w)− ak−1(y|w).

For each w ∈ X−N∗
let {Bk(y|w) : y ∈ X , k ∈ N} be a partition of [0, 1] with

the following properties: (i) for y ∈ X , k ≥ 0, Bk(y|w) is an interval closed
in the left extreme and open in the right one of Lebesgue measure bk(y|w);
(ii) these intervals are disposed in increasing lexicographic order with respect
to y and k in such a way that the left extreme of one interval coincides with
the right extreme of the precedent:

B0(1|w), . . . ,B0(q|w),B1(1|w), . . . ,B1(q|w), . . .

with no intersections. More precisely, calling left(A) = inf{x : x ∈ A} and
right(A) = sup{x : x ∈ A}, the above construction is required to satisfy

1. left[B0(1|w)] = 0 ;

2. right[Bk(y|w)] = left[Bk(y + 1|w)], for 1 ≤ y < q

3. right[Bk(q|w)] = left[Bk+1(1|w)], for k ≥ 0

Define

B(y|w) :=
⋃
k≥0

Bk(y|w) (6.18)

The above properties imply

right[Bk(q|w)] =
∑

y

ak(y, w) and lim
k→∞

right[Bk(q|w)] = 1 , (6.19)

|B(y|w)| =
∣∣∣⋃
k≥0

Bk(y|w)
∣∣∣ =

∑
k≥0

|Bk(y|w)| = P (y|w) (6.20)

and ∣∣∣⋃
y∈X

B(y|w)
∣∣∣ =

∣∣∣⋃
y∈X

⋃
k≥0

Bk(y|w)
∣∣∣ =

∑
y∈X

∑
k≥0

|Bk(y|w)| = 1. (6.21)
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All the unions above are disjoint. For ` ≥ 0 let

B`(w) :=
⋃
y∈X

B`(y|w).

Notice that neither B0(y|w) nor B0(w) depend on w and that Bk(y|w) and
Bk(w) depend only on the first k coordinates of w.

For any left boundary condition w ∈ X−N∗
define

F (w; u) :=
∑

y

y 1{u ∈ B(y|w)} , (6.22)

Let U = (Ui : i ∈ Z) be a sequence of independent random variables
with uniform distribution in [0, 1]. Define Xw

0 := F (w; U0) and for t ≥ 1,

Xw
t := F (Xw

t−1, . . . , X
w
0 , w; Ut) (6.23)

Lemma 6.24 The process Xw
t defined by (6.23) has law (6.5), that is, a

distribution compatible with the specification P and with left boundary con-
dition w.

Proof. It is immediate. Just verify that the length of the intervals is the
correct one. This is guaranteed by (6.20).

Remark 6.25 The construction of the intervals B(y|w) is so complicated
for future applications. Any construction satisfying (6.20) would have the
properties stated by Lemma (6.24).

Recalling the definition (6.13), we have

[0, ak] ⊂
k⋃

`=0

B`(w), for all w ∈ X−N∗
. (6.26)

Display (6.26) implies that if u ≤ ak, then we only need to look at w−1, . . . , w−k

to decide the value F (w; u) of (6.22). More precisely, it follows from (6.26)
that for any w, v ∈ X Z such that vj = wj for j ∈ [−k,−1],

[0, ak] ∩B`(w) = [0, ak] ∩B`(v) . (6.27)
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From this we have

u ≤ ak implies F (w; u) = F (v; u) (6.28)

for all w, v ∈ X−N∗
, u ∈ [0, 1].

Consequently, if Ut < ak it is sufficient to look k coordinates into the past
to compute Xw

t .

6.3 Loss of memory

We show in this section that the construction of Section 6.2 gives a loss of
memory result analogous to the one of Theorem 3.18.

For any w, v ∈ X−N∗
let

τw,v := inf{n ≥ 0 : Xw
k = Xv

k , for all k ≥ n} (6.29)

Of course τw,v could in principle be infinite. The next proposition shows that
under the condition

∏
k ak > 0, this time is almost surely finite.

Proposition 6.30 If
∏

k ak > 0, then for any w, v ∈ X−N∗

∑
n

P(τw,v = n) = 1 (6.31)

Proof. (6.28) implies that

τw,v ≤ min{n ≥ 0 : Un+k ≤ ak for all k ≥ 0} (6.32)

In other words, τw,v is dominated stochastically by the last return time to
the origin of the house-of-cards process with transitions

Q(k, k + 1) = ak ; Q(x, 0) = 1− ak (6.33)

and initial state 0. By Lemma 3.70, the condition
∏

k ak > 0 is equivalent
to the transience of the house-of-cards chain. Hence the chain may visit the
origin only a finite number of times. This implies that the last return time
to the origin is finite with probability one and so is τw,v.



6.4. THERMODYNAMIC LIMIT 93

Theorem 6.34 If
∑

m≥0 βm = ∞, then for any w ∈ X−N∗
, n ≥ 1 and

x1, . . . , xn ∈ X the following limits exist

lim
t→∞

P(Xw
t+k = xk, k = 1, . . . , n ) (6.35)

where Xw
t is the process defined in (6.23).

This theorem will be proved right after Theorem 6.57 below. The exis-
tence of the limit is a more delicate matter here than in the case of a Markov
chain with finite state space. We cannot a priori guarantee that this limit
exist. We show the existence by explicitly constructing a measure and then
proving that it is time translation invariant. This construction —performed
in the next section— is a particular case of the so called thermodynamic limit
of Statistical Mechanics.

In the meanwhile we can prove that these limits, if exist, are independent
of the left boundary condition. This is the contents of the next theorem.

Theorem 6.36 Assume
∑

m≥0 βm = ∞ and that the limits (6.35) exist.
Then they are independent of w.

Proof. By (6.28),

|P(Xw
t+k = xk, k = 1, . . . , n ) − P(Xv

t+k = xk, k = 1, . . . , n )| ≤ P(τw,v > t)
(6.37)

which goes to zero by Proposition 6.30.

6.4 Thermodynamic limit

We consider now a slightly different problem. Instead of fixing the left con-
dition to the left of time zero, we fix the condition to the left of time −n and
compute the limiting distribution when n → ∞. We give conditions which
guarantee the existence of the limit and its independence of the boundary
conditions. This is the so called (one sided) thermodynamic limit. Under
those conditions we show that it suffices to look at a finite random num-
ber of uniform random variables in order to construct the thermodynamic
limiting measure in any finite time interval.
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For −∞ < s <∞ and s ≤ t ≤ ∞, define

τ [s, t] := max{m ≤ s : Uk ≤ ak−m for all k ∈ [m, t]} (6.38)

which may be −∞. We use the notation τ [n] := τ [n, n]. Notice that for fixed
s, τ [s, t] is non increasing in t:

t ≤ t′ implies τ [s,∞] ≤ τ [s, t′] ≤ τ [s, t] (6.39)

and non decreasing in s in the following sense:

[s′, t′] ⊂ [τ [s, t], t] implies τ [s′, t′] ≥ τ [s, t] . (6.40)

Notice that τ [s, t] is a left stopping time for U with respect to [s, t], in the
sense that

{τ [s, t] ≤ j} depends only on the values of (Ui : i ∈ [j, t]) (6.41)

for j ≤ s.

Lemma 6.42 If
∑

n≥0

∏n
k=1 ak = ∞, then for each −∞ < s ≤ t < ∞,

τ [s, t] is a “honest” random variable:
∑

i P(τ [s, t] = i) = 1. If
∏∞

k=1 ak > 0,
then for each −∞ < s, τ [s,∞] is a “honest” random variable:

∑
i P(τ [s,∞] =

i) = 1.

Proof. By the definition of τ :

τ [s, t] = max{m ≤ s : W 0;m
n > 0, ∀n ∈ [s, t]} (6.43)

where W 0;m
n is the state of the house-of-cards process with transition matrix

(3.69) starting at time m in state 0. Hence, for m ≤ s,

{τ [s, t] < m} ⊂
⋃

i∈[s,t]

{W 0;m
i = 0} (6.44)

By translation invariance, the probability of the rhs of (6.44) is

P
( ⋃

i∈[s,t]

{W 0;0
−m+i = 0}

)
≤

t−s∑
i=1

P(W 0;0
s−m+i = 0) (6.45)
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Since by hypothesis W 0;0
n is a non positive-recurrent chain, by Lemma 3.70,

each of the t−s+1 terms in the rhs of (6.45) goes to zero as m→ −∞. This
shows the first part of the lemma. For the second part bound P(τ [s,∞] < m)
by

P
( ⋃

i∈[s−m,∞]

{W 0;0
i = 0}

)
(6.46)

which, by transience, goes to zero as m→ −∞.

Property (6.27) allows us to introduce the following definition

B`,j(w−1, . . . , w−j) := [0, aj[∩B`(w) , (6.47)

B`,j(y|w−1, . . . , w−j) := [0, aj[∩B`(y|w) (6.48)

Definition 6.49 Assume P(τ [n] > −∞) = 1 for all n ∈ Z. Let

Yn :=
∑
y∈X

y 1
{

Un ∈
⋃
k≥0

Bk,τ [n](y|Yn−1, . . . , Yτ [n])
}

. (6.50)

This is well defined because by (6.40) τ [n] ≤ τ [j] for j ∈ [τ [n], n] and (6.47).
This allows to construct Yj for all j ∈ [τ [n], n] for all n, and in particular to
construct Yn.

Theorem 6.51 If
∑

m≥0 βm = ∞, then the law of the vector (Yj : j ∈ Z)
defined by (6.50) is the unique measure compatible with P . Furthermore the
following thermodynamic limits exist: for any n ≥ 1 and arbitrary s ≤ t ∈ Z,
xs, . . . , xt ∈ X ,

lim
t→∞

P(Xk = xk, k ∈ [s, t] |X−n = w−n, X−n−1 = w−n−1, . . .)

= P(Yk = xk, k ∈ [s, t]) (6.52)

for all w.

Proof. The fact that the law of Y is compatible with P follows from (6.20).

For each w ∈ X Z and i ∈ Z let Xw,i be defined as follows. Set Xw,i
j = wj

for j < i and for n ≥ i,

Xw,i
n :=

∑
y∈X

y 1
{

Un ∈ B(y|Xw,i
n−1, . . . , X

w,i
i , wi−1, wi−2 . . .)

}
. (6.53)
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Then by (6.18) and (6.20),

P(Xw,i
k = xk, k ∈ [s, t])

= P(Xk = xk, k ∈ [s, t] |X−i = w−i, X−i−1 = w−i−1, . . .) .

Hence

|P(Xk = xk, k ∈ [s, t] |X−i = w−i, X−i−1 = w−i−1, . . .)

−P(Yk = xk, k ∈ [s, t])|
= |P(Xw,i

k = xk, k ∈ [s, t]) − P(Yk = xk, k ∈ [s, t])]|
= |E(1{Xw,i

k = xk, k ∈ [s, t]} − 1{Yk = xk, k ∈ [s, t]}|
≤ P(τ [s, t] < i) (6.54)

which goes to zero as i → −∞ by hypothesis and Lemma 6.42. This shows
that the thermodynamic limit converges to the law of Y .

Definition 6.55 Let ν be the law of the sequence Y :

ν(X ∈ X Z : Xk = xk , k = 1, . . . , n) := P(Yk = xk, k = 1, . . . , n) (6.56)

Theorem 6.57 If
∑

m≥0 βm =∞, then ν is the unique measure compatible
with P .

Proof. Assume µ and µ′ be two measures on X Z compatible with P . Let f
be a function depending on Xj for j in the interval [s, t].

|µf − µ′f |

=
∣∣∣∫ µ(dw)µ(f |Xj = wj, j < i) −

∫
µ′(dw′)µ′(f |Xj = w′

j, j < i)
∣∣∣

=
∣∣∣∫ µ(dw)E[f(Xw,i)] −

∫
µ′(dw′)E[f(Xw′,i)]

∣∣∣
≤ E

∫
µ(dw) µ′(dw′)

∣∣∣f(Xw,i) − f(Xw′,i)
∣∣∣ (6.58)

Since
1{Xw,i(n) 6= Xw′,i(n)} ≤ 1{τ [n] ≤ i} (6.59)
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the last term in (6.58) is bounded above by

2 ‖f‖∞ P(τ [s, t] < i) (6.60)

which goes to zero as i→ −∞ by hypothesis and Lemma 6.42.

Proof of Theorem 6.34 It suffices to notice that

P(Xt+k = xk, k = 1, . . . , n |X−1 = w−1, X−2 = w−2, . . .)

= P(Xk = xk, k = 1, . . . , n |X−t−1 = w−t−1, X−t−2 = w−t−2, . . .)

which converges to ν(X ∈ X Z : Xk = xk, k = 1, . . . , n) by Theorem 6.51.

6.5 Bounds on the rate of convergence

We state without proof the following bound for the law of τ :

P(s− τ [s, t] > m) ≤
t−s∑
i=1

ρm+i (6.61)

where ρm is the probability of return to the origin at epoch m of the Markov
chain on N starting at time zero at the origin with transition probabilities
p(x, x + 1) = ax, p(x, 0) = (1 − ax), p(x, y) = 0 otherwise. Furthermore,
if (1 − ak) decreases exponentially fast with k, then so does ρk. If (1 − ak)
decreases as a summable power, then ρk decreases with the same power.
These results can be found in Comets, Fernández and Ferrari (2000).

As a consequence we get the following bounds on the loss of memory:

Theorem 6.62 The following bounds hold for the rate of convergence in
Theorem 6.51.

|P(Xk = xk, k ∈ [s, t] |X−n = w−n, X−n−1 = w−n−1, . . .)

− P(Yk = xk, k ∈ [s, t])|

≤
t−s∑
i=1

ρn+i (6.63)
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6.6 Regeneration

Let N ∈ {0, 1}Z be the random counting measure defined by

N(j) := 1{τ [j,∞] = j} , (6.64)

Let (T` : ` ∈ Z) be the ordered time events of N defined by N(i) = 1 if and
only if i = T` for some `, T` < T`+1 and T0 < 0 ≤ T1.

Theorem 6.65 If β > 0, then the process N defined in (6.64) is a stationary
renewal process with inter-renewal law

P(T`+1 − T` ≥ m) = ρm . (6.66)

Furthermore, the random vectors ξ` ∈ ∪n≥1X n, ` ∈ Z, defined by

ξ` := (YT`
, . . . , YT`+1−1) (6.67)

are mutually independent and (ξ` : ` 6= 0) are identically distributed.

The sequence (T`) correspond to the regeneration times : at times T` the
process does not depend on the past.

Proof. Stationarity follows immediately from the construction. The density
of N is positive:

P(N(j) = 1) = P(∩`≥j{U` < a`−j)) = β > 0 (6.68)

by hypothesis. Let

f(j) := P(N(−j) = 1 |N(0) = 1) (6.69)

for j ∈ N∗. To see that N is a renewal process it is sufficient to show that

P(N(s`) = 1 ; ` = 1, . . . , n) = β
n−1∏
`=1

f(s`+1 − s`) (6.70)
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for arbitrary integers s1 < . . . < sn. For j ∈ Z, j′ ∈ Z ∪ {∞}, define

H[j, j′] :=

 {Uj+` < a`, ` = 0, . . . , j′ − j}, if j ≤ j′

“full event”, if j > j′
(6.71)

With this notation,
N(j) = 1{H[j,∞]}, j ∈ Z. (6.72)

and

P(N(s`) = 1 ; ` = 1, . . . , n) = P
( n⋂

`=1

H[s`,∞]
)

(6.73)

From monotonicity we have for j < j′ < j′′ ≤ ∞,

H[j, j′′] ∩H[j′, j′′] = H[j, j′ − 1] ∩H[j′, j′′] . (6.74)

Then (6.73) equals

n∏
`=1

P(H[s`, s`+1 − 1]), (6.75)

where sn+1 := ∞. Since P(H[sn,∞]) = β, (6.75) equals the right hand side
of (6.70), implying that N is a renewal process. From stationarity we have

P(T`+1 − T` ≥ m) = P(τ [−1,∞] < −m + 1 | τ [0,∞] = 0)

= P(W−m+1
−1 = 0)

= ρm .

The last statement (6.67) is clear by construction of Y .

6.7 Perfect simulation

We propose another construction of τ [s, t] which is more convenient for per-
fect simulation algorithms. Let a−1 = 0 and define for n ∈ Z,

Kn :=
∑
k≥0

k 1{Un ∈ [ak−1, ak)} , (6.76)
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the number of sites backwards that we need to know (at most) to compute
Yn using formula (6.50), see (6.41). For s <∞ and s ≤ t ≤ ∞, define

Z[s, t] := inf{n−Kn : n ∈ [s, t]}. (6.77)

Let θ−1 := t + 1, θ0 := s and for n ≥ 1, inductively

θn := θn−1 − Z[θn−1, θn−2 − 1] (6.78)

Then it is easy to see that

τ [s, t] = lim
n→∞

θn = max{θn : θn = θn+1} a.s.. (6.79)

The construction (6.50) and (6.79) can be translated into the following
perfect simulation algorithm for ν. Assume s ≤ t <∞.

Algorithm 6.80 (Simulation of the stationary measure) Perform

1. Set θ−1 = t + 1, θ0 = s and iterate the following step up to the first
moment θn = θn−1:

2. Generate Uθ`
, . . . , Uθ`−1−1. Use (6.76) to compute Kθ`

, . . . , Kθ`−1
and

(6.77) and (6.78) to compute θ`+1.

3. Let τ = θn

4. For k = τ to k = t define Yk using (6.50).

5. Print (Yj : j ∈ [s, t]). End.

Theorem 6.81 Let (Yj : j ∈ [s, t]) be the output of the above algorithm.
Then

P(Yj = xj : j ∈ [s, t]) = ν(Xj = xj : j ∈ [s, t]) (6.82)

for arbitrary xs, . . . , xt ∈ X .

Proof. Follows from the construction.
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6.8 Exercises

Exercise 6.1 Show that (6.70) suffices to characterize a renewal process.
Hint: use the “inclusion-exclusion formula” to compute the probability of
any set depending on a finite number of coordinates.

Exercise 6.2 (The noisy voter model) Let ε ∈ (0, 1] and (αi) be a prob-
ability measure on −N∗. Let X be a finite alphabet with N elements and
define the following specification:

P (x|w) := (1− ε)
∑
i≤−1

αi1{x = wi} + ε/N (6.83)

In words, with probability (1−ε) the origin applies the following “voter rule”:
with probability αi choose coordinate i and adopt its value; with probability
ε choose at random a value in X . (i) Compute ak for this model. (ii) Give
conditions on (αi) guaranteeing that

∏
ak > 0. What happens if ε = 0?

Exercise 6.3 (The noisy majority voter model) Let ε > 0 and (αi) be
a probability measure on −N∗. Let X be a finite alphabet with N elements
and define the following specification:

P (x|w) := (1− ε)
∑
i≤−1

αi maj(w−1, . . . , wi) + ε/N (6.84)

where maj(w−1, . . . , wi) is the value that appears more times in the vector
(w−1, . . . , wi) (in case of equality, use any rule you like to decide). In words,
with probability (1−ε) the origin applies the following “majority rule”: with
probability αi choose the first i coordinates to the left of the origin and adopt
the same value as the majority of them; with probability ε choose at random
a value in X . (i) Compute ak for this model. (ii) Give conditions on (αi)
guaranteeing that

∏
ak > 0. What happens if ε = 0?

Exercise 6.4 (One sided Potts model) Let αi be as in the previous ex-
ercises. Let H(x|w) = −

∑
i∈−N∗ αi1{x = wi}. Let

P (x|w) := exp(−H(x|w))/Z(w) (6.85)

where Z(w) is the normalization (partition function). (i) Compute ak for
this model. (ii) Give conditions on (αi) guaranteeing that

∏
ak > 0.
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Exercise 6.5 (The contact process) Let ε and αi be as in the previous
exercises. Let X = {0, 1} and

P (1|w) := (1− ε)
∑

i

αi1
{ −1∑

j=i

wj ≥ 1
}

P (0|w) := 1− P (1|w) (6.86)

Compute ak for this model and give conditions on (αi) and ε guaranteeing
that

∏
ak > 0.

Exercise 6.6 (Renewal process) Let X = {0, 1} and ν be the inter re-
newal probability of a stationary renewal process Sn. Compute the specifi-
cations of the renewal process and the relationship between ν and (ak).

6.9 Comments and references

This chapter is based in the construction of chains with complete connections
proposed by Ferrari et al. (2000) and Comets et al. (2000). The regenera-
tion for non Markov chains were proposed by Lalley (1986) for chains with
exponential continuity rates (in which case the process is a Gibbs state of an
exponentially summable interaction). Berbee (1987) proposed a very close
approach for chains with a countable alphabet and summable continuity
rates. Ney and Nummelin (1993) have extended the regeneration approach
to chains for which the continuity rates depend on the history. Comets et al.
(2000) proposed the perfect simulation algorithm we describe in Section 6.7.
The introduction of this paper contains a detailed discussion of the previous
literature in the field.



Chapter 7

Poisson processes

7.1 One dimensional Poisson processes

A one-dimensional point process on R is an increasing sequence of random
variables . . . S−1 ≤ S0 ≤ 0 ≤ S1, . . . in R. These variables can be interpreted
as the successive epochs of occurrence of a given event.

We construct now a particular process Sn ∈ R, n ∈ Z, which will be
called Poisson Process.

Start by partitioning R in intervals Ai, i ∈ Z, Ai = [li, li+1), with li < li+1.
Call |Ai| the length li+1− li of the interval Ai. In this way ∪̇i∈ZAi = R, where
∪̇ means disjoint union.

The second step is to assign to each interval Ai a random variable Yi with
Poisson distribution of mean λ|Ai|. That is,

P(Yi = k) =
e−λ|Ai|(λ|Ai|)k

k!
.

Assume that (Yi : i ∈ Z) is a family of independent random variables.

To each i ∈ Z associate a sequence of iid random variables {Ui,j : j =
1, 2, . . .}, with uniform distribution in Ai:

P(Ui,j ∈ A ∩ Ai) =
|A ∩ Ai|
|Ai|

.

103
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Let S be the random set
S =

⋃
i∈Z

Si,

where

Si =

{
{Ui,j : 1 ≤ j ≤ Yi}, if Yi ≥ 1;
∅, if Yi = 0.

In other words, put Yi points in each interval Ai, independently and with
uniform distribution.

Finally reorder the points of S to obtain a point process. Let {Sn} be
the ordered sequence of points of S, where S1 is the first point to the right
of the origin. We fix S1 in this way just to be precise; any other convention
would be just as good. More formally:

S1 = min{s > 0 : s ∈ S}

and

Sn =

{
min{s > Sn−1 : s ∈ S}, if n ≥ 2;
max{s < Sn+1 : s ∈ S}, if n ≤ 0.

(7.1)

For A ⊂ R, define NS(A) = number of points of the set S∩A. It is clear
that

NS(A) =
∑

n

1{Sn ∈ A}. (7.2)

When no confusions arise we will write just N(A) instead of NS(A).

Definition 7.3 The process defined by (7.2) will be called one dimensional
Poisson process.

7.2 Formal definition of point processes

The Poisson process we have just constructed is a particular case of point
process. The renewal processes constructed in Chapter 5 is another example.
The formal definition of point process in R is the following. Consider the set

M = {S ⊂ R : NS(A) <∞, for all interval A ⊂ R}



7.3. PROPERTIES 105

This is the set of the possible realizations of the point process that do not have
points of accumulation. A point process is characterized by the definition of
a probability measure on M. Since M is not countable this involves a non
trivial notion of event inM which uses Measure Theory; this is beyond the
scope of these notes. We limit ourselves to present the essential events which
take the form

{S ∈M : NS(Bi) = bi, i = 1, . . . , `} (7.4)

for arbitrary ` ∈ N, bi ∈ N and finite intervals Bi. Let A be the family of
events of the form (7.4).

Theorem 7.5 A probability measure onM is totally determined by the prob-
abilities of the events in A.

Theorem 7.5 is due to Kolmogorov and gives an operative way of dealing
with measures in non countable spaces.

7.3 Properties

In this section we discuss the basic properties of the one dimensional Pois-
son process. A corollary of the following three lemmas is that the way the
partition (Ai) is chosen does not influence the law of the process.

Lemma 7.6 For each interval A, the random variable N(A) has Poisson
law of mean λ|A|.

Proof. Notice first that since A∩Ai are disjoint events, the random variables
N(A∩Ai) are independent. Compute the law of N(A∩Ai). By construction,

P(N(A ∩ Ai) = k) =
∑
h≥k

P(Yi = h,N(A ∩ Ai) = k) (7.7)

=
∑
h≥k

P

(
Yi = h,

h∑
j=0

1{Ui,j ∈ A ∩ Ai} = k

)
. (7.8)
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Since the variables Ui,j are independent of Yi, we can factorize the last prob-
ability to obtain

=
∑
h≥k

P(Yi = h)P

(
h∑

j=0

1{Ui,j ∈ A ∩ Ai} = k

)
. (7.9)

But Ui,j are iid random variables uniformly distributed in Ai. Hence, 1{Ui,j ∈
A ∩ Ai} are iid random variables with Bernoulli law of parameter |A∩Ai|

|Ai| .
The sum of these variables has Binomial distribution with parameters h and
|A∩Ai|
|Ai| . In this way, the last expression equals

∑
h≥k

e−λ|Ai|(λ|Ai|)h

h!

(
h

k

)(
|A ∩ Ai|
|Ai|

)k (
1− |A ∩ Ai|

|Ai|

)h−k

(7.10)

=
e−λ|A∩Ai|(λ|A ∩ Ai|)k

k!
, (7.11)

a Poisson distribution of mean λ|A ∩ Ai|. To finish the proof observe that
N(A) =

∑
N(A∩Ai) is a sum of independent random variables with Poisson

law with means λ|A ∩ Ai|. Since Ai are disjoint,
∑
|A ∩ Ai| = |A|. In this

way, N(A) has Poisson law with mean λ|A|.

Lemma 7.12 For each family of disjoint intervals Bl, l = 1, . . . , L, the
random variables N(Bl) are independent and have Poisson law with mean
λ|Bl|, respectively.

Proof. The proof follows the pattern of the previous lemma. It is easy to
verify that for fixed i, given N(Ai) = hi, the random variables

{N(Bl ∩ Ai) : l = 1, . . . , L}

have Multinomial distribution, that is, for arbitrary integers kl,i ≥ 0, such

that
∑L+1

l=1 kl,i = hi,

P(N(Bl ∩ Ai) = kl,i, l = 1, . . . , L |N(Ai) = hi) =
hi!∏L+1

l=1 kl,i!

L+1∏
l=1

(bl,i)
kl,i ,

(7.13)
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where

BL+1 :=
( L⋃

l=1

Bl

)c

; (7.14)

bl,i :=
|Bl ∩ Ai|
|Ai|

, 1 ≤ l ≤ L ; (7.15)

bL+1 := 1−
L∑

l=1

bl . (7.16)

Since {N(Ai) : i ∈ Z} are independent random variables, it follows from
(7.13) that {N(Bl ∩ Ai) : l = 1, . . . , L, i ∈ Z} is a family of independent
random variables with Poisson law with parameters λ|Bl ∩Ai|, respectively.
To conclude the proof it suffices to sum over i and to use the fact that sum
of independent random variables with Poisson law is Poisson.

Lemma 7.17 For any interval A, the conditional distribution of the points
in S ∩ A given N(A) = n is the same as the law of n independent random
variables uniformly distributed in A.

Proof. We use Theorem 7.5. Let B1, . . . , BL be a partition of A and
n1, . . . , nL non negative integers such that n1 + . . . + nL = n.

P(N(Bl) = nl, l = 1, . . . , L |N(A) = n) (7.18)

=
n!

n1! . . . nL!

L∏
l=1

(
|Bl|
|A|

)nl

(7.19)

by (7.13). By Theorem 7.5 it is sufficient to show that if U1, . . . , UL are
independent random variables uniformly distributed in A, and M(B) =∑

i 1{Ui ∈ B}, then

P(M(Bl) = nl, l = 1, . . . , L) =
n!

n1! . . . nL!

L∏
l=1

(
|Bl|
|A|

)nl

,

which is left as an exercise to the reader.
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Corollary 7.20 The conditioned distribution of the vector (S1, S2, . . . , Sn)
given N([0, t]) = n is the same as the law of (Y1, Y2, . . . , Yn), the order statis-
tics of the random variables (U1, U2, . . . , Un) uniformly distributed in the in-
terval [0, t] defined by:

Y1 = min{U1, U2, . . . , Un}; (7.21)

Yi = min({U1, U2, . . . , Un} \ {Y1, . . . , Yi−1}), i = 2, . . . , n. (7.22)

Remark 7.23 Lemmas 7.12 and 7.17 show that the choice of the sets Ai is
not important for the construction of the process.

7.4 Markov property

We present an alternative construction of the one-dimensional Poisson pro-
cess. Let T1 be an exponential random variable with mean 1/λ and Ñ(·) be
a Poisson process with rate λ, independent of T1.

Let N(·) be the process defined by

N(B) = 1{T1 ∈ B}+ Ñ(B − T1), (7.24)

where

B − t = {x ∈ R : x− t ∈ B}.

In other words, the process N(·) is obtained by first fixing the first event with
the random variable T1 and then gluing after this instant an independent
Poisson process.

Theorem 7.25 The point process defined by (7.24) is a Poisson process with
rate λ.

Proof. In view of Theorem 7.5 it suffices to prove that for the process N(·)
constructed above Lemma 7.12 holds. Hence we want to compute

P(N(Bl) = kl, l = 1, . . . , L),
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for arbitrary intervals Bl, kl ∈ N and L ≥ 1. To simplify the presentation of
the proof we will consider L = 1 and B1 = [a, c]. The extension to any L is
left as an exercise. We condition to the value of T1.

P(N([a, c]) = k)

= P(N([a, c]) = k, T1 < a)

+P(N([a, c]) = k, T1 ∈ [a, c]) + P(N([a, c]) = k, T1 > c). (7.26)

Assume first k = 0. In this case the central term is zero; conditioning to the
value of T we get that the first term equals

P(N([a, c]) = 0, T1 < a) =

∫ a

0

λe−λtP(Ñ([a− t, c− t]) = 0)dt

=

∫ a

0

λe−λte−λ[c−t−(a−t)]dt

= e−λ[c−a](1− e−λa). (7.27)

On the other hand, the third term equals

P(T1 > c) = e−λc.

Hence, adding both terms we get

P(N([a, c]) = 0) = e−λ[c−a],

which is the desired result for k = 0.

For k > 0 the third term vanishes and the first term is

P(N[a, c] = k, T1 < a)

=

∫ a

0

λe−λtP(Ñ([a− t, c− t]) = k)dt

=

∫ a

0

λe−λt e
−λ[c−t−(a−t)]λk[c− t− (a− t)]k

k!
dt

=
e−λ[c−a]λk[c− a]k

k!
(1− e−λa) (7.28)
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and the second term equals

P(N[a, c] = k, T1 ∈ [a, c])

=

∫ c

a

λe−λtP(Ñ([0, c− t]) = k − 1)dt

=

∫ c

a

λe−λt e
−λ[c−t]λk−1[c− t]k−1

(k − 1)!
dt

=
e−λcλk[c− a]k

k!
. (7.29)

The addition of those terms gives the desired

P(N[a, c] = k) =
e−λ[c−a]λk[c− a]k

k!
,

which finishes the proof of the theorem.

Corollary 7.30 Let (Si) be a Poisson process. Then the random variables
Tn = Sn − Sn−1, n ≥ 2, are independent, identically distributed with expo-
nential law of parameter λ.

Proof. Theorem 7.25 says that a Poisson process N0(·) can be constructed
by fixing the first time-event according with an exponential random variable
T1 and then gluing a Poisson process N1(·) independent of T1. The process
N1(·), on the other hand, can be constructed using an exponential random
variable T2 and an independent Poisson process N2(·). Iterating this con-
struction we have that the times between successive events is a sequence
T1, T2, . . . of independent exponential random variables.

7.5 Alternative definitions

At the beginning of this chapter we have given a constructive definition of
Poisson process. We want now to compare ours with other definitions that
can be found in books of Stochastic Processes. We consider point processes
defined in the whole real line R. We use the notation N(t) for N([0, t]).
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Definition 7.31 A one-dimensional point process N(·) has stationary in-
crements if the law of N[s + r, t + r] does not depend on r. We say that
N(·) has independent increments if for any disjoint subsets of R, A and B
the variables N(A) and N(B) are independent.

We also need the definition of o(h):

Definition 7.32 We say that a function f : R→ R is a o(h) if

lim
h→0

f(h)

h
= 0.

Let λ > 0. For a process N(·) consider the following sets of conditions.

Conditions 7.33 1. The process N(·) has independent and stationary
increments;

2. The random variables N[s, t] have Poisson law with mean λ(t− s), for
any s < t

Conditions 7.34 1. The process N(·) has independent and stationary
increments;

2. P(N[t, t + h] = 1) = λh + o(h);

3. P(N[t, t + h] ≥ 2) = o(h).

Conditions 7.33 and 7.34 characterize univoquely a process as a conse-
quence of Theorem 7.5.

Proposition 7.35 Conditions 7.33 and 7.34 are equivalent.

Proof. It is easy to prove that Conditions 7.33 imply Conditions 7.34. For
that, using that N[t, t + h] has Poisson law of parameter λh, we can write

P(N[t, t + h] = 1) = λhe−λh

= λh

(
1− λh +

(λh)2

2
+ . . .

)
= λh + λh

(
−λh +

(λh)2

2
+ . . .

)
, (7.36)
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using the series expansion of e−λh. But the second term in the last member
is o(h). This proves item 2 of Conditions 7.34. On the other hand,

P(N[t, t + h] ≥ 2) = e−λh

(
(hλ)2

2!
+

(hλ)3

3!
+ . . .

)
= o(h).

This proves item 3 of Conditions 7.34.

The proof that Conditions 7.34 imply Conditions 7.33 is more complicated
and involves the solution of differential equations. We omit this proof. It
can be found, for instance, in Ross (1983).

Proposition 7.37 The process Sn defined by (7.1) satisfies both the Condi-
tions 7.33 and 7.34

Proof. The construction guarantees that the process has independent and
stationary increments. By Lemma 7.6 the distribution of points in [s, t] has
Poisson law of parameter λ(t− s). This implies that the process defined by
(7.1) satisfies Conditions 7.33. By Proposition 7.35 the process also satisfies
Conditions 7.34.

7.6 Inspection paradox

Imagine a city where the bus service is perfectly regular: according to the
schedule the time between two successive buses is exactly one hour or two
hours. The schedule is 0, 1, 3, 4, 6, 7, 9, 10, 12, etc. Half of the time intervals
between two successive buses has length 1 and the other half has length 2.
If we arrive to the bus stop at a time randomly chosen in the interval 0:00
and 12:00, how long we need do wait in mean until the departure of the next
bus?

One way to do that is just to compute the length of the average interval.
This operation corresponds to choose an interval at random (from a urn,
for instance) and measure its length T . Since there are as many intervals
of length 1 as intervals of length 2, the probability of choosing an interval
of length 1 is 1/2 and the same for an interval of length 2. The resulting
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average would be

ET =
1

2

1

2
+

1

2
1 =

3

4
.

This corresponds to compute the average length of half interval. This is
WRONG.

The problem with the above reasoning is that when one chooses a point
uniformly distributed in the interval [0, 12], the probability that it belongs
to an interval of length 2 is 8/12 while the probability of belonging to an
interval of length 1 is 4/12. The average length is then

ET =
4

12

1

2
+

8

12
1 =

5

6
>

3

4
.

That is, the average waiting time is bigger than the average of half interval.
The reason is that the probability of choosing a long interval is bigger than
the probability of choosing a short one. The same happens when we have
a stationary point process in R. The length of the interval containing the
origin is in general bigger than the length of the typical interval.

Set us see what happens with the Poisson process. Let S1 be the epoch
of the first Poisson event to the right of the origin of time and S0 the time of
the first event to the left of the origin. We have seen that S1 has exponential
distribution with rate λ. The same argument shows that S0 has also expo-
nential distribution with the same rate. Since the process has independent
increments, S0 and S1 are independent random variables. Hence, the law of
S1 − S0 is the law of the sum of two independent random variables expo-
nentially distributed with rate λ. This corresponds to a Gamma distribution
with parameters 2 and λ:

P(S1 − S0 > t) =

∫ ∞

t

λxe−λxdx.

and the average value of this interval is

E(S1 − S0) =

∫ ∞

0

λx2e−λxdx =
2

λ
.

which is exactly twice the average value of the typical interval; the typical
interval has exponential distribution with rate λ.
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Notice also that the interval containing an arbitrary time t also has av-
erage length equal to 2/λ. For t ≥ 0, this interval is SN(t)+1 − SN(t). By the
same reasoning, SN(t)+1 − t and t− SN(t) are independent random variables
exponentially distributed. Hence SN(t)+1 − SN(t) has Gamma distribution
with parameters 2 and λ.

The only process for which the length of the interval containing a point
is the same as the length of the typical interval is the process for which the
inter arrival times are constant.

7.7 Poisson processes in d ≥ 2

In this section we construct a Poisson process in two dimensions. The result-
ing process will be used in the following sections to construct one-dimensional
non-homogeneous processes and superposition of Poisson processes.

We construct a random subset of R2. The same construction can be per-
formed in Rd for d ≥ 2, but for simplicity we stay in d = 2. The construction
is almost the same we did in d = 1.

We start with a partition of R2 in finite rectangles Ai. For instance Ai can
be the squares determined by the lattice Z2. Denote |Ai| the area (Lebesgue
measure) of Ai. We have

∪̇i∈ZAi = R2,

where ∪̇ means disjoint union.

For each i, let Yi be a Poisson random variable with mean λ|Ai|. That is,

P(Yi = k) =
e−λ|Ai|(λ|Ai|)k

k!
.

Assume the random variables Yi are independent.

Finally, for each i consider a sequence of iid random variables (Ui,j)j≥1

uniformly distributed in Ai:

P(Ui,j ∈ A ∩ Ai) =
|A ∩ Ai|
|Ai|

.
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The point process is the following (random) set:

S = ∪i∈Z ∪Yi
j=1 {Ui,j},

where we used the convention ∪0
j=1{Ui,j} = ∅. In other words, we put Yi

independent points uniformly distributed in the rectangle Ai.

Up to now we have repeated the procedure of d = 1. The difference is
that there is no satisfactory way to order the points of the random set S.
But this is not important.

Definition 7.38 For each measurable set A ⊂ R2, define

M(A) := number of points of the set S ∩ A.

To avoid confusions we use the letter M for bi-dimensional Poisson pro-
cesses and the letter N for one dimensional processes.

The following properties are proven in the same way that in the one-
dimensional case. We leave the details to the reader.

Lemma 7.39 For each finite set A the random variable M(A) has Poisson
distribution with mean λ|A|.

Lemma 7.40 For each finite family of measurable sets Bl, the random vari-
ables M(Bl) have Poisson law with mean λ|Bl|.

Lemma 7.41 For each measurable set A ⊂ R2, the conditional distribution
of the points of S∩A given that M(A) = n is the same as the n independent
random variables uniformly distributed in A.

Example 7.42 Given the two-dimensional construction, we can compute
the law of the random variable which measures the distance to the origin of
the point closer to the origin. Let V = inf{|x| : x ∈ S}.

P(V > b) = P(M(B(0, b)) = 0) = e−λπb2 ,

where B(0, b) is the circle centered at the origin with radius b.
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7.8 Projections

Suppose the random measure M(·) describes the bi-dimensional Poisson pro-
cess of parameter 1. Now we want to construct a one-dimensional Poisson
process N(·) with parameter λ as a function of M(·). For each interval I ⊂ R
define

N(I) = M(I × [0, λ]) (7.43)

that is, the number of points of N(·) in the interval I will be the same as the
number of points in the rectangle I × [0, λ] for M(·). This is the same as to
project the points of M(·) of the strip R× [0, λ] on R.

Lemma 7.44 The process N(·) defined by (7.43) is a one-dimensional Pois-
son process of parameter λ.

Proof. Since the fact that the increments are independent is immediate, it
suffices to prove that for disjoint intervals I1, . . . , In:

P(N(Ii) = ki , i = 1, . . . , n) =
n∏

i=1

e−λ|Ii|(λ|Ii|)ki

ki!
,

which follows immediately from the definition (7.43).

The reader may ask if two points of the bi dimensional process could
project to a unique point of the one-dimensional one. The following lemma
answers negatively this question.

Lemma 7.45 Let I be a finite interval. The event “two points of the bi-
dimensional process are projected over a unique point of I” has probability
zero.

Proof. Without loss of generality we may assume that I = [0, 1]. Partition
I in small intervals of length δ: Iδ

n = (nδ, (n + 1)δ]. The probability that
two points are projected in one is bounded above by the probability that two
points belong to the same interval, which is given by

P(∪|I|/δ
n=1 {M(Iδ

n × [0, λ]) ≥ 2}) ≤
|I|/δ∑
n=1

P(M(Iδ
n × [0, λ]) ≥ 2) ≤ |I|

δ
o(δ).
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This goes to zero as δ → 0.

The advantage of the projection method to construct one-dimensional
processes is that we can simultaneously construct processes with different
rates in such a way that the number of points of the process with bigger rate
always dominate the number of points of the process with smaller rate.

We are going to construct a coupling between two Poisson processes N1(·)
and N2(·) with parameters λ1 and λ2, respectively. For i = 1, 2 let

Ni(I) = M(I × [0, λi]). (7.46)

Lemma 7.47 Assume λ1 ≥ λ2. Then, for the coupled process defined by
(7.46) we have

N1(I) ≥ N2(I),

for all interval I ⊂ R.

Proof. Follows from the definition that N2 projects less points than N1.

7.9 Superposition of Poisson processes

Men arrive to a bank accordingly to a Poisson process of parameter pλ,
women do so at rate (1− p)λ.

A way to model the arrival process including the attribute “sex” to each
arrival is to construct a bi-dimensional process M(·) as we did in the previous
section and to define N1(·) and N2(·) as the projection of strips of width pλ
and (1− p)λ:

N1(I) = M(I × [0, pλ]); N2(I) = M(I × [pλ, λ]).

That is, the projected points coming from the strip [0, λ] × R indicate the
arrival times of clients disregarding sex. The points coming from the strip
[0, λp]×R are marked 1 (corresponding to men) and the points coming from
the strip [pλ, λ]× R are marked 2 (corresponding to women).
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We have seen in the previous section that the process N(·) defined by
N(I) = N1(I) + N2(I) is a Poisson process with rate λ because we can
express N(I) = M([0, λ]× I).

Let Sn, n ≥ 1 be the arrival times of the clients disregarding sex; that is,
the arrival times of the process N(·). Each point has a mark 1 or 2 according
to the strip it is projected from. Let

G(Si) =

{
1 if Si is marked 1
2 if Si is marked 2.

Proposition 7.48 The random variables G(Si) are independent, identically
distributed with marginals

P(G(Si) = 1) = p ; P(G(Si) = 2) = 1− p

Proof. We start constructing n iid random variables uniformly distributed
in the rectangle [0, t]× [0, λ]. Let V1, V2, . . . and W1, W2, . . . be two indepen-
dent sequences of iid random variables uniformly distributed in [0, 1].

For each fixed n let πn be the random permutation of the set {1, . . . .n}
(that is a bijection of this set onto itself) defined by: for i = 1, . . . , n− 1,

Vπn(i) ≤ Vπn(i+1).

That is, πn(i) is the label of the i-th variable when the first n Vj are ordered
from the smallest to the biggest.

For each fixed n construct a sequence of random variables in [0, t]× [0, λ]
as follows:

Ui = (tVπn(i), λWi). (7.49)

The family (Ui : i = 1, . . . , n) consists on n iid random variables uniformly
distributed in [0, t]× [0, λ]. The advantage of this construction is that Wi is
the ordinate of the i-th Uj, when the n first Ui are ordered from smallest to
the biggest.

Fix an arbitrary L and for 1 ≤ k ≤ L consider arbitrary ak ∈ {0, 1}.
Define

AL = {G(S1) = a1, . . . , G(SL) = aL}.
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By a discrete version of Theorem 7.5, to prove that (G(Si)) are iid Bernoulli
random variables with parameter p it suffices to prove that

P(AL) = p
∑

ak(1− p)
∑

(1−ak). (7.50)

For each fixed t,

P(AL) =
∞∑

n=L

P(AL,N(0, t) = n) + P(AL,N(0, t) < L). (7.51)

Let us compute the first term:

P(AL,N(0, t) = n) = P(AL |N(0, t) = n) P(N(0, t) = n). (7.52)

But N(0, t) = M([0, t] × [0, λ]) and given M([0, t] × [0, λ]) = n, the law of
the points in this rectangle is the same as the law of n iid random variables
uniformly distributed in the rectangle. Let

Ik =

{
[0, λp] if ak = 1
[λp, λ] if ak = 0.

(7.53)

We can then use the construction (7.49) to obtain

P(AL |N(0, t) = n) = P(AL |M([0, t]× [0, λ]) = n)

= P(Uπn(k) ∈ [0, t]× Ik, 1 ≤ k ≤ n)

= P(λWk ∈ Ik, 1 ≤ k ≤ n)

= p
∑

ak(1− p)
∑

(1−ak). (7.54)

Since this identity does not depend on n, using (7.54) and (7.52) in (7.51)
we get

P(AL) = p
∑

ak(1− p)
∑

(1−ak)

∞∑
n=L

P(N(0, t) = n) + P(AL,N(0, t) < L).

= p
∑

ak (1− p)
∑

(1−ak) P(N(0, t) ≥ L) + P(AL,N(0, t) < L).

By the law of large numbers for one dimensional Poisson processes (which
can be proven as the law of large numbers for renewal processes of Chapter 5)
N(0, t)/t converges to λ; hence

lim
t→∞

P(N(0, t) ≥ L) = 1 and lim
t→∞

P(AL,N(0, t) ≥ L) = 0 (7.55)
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This shows the Proposition.

The proof above induces the following alternative construction of a bi-
dimensional Poisson process M(·) with rate 1 in the strip [0,∞]× [0, λ]. Let
T1 be an exponential random variable with rate λ, W1 be a random variable
uniformly distributed in [0, λ] and M1(·) be a one dimensional process with
rate 1 in the strip [0,∞] × [0, λ]. Assume independence among T1, W1 e
M1(·).

Define M(·) as the process

M(A) = 1{(T1, W1) ∈ A}+ M1(A− T1),

where
A− t = {(x, y) ∈ R2 : (x + t, y) ∈ A}.

Arguments very similar to those of Theorem7.25, Corollary 7.30 and Propo-
sition 7.48 show the following

Theorem 7.56 Let M(·) be a bi-dimensional Poisson process with rate 1.
Let S1, S2, . . . be the ordered times of occurrence of events in the strip [0, λ].
Let W1, W2, . . . be the second coordinates of those event times. Then, (Si+1−
Si)i≥1 are iid random variables exponentially distributed with rate λ and
(Wi)i≥1 are iid random variables with uniform distribution in [0, λ]. Fur-
thermore (Si+1 − Si)i≥1 and (Wi)i≥1 are independent.

7.10 Non homogeneous processes.

Let λ : R → R+ be a nonnegative piecewise continuous function. Assume
that for any finite interval I ⊂ R, the number of discontinuities of λ(t) is
finite.

We want to construct a point process with independent increments and
“instantaneous rate” λ(t). That is, a process N(·) such that, for the conti-
nuity points of λ(t),

P(N([t, t + h]) = 1) = hλ(t) + o(h) (7.57)

P(N([t, t + h]) ≥ 2) = o(h). (7.58)
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(See Definition 7.34.)

We consider a bi-dimensional process M(·) and define

N(I) = M(Λ(I)), (7.59)

where Λ(I) = {(x, y) ∈ R2 : x ∈ I and y ≤ λ(x)}. That is, N(·) is the
process obtained when we project the points of M(·) lying below the function
λ(t).

Lemma 7.60 The process defined by (7.59) satisfies conditions(7.58) and
(7.57).

Proof. By Definition 7.59,

P(N([t, t + h]) = 1) = P(M(Λ[t, t + h]) = 1).

Let y0 = y0(t, h) and y1 = y1(t, h) be respectively, the infimum and the
supremum of λ(t) in the interval [t, t+h]. In this way we obtain the following
bounds

M([t, t + h]× [0, y0]) ≤M(Λ[t, t + h]) ≤M([t, t + h]× [0, y1]).

Since the function λ(t) is continuous in t,

lim
h→0

y0(t, h) = lim
h→0

y1(t, h) = λ(t)

and y1(t, h) − y0(t, h) = O(h), by continuity, where O(h) is a notation to
indicate a function of h that stays bounded above and below when divided
by h as h→ 0. Hence,

P(M([t, t + h]× [0, y1])−M([t, t + h]× [0, y0]) ≥ 1) = o(h).

So that,

P(M(Λ[t, t + h]) = 1)

= P(M(Λ[t, t + h]) = 1,

M([t, t + h]× [0, y1])−M([t, t + h]× [0, y0]) = 0)

+P(M(Λ[t, t + h]) = 1,M([t, t + h]× [0, y1])

−M([t, t + h]× [0, y0]) ≥ 1). (7.61)
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The first term equals

P(M([t, t + h]× [0, y0)]) = 1,

M([t, t + h]× [0, y1])−M([t, t + h]× [0, y0]) = 0),

which, using independence of the process M(·), gives

P(M([t, t + h]× [0, y0)]) = 1)

×P(M([t, t + h]× [0, y1])−M([t, t + h]× [0, y0]) = 0)

= hλ(t) + o(h).

The second term is bounded by

P(M([t, t + h]× [0, y1])−M([t, t + h]× [0, y0]) ≥ 1) = o(h).

Definition (7.59) allows us to show immediately that the number of points
of the projected process in a set has Poisson law:

Proposition 7.62 The non homogeneous Poisson process constructed in dis-
play

(7.59) has the property that the number of points in an arbitrary interval
has Poisson law with mean equal to the area below the function λ(t) in that
interval. That is,

P(N([0, t]) = n) =
eµ(t)(µ(t))n

n!
,

where µ(t) =
∫ t

0
λ(s)ds.

Definition (7.59) of non-homogeneous process has the advantage that we
can couple two or more processes with different rates with the following
properties.

Proposition 7.63 Let λ1(t) and λ2(t) be two continuous functions satisfying

λ1(t) ≤ λ2(t) for all t

Then it is possible to couple the non-homogeneous Poisson process N1(·) and
N2(·) with rates λ1(t) and λ2(t) respectively such that for all interval I,

N1(I) ≤ N2(I).

Proof. The proof of this statement is immediate from the definition.
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7.11 Exercises

Exercise 7.1 Let X and Y be independent exponential random variables
with parameters λ1 and λ2 respectively,

1. Compute the law of Z = min(X, Y ).

2. Compute the conditional law of Z given X = x?

Exercise 7.2 Show that the sum of n independent random variables with
Poisson distribution with means λ1, . . . , λn, respectively has Poisson law with
mean λ1 + . . . + λn.

Exercise 7.3 In one urn we put N1 balls type 1, N2 balls type 2 and N3

balls type 3, where Ni, i = 1, 2, 3 are independent Poisson random variables
with expectations ENi = λi.

(a) Choose a ball at random from the urn. Show that given the event {N1 +
N2+N3 ≥ 1}, the probability to have chosen a ball type i is λi/(λ1+λ2+λ3).

(b) Show that the result of (a) is the same if we condition to the event
{N1 + N2 + N3 = n} for a fixed arbitrary n ≥ 1.

(c) Show that, given the event {N1+N2+N3 = n ≥ 1}, the law of the type of
the balls in the urn is a trinomial with parameters n and pi = λi/(λ1+λ2+λ3).

(d) Generalize item (c) for k ≥ 1 different types of balls:

P(Ni = ni | N = n) =
n!

n1! . . . nk!
λn1

1 . . . λnk
k (λ1 + . . . + λk)

−n,

for n1 + . . . + nk = n ≥ 1.

Exercise 7.4 Let N(t) be a Poisson process with parameter λ. For s < r < t
compute

P (N(s) = k,N(r)−N(s) = j|N(t) = n).

Exercise 7.5 Show that the random variables Uk defined in (7.49) are in-
dependent and uniformly distributed in [0, t]× [0, λ].
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Exercise 7.6 Show Theorem 7.56.

Exercise 7.7 (i) Let N be a random variable with Poisson law of mean
λ. Let B = X1 + . . . + XN , where Xi is a Bernoulli random variable with
parameter p independent of N . Prove that B is Poisson with parameter
λp. Hint: construct a process M(·) in [0, 1] × [0, λ] and mark the points
accordingly to the fact that they are above or below the line y = λp.

(ii) Prove that if Tn are the successive instants of a Poisson process with
parameter λ, then the process defined by the times

Sn = inf{Tl > Sn−1 : Xl = 1},

with S1 > 0, is a Poisson process with parameter λp. Hint: construct simul-
taneously (Sn) and (Tn) using Definition 7.43.

Exercise 7.8 Assume that a random variable X satisfies the following prop-
erty. For all t ≥ 0

P(X ∈ (t, t + h) |X > t) = λh + o(h).

Show that X is exponentially distributed with rate λ.

Exercise 7.9 For a Poisson process of rate λ,

(a) Compute the law of T2, the instant of the second event.

(b) Compute the law of T2 given N(0, t) = 4.

Exercise 7.10 Let N(0, t) be a Poisson process with parameter λ. Compute

(a) EN(0, 2), EN(4, 7),

(b) P(N(4, 7) > 2 |N(2, 4) ≥ 1),

(c) P(N(0, 1) = 2 |N(0, 3) = 6),

(d) P(N(0, t) = odd),

(e) E(N(0, t)N(0, t + s)).

Exercise 7.11 For a Poisson process N(0, t) compute the joint distribution
of S1, S2, S3, the arrival instants of the first three events.
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Exercise 7.12 Compute the law of the age A(t) and residual time R(t) of
a Poisson process with parameter λ, where

A(t) := t− SN(t) R(t) := SN(t)+1 − t (7.64)

Exercise 7.13 Let N(t) be a stationary Poisson process. Show that N(t)/t
converges to 1/λ, as t→∞. Hint: use the ideas of Proposition 5.26 and the
laws of the age A(t) and the residual time R(t) computed in Exercise 7.12.

Exercise 7.14 Women arrive to a bank according to a Poisson process with
parameter 3 per minute and men do so according to a Poisson process with
parameter 4 per minute. Compute the following probabilities:

(a) The first person to arrive is a man.

(b) 3 men arrive before the fifth woman.

(c) 3 clients arrive in the first 3 minutes.

(d) 3 men and no woman arrive in the first 3 minutes.

(e) Exactly three women arrive in the first 2 minutes, given that in the first
3 minutes 7 clients arrive.

Exercise 7.15 Assume that only two types of clients arrive to a supermarket
counter. Those paying with credit card and those paying cash. Credit card
holders arrive according to a Poisson process {N1(t), t ≥ 0} with parameter
6 per minute, while those paying cash arrive according to a Poisson process
{N2(t), t ≥ 0} with rate 8 per minute.

(a) Show that the process N(t) = {N1(t)+N2(t), t ≥ 0} of arrivals of clients
to the supermarket is a Poisson process with rate 14.

(b) Compute the probability that the first client arriving to the supermarket
pays cash.

(c) Compute the probability that the first 3 clients pay with credit card,
given that in the first 10 minutes no client arrived.

Exercise 7.16 Vehicles arrive to a toll according to a Poisson process with
parameter 3 per minute (180 per hour). The probability each vehicle to be
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a car depends on the time of the day and it is given by the function p(s):

p(s) =


s/12 if 0 < s < 6
1/2 if 6 ≤ s < 12
1/4 if 12 ≤ s < 18
(1/4)− s/24 if 18 ≤ s < 24

.

The probability each vehicle to be a truck is 1− p(s).

(a) Compute the probability that at least a truck arrives between 5:00 and
10:00 in the morning.

(b) Given that 30 vehicles arrived between 0:00 and 1:00, compute the law
of the arrival time of the first vehicle of the day.

Exercise 7.17 Construct a non homogeneous Poisson process with rate
λ(t) = e−t. Compute the mean number of events in the interval [0,∞].

Exercise 7.18 Show that for the non homogeneous Poisson process defined
in (7.59), the law of {S1, . . . , Sn} in [0, t] given N(0, t) = n is the same as the
law of n independent random variables with density

λ(r)∫ t

0
λ(s)ds

; r ∈ [0, t].

7.12 Comments and references

The construction of Poisson process given in this chapter is a particular case
of the general construction proposed by Neveu (1977). The construction
of processes in a lower dimension as a projection of a process in a higher
dimension was introduced by Kurtz (1989) and used by Garcia (1995).



Chapter 8

Continuous time Markov
processes

8.1 Pure jump Markov processes

The crucial difference between the Markov chains of Chapter 2 and the con-
tinuous time Markov processes of this chapter is the following. A Markov
chain jumps from one state to another one at integer times: 1, 2, . . .. Pure
jump processes jump at random times τ1, τ2, . . ..

We now define a process Xt ∈ X , t ∈ R. We assume X countable,
consider transition rates q(x, y) ≥ 0 for x, y ∈ X such that x 6= y and want
to construct a process with the property that the rate of jumping from state
x to state y be q(x, y). In other words, the process must satisfy

P(Xt+h = y |Xt = x) = hq(x, y) + o(h) for all x 6= y. (8.1)

Let
q(x) =

∑
y

q(x, y),

be the exit rate from state x.

To construct the process we introduce a bi-dimensional Poisson process
M(·). For each state x partition the interval Ix = [0, q(x)] in intervals I(x, y)
of length q(x, y).

127
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Let x0 ∈ X and suppose X0 = x0. Let τ1 be the first time an event of the
process M(·) appears in the interval Ix0 :

τ1 = inf{t > 0 : M(Ix0 × [0, t]) > 0}.

Define x1 = y, where y is the unique state satisfying

inf{t > 0 : M(Ix0 × [0, t]) > 0}
= inf{t > 0 : M(I(x0, y)× [0, t]) > 0} (8.2)

that is, x1 is determined by the interval I(x0, x1) which realizes the infimum.

Assume now that τn−1 and xn−1 are already determined. Define induc-
tively

τn = inf{t > τn−1 : M(Ixn−1 × (τn−1, t]) > 0}.
and xn = y if and only if

inf{t > τn−1 : M(Ixn−1 × (τn−1, t]) > 0} (8.3)

= inf{t > 0 : M(I(xn−1, y)× (τn−1, t] > 0)}. (8.4)

Definition 8.5 Define τ∞ = supn τn and

Xt = xn, if t ∈ [τn, τn+1). (8.6)

for all t ∈ [0,∞)

In this way, for each (random) realization of the bi-dimensional Poisson
process M(·), we construct (deterministically) a realization of the process Xt

for t ∈ [0, τ∞). Observe that τn is the n-th jump time of the process and xn

is the n-th state visited by the process.

Proposition 8.7 The process (Xt : t ∈ [0, τ∞)) defined above satisfies the
properties (8.1).

Proof. By definition,

P(Xt+h = y |Xt = x) (8.8)

= P(M(I(x, y)× (t, t + h]) = 1) + P(other things), (8.9)
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where the event {other things} is contained in the event

{M([0, q(x)]× (t, t + h]) ≥ 2}

(two or more Poisson events occur in the rectangle [0, q(x)]× (t, t + h]). It is
clear by Definition 7.38 of M(·) that

P(M([0, q(x)]× (t, t + h]) ≥ 2) = o(h) and (8.10)

P(M(I(x, y)× (t, t + h]) = 1) = hq(x, y) + o(h). (8.11)

This finishes the proof of the proposition.

Example 8.12 In this example we show how the construction goes for a
process with 3 states: X = {0, 1, 2}. This may model a system with two
servers but with no waiting place for clients that are not being served: clients
arriving when both servers are occupied are lost. If the client arrivals occur
according to a Poisson process with rate λ+ and the services have exponential
distribution with rate λ−, then the process has rates:

q(0, 1) = q(1, 2) = λ+ (8.13)

q(1, 0) = λ−; q(2, 1) = 2λ− (8.14)

q(x, y) = 0, in the other cases. (8.15)

The construction described in the proposition can be realized with the fol-
lowing intervals:

I(0, 1) = I(1, 2) = [0, λ+] (8.16)

I(1, 0) = [λ+, λ+ + λ−]; I(2, 1) = [0, 2λ−]. (8.17)

In this case all rates are bounded by max{λ+ + λ−, 2λ−}.

Example 8.18 (Pure birth process) We construct a process Xt in the
state space X = {0, 1, 2, . . .} with the following properties.

P(Xt+h = x + 1 |Xt = x) = λxh + o(h) (8.19)

P(Xt+h −Xt ≥ 2 |Xt = x) = o(xh). (8.20)
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That is, the arrival rate at time t is proportional to the number of arrivals
occurred up to t. Given the bi-dimensional process M(·) with rate one, we
construct the jump times as follows. Let

τ1 = inf{t > 0 : M([0, t]× [0, λ]) = 1}

and in general

τn = inf{t > τn−1 : M((τn−1, t]× [0, (n− 1)λ]) = 1}.

Then the process Xt is defined by X0 = 1 and

Xt := n + 1 if t ∈ [τn, τn+1], (8.21)

for n ≥ 0. It is easy to see that this process satisfies the conditions (8.19)
and (8.20).

8.2 Explosions

It is easy to see that if the state space X is finite, then τ∞ is infinity. That is,
in any finite time interval there are a finite number of jumps. The situation
is different when the state space is infinite.

Consider a process with state space X = N and rates

q(x, y) =

{
2x, if y = x + 1
0, otherwise

(8.22)

The construction using a Poisson process goes as follows. Define τ0 = 0 and
inductively τn by

τn = inf{t > τn−1 : M((τn−1, t]× [0, 2n]) = 1} (8.23)

Then define Xt by
Xt := n, for t ∈ [τn, τn+1]. (8.24)

If x0 = 0, the n-th jump occurs at time

τn =
n∑

i=0

Ti,
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where (Ti : i ≥ 0) is a family of independent random variables with expo-
nential distribution with ETi = 2−i, for i ≥ 0. Hence,

Eτn =
n∑

i=0

2−i ≤ 2, for all n. (8.25)

Define τ∞ = supn τn. We prove now that τ∞ is a finite random variable.
Since τn is an increasing sequence,

P(τ∞ > t) ≤ P(∪n{τn > t}) = lim
n

P(τn > t) (8.26)

because {τn > t} is an increasing sequence of events. We use now the Markov
inequality to dominate the last expression with

lim
n

Eτn

t
≤ 2

t
(8.27)

by (8.25). We have proved that P(τ∞ > t) goes to zero as t → ∞, which
implies that τ∞ is a finite random variable.

Let K(t) be the number of jumps of the process up to time t, that is,

K(t) := sup{n : τn < t}.

By definition,

K(t) > n if and only if τn < t.

Hence, for all t > τ∞, the process performs infinitely many jumps before
time t.

Definition 8.28 We say that the process Xt explodes if

P( lim
n→∞

τn <∞) > 0.

After a finite random time τ∞ the process is not formally defined. But we can
define an explosive process by adding a new state called ∞ with transition
rates q(∞, x) = 0 for all x ∈ X .
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If there are no explosions, that is, if

P( lim
n→∞

τn <∞) = 0,

then, the rates q(x, y) define univoquely a process which can be constructed
as in Proposition 8.7.

A necessary and sufficient condition for the absence of explosions is the
following.

Proposition 8.29 The process Xt has no explosions if and only if

P

(
∞∑

n=0

1

q(Xn)
<∞

)
= 0,

where q(x) =
∑

y q(x, y) is the exit rate from state x.

Proof. Omitted.

The processes we study in these notes have no explosions.

8.3 Properties

Next result says that the process constructed in Proposition 8.7 is Markov.
In other words, we prove that given the present, the future and the past are
independent.

Proposition 8.30 The process (Xt) defined by (8.6) satisfies

P(Xt+u = y |Xt = x, Xs = xs, 0 ≤ s < t) = P (Xt+u = y |Xt = x).

Proof. Indeed, in our construction, the process in the times after t depend
only on the bi-dimensional Poisson process M in the region M((t,∞)×R+)
and on the value assumed by Xt at time t. Given Xt, this is independent of
what happened before t.
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Given that at time τn the process Xt is at state x, the time elapsed
up to the next jump is an exponentially distributed random variable with
mean 1/q(x); when the process decides to jump, it does so to state y with
probability

p(x, y) =
q(x, y)

q(x)
. (8.31)

These properties are proven in the next two theorems.

Theorem 8.32 For a continuous time Markov process Xt,

P(τn+1 − τn > t |Xτn = x) = e−tq(x). (8.33)

Proof. We prove the theorem for the case when the rates q(x) are uniformly
bounded by λ ∈ (0,∞). The general case can be proven using finite approx-
imations. We use the representation of M(·) in the strip [0,∞] × [0, λ] of
Theorem 7.56.

It is clear that the set (τn)n is contained in the set (Sn)n defined in
Theorem 7.56. Indeed, given x0 ∈ X , we can define

τn = min{Sk > τn−1 : Wk < q(xn−1)}
Kn = {k : Sk = τn}
xn = {y : WKn ∈ I(xn−1, y)}. (8.34)

This definition is a consequence of the representation of the bi-dimensional
Poisson process of Theorem (7.56) and the construction of the Markov process
using the Poisson process summarized in Definition 8.6.

The distribution of τn+1 − τn, conditioned to Xτn = x is given by

P(τn+1 − τn > t |Xτn = x)

=
P(τn+1 − τn > t, Xτn = x)

P(Xτn = x)
. (8.35)

Conditioning on the possible values Kn may assume, the numerator can be
written as∑

k

P(τn+1 − τn > t, Xτn = x, Kn = k)
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=
∑

k

P(τn+1 − Sk > t, XSk
= x, Kn = k)

=
∑

k

∑
`

P(Sk+` − Sk > t, Wk+1 > q(x), . . . ,Wk+`−1 > q(x),

Wk+` < q(x)) P(XSk
= x, Kn = k)

= e−q(x)
∑

k

P(XSk
= x, Kn = k).

by Exercise 7.7.ii. Hence,

P(τn+1 − τn > t, Xτn = x)

P(Xτn = x)
= e−q(x),

which finishes the proof.

Definition 8.36 The discrete process (Yn : n ∈ N) defined by Yn = Xτn is
called skeleton of the (continuous time) process (Xt : t ∈ R+).

Theorem 8.37 The skeleton (Yn) of a continuous time process (Xt) is a
Markov chain with probability transitions {p(x, y), x, y ∈ X} given by (8.31).

Proof. We want to prove that

P(Xτn+1 = y |Xτn = x) = p(x, y). (8.38)

We use again the construction (8.34). Partitioning according with the possi-
ble values of Kn:

P(Xτn+1 = y, Xτn = x) =
∑

k

P(Xτn+1 = y, Xτn = x, Kn = k) (8.39)

By construction, the event {Xτn+1 = y, Xτn = x, Kn = k} is just⋃
l≥1{Wk+1 > q(x), . . . ,Wk+`−1 > q(x), Wk+` ∈ I(x, y), XSk

= x, Kn = k},

where we used the convention that for l = 1 the event {Wk+1 > q(x),
. . . ,Wk+`−1 > q(x),Wk+` ∈ I(x, y)} is just {Wk+1 ∈ I(x, y)}. By indepen-
dence between (Wk) and (Sk), expression (8.39) equals∑

k

∑
l≥1

P(Wk+1 > q(x), . . . ,Wk+`−1 > q(x), Wk+` ∈ I(x, y))

×P(XSk
= x, Kn = k)
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But,∑
l≥1

P(Wk+1 > q(x), . . . ,Wk+`−1 > q(x), Wk+` ∈ I(x, y)) =
q(x, y)

q(x)
. (8.40)

Hence, (8.39) equals

q(x, y)

q(x)

∑
k

P(XSk
= x, Kn = k) =

q(x, y)

q(x)
P(Xτn = x), (8.41)

which implies (8.38).

8.4 Kolmogorov equations

It is useful to use the following matrix notation. Let Q be the matrix with
entries

q(x, y) if x 6= y (8.42)

q(x, x) = −q(x) = −
∑
y 6=x

q(x, y). (8.43)

and Pt be the matrix with entries

pt(x, y) = P(Xt = y |X0 = x).

Proposition 8.44 (Chapman-Kolmogorov equations) The following iden-
tities hold

Pt+s = PtPs. (8.45)

for all s, t ≥ 0.

Proof. Compute

pt+s(x, y) = P(Xt+s = y |X0 = x)

=
∑

z

P(Xs = z |X0 = x)P(Xt+s = y |Xs = z)

=
∑

z

ps(x, z)pt(z, y). (8.46)
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Proposition 8.47 (Kolmogorov equations) The following identities hold

P ′
t = QPt (Kolmogorov Backward equations)

P ′
t = PtQ (Kolmogorov Forward equations)

for all t ≥ 0, where P ′
t is the matrix having as entries p′t(x, y) the derivatives

of the entries of the matrix Pt.

Proof. We prove the backward equations. Using the Chapman-Kolmogorov
equations we have that for any h > 0:

pt+h(x, y)− pt(x, y) =
∑

z

ph(x, z)pt(z, y)− pt(x, y)

= (ph(x, x)− 1)pt(x, y)) +
∑
z 6=x

ph(x, z)pt(z, y).

Dividing by h and taking h to zero we obtain p′t(x, y) in the left hand side.
To compute the right hand side, observe that

ph(x, x) = 1− q(x)h + o(h).

Hence

lim
h→0

ph(x, x)− 1

h
= −q(x) = q(x, x).

Analogously, for x 6= y

ph(x, y) = q(x, y)h + o(h)

and

lim
h→0

ph(x, y)

h
= q(x, y).

This shows the Kolmogorov Backward equations. The forward equations
are proven analogously. The starting point is the following way to write
pt+h(x, y):

pt+h(x, y) =
∑

z

pt(x, z)ph(z, y).
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8.5 Recurrence and transience

We start with a definition or hitting time analogous to the one for discrete
chains.

Definition 8.48 Let T x→y = inf{t > τ1 : Xx
t = y}, be the first time the

process starting at x hits y.

The exigency t > τ1 is posed to avoid T x→x ≡ 0.

Definition 8.49 We say that a state x is

transient, if P(T x→x =∞) > 0; (8.50)

null recurrent, if P(T x→x =∞) = 0 and ET x→x =∞; (8.51)

positive recurrent, if ET x→x <∞. (8.52)

recurrent, if it is null recurrent or positive recurrent. (8.53)

If the state space is finite, there are no null recurrent states.

Definition 8.54 We say that a process is irreducible if for all states x, y,
the probability to hit y starting from x in a finite time is positive:

P (T x→y <∞) > 0.

Theorem 8.55 A process (Xt) is irreducible if and only if its skeleton (Yn)
is irreducible.

A state x is recurrent (respectively transient) for the process (Xt) if and
only if x is recurrent (respectively transient) for the skeleton (Yn).

If the exit rates are uniformly bounded from below and above, that is, if

0 < inf
x

q(x); sup
x

q(x) <∞,

then x is null recurrent for (Xt), if and only if x is null recurrent for the
skeleton (Yn).
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Proof. The proof is straightforward.

Remark 8.56 It is clear that in the finite state space case the hypotheses
of Theorem (8.55) are automatically satisfied.

The first part of the theorem says that a state is recurrent (respectively
transient) for the continuous time process if and only if it is recurrent (re-
spectively transient) for its skeleton. Hence, by Remark 8.56 recurrence and
transience are equivalent for a process and its skeleton when the state space
is finite.

When the state space is infinite it is possible to find examples of continu-
ous time processes (violating the conditions of Theorem 8.55) and its skeleton
with qualitative different behavior. We see now some of these examples.

Example 8.57 In this example we present a process having null recurrent
states which are positive recurrent for the skeleton. Consider the rates
q(x, 0) = 1/2x, q(x, x + 1) = 1/2x. Hence p(x, 0) = 1/2, p(x, x + 1) = 1/2
and the skeleton is positive recurrent, because the return time to the origin
is given by a geometric random variable with parameter 1/2. On the other
hand, since the mean jump time of each state x is 2x,

ET 0→0 =
∑

2x1/2x+1 =∞.

Example 8.58 A simple (however explosive) example for which the states
are positive recurrent for the continuous time process but null recurrent for
its skeleton is given by the following rates: q(x, 0) = 1, q(x, x + 1) = x2,
q(x, y) = 0 otherwise. The transition probabilities of the skeleton are given
by p(x, 0) = 1/(1 + x2) and p(x, x + 1) = x2/(1 + x2). The mean return time
to the origin of the skeleton is given by∑

x

x

(
1

1 + x2

) x−1∏
y=1

(
y2

1 + y2

)
.

We let the reader the proof that this sum is infinity. The mean return time
to the origin for the continuous process is given by∑

x

(
x∑

y=1

1

y2

)(
1

1 + x2

)(x−1∏
y=1

(
y2

1 + y2

))
.
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We let the reader the proof that this sum is finite.

8.6 Invariant measures

Definition 8.59 We say that π is an invariant measure for (Xt) if∑
x

π(x)pt(x, y) = π(y) (8.60)∑
x

π(x) = 1 (8.61)

that is, if the distribution of the initial state is given by π, then the distri-
bution of the process at time t is also given by π for any t ≥ 0. Sometimes
we also use the term stationary measure to refer to an invariant measure.

Theorem 8.62 A measure π is invariant for a process with rates q(x, y) if
and only if ∑

x

π(x)q(x, y) = π(y)
∑

z

q(y, z). (8.63)

Condition (8.63) can be interpreted as a flux condition: the entrance rate
under π to state y is the same as the exit rate from y. For this reason the
equations (8.63) are called balance equations.

Proof. In matrix notation, a stationary measure can be seen as a row vector
satisfying

πPt = π.

We can differentiate this equation to obtain∑
x

π(x)p′t(x, y) = 0.

Applying Kolmogorov backward equations we get (8.63).

Reciprocally, equations (8.63) can be read as

πQ = 0.
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Applying Kolmogorov backwards equations we get

(πPt)
′ = πP ′

t = πQPt = 0;

In other words, if the initial state of a process is chosen accordingly to the
law π, the law of the process at any future time t is still π. This is because
P0 is the identity matrix and πP0 = π.

The following result is analogous to Theorem 3.54. The novelty is that
the result holds even when the skeleton is periodic. The conclusion is that
continuous time processes are more “mixing” than discrete time processes.

Theorem 8.64 An irreducible process (Xt) in a finite state space has a
unique invariant measure ν. Furthermore,

sup
x,y
|ν(y)− Pt(x, y)| < e−γt,

where

γ = min
x,y

 ∑
z /∈{x,y}

min{q(x, z), q(y, z)}+ q(x, y) + q(y, x)

 . (8.65)

Proof. We couple two processes with the same transition rates matrix: Xt

with arbitrary initial state and Yt with initial state chosen according to the
invariant measure ν.

Assume first that the states are well ordered. Then, for each pair of
disjoint states x < y, construct two families of disjoint subsets of R, {Ix(y, z) :
z ∈ X} and {Iy(x, z) : z ∈ X} such that |Ix(y, z)| = q(y, z) and |Iy(x, z)| =
q(x, z).

Starting from the origin, construct a family of successive intervals Jx,y(z)
with lengths

|Jx,y(z)| = min{q(x, z), q(y, z)}; z 6= x, y.

After those, put an interval I(x, y) with length q(x, y), after it put an interval
I(y, x) with length q(y, x). After this, put intervals Jy(x, z) with length

|Jy(x, z)| = q(x, z)−min{q(x, z), q(y, z)}; z 6= x, y.
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After this, put intervals Jx(y, z) with lengths

|Jx(y, z)| = q(y, z)−min{q(x, z), q(y, z)}; z 6= x, y.

Now call

Ix(y, z) = Jx(y, z) ∪ Jx,y(z); Iy(x, z) = Jy(x, z) ∪ Jx,y(z)

for z 6= x, y.

If x = y, just define successive intervals I(x, z) with lengths q(x, z); that
is, Ix(x, x) = ∅ for all x ∈ X .

Let

Ix,y =

[ ⋃
z 6=x,y

(Ix(y, z) ∪ Iy(x, z))

]
∪ I(x, y) ∪ I(y, x).

Assume
(X0, Y0) = (x0, y0) (8.66)

Let τ1 be the first time the process M(·) has a point with the first coordinate
in the interval Ix0,y0 :

τ1 = inf{t > 0 : M(Ix0,y0 × [0, t]) > 0}.

Let

x1 =

{
z if inf{t > 0 : M(Ix0,y0 × [0, t]) > 0}

= inf{t > 0 : M(Iy0(x0, z)× [0, t]) > 0}
x0 otherwise

that is, x1 is determined by the interval Iy0(x0, z) realizing the infimum or it
stays equal to x0 if none of those intervals realize the infimum. Analogously,

y1 =

 z if inf{t > 0 : M(Ix0,y0 × [0, t]) > 0}
= inf{t > 0 : M(Ix0(y0, z)× [0, t]) > 0}

y0 otherwise

that is, y1 is determined by the interval Ix0(y0, z) realizing the infimum, or
stays equal to y0 if none of those intervals realizes the infimum. Let τn be
the first time a point of the process M(·) appears in the interval Ixn−1,yn−1 :

τn = inf{t > τn−1 : M(Ixn−1,yn−1 × (τn−1, t]) > 0}.
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Let

xn =

 z if inf{t > τn−1 : M(Ixn−1,yn−1 × (τn−1, t]) > 0}
= inf{t > τn−1 : M(Iyn−1(xn−1, z)× (τn−1, t]) > 0}

xn−1 otherwise

that is, xn is determined by the interval Iyn−1(xn−1, z) realizing the infimum,
or stays equal to xn−1 if none of those intervals realizes the infimum. Analo-
gously,

yn =

 z if inf{t > τn−1 : M(Ixn−1,yn−1 × (τn−1, t]) > 0}
= inf{t > τn−1 : M(Ixn−1(yn−1, z)× (τn−1, t]) > 0}

yn−1 otherwise

that is, yn is determined by the interval Ixn−1(yn−1, z) realizing the infimum
or stays equal to yn−1 if none of those intervals realizes the infimum.

Now define
(Xt, Yt) := (xn, yn) if t ∈ [τn, τn+1). (8.67)

Proposition 8.68 The process defined by (8.66) and (8.67) is a coupling of
two Markov processes with transition rates Q and initial state (x0, y0).

Proof. It is left as an exercise to the reader.

An important fact of this construction is that when the coupled process
is in the state (x, y) and a point of the process M(·) appears in the interval

(∪z(J
x,y(z)) ∪ I(y, x) ∪ I(x, y),

then both processes jump to the same state and from this moment on continue
together for ever (coalesce). The length of this interval is exactly∑

z /∈{x,y}

min{q(x, z), q(y, z)}+ q(x, y) + q(y, x).

Since for any couple x, y these intervals have the origin as left point, the
processes coalesce the first time a point of the process M(·) appears in the
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intersection of those intervals. This intersection has length γ defined by
(8.65).

The following is the convergence theorem under weaker hypotheses. It
does not have speed of convergence.

Theorem 8.69 If the continuous time Markov process (Xt) is positive re-
current and irreducible, then it admits a unique invariant measure π. Fur-
thermore, for any initial state x,

lim
t→∞

pt(x, y) = π(y).

Proof. omitted.

8.7 Skeletons

Assume the process (Xt) and its discrete skeleton (Yn) defined by Yn = Xτn

are irreducible and positive recurrent. In Chapter 2 we saw that an invariant
measure ν for the discrete skeleton Yn must satisfy the following system of
equations ∑

x

ν(x)p(x, y) = ν(y)

On the other hand, the invariant measure π for the process Xt must satisfy∑
x

π(x)q(x, y) = π(y)q(y)

This implies that ν is the invariant measure for Yn if and only if the measure
π defined by

π(x) =
ν(x)

q(x)

(∑
z

ν(z)

q(z)

)−1

(8.70)

is invariant for Xt. Intuitively, the different waiting time between jumps in
the continuous time process require a correction in the invariant measure for
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the discrete time process which takes into account these differences. The sec-
ond factor in the right hand side of (8.70) is just normalization to guarantee
that π is a probability.

As a corollary we have that if the exit rates do not depend on the state,
then a measure is invariant for the continuous time process if and only if it
is invariant for the discrete time one. That is, if q(x) = q(y) for all x, y ∈ X ,
then π(x) = ν(x) for all x ∈ X .

8.8 Birth and death process

A birth and death process represents the growth (or extinction) of a popu-
lation. The value Xt represents the number of alive individuals of the popu-
lation at time t. The rates of birth and death depend only on the number of
alive individuals. That is,

q(x, x + 1) = λ+
x and q(x, x− 1) = λ−x , (8.71)

where λ+
x , λ−x are families of non-negative parameters. We use the balance

equations (8.63) to look for conditions under which the process admits an
invariant measure. We look for a vector π satisfying the equations

π(0)q(0, 1) = π(1)q(1, 0) (8.72)

π(x)q(x, x− 1) + q(x, x + 1)) (8.73)

= π(x− 1)q(x− 1, x) + π(x + 1)q(x + 1, x), (8.74)

for x ≥ 1.

It is not difficult to conclude that for all x ≥ 0,

π(x + 1)λ−x+1 − π(x)λ+
x = 0, (8.75)

where

π(x + 1) =
λ+

x

λ−x+1

π(x), x ≥ 0.

Hence, for all x ≥ 1

π(x) =
λ+

0 . . . λ+
x−1

λ−1 . . . λ−x
π(0). (8.76)



8.9. EXERCISES 145

It is clear that π(x) so constructed satisfies (8.63). To satisfy (8.61) we need
π(0) > 0. Hence, there will be a solution if

∑
x≥1

λ+
0 . . . λ+

x−1

λ−1 . . . λ−x
<∞. (8.77)

If (8.77) is satisfied, then we can define

π(0) =

(∑
x≥1

λ+
0 . . . λ+

x−1

λ−1 . . . λ−x

)−1

,

and π(x) inductively by (8.76).

8.9 Exercises

Exercise 8.1 Let Xt be a continuous time process in X = {0, 1} with rates
q(0, 1) = 1, q(1, 0) = 2. Compute the Kolmogorov equations and find pt(1, 0).

Exercise 8.2 Prove that the variable τ∞ defined in the Example (8.12) is
finite with probability one. Hint: observe that, by the Markov inequality

P(τ∞ > K) ≤ Eτ∞
K

.

Then use the fact that

lim
n

P(τn > K) = P(τ∞ > K).

Exercise 8.3 Show that the pure birth process constructed in (8.21) satisfies
conditions (8.19) and (8.20).

Exercise 8.4 Coupling of pure birth processes. Prove that it is possible to
couple two pure birth processes (X1

t ) and (X2
t ) with rates λ−1 ≥ µ2, respec-

tively, in such a way that if X1
0 ≥ X2

0 , then X1
t ≥ X2

t .
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Exercise 8.5 Show identity(8.40).

Exercise 8.6 Prove that the process presented in Example (8.58) is positive
recurrent and that its skeleton is null recurrent.

Exercise 8.7 Prove that the components of the joint process defined in
(8.67) have the right distribution of the process. That is, prove that

P(Xt+h = y |Xt = x) = q(x, y)h + o(h) (8.78)

P(Yt+h = y | Yt = x) = q(x, y)h + o(h) (8.79)

for all t ≥ 0.

Exercise 8.8 Let Xt be the process in X = {1, 2, 3} with transition rates
matrix Q defined by

Q =

 −4 1 3
2 −3 1
1 1 −2

 (8.80)

(The diagonal is just the sum of the exit rates of the corresponding states
with a minus sign.) Construct the coupling (Xt, Yt) given by (8.67). Compute
the value of γ.

Exercise 8.9 For the process introduced in Exercise (8.8) compute the tran-
sition probabilities of the skeleton, the invariant measure for the continuous
time process and for the skeleton and verify (8.70).

Exercise 8.10 Consider a system consisting of one queue and one server.
The clients arrive at rate λ+ in groups of two. The system serves one client
at a time at rate λ−. Assume the system has a maximal capacity of 4 clients.
That is, if at some moment there are 3 clients and a group of two arrives,
then only one of those stays in the system and the other is lost. The space
state is X = {0, 1, 2, 3, 4} and the transition rate matrix of such a system is
given by

Q =


−λ+ 0 λ+ 0 0
λ− −λ− + λ+ 0 λ+ 0
0 λ− −λ− + λ+ 0 λ+

0 0 λ− −λ− + λ+ λ+

0 0 0 λ− −λ−

 (8.81)



8.10. COMMENTS AND REFERENCES 147

(a) Establish the balance equations and find the invariant measure.

(b) Compute the probability that a group of two people arrive to the system
and none of them can stay in it.

(c) Compute the mean number of clients in the system when the system is
in equilibrium.

(d) Compute the mean time a client stays in the system.

Exercise 8.11 Consider a queue system M/M/∞, that is, arrivals occur
according to a Poisson process of rate λ+ and service times are exponentially
distributed with rate λ− but now the system has infinitely many servers (that
is all clients start service upon arrival). Solve items of Exercise (8.10) in this
case.

Exercise 8.12 Consider a population with m individuals. At time zero
there are k “infected” individuals and m − k non infected. An infected
individual heals after an exponentially distributed time with parameter λ−.
If there are k infected individuals, the rate for each one of the remained m−k
non infected individuals to get infected is λ+(k + 1).

(a) Establish the balance equations.

(b) For m = 4, λ+ = 1 and λ− = 2 compute the invariant measure.

(c) Compute the average number of infected individuals under the invariant
measure.

(d) Compute the probability of the event “all individuals are infected” under
the invariant measure.

8.10 Comments and references

In this chapter we have used the bi-dimensional Poisson process to construct
a continuous time Markov process in a countable state space. This is a
natural extension of the projection method used in the previous chapter.
The method allows to couple as in discrete time.
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