
April 14, 2004Growing proesses on a stripP. A. FerrariUniversidade de S~ao PauloSummary. We review some growing proesses in the strip ZZ � f�N; : : : ; Ng. TheRihardson model, the asymmetri voter model, the Branhing exlusion proess and thesolid on solid model are onsidered. The ommon harateristi of the models is theexistene of a mirosopi interfae. This is a random position evolving in time with theproperty that the proess presents di�erent densities asymptotially to the right and leftof the interfae. Law of large numbers an entral limit theorems hold for the position ofthe interfae. Some of the proesses present hydrodynamial behavior.1. Introdution.Interating partile systems have been onsidered as models for the mirosopi evolu-tion of physial systems. Phase transition, ergodiity, shok waves, metastability and largedeviations are some of the problems studied. In this paper we are interested in partilesystems in the strip ZZ � f�N; : : : ; Ng that present mirosopi interfaes. Roughly, amirosopi interfae is a random point evolving in time with the property that, uniformlyin time, the asymptoti density of partiles to the right and left of that point are di�erent.In one dimensional systems, this phenomenon appears in di�erent models. We distinguishbetween two type of models: dissipative and onservative. Dissipative are those systemsfor whih the density of partiles hanges in time. Generally these systems have at mosttwo extremal invariant measures and approah equilibrium in a fast way. We onsiderhere the voter model and the ontat proess. Extremal invariant measures means thatother invariant measures are onvex ombinations of these two. For the ontat proessone of the equilibrium measures onentrates mass on the empty on�guration. For thevoter model (and the Rihardson model that is a partiular ase of the voter model) theextremal invariant measures that onentrate mass on the full and empty on�gurations1



respetively. Conservative systems have onstant density of partiles. We onsider herethe simple exlusion proess. This proess has a one parameter family of extremal invari-ant measures. Even if the exlusion proess is not rigorously a growing proess, it shareswith these the existene of a mirosopi interfae. When a mirosopi interfae exists, itdesribes the way that two invariant measures oexist at a mirosopi level. Or, in a morephysial language, two phases of the system oexist. Asymptotially from the interfae oneexpets to see the two measures. The examples we study here suggest that the followingis true. 1. Dissipative systems. The semi in�nite system has a mirosopi interfae ifand only if the in�nite system presents phase transition {i.e. if there exists more than oneinvariant measure for the in�nite system. For some of these systems there exists phasetransition if some parameter is bigger than a ritial value. Law of large numbers holdfor the position of the interfae at time t divided by t. Central limit theorems only holdfor values stritly bigger than the ritial value. 2. Conservative systems. The systemhas a mirosopi interfae if the one partile motion is not symmetri. In equilibriumthe interfae satis�es law of large numbers and entral limit theorems. The systems analso evolve in a random environment. This means that the dynamis may depend on someloal parameter that is hosen in a random fashion at the beggining and �xed for ever.This is alled a random environment. Then the proess behaves aording to the environ-ment. For some of these models there exist more than one ritial parameter. There isa �rst ritial value suh that for values of the parameter bigger than the ritial valuethe system survives, when starting with a single partile. There is a seond ritial valuesuh that when the parameter is bigger than this seond value, the system grows linearly.Most results are proven only for the one dimensional ase. We are interested however inthe behaviour of the systems in the strip f�N; : : : ; Ng � ZZ. The jump from one line to2N + 1 lines is far from trivial. But we expet that the study of the systems in the stripwill help to understand the existene of interfaes in two dimensions. This usually hardproblem is solved for the solid on solid model.The paper is hybrid. We show some results for the Rihardson grow model that is aspeial ase of the voter model and for a ombination of this model with the symmetri2



exlusion proess. For the other models we review the results, give a sketh of some of theproofs and state open problems. First we desribe the state spae and give some generalpreliminary notation and results. Then we onsider the simplest among the dissipativessystems: the Rihardson model. In the last setion we treat briey the exlusion proess.2. De�nitions and preliminary results.Our objet of study is the evolution of a proess �t 2 X = f0; 1g�N , where �N = fx =(x1; x2) 2 ZZ2 : jx2j � Ng. To �x ideas we onsider periodi boundary onditions, i.e.(x1; N+1) = (x1;�N) in the formulas below. Elements of X are alled on�gurations, andelements of �N are alled sites. A typial on�guration is a funtion from �N to f0; 1g.We say that for the on�guration �, the site x is oupied if �(x) = 1, otherwise x is empty.We identify � with the subset of �N of ouppied sites: � = fx 2 �N : �(x) = 1g.The state spae X has a non ountable number of on�gurations. We onsider aountable subspae X0 = f� 2 X :Px1<0(1� �(x1; x2)) <1 and Px1>0 �(x1; x2) <1g.In words, X0 is the set of on�gurations that has a �nite number of oupied sites to theright of the origin and a �nite number of empty sites to its left.On X0 we onsider probability measures. Sine the spae is ountable we an give apositive mass to eah on�guration of X0 and a probability measure or simply a measureis a funtion � : X0 ! [0; 1℄ suh that �(�) � 0 for all � 2 X0 and P�2X0 �(�) = 1.The de�nition of measures on X is a bit more ompliated. Sine the spae is nonountable, in general single on�gurations have zero measure, and one has to de�ne themeasure on a subset F of the family of parts of X. We do not want to enter in detailshere, but F is alled a sigma algebra and it suÆes to de�ne the measure on a ountablesubset of F , the algebra of the ylindri sets: ff� 2 X : �(x) = 1; for x 2 Ag, A � �N�niteg.We say that a sequene of on�gurations �n onverges to �, as n!1, if for any �niteset � � �N there exists n(�) suh that for any n � n(�), it holds �n(x) = �(x) for x 2 �.A sequene of measures �n onverges to � if for any ylindri f , �nf ! �f . If �n is asequene of random variables with distribution Ef(�n) = �nf for a sequene of measures3



�n, then �n onverges to � if �n onverges weakly (or in distribution) to �. A proess isalled Feller if �n ! � imply that ��nt ! ��tin distribution. This is equivalent to�n ! � imply that �nS(t)! �S(t)where �S(t)f = R �(d�)E�f(�t).After the onstrution, the �rst thing that one would like to study is the existeneor not of equilibrium states. We say that a measure � on X is invariant if for all t � 0,�S(t) = �. In our ase, the ondition �Lf = 0 for all ylinder f is neessary and suÆientfor the invariane of �. De�ne alsoddtS(t)f(�)��t=0 = Lf(�); ddtS(t)f(�)��t=s = S(s)Lf(�) = LS(s)f(�) (3:1)The operator L is de�ned on C(X), the set of ontinuous funtions on X and is alledthe generator of the proess. It plays the role that probability transition funtions do indisrete time Markov proesses. It desribes the intuitive instantaneous behavior of theproess.The following result is useful to establish the existene of invariant measures.Theorem. Feller proesses on ompat spaes admit at least one invariant measure.Proof. The set of probability measures on a ompat spae is ompat (Skorohod). Take� on X. Let �t = �S(t). Let ��t be the Cesaro limit��t = 1t Z t0 �sdsSine f��tg is a ompat set, there exists at least a onvergent subsequene f��t(n)g. Call�� the limit of the subsequene. Sine the proess is Feller, one an interhange limit with4



S(u) and get��S(u) = ( limn!1 ��t(n))S(u)= limn!1 ��t(n)S(u)= limn!1 1tn Z tn0 �S(s)S(u)ds= limn!1 1tn Z tn0 �S(s+ u)ds= limn!1 1tn Z tn+uu �S(s)ds= limn!1 1tn �Z tn0 �S(s)ds+ Z u0 �S(s)ds� Z tn+utn �S(s)ds�= ��This proof is taken from Liggett (1985) to whih we refer for details.3. The Rihardson model.3.1. Constrution. The Rihardson model is a purely growing model. The motion isgoverned by the following rules. Oupied sites remain oupied. Empty sites beomeoupied at rate equal to the number of oupied nearest neighbor sites. For this model ithas been proven that there exists an asymptoti shape for the system starting with onlyone oupied site in ZZd.We give the onstrution of a version of the proess. This is alled graphial onstru-tion. The important property of this onstrution is that it allow to realize simultaneouslytwo or more versions of the proess with di�erent initial on�gurations (oupling). Ateah bond (x; y), x; y 2 �N suh that jx� yj = 1 assoiate a Poisson point proess (Ppp)with rate 1. Eah of these proesses is a sequene of times, that we all !(x; y; n), n 2 INwith the property that f!(x; y; n)� !(x; n � 1)gn;x is a family of mutually independentrandom variables with exponential distribution with parameter 1. That is, with marginalsP (!(x; y; n) � !(x; y; n � 1) > t) = e�t. Neglet the set of probability zero where atleast two of these times oinide, i.e. the set f! : there exist (x; y; n); (x0; y0; n0) suh that!(x; y; n) = !(x0; y0; n0)g. We say that an infetion mark between x and y is present atthe times !(x; y; n), n 2 IN . Call ! a on�guration of marks and (
;F ;P ) the probability5



spae indued by the Ppp desribed above.Fix now a time �t. The set f! : for all x1 > 0 there exists x2 suh that !((x1; x2); (x1+1; x2); 1) < �tg has probability zero, as well as the event de�ned in the same way but withx1 < 0. This means that for almost all ! there exist a oordinate x1 > 0 suh that thereare no infetion marks in (0; �t) onneting (x1; x2) with (x1 + 1; x2) for all x2 in (0; �t).Repeating the same argument, we an say that with probability one there is a sequeneof oordinates xi1, i 2 ZZ suh that there are no onnetions between the sites with �rstoordinates xi1 and those with �rst oordinate xi1+1 in the time interval (0; �t). We onsideronly the ! belonging to this set of probability one. For eah !, we onstrut the proessseparately in the boxes f(x1; x2) : x1 2 [xi1 + 1; xi+11 ℄ \ �Ng. Of ourse xi1 is a funtion of! and �t for eah i. Put an initial on�guration � at time zero, at the top of our graph {thetime is owing down{ and onstrut �t, 0 � t � �t, as a funtion of � and !. Sine there areno infetion marks onneting di�erent boxes, there is no interation among them. Sinethe boxes have �nite lenght, we are able to label the marks inside eah box by order ofappearane. If the �rst mark appears for the bond (x; y) and before the mark either x ory are oupied, then after the mark both x and y are oupied. Otherwise the two sitesremain empty after the mark. Then we go to the seond mark and repeat the proedure upto the last mark in the box and go to the next box onstruting in this way ��!;t, 0 � t � �t,with initial on�guration �. For times greater than �t, use ��t as initial on�guration andrepeat the proedure to onstrut the proess between �t and 2�t, and so on. The generatorof the proess is Lf(�) = Xx;y2�N �(y)(1� �(x))[f(�x)� f(�)℄ (3:2)where the sum runs over x; y suh that jx� yj = 1 and �x(z) equals 1� �(x) for z = x and�(z) for z 6= x.3.2. The shape theorem.Exeptionally, and only in this subsetion we onsider the proess de�ned in the wholelattie ZZ2 in order to desribe the most important result for this model: the shape theorem.Let the proess evolve aording to the same rules as in the previous setion in the full6



plane ZZ2. Call �t the set of oupied sites by time t. Then the theorem says that �t hasan asymptoti shape:Theorem. (Rihardson shape theorem.) There exists a norm jj:jj on IR2 suh that, ifB(r) = fy 2 IR : jjyjj � rg is the ball of radious r, thenP (B(t� ") � �t � B(t+ ") for all t suÆiently large ) = 1Nothing is known about the norm. It should reet the di�erenes of the square lattiewhen looked at di�erents angles. The theorem was �rst proven by Rihardson (1973) in aweaker form and then by Sh�urger (1979). See also Durrett (1988).3.3. The growing proess in the strip.We ome bak to the strip. It is lear that if one starts with a on�guration that hasat least one partile, then all the sites eventually beome oupied. We onsider initialon�gurations in X0, i.e. with only a �nite number of partiles to the right of the originand a �nite numer of empty sites to its left. For suh on�gurations there is always one (ormore) rightmost oupied site. We refer to the �rst oordinate of the rightmost oupiedsite by rightmost partile. We shall prove that the proess as seen from the rigthmostpartile has an unique invariant measure �. Furthermore this measure � onentratesmass on on�gurations with only a �nite number of empty sites to the left of the rightmostpartile.Let � 2 X0 be a on�guration with a rightmost partile. De�ne Z(�) := maxfx1 :�(x1; x2) = 1g as the �rst oordinate of the rightmost partile(s) of �. For z 2 ZZ let�z�(x1; x2) := �(x1 + z; x2), be the horizontal translation of � by z. We denote by �t theon�guration at time t and Zt = Z(�t). We onsider �t := �Zt�t, the proess as seen fromthe rightmost partile.Lemma 3.1. The proess �t is Feller.Proof. Let f be a ylinder funtion depending on the �nite set A � �N . We an assumethat this set depends on sites whose �rst oordinate is bigger than �M and smaller than7



0. Fix t and ! and let x�i1 < �M be the �rst site to the left of �N with no marksfrom (x�i1 ; x2) to (x�i1 + 1; x2), x2 2 (�N;N). Then f(�t) depends on the values of theon�guration �t in the set At = �X(t)A � �iN = ([x�i1 ; x11℄� [�N;N ℄) \ �N . Take n(�iN )suh that for all n � n(�iN ), �(n)(x) = �(x) for all x 2 �iN . Sine there is no interationin [0; t℄ between what happens in �iN and its omplementar, we have that for n � n(�iN ),��(n)t (x) = ��t (x) for all x 2 �iN . Hene, for n > n(�iN ), ��(n)t (x) = ��t (x) for all x 2 �N .|Lemma 3.1 together with Theorem 2.1 imply the following.Corollary. The proess �t admits at least one invariant measure �.This proves the existene of the invariant measure but does not imply the uniity. Inorder to show uniity we study the properties that an invariant measure must satisfy. Foreah on�guration � let H(�) =Px2�Z(�)(1� �(x1; x2)) be the number of empty sites tothe left of the rightmost partile of the �.Proposition 3.3. If � is invariant for �t, then � must onentrate on on�gurations witha �nite number of empty sites to the left of the rightmost partile. Moreover�H = Z �(d�)H(�) � N3Proof. If � is invariant, then �L0f = 0 for all ilinder f , where L0 is the generator of theproess �t. We want to onlude that �L0H = 0. However H is not a ontinuous funtion.But it an be approahed by ylinder funtions: for K > 0 let HK(�) = maxfH(�); Kg.Clearly HK(�) is non dereasing in K and for all � we havelimK!1HK(�) = H(�)Now, sine HK is ilinder, we have �L0HK = 0 for all K and by the monotone onvergenetheorem, �L0H = 0. Now, a simple omputation gives0 = �L0H(�) = �((N � 1)V (�) = 0)� �Xx;y �(x)(1� �(y)):where the sum is taken over the set f(x; y) : jx�yj = 1; y2 � 0; x2 � 0g and V (�) = #fx2 :�(0; x2) = 1g. The formula above just states that in equilibrium the number of holes to8



the left of the rightmost partile must be onstant in average. The seond term is the rateat whih a hole dissapear and the �rst term is the rate (N � 1) holes are reated times(N � 1). Sine #fx2 : �(0; x2) = 0g � N , we have(3:4) �0� Xx;y:jx�yj=1 �(x)(1� �(y))1A � 2N2On the other hand, �(� : j�j = 1) = 1 beause partiles are reated and all �nite statesare transient. This implies that� � : Xx:x1<0(1� �(x)) <1! = 1Sine all invariant measures � onentrate on X0, whih is a denumerable spae we havethat, starting with the invariant measure �, our proess is a denumerable Markov hainwhih has at most one invariant measure. (The state spae is irredutible.) To prove�H � N3, notie that for eah x2 < 0 there exists at least one x1 suh that �(x1; x2) = 1.|We have proven the followingCorollary. The proess �t has a unique invariant measure � whih onentrates on X0.Furthermore � satis�es (3.4).Let v = �V = � (� : #x2 : �(0; x2) = 1) be the instantaneous veloity of the proessin equilibrium. Clearly v � N We prove now the following law of large numbers:P ( limt!1(Zt=t) = v) = 1The proof is a onsequene of the fat that the proess is a positive reurrent ontinuoustime Markov hain. Let Si = infft > Si�1 : �t = ��; �(t�) 6= ��g, where ��, the Heavisideon�guration, has all sites with the �rst oordinate less or equal to zero oupied andthe other sites empty. The random times Si are renewal times, i.e. Ti = Si+1 � Si areindependent identially distributed random variables. We say that a renewal ours ateah time Si. Let N(t) be the number of renewals ourred in the interval [0; t℄. LetYi = ZSi+1 � ZSi and Xn =Pni=1 Yi. Then we an writeZt = N(t)Xi=1 Yi + (Zt �XN(t))9



Hene as Si is a renewal proessZtt = PN(t)i=1 Yi + (Zt �XN(t))PN(t)i=1 Ti + (t� SN(t))Dividing numerator and denominator by N(t) and taking t to in�nity, we get (Zt �XN(t))=N(t)! 0 and (t� SN(t))=N(t)! 0. Henelimt!1 Ztt = EY1ET1From where v = EY1=ET1.To prove a Central Limit Theorem one proves that ET 21 < 1 and EY 21 < 1. Thisis not so hard to prove for this model as the number of empty sites to the left of therightmost partile an be dominated by a proess with all moments. The reader may askat this point, why we did not use this domination to prove the positive reurrene of theproess. The reason is that the domination argument does not work for the next model,while the general argument given here does work.4. The branhing exlusion proess.We modify the Rihardson model by letting the partiles to move. To eah pair (x; y)of nearest neighbor sites of the strip we assoiate another Poisson point proess of rate=2. We all stirring marks, the ourrene times of these Ppp. When a stirring mark ispresent, involving two nearest neighboring sites, after the mark the ontents of the twosites is exhanged. The resulting proess is alled branhing exlusion proess. Using thesame argument as for the Rihardson model in a strip one an prove that this proessadmits a unique invariant measure onentrating on X0 and that under this measure theveloity v is bounded by N . This was done by Bramson et al. (1986).The law of large numbers is easy to obtain for this model, but to prove the entrallimit theorem as we did for the Rihardson model requires the omputation of the seondmoment of T , the time neessary to oming bak to the initial on�guration. This isdiÆult beause we do not have any information on the invariant measure and due to theexlusion interation, the domination argument does not work. Nevertheless the entral10



limit an be proven using a somehow more subtle argument. This has been done for theunidimensional ase (N = 1) by Cammarota and Ferrari (1991) following an idea of Kukzek(1989) who proved the result for the ontat proess. It is not lear how to do it in thestrip.We see now the hydrodynamial limit. For notational onveniene we onsider N = 1,but a slightly more ompliated result holds for any N . The hydrodynamial limit arisesby onsidering a family of proesses �t and resaling the spae as p.Theorem 4.1. (The hydrodynamial limit.)lim!1E�prf(�t ) = �u(r;t)fwhere u(r; t) satis�es the Kolmogorov, Petrovsky, Pisunof (KPP) equation�u�t = �2u�r2 + u(1� u)with initial ondition u(r; 0) = 1 for r < 0 and u(r; 0) = 0 for r > 0.The KPP equation admits travelling wave solutions. For any v � p2 there exists afuntion qv suh that u(r; t) = qv(r � vt) is solution of the equation for all t � 0.Sketh of the proof. Consider �rst the funtion f(�) = �(0). Then �xf(�) = �(x).Now, if we want to ompute the time derivative of E�t (pr) we get as in the Kolmogorovforward equation (we omit the superlabel  to simplify notation)(4:2) �E�t(pr)�t = E�(�2�t(pr) + �t(pr + 1) + �t(pr � 1))�+ �t(pr)((1� �t(pr + 1) + (1� �t(pr � 1))If one is able to prove that, as  ! 1, supx;y jE(�t(x)�t(y)) � E�t(x)E�t(y)j = 0, i.e. ,the distribution of the partiles beome independent random variables, then the equation(4.2) approahes the KPP equation�u�t = �2u�r2 + u(1� u)This independene an be proven. The proof uses duality. The site x at time t will beoupied if and only if at least one of the sites of Axt is oupied at time 0, where Axt is11



de�ned as follows. Assume that for A � �N , AA0 = A. Then AAt is the branhing exlusionproess with initial on�guration with all sites in A oupied and the other sites empty.But use the marks of the Ppp bakwards in time from t to 0. Call Axt = Afxgt . Then it iseasy to see the a.s. duality formula�t(x) = 1 if and only if �0(z) = 1 for some z 2 Axtand the additive property�t(x)�t(y) = 1 if and only if �0(z) = 1 for some z 2 Axt and �0(z) = 1 for some z 2 AytSo that, if one an prove that Axt and Ayt behave like independent, as  ! 1, then theindependene of �t(x) and �t(y) will follow. The independene of Axt and Ayt was provedby De Masi, Ferrari and Lebowitz (1985). The idea is that in a �nite time interval only a�nite number of branhings for the dual proess will happen. On the other hand, a verylarge number of exhanges will our. A oupling is done between (Axt ; Ayt ) and a pairof independent proesses ( �Axt ; �Ayt ). Under this oupling, the probability that �Axt 6= Axt or�Ayt 6= Ayt goes to zero as 1=p. |For �xed , the proess in equilibrium has a onstant average veloity v . An in-teresting feature of this approximation is that v=p onverges, as  ! 1 to p2. Thisis indeed the ritial veloity for the existene of travelling wave solutions of the KPPequation (Bramson et al. (1986)).Consider now the system as seen from Wt(0) = maxfx1 : �t(x1; 0) = 1g, the positionof the rightmost partile in the x axis. It follows from the results desribed above thatfor eah N there exists an invariant measure for the proess �Wt�t. Is there a limitingdistribution for this proess when N !1?5. The biased voter model.For this proess to eah bond we assoiate two Poisson point proesses, one withintensity Æ and the other with intensity �. When a Æ mark appears involving two sites,one of whih is empty, then after the mark the two sites beome empty. When a � mark12



appears involving two sites with at least one oupied, then after the mark the two sitesbeome oupied. We an think that at eah site there is a voter with two possible opinions:0 or 1. The rate of hanging opinion from 0 to 1 is � times the number of neighbors withopinion 1, while the rate of hanging opinion from 1 to 0 is Æ times the number of nearestneighbors with opinion 0. This proess has two invariant measures: those that onentratemass in the full and empty on�guration respetively.The model is trivial for N = 1: when starting from the on�guration full of partiles tothe left of the origin and no partiles to its right, this on�guration remains unhanged intime unless for a random translation Zt, where Zt is an asymmetri random walk jumpingwith rate � to the right and with rate Æ to the left.To prove that there exists an invariant measure as seen from the rightmost partile forN > 1 we use an argument similar to the one we used for the Rihardson model. The �rstdiÆulty with this argument is that the voter model as seen from the rightmost partileis not Feller in X0. To see that onsider the measure giving mass one to the on�guration�n = f0g [ f�1; : : : ;�ng. Then �n onverges to f0g. On the other hand �nt onvergesto a non trival onvex ombination of ��t and �0t , whih is di�erent of �0t that may be notwell de�ned. This ounter example shows that the voter model as seen from the rightmostpartile is not Feller in X0. But if we onsider the subset of X0 ontaining on�gurationswith in�nitely many partiles to the left of the rightmost one, it is not diÆult to provethat in this set the proess is Feller, by an argument as the one in the Rihardson model.The problem is that this subset is not ompat, so the Cesaro limits may not belong to thesubset. For the asymmetri voter model it is not hard to prove that all weak limits of �tonentrate on the subset, onluding the proof of the existene of at least one invariantmeasure. Then one gets (3.10) with the left hand side multiplied by (� � Æ) and theright hand side multiplied by �. In this way the invariant measure must be unique andonentrating on X0 for � 6= Æ. The existene of an invariant measure for �t in X0 implythe law of large numbers.In the symmetri ase, that is, when � = Æ, the argument does not work. We on-jeture that in this ase there is no invariant measure for the proess as seen from the13



rightmost partile. The weak limits as t!1 of the distribution of �t would onentrateon on�gurations with a �nite number of partiles that an not be invariant.We propose the following problem. Is there a \weakly biased" ase with a non trivialhydrodynamial limit? By weakly biased we mean to onsider Æ = 1 and � = 1+ (1=p).Then, one would look at the proess at a (marosopi) time t at a (marosopi) positionf()r.6. The biased voter model in a random environment.The voter model an be onsidered in the so alled \random environment". The resultsthat we are going to see were proven only for dimension d = 1 by Ferreira (1988) andreviewed by Bramson, Durrett and Shonmann (1991). A random variable Æb is attahedat eah bond b = (x; y), jx� yj = 1. These variables are mutually independent. Considera realization of the variable Æb as the rate of a Poisson point proesses assoiated with thebond b. Now realize the proess in the following manner: When the � lok assoiatedwith the bond b = (x; y) rings, if either x or y is oupied, then after the mark the twosites are oupied. Otherwise nothing happens. When the Æb lok rings, if either x or yis empty, then after the mark the two sites are empty.In one dimension, when one starts with the Heaviside on�guration, at latter timesone gets the same on�guration shifted by a random variable Zt. This variable makes arandom walk in the environment desribed above: if Zt = z, it jumps to the right at rate �and to the left at rate Æz. The results ome from the study of this random walk in randomenvironment due to Solomon (1975):If E log(�=Æb) < 0 then PÆ(Zt = 0 i:o:) = 0 for a.e. environment Æ.If E log(�=Æb) > 0 then PÆ(Zt = 0 i:o:) = 1 for a.e. environment Æ.This indues the de�nition of a ritial value� = inff� > 0 : PÆ;�(Zt = 0 i:o:) > 0 for a.e. Æg = exp(E log Æb)On the other hand, it is true that Zt=t onverges almost surely to �(�) as t!1, where14



�(�) is the onstant satysfying�(�) = 8<:> 0 if � 2 (EÆb;1),= 0 if � 2 (1=EÆb; EÆb),< 0 if � 2 (�1; 1=EÆb),So that, under the random environment Æ, we an de�ne a ritial value ��, where�� = inff� > 0 : �(�) > 0g = EÆbSo that the biased voter model in random environment has two ritial values, one forreurrene of the extreme and the other for linear growth. The reurrene ondition isequivalent to the non survival of the proess when starting from a single partile.The following open problems arise. Does the existene of two di�erent ritial param-eters appear in the strip for any N? We onjeture that the answer is yes. If our onjetureis true, this puts another problem. Bramson, Durrett and Shonmann onjeture that theexistene of two ritial values is not true in two dimensions. So the di�erene betweenthese two ritial paramenters should somehow go to zero as N !1. Is there an invariantmeasure for the proess as seen fromWt, the position of the rightmost oupied site at thex axis?7. The ontat proess.The ontat proess is one of the �rst partile systems studied. In spite of its simpliity,it presents a phase transition even in one dimension. We desribe it in our box �N : Itonsists in the superposition of two proesses: one is the infetion proess used to de�nethe Rihardson model. Partiles appear at empty sites at a rate � times the number ofnearest neighbor oupied sites. The other is just a death proess: partiles dissapear atrate one, independent of the rest of the on�guration.In the one dimensional ase, when N = 1 is has been proven that there exists a ritialparameter � suh that starting with the initial Heaviside on�guration, and alling Zt theposition of the rightmost partile, the following hold(1) As t ! 1, the normalized position Zt=t onverges almost surely to � = �(�),15



where � = (> 0 if � > �= 0 if � = �= �1 if � < �Furthermore � is a non dereasing funtion of � and is ontinuous to the right in � = �.(2) If � � �, the proess �t = �Zt�t, i.e. the proess as seen from the rightmost parti-le, has a unique invariant measure. The proess starting from the Heaviside on�gurationonverges to this invariant measure.(3) If � > �, then the normalized proess (Zt � �t)=pt onverges to a Gaussianrandom variable of 0 mean and positive variane �2.(4) 1 � � � 2The proof of (1) is a onsequene of the subadditive ergodi theorem and the attrativeproperties of the proess. The proof an be found in Durrett (1984). The existene of aninvariant measure in (2) an be shown in a onstrutive way as in Galves and Presutti(1987a, 1987b), or using an abstrat argument as the one we used for the voter model, asin Durrett (1984). The ontat proess as seen from the rightmost partile is not Feller forthe same reason as the voter model. The onstrutive way works for � > � and the otherworks also for �. In order to show that the limiting measure onentrates on the subsetof X with in�nitely many partiles to the left of the rightmost partile one uses that therightmost partile has a non negative a.s. limit. The onvergene of the proess startingfrom any on�guration with in�nitely many partiles to the left of the rightmost partile tothe invariant measure in the superritial ase was proven by Galves and Presutti (1987), aswell as the entral limit theorem of (3). An alternative proof of the entral limit theorem isfound in Kuzek (1989) . For � = � one expets that the utuations are superdi�ussive.The lower bound in (4) is easy to obtain by omparing the proess with a branhingproess. The upperbound was obtained by Holley and Liggett (1978). The expeted valueis � = 1:64.These results are losely related to the problem of survival of the ontat proess. It issaid that the ontat proess �t survives if, starting with the full on�guration, the proessonverges to a measure di�erent from the mass onentrated on the empty on�guration.16



Otherwise we say that the proess dies out. It turns out that for � � �, the proesssurvives and for � < � the proess dies out. It is proven that for any dimension d thereexists �d suh that the proess survives if � � �d and dies if � < �d . The fat that theontat proess dies at � = � is deep and was proven only reently by Bezuindenhout andGrimett (1990).Here the following open problems arise.1. Is it possible to improve the bounds for �?. Computer simulations propose � =1:64.2. Is it possible to extend results (1) ,(2) and (3) to the strip �N for any N?3. Assuming that the onjeture 2 holds. Call �(N) the ritial value for the strip oflenght N . Then, Bezuindenhout and G. Grimmett (1990) proved that, as N !1, �(N)onverges to �2 (the ritial value of � for d = 2). Is there a limiting measure for theproess as seen from the rightmost partile on the x axis?4. Does �t onverge in distribution, as t ! 1 when � < �? For N = 1 Shonmann(198?) proved for oriented perolation that in this ase does not exist an invariant measure.This was extended by Andjel (1988) for the ontat proess. Nevertheless it may beonvergene in distribution. It is onjetured that the answer to this question is yes andthat the result must be a quasi-stationary distribution. This is a measure � onentratingon on�gurations with a positive and �nite number of partiles satisfying the property:\starting with � and onditioning that at time t the proess is not empty, then the proesshas distribution �". One of the diÆulties here is that in general there is not just onequasi stationary measure, but in�nitely many (when any). So the problem is to determineto whih of those the proess onverges.As well as for the voter model one an onsider the ontat proess in a randomenvironment. The same results as for the biased voter model were obtained by Bramson,Durrett and Shonmann (1991). Also Liggett (1991, 1992) and Klein (199?) worked inthese kind of models.8. The Solid on Solid model. 17



To understand the name of this model one should onsider a vertial strip and onsiderthe partiles as falling from the sky, so that in the state spae one never aepts that anempty site an be under a partile. But to avoid onfusions we desribe the proess inour horizontal strip. Three Poisson point proesses are assoiated to eah vertial bond,with rates �0, �1 and �2 respetively. Consider that �(x) = 1; �(x + e1) = 0 and the�i lok attahed to the bond (x; x + e1) rings, where e1 = (1; 0), e2 = (1; 0). If i =�(x+e1+e2)+�(x+e1�e2), then after the mark, �(x+e1) hanges its value from 0 to 1. Inwords, for eah k 2 f�N; : : : ; Ng there is a value Y (k) suh that �(x1; k) = 1fx1 � Y (k)gand Y (k) inreases at rate �i if i of fY (k � 1); Y (k + 1)g are bigger that Y (k).This model is an approximation of the Ising model when the interations in the vertialdiretion are onsidered as for zero temperature.Mauro (1992), using a tehnique proposed by Gates and Wesott (1990) proved thatfor any values of �i suh that �0 < �1 < �2 there exists an invariant measure for theproess �t = �Y (0)�t on the spae X0. Compare with �0 = �1 = �2 under whih Yt(k) areindependent and the proess onverges to a measure that gives mass zero toX0. Under theinvariant measure Yt(0)=t onverges almost surely to a limiting veloity v. If one requiresthe extra ondition(�) �1 = (�0 + �2)=2muh more an be said. The invariant measure an be desribed expliitely:�(Y ) = (1=Z) exp(�� N�1Xk=�N jY (k)� Y (k + 1)j)where � = log(�0=�2)2 and Z is the normalizing fator suh that PY �(Y ) = 1. Theentral limit theorem holds, i.e. (Yt(0)� vt)=pt onverges weakly to a Gaussian randomvariable. The ondition �1 = (�0 + �2)=2 is tehnial. This proess is a Markov hainin a denumerable state spae. Hene, the proess is positive reurrent. To prove theentral limit theorem one shows that the expeted value of the square of the return timefor a given state, is �nite. This is equivalent to say that the expeted hitting time of agiven on�guration, starting with the invariant measure is �nite. The expliit form of the18



invariant measure is used to prove the �niteness of the seond moment of the absorbingtime. We do not expet a di�erent behaviour for other values of �i: nothing indues usto think that if there exists an invariant measure, then the entral limit theorem does nothold, even if the seond moment of the return time is not �nite. We do not know how thevariane of the limiting Gaussian variable behaves with N .The symmetri ase. Consider that Y (k) an also derease and do that at rate �i,where i is the number of its nearest neighbors that are stritly smaller that Y (k). Underondition (*) one proves the law of large numbers with asymptoty veloity 0 (by symme-try) and also the entral limit theorem. In this ase the limiting variane is show to beproportional to 1=N . The proess in the plane (N =1) is well de�ned and Ferrari (1987)showed that the limiting variane in the plane is zero.The measure � desribed above is the Gibbs measure for this mode and is the oneintrodued in statistial mehanis for studying this model. Une property of this measureis that onsidering the x axis as time, Y (k) is a Markov hain. This gives us that thespatial utuations of the measure are of the order of pk. The average veloity behavesas the number of maximuns of the Markov hain.When the strip is two dimensional (or more), that is in the state spae f�N; : : : ; Ng2�ZZ even the existene of the invariant measure is diÆult to show. Only in very few asesthere are rigorous proofs, even if the heuristis are lear. See detais in Gates and Wesott(1990) and Mauro (1992).9. The exlusion proess.To desribe the proess we onsider that a Ppp is assoiated at eah bond of thestrip. The vertial bonds work as in the stirring proess desribed above: when a stirringmark appears, the ontent of the two sites involved with the mark is interhanged. Thehorizontal bonds work as the stirring marks in the symmetri ase, but in the asymmetriase we let the ontent of the sites to be exhanged only if the site to the left is oupiedand the site to the right is empty. In the two ases the exlusion onstraint is present, butthe one partile motion has a drift in the asymmetri ase.19
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