
April 14, 2004Growing pro
esses on a stripP. A. FerrariUniversidade de S~ao PauloSummary. We review some growing pro
esses in the strip ZZ � f�N; : : : ; Ng. TheRi
hardson model, the asymmetri
 voter model, the Bran
hing ex
lusion pro
ess and thesolid on solid model are 
onsidered. The 
ommon 
hara
teristi
 of the models is theexisten
e of a mi
ros
opi
 interfa
e. This is a random position evolving in time with theproperty that the pro
ess presents di�erent densities asymptoti
ally to the right and leftof the interfa
e. Law of large numbers an 
entral limit theorems hold for the position ofthe interfa
e. Some of the pro
esses present hydrodynami
al behavior.1. Introdu
tion.Intera
ting parti
le systems have been 
onsidered as models for the mi
ros
opi
 evolu-tion of physi
al systems. Phase transition, ergodi
ity, sho
k waves, metastability and largedeviations are some of the problems studied. In this paper we are interested in parti
lesystems in the strip ZZ � f�N; : : : ; Ng that present mi
ros
opi
 interfa
es. Roughly, ami
ros
opi
 interfa
e is a random point evolving in time with the property that, uniformlyin time, the asymptoti
 density of parti
les to the right and left of that point are di�erent.In one dimensional systems, this phenomenon appears in di�erent models. We distinguishbetween two type of models: dissipative and 
onservative. Dissipative are those systemsfor whi
h the density of parti
les 
hanges in time. Generally these systems have at mosttwo extremal invariant measures and approa
h equilibrium in a fast way. We 
onsiderhere the voter model and the 
onta
t pro
ess. Extremal invariant measures means thatother invariant measures are 
onvex 
ombinations of these two. For the 
onta
t pro
essone of the equilibrium measures 
on
entrates mass on the empty 
on�guration. For thevoter model (and the Ri
hardson model that is a parti
ular 
ase of the voter model) theextremal invariant measures that 
on
entrate mass on the full and empty 
on�gurations1



respe
tively. Conservative systems have 
onstant density of parti
les. We 
onsider herethe simple ex
lusion pro
ess. This pro
ess has a one parameter family of extremal invari-ant measures. Even if the ex
lusion pro
ess is not rigorously a growing pro
ess, it shareswith these the existen
e of a mi
ros
opi
 interfa
e. When a mi
ros
opi
 interfa
e exists, itdes
ribes the way that two invariant measures 
oexist at a mi
ros
opi
 level. Or, in a morephysi
al language, two phases of the system 
oexist. Asymptoti
ally from the interfa
e oneexpe
ts to see the two measures. The examples we study here suggest that the followingis true. 1. Dissipative systems. The semi in�nite system has a mi
ros
opi
 interfa
e ifand only if the in�nite system presents phase transition {i.e. if there exists more than oneinvariant measure for the in�nite system. For some of these systems there exists phasetransition if some parameter is bigger than a 
riti
al value. Law of large numbers holdfor the position of the interfa
e at time t divided by t. Central limit theorems only holdfor values stri
tly bigger than the 
riti
al value. 2. Conservative systems. The systemhas a mi
ros
opi
 interfa
e if the one parti
le motion is not symmetri
. In equilibriumthe interfa
e satis�es law of large numbers and 
entral limit theorems. The systems 
analso evolve in a random environment. This means that the dynami
s may depend on somelo
al parameter that is 
hosen in a random fashion at the beggining and �xed for ever.This is 
alled a random environment. Then the pro
ess behaves a

ording to the environ-ment. For some of these models there exist more than one 
riti
al parameter. There isa �rst 
riti
al value su
h that for values of the parameter bigger than the 
riti
al valuethe system survives, when starting with a single parti
le. There is a se
ond 
riti
al valuesu
h that when the parameter is bigger than this se
ond value, the system grows linearly.Most results are proven only for the one dimensional 
ase. We are interested however inthe behaviour of the systems in the strip f�N; : : : ; Ng � ZZ. The jump from one line to2N + 1 lines is far from trivial. But we expe
t that the study of the systems in the stripwill help to understand the existen
e of interfa
es in two dimensions. This usually hardproblem is solved for the solid on solid model.The paper is hybrid. We show some results for the Ri
hardson grow model that is aspe
ial 
ase of the voter model and for a 
ombination of this model with the symmetri
2



ex
lusion pro
ess. For the other models we review the results, give a sket
h of some of theproofs and state open problems. First we des
ribe the state spa
e and give some generalpreliminary notation and results. Then we 
onsider the simplest among the dissipativessystems: the Ri
hardson model. In the last se
tion we treat brie
y the ex
lusion pro
ess.2. De�nitions and preliminary results.Our obje
t of study is the evolution of a pro
ess �t 2 X = f0; 1g�N , where �N = fx =(x1; x2) 2 ZZ2 : jx2j � Ng. To �x ideas we 
onsider periodi
 boundary 
onditions, i.e.(x1; N+1) = (x1;�N) in the formulas below. Elements of X are 
alled 
on�gurations, andelements of �N are 
alled sites. A typi
al 
on�guration is a fun
tion from �N to f0; 1g.We say that for the 
on�guration �, the site x is o

upied if �(x) = 1, otherwise x is empty.We identify � with the subset of �N of o

uppied sites: � = fx 2 �N : �(x) = 1g.The state spa
e X has a non 
ountable number of 
on�gurations. We 
onsider a
ountable subspa
e X0 = f� 2 X :Px1<0(1� �(x1; x2)) <1 and Px1>0 �(x1; x2) <1g.In words, X0 is the set of 
on�gurations that has a �nite number of o

upied sites to theright of the origin and a �nite number of empty sites to its left.On X0 we 
onsider probability measures. Sin
e the spa
e is 
ountable we 
an give apositive mass to ea
h 
on�guration of X0 and a probability measure or simply a measureis a fun
tion � : X0 ! [0; 1℄ su
h that �(�) � 0 for all � 2 X0 and P�2X0 �(�) = 1.The de�nition of measures on X is a bit more 
ompli
ated. Sin
e the spa
e is non
ountable, in general single 
on�gurations have zero measure, and one has to de�ne themeasure on a subset F of the family of parts of X. We do not want to enter in detailshere, but F is 
alled a sigma algebra and it suÆ
es to de�ne the measure on a 
ountablesubset of F , the algebra of the 
ylindri
 sets: ff� 2 X : �(x) = 1; for x 2 Ag, A � �N�niteg.We say that a sequen
e of 
on�gurations �n 
onverges to �, as n!1, if for any �niteset � � �N there exists n(�) su
h that for any n � n(�), it holds �n(x) = �(x) for x 2 �.A sequen
e of measures �n 
onverges to � if for any 
ylindri
 f , �nf ! �f . If �n is asequen
e of random variables with distribution Ef(�n) = �nf for a sequen
e of measures3



�n, then �n 
onverges to � if �n 
onverges weakly (or in distribution) to �. A pro
ess is
alled Feller if �n ! � imply that ��nt ! ��tin distribution. This is equivalent to�n ! � imply that �nS(t)! �S(t)where �S(t)f = R �(d�)E�f(�t).After the 
onstru
tion, the �rst thing that one would like to study is the existen
eor not of equilibrium states. We say that a measure � on X is invariant if for all t � 0,�S(t) = �. In our 
ase, the 
ondition �Lf = 0 for all 
ylinder f is ne
essary and suÆ
ientfor the invarian
e of �. De�ne alsoddtS(t)f(�)��t=0 = Lf(�); ddtS(t)f(�)��t=s = S(s)Lf(�) = LS(s)f(�) (3:1)The operator L is de�ned on C(X), the set of 
ontinuous fun
tions on X and is 
alledthe generator of the pro
ess. It plays the role that probability transition fun
tions do indis
rete time Markov pro
esses. It des
ribes the intuitive instantaneous behavior of thepro
ess.The following result is useful to establish the existen
e of invariant measures.Theorem. Feller pro
esses on 
ompa
t spa
es admit at least one invariant measure.Proof. The set of probability measures on a 
ompa
t spa
e is 
ompa
t (Skorohod). Take� on X. Let �t = �S(t). Let ��t be the Cesaro limit��t = 1t Z t0 �sdsSin
e f��tg is a 
ompa
t set, there exists at least a 
onvergent subsequen
e f��t(n)g. Call�� the limit of the subsequen
e. Sin
e the pro
ess is Feller, one 
an inter
hange limit with4



S(u) and get��S(u) = ( limn!1 ��t(n))S(u)= limn!1 ��t(n)S(u)= limn!1 1tn Z tn0 �S(s)S(u)ds= limn!1 1tn Z tn0 �S(s+ u)ds= limn!1 1tn Z tn+uu �S(s)ds= limn!1 1tn �Z tn0 �S(s)ds+ Z u0 �S(s)ds� Z tn+utn �S(s)ds�= ��This proof is taken from Liggett (1985) to whi
h we refer for details.3. The Ri
hardson model.3.1. Constru
tion. The Ri
hardson model is a purely growing model. The motion isgoverned by the following rules. O

upied sites remain o

upied. Empty sites be
omeo

upied at rate equal to the number of o

upied nearest neighbor sites. For this model ithas been proven that there exists an asymptoti
 shape for the system starting with onlyone o

upied site in ZZd.We give the 
onstru
tion of a version of the pro
ess. This is 
alled graphi
al 
onstru
-tion. The important property of this 
onstru
tion is that it allow to realize simultaneouslytwo or more versions of the pro
ess with di�erent initial 
on�gurations (
oupling). Atea
h bond (x; y), x; y 2 �N su
h that jx� yj = 1 asso
iate a Poisson point pro
ess (Ppp)with rate 1. Ea
h of these pro
esses is a sequen
e of times, that we 
all !(x; y; n), n 2 INwith the property that f!(x; y; n)� !(x; n � 1)gn;x is a family of mutually independentrandom variables with exponential distribution with parameter 1. That is, with marginalsP (!(x; y; n) � !(x; y; n � 1) > t) = e�t. Negle
t the set of probability zero where atleast two of these times 
oin
ide, i.e. the set f! : there exist (x; y; n); (x0; y0; n0) su
h that!(x; y; n) = !(x0; y0; n0)g. We say that an infe
tion mark between x and y is present atthe times !(x; y; n), n 2 IN . Call ! a 
on�guration of marks and (
;F ;P ) the probability5



spa
e indu
ed by the Ppp des
ribed above.Fix now a time �t. The set f! : for all x1 > 0 there exists x2 su
h that !((x1; x2); (x1+1; x2); 1) < �tg has probability zero, as well as the event de�ned in the same way but withx1 < 0. This means that for almost all ! there exist a 
oordinate x1 > 0 su
h that thereare no infe
tion marks in (0; �t) 
onne
ting (x1; x2) with (x1 + 1; x2) for all x2 in (0; �t).Repeating the same argument, we 
an say that with probability one there is a sequen
eof 
oordinates xi1, i 2 ZZ su
h that there are no 
onne
tions between the sites with �rst
oordinates xi1 and those with �rst 
oordinate xi1+1 in the time interval (0; �t). We 
onsideronly the ! belonging to this set of probability one. For ea
h !, we 
onstru
t the pro
essseparately in the boxes f(x1; x2) : x1 2 [xi1 + 1; xi+11 ℄ \ �Ng. Of 
ourse xi1 is a fun
tion of! and �t for ea
h i. Put an initial 
on�guration � at time zero, at the top of our graph {thetime is 
owing down{ and 
onstru
t �t, 0 � t � �t, as a fun
tion of � and !. Sin
e there areno infe
tion marks 
onne
ting di�erent boxes, there is no intera
tion among them. Sin
ethe boxes have �nite lenght, we are able to label the marks inside ea
h box by order ofappearan
e. If the �rst mark appears for the bond (x; y) and before the mark either x ory are o

upied, then after the mark both x and y are o

upied. Otherwise the two sitesremain empty after the mark. Then we go to the se
ond mark and repeat the pro
edure upto the last mark in the box and go to the next box 
onstru
ting in this way ��!;t, 0 � t � �t,with initial 
on�guration �. For times greater than �t, use ��t as initial 
on�guration andrepeat the pro
edure to 
onstru
t the pro
ess between �t and 2�t, and so on. The generatorof the pro
ess is Lf(�) = Xx;y2�N �(y)(1� �(x))[f(�x)� f(�)℄ (3:2)where the sum runs over x; y su
h that jx� yj = 1 and �x(z) equals 1� �(x) for z = x and�(z) for z 6= x.3.2. The shape theorem.Ex
eptionally, and only in this subse
tion we 
onsider the pro
ess de�ned in the wholelatti
e ZZ2 in order to des
ribe the most important result for this model: the shape theorem.Let the pro
ess evolve a

ording to the same rules as in the previous se
tion in the full6



plane ZZ2. Call �t the set of o

upied sites by time t. Then the theorem says that �t hasan asymptoti
 shape:Theorem. (Ri
hardson shape theorem.) There exists a norm jj:jj on IR2 su
h that, ifB(r) = fy 2 IR : jjyjj � rg is the ball of radious r, thenP (B(t� ") � �t � B(t+ ") for all t suÆ
iently large ) = 1Nothing is known about the norm. It should re
e
t the di�eren
es of the square latti
ewhen looked at di�erents angles. The theorem was �rst proven by Ri
hardson (1973) in aweaker form and then by S
h�urger (1979). See also Durrett (1988).3.3. The growing pro
ess in the strip.We 
ome ba
k to the strip. It is 
lear that if one starts with a 
on�guration that hasat least one parti
le, then all the sites eventually be
ome o

upied. We 
onsider initial
on�gurations in X0, i.e. with only a �nite number of parti
les to the right of the originand a �nite numer of empty sites to its left. For su
h 
on�gurations there is always one (ormore) rightmost o

upied site. We refer to the �rst 
oordinate of the rightmost o

upiedsite by rightmost parti
le. We shall prove that the pro
ess as seen from the rigthmostparti
le has an unique invariant measure �. Furthermore this measure � 
on
entratesmass on 
on�gurations with only a �nite number of empty sites to the left of the rightmostparti
le.Let � 2 X0 be a 
on�guration with a rightmost parti
le. De�ne Z(�) := maxfx1 :�(x1; x2) = 1g as the �rst 
oordinate of the rightmost parti
le(s) of �. For z 2 ZZ let�z�(x1; x2) := �(x1 + z; x2), be the horizontal translation of � by z. We denote by �t the
on�guration at time t and Zt = Z(�t). We 
onsider �t := �Zt�t, the pro
ess as seen fromthe rightmost parti
le.Lemma 3.1. The pro
ess �t is Feller.Proof. Let f be a 
ylinder fun
tion depending on the �nite set A � �N . We 
an assumethat this set depends on sites whose �rst 
oordinate is bigger than �M and smaller than7



0. Fix t and ! and let x�i1 < �M be the �rst site to the left of �N with no marksfrom (x�i1 ; x2) to (x�i1 + 1; x2), x2 2 (�N;N). Then f(�t) depends on the values of the
on�guration �t in the set At = �X(t)A � �iN = ([x�i1 ; x11℄� [�N;N ℄) \ �N . Take n(�iN )su
h that for all n � n(�iN ), �(n)(x) = �(x) for all x 2 �iN . Sin
e there is no intera
tionin [0; t℄ between what happens in �iN and its 
omplementar, we have that for n � n(�iN ),��(n)t (x) = ��t (x) for all x 2 �iN . Hen
e, for n > n(�iN ), ��(n)t (x) = ��t (x) for all x 2 �N .|Lemma 3.1 together with Theorem 2.1 imply the following.Corollary. The pro
ess �t admits at least one invariant measure �.This proves the existen
e of the invariant measure but does not imply the uni
ity. Inorder to show uni
ity we study the properties that an invariant measure must satisfy. Forea
h 
on�guration � let H(�) =Px2�Z(�)(1� �(x1; x2)) be the number of empty sites tothe left of the rightmost parti
le of the �.Proposition 3.3. If � is invariant for �t, then � must 
on
entrate on 
on�gurations witha �nite number of empty sites to the left of the rightmost parti
le. Moreover�H = Z �(d�)H(�) � N3Proof. If � is invariant, then �L0f = 0 for all 
ilinder f , where L0 is the generator of thepro
ess �t. We want to 
on
lude that �L0H = 0. However H is not a 
ontinuous fun
tion.But it 
an be approa
hed by 
ylinder fun
tions: for K > 0 let HK(�) = maxfH(�); Kg.Clearly HK(�) is non de
reasing in K and for all � we havelimK!1HK(�) = H(�)Now, sin
e HK is 
ilinder, we have �L0HK = 0 for all K and by the monotone 
onvergen
etheorem, �L0H = 0. Now, a simple 
omputation gives0 = �L0H(�) = �((N � 1)V (�) = 0)� �Xx;y �(x)(1� �(y)):where the sum is taken over the set f(x; y) : jx�yj = 1; y2 � 0; x2 � 0g and V (�) = #fx2 :�(0; x2) = 1g. The formula above just states that in equilibrium the number of holes to8



the left of the rightmost parti
le must be 
onstant in average. The se
ond term is the rateat whi
h a hole dissapear and the �rst term is the rate (N � 1) holes are 
reated times(N � 1). Sin
e #fx2 : �(0; x2) = 0g � N , we have(3:4) �0� Xx;y:jx�yj=1 �(x)(1� �(y))1A � 2N2On the other hand, �(� : j�j = 1) = 1 be
ause parti
les are 
reated and all �nite statesare transient. This implies that� � : Xx:x1<0(1� �(x)) <1! = 1Sin
e all invariant measures � 
on
entrate on X0, whi
h is a denumerable spa
e we havethat, starting with the invariant measure �, our pro
ess is a denumerable Markov 
hainwhi
h has at most one invariant measure. (The state spa
e is irredu
tible.) To prove�H � N3, noti
e that for ea
h x2 < 0 there exists at least one x1 su
h that �(x1; x2) = 1.|We have proven the followingCorollary. The pro
ess �t has a unique invariant measure � whi
h 
on
entrates on X0.Furthermore � satis�es (3.4).Let v = �V = � (� : #x2 : �(0; x2) = 1) be the instantaneous velo
ity of the pro
essin equilibrium. Clearly v � N We prove now the following law of large numbers:P ( limt!1(Zt=t) = v) = 1The proof is a 
onsequen
e of the fa
t that the pro
ess is a positive re
urrent 
ontinuoustime Markov 
hain. Let Si = infft > Si�1 : �t = ��; �(t�) 6= ��g, where ��, the Heaviside
on�guration, has all sites with the �rst 
oordinate less or equal to zero o

upied andthe other sites empty. The random times Si are renewal times, i.e. Ti = Si+1 � Si areindependent identi
ally distributed random variables. We say that a renewal o

urs atea
h time Si. Let N(t) be the number of renewals o

urred in the interval [0; t℄. LetYi = ZSi+1 � ZSi and Xn =Pni=1 Yi. Then we 
an writeZt = N(t)Xi=1 Yi + (Zt �XN(t))9



Hen
e as Si is a renewal pro
essZtt = PN(t)i=1 Yi + (Zt �XN(t))PN(t)i=1 Ti + (t� SN(t))Dividing numerator and denominator by N(t) and taking t to in�nity, we get (Zt �XN(t))=N(t)! 0 and (t� SN(t))=N(t)! 0. Hen
elimt!1 Ztt = EY1ET1From where v = EY1=ET1.To prove a Central Limit Theorem one proves that ET 21 < 1 and EY 21 < 1. Thisis not so hard to prove for this model as the number of empty sites to the left of therightmost parti
le 
an be dominated by a pro
ess with all moments. The reader may askat this point, why we did not use this domination to prove the positive re
urren
e of thepro
ess. The reason is that the domination argument does not work for the next model,while the general argument given here does work.4. The bran
hing ex
lusion pro
ess.We modify the Ri
hardson model by letting the parti
les to move. To ea
h pair (x; y)of nearest neighbor sites of the strip we asso
iate another Poisson point pro
ess of rate
=2. We 
all stirring marks, the o
urren
e times of these Ppp. When a stirring mark ispresent, involving two nearest neighboring sites, after the mark the 
ontents of the twosites is ex
hanged. The resulting pro
ess is 
alled bran
hing ex
lusion pro
ess. Using thesame argument as for the Ri
hardson model in a strip one 
an prove that this pro
essadmits a unique invariant measure 
on
entrating on X0 and that under this measure thevelo
ity v is bounded by N . This was done by Bramson et al. (1986).The law of large numbers is easy to obtain for this model, but to prove the 
entrallimit theorem as we did for the Ri
hardson model requires the 
omputation of the se
ondmoment of T , the time ne
essary to 
oming ba
k to the initial 
on�guration. This isdiÆ
ult be
ause we do not have any information on the invariant measure and due to theex
lusion intera
tion, the domination argument does not work. Nevertheless the 
entral10



limit 
an be proven using a somehow more subtle argument. This has been done for theunidimensional 
ase (N = 1) by Cammarota and Ferrari (1991) following an idea of Kukzek(1989) who proved the result for the 
onta
t pro
ess. It is not 
lear how to do it in thestrip.We see now the hydrodynami
al limit. For notational 
onvenien
e we 
onsider N = 1,but a slightly more 
ompli
ated result holds for any N . The hydrodynami
al limit arisesby 
onsidering a family of pro
esses �
t and res
aling the spa
e as p
.Theorem 4.1. (The hydrodynami
al limit.)lim
!1E�p
rf(�
t ) = �u(r;t)fwhere u(r; t) satis�es the Kolmogorov, Petrovsky, Pis
unof (KPP) equation�u�t = �2u�r2 + u(1� u)with initial 
ondition u(r; 0) = 1 for r < 0 and u(r; 0) = 0 for r > 0.The KPP equation admits travelling wave solutions. For any v � p2 there exists afun
tion qv su
h that u(r; t) = qv(r � vt) is solution of the equation for all t � 0.Sket
h of the proof. Consider �rst the fun
tion f(�) = �(0). Then �xf(�) = �(x).Now, if we want to 
ompute the time derivative of E�
t (p
r) we get as in the Kolmogorovforward equation (we omit the superlabel 
 to simplify notation)(4:2) �E�t(p
r)�t = 
E�(�2�t(p
r) + �t(p
r + 1) + �t(p
r � 1))�+ �t(p
r)((1� �t(p
r + 1) + (1� �t(p
r � 1))If one is able to prove that, as 
 ! 1, supx;y jE(�t(x)�t(y)) � E�t(x)E�t(y)j = 0, i.e. ,the distribution of the parti
les be
ome independent random variables, then the equation(4.2) approa
hes the KPP equation�u�t = �2u�r2 + u(1� u)This independen
e 
an be proven. The proof uses duality. The site x at time t will beo

upied if and only if at least one of the sites of Axt is o

upied at time 0, where Axt is11



de�ned as follows. Assume that for A � �N , AA0 = A. Then AAt is the bran
hing ex
lusionpro
ess with initial 
on�guration with all sites in A o

upied and the other sites empty.But use the marks of the Ppp ba
kwards in time from t to 0. Call Axt = Afxgt . Then it iseasy to see the a.s. duality formula�t(x) = 1 if and only if �0(z) = 1 for some z 2 Axtand the additive property�t(x)�t(y) = 1 if and only if �0(z) = 1 for some z 2 Axt and �0(z) = 1 for some z 2 AytSo that, if one 
an prove that Axt and Ayt behave like independent, as 
 ! 1, then theindependen
e of �t(x) and �t(y) will follow. The independen
e of Axt and Ayt was provedby De Masi, Ferrari and Lebowitz (1985). The idea is that in a �nite time interval only a�nite number of bran
hings for the dual pro
ess will happen. On the other hand, a verylarge number of ex
hanges will o

ur. A 
oupling is done between (Axt ; Ayt ) and a pairof independent pro
esses ( �Axt ; �Ayt ). Under this 
oupling, the probability that �Axt 6= Axt or�Ayt 6= Ayt goes to zero as 1=p
. |For �xed 
, the pro
ess in equilibrium has a 
onstant average velo
ity v
 . An in-teresting feature of this approximation is that v
=p
 
onverges, as 
 ! 1 to p2. Thisis indeed the 
riti
al velo
ity for the existen
e of travelling wave solutions of the KPPequation (Bramson et al. (1986)).Consider now the system as seen from Wt(0) = maxfx1 : �t(x1; 0) = 1g, the positionof the rightmost parti
le in the x axis. It follows from the results des
ribed above thatfor ea
h N there exists an invariant measure for the pro
ess �Wt�t. Is there a limitingdistribution for this pro
ess when N !1?5. The biased voter model.For this pro
ess to ea
h bond we asso
iate two Poisson point pro
esses, one withintensity Æ and the other with intensity �. When a Æ mark appears involving two sites,one of whi
h is empty, then after the mark the two sites be
ome empty. When a � mark12



appears involving two sites with at least one o

upied, then after the mark the two sitesbe
ome o

upied. We 
an think that at ea
h site there is a voter with two possible opinions:0 or 1. The rate of 
hanging opinion from 0 to 1 is � times the number of neighbors withopinion 1, while the rate of 
hanging opinion from 1 to 0 is Æ times the number of nearestneighbors with opinion 0. This pro
ess has two invariant measures: those that 
on
entratemass in the full and empty 
on�guration respe
tively.The model is trivial for N = 1: when starting from the 
on�guration full of parti
les tothe left of the origin and no parti
les to its right, this 
on�guration remains un
hanged intime unless for a random translation Zt, where Zt is an asymmetri
 random walk jumpingwith rate � to the right and with rate Æ to the left.To prove that there exists an invariant measure as seen from the rightmost parti
le forN > 1 we use an argument similar to the one we used for the Ri
hardson model. The �rstdiÆ
ulty with this argument is that the voter model as seen from the rightmost parti
leis not Feller in X0. To see that 
onsider the measure giving mass one to the 
on�guration�n = f0g [ f�1; : : : ;�ng. Then �n 
onverges to f0g. On the other hand �nt 
onvergesto a non trival 
onvex 
ombination of ��t and �0t , whi
h is di�erent of �0t that may be notwell de�ned. This 
ounter example shows that the voter model as seen from the rightmostparti
le is not Feller in X0. But if we 
onsider the subset of X0 
ontaining 
on�gurationswith in�nitely many parti
les to the left of the rightmost one, it is not diÆ
ult to provethat in this set the pro
ess is Feller, by an argument as the one in the Ri
hardson model.The problem is that this subset is not 
ompa
t, so the Cesaro limits may not belong to thesubset. For the asymmetri
 voter model it is not hard to prove that all weak limits of �t
on
entrate on the subset, 
on
luding the proof of the existen
e of at least one invariantmeasure. Then one gets (3.10) with the left hand side multiplied by (� � Æ) and theright hand side multiplied by �. In this way the invariant measure must be unique and
on
entrating on X0 for � 6= Æ. The existen
e of an invariant measure for �t in X0 implythe law of large numbers.In the symmetri
 
ase, that is, when � = Æ, the argument does not work. We 
on-je
ture that in this 
ase there is no invariant measure for the pro
ess as seen from the13



rightmost parti
le. The weak limits as t!1 of the distribution of �t would 
on
entrateon 
on�gurations with a �nite number of parti
les that 
an not be invariant.We propose the following problem. Is there a \weakly biased" 
ase with a non trivialhydrodynami
al limit? By weakly biased we mean to 
onsider Æ = 1 and � = 1+ (1=p
).Then, one would look at the pro
ess at a (ma
ros
opi
) time 
t at a (ma
ros
opi
) positionf(
)r.6. The biased voter model in a random environment.The voter model 
an be 
onsidered in the so 
alled \random environment". The resultsthat we are going to see were proven only for dimension d = 1 by Ferreira (1988) andreviewed by Bramson, Durrett and S
honmann (1991). A random variable Æb is atta
hedat ea
h bond b = (x; y), jx� yj = 1. These variables are mutually independent. Considera realization of the variable Æb as the rate of a Poisson point pro
esses asso
iated with thebond b. Now realize the pro
ess in the following manner: When the � 
lo
k asso
iatedwith the bond b = (x; y) rings, if either x or y is o

upied, then after the mark the twosites are o

upied. Otherwise nothing happens. When the Æb 
lo
k rings, if either x or yis empty, then after the mark the two sites are empty.In one dimension, when one starts with the Heaviside 
on�guration, at latter timesone gets the same 
on�guration shifted by a random variable Zt. This variable makes arandom walk in the environment des
ribed above: if Zt = z, it jumps to the right at rate �and to the left at rate Æz. The results 
ome from the study of this random walk in randomenvironment due to Solomon (1975):If E log(�=Æb) < 0 then PÆ(Zt = 0 i:o:) = 0 for a.e. environment Æ.If E log(�=Æb) > 0 then PÆ(Zt = 0 i:o:) = 1 for a.e. environment Æ.This indu
es the de�nition of a 
riti
al value�
 = inff� > 0 : PÆ;�(Zt = 0 i:o:) > 0 for a.e. Æg = exp(E log Æb)On the other hand, it is true that Zt=t 
onverges almost surely to �(�) as t!1, where14



�(�) is the 
onstant satysfying�(�) = 8<:> 0 if � 2 (EÆb;1),= 0 if � 2 (1=EÆb; EÆb),< 0 if � 2 (�1; 1=EÆb),So that, under the random environment Æ, we 
an de�ne a 
riti
al value ��, where�� = inff� > 0 : �(�) > 0g = EÆbSo that the biased voter model in random environment has two 
riti
al values, one forre
urren
e of the extreme and the other for linear growth. The re
urren
e 
ondition isequivalent to the non survival of the pro
ess when starting from a single parti
le.The following open problems arise. Does the existen
e of two di�erent 
riti
al param-eters appear in the strip for any N? We 
onje
ture that the answer is yes. If our 
onje
tureis true, this puts another problem. Bramson, Durrett and S
honmann 
onje
ture that theexisten
e of two 
riti
al values is not true in two dimensions. So the di�eren
e betweenthese two 
riti
al paramenters should somehow go to zero as N !1. Is there an invariantmeasure for the pro
ess as seen fromWt, the position of the rightmost o

upied site at thex axis?7. The 
onta
t pro
ess.The 
onta
t pro
ess is one of the �rst parti
le systems studied. In spite of its simpli
ity,it presents a phase transition even in one dimension. We des
ribe it in our box �N : It
onsists in the superposition of two pro
esses: one is the infe
tion pro
ess used to de�nethe Ri
hardson model. Parti
les appear at empty sites at a rate � times the number ofnearest neighbor o

upied sites. The other is just a death pro
ess: parti
les dissapear atrate one, independent of the rest of the 
on�guration.In the one dimensional 
ase, when N = 1 is has been proven that there exists a 
riti
alparameter �
 su
h that starting with the initial Heaviside 
on�guration, and 
alling Zt theposition of the rightmost parti
le, the following hold(1) As t ! 1, the normalized position Zt=t 
onverges almost surely to � = �(�),15



where � = (> 0 if � > �
= 0 if � = �
= �1 if � < �
Furthermore � is a non de
reasing fun
tion of � and is 
ontinuous to the right in � = �
.(2) If � � �
, the pro
ess �t = �Zt�t, i.e. the pro
ess as seen from the rightmost parti-
le, has a unique invariant measure. The pro
ess starting from the Heaviside 
on�guration
onverges to this invariant measure.(3) If � > �
, then the normalized pro
ess (Zt � �t)=pt 
onverges to a Gaussianrandom variable of 0 mean and positive varian
e �2.(4) 1 � �
 � 2The proof of (1) is a 
onsequen
e of the subadditive ergodi
 theorem and the attra
tiveproperties of the pro
ess. The proof 
an be found in Durrett (1984). The existen
e of aninvariant measure in (2) 
an be shown in a 
onstru
tive way as in Galves and Presutti(1987a, 1987b), or using an abstra
t argument as the one we used for the voter model, asin Durrett (1984). The 
onta
t pro
ess as seen from the rightmost parti
le is not Feller forthe same reason as the voter model. The 
onstru
tive way works for � > �
 and the otherworks also for �
. In order to show that the limiting measure 
on
entrates on the subsetof X with in�nitely many parti
les to the left of the rightmost parti
le one uses that therightmost parti
le has a non negative a.s. limit. The 
onvergen
e of the pro
ess startingfrom any 
on�guration with in�nitely many parti
les to the left of the rightmost parti
le tothe invariant measure in the super
riti
al 
ase was proven by Galves and Presutti (1987), aswell as the 
entral limit theorem of (3). An alternative proof of the 
entral limit theorem isfound in Kuz
ek (1989) . For � = �
 one expe
ts that the 
u
tuations are superdi�ussive.The lower bound in (4) is easy to obtain by 
omparing the pro
ess with a bran
hingpro
ess. The upperbound was obtained by Holley and Liggett (1978). The expe
ted valueis �
 = 1:64.These results are 
losely related to the problem of survival of the 
onta
t pro
ess. It issaid that the 
onta
t pro
ess �t survives if, starting with the full 
on�guration, the pro
ess
onverges to a measure di�erent from the mass 
on
entrated on the empty 
on�guration.16



Otherwise we say that the pro
ess dies out. It turns out that for � � �
, the pro
esssurvives and for � < �
 the pro
ess dies out. It is proven that for any dimension d thereexists �d
 su
h that the pro
ess survives if � � �d
 and dies if � < �d
 . The fa
t that the
onta
t pro
ess dies at � = �
 is deep and was proven only re
ently by Bezuindenhout andGrimett (1990).Here the following open problems arise.1. Is it possible to improve the bounds for �
?. Computer simulations propose �
 =1:64.2. Is it possible to extend results (1) ,(2) and (3) to the strip �N for any N?3. Assuming that the 
onje
ture 2 holds. Call �
(N) the 
riti
al value for the strip oflenght N . Then, Bezuindenhout and G. Grimmett (1990) proved that, as N !1, �
(N)
onverges to �2
 (the 
riti
al value of � for d = 2). Is there a limiting measure for thepro
ess as seen from the rightmost parti
le on the x axis?4. Does �t 
onverge in distribution, as t ! 1 when � < �
? For N = 1 S
honmann(198?) proved for oriented per
olation that in this 
ase does not exist an invariant measure.This was extended by Andjel (1988) for the 
onta
t pro
ess. Nevertheless it may be
onvergen
e in distribution. It is 
onje
tured that the answer to this question is yes andthat the result must be a quasi-stationary distribution. This is a measure � 
on
entratingon 
on�gurations with a positive and �nite number of parti
les satisfying the property:\starting with � and 
onditioning that at time t the pro
ess is not empty, then the pro
esshas distribution �". One of the diÆ
ulties here is that in general there is not just onequasi stationary measure, but in�nitely many (when any). So the problem is to determineto whi
h of those the pro
ess 
onverges.As well as for the voter model one 
an 
onsider the 
onta
t pro
ess in a randomenvironment. The same results as for the biased voter model were obtained by Bramson,Durrett and S
honmann (1991). Also Liggett (1991, 1992) and Klein (199?) worked inthese kind of models.8. The Solid on Solid model. 17



To understand the name of this model one should 
onsider a verti
al strip and 
onsiderthe parti
les as falling from the sky, so that in the state spa
e one never a

epts that anempty site 
an be under a parti
le. But to avoid 
onfusions we des
ribe the pro
ess inour horizontal strip. Three Poisson point pro
esses are asso
iated to ea
h verti
al bond,with rates �0, �1 and �2 respe
tively. Consider that �(x) = 1; �(x + e1) = 0 and the�i 
lo
k atta
hed to the bond (x; x + e1) rings, where e1 = (1; 0), e2 = (1; 0). If i =�(x+e1+e2)+�(x+e1�e2), then after the mark, �(x+e1) 
hanges its value from 0 to 1. Inwords, for ea
h k 2 f�N; : : : ; Ng there is a value Y (k) su
h that �(x1; k) = 1fx1 � Y (k)gand Y (k) in
reases at rate �i if i of fY (k � 1); Y (k + 1)g are bigger that Y (k).This model is an approximation of the Ising model when the intera
tions in the verti
aldire
tion are 
onsidered as for zero temperature.Mauro (1992), using a te
hnique proposed by Gates and Wes
ott (1990) proved thatfor any values of �i su
h that �0 < �1 < �2 there exists an invariant measure for thepro
ess �t = �Y (0)�t on the spa
e X0. Compare with �0 = �1 = �2 under whi
h Yt(k) areindependent and the pro
ess 
onverges to a measure that gives mass zero toX0. Under theinvariant measure Yt(0)=t 
onverges almost surely to a limiting velo
ity v. If one requiresthe extra 
ondition(�) �1 = (�0 + �2)=2mu
h more 
an be said. The invariant measure 
an be des
ribed expli
itely:�(Y ) = (1=Z) exp(�� N�1Xk=�N jY (k)� Y (k + 1)j)where � = log(�0=�2)2 and Z is the normalizing fa
tor su
h that PY �(Y ) = 1. The
entral limit theorem holds, i.e. (Yt(0)� vt)=pt 
onverges weakly to a Gaussian randomvariable. The 
ondition �1 = (�0 + �2)=2 is te
hni
al. This pro
ess is a Markov 
hainin a denumerable state spa
e. Hen
e, the pro
ess is positive re
urrent. To prove the
entral limit theorem one shows that the expe
ted value of the square of the return timefor a given state, is �nite. This is equivalent to say that the expe
ted hitting time of agiven 
on�guration, starting with the invariant measure is �nite. The expli
it form of the18



invariant measure is used to prove the �niteness of the se
ond moment of the absorbingtime. We do not expe
t a di�erent behaviour for other values of �i: nothing indu
es usto think that if there exists an invariant measure, then the 
entral limit theorem does nothold, even if the se
ond moment of the return time is not �nite. We do not know how thevarian
e of the limiting Gaussian variable behaves with N .The symmetri
 
ase. Consider that Y (k) 
an also de
rease and do that at rate �i,where i is the number of its nearest neighbors that are stri
tly smaller that Y (k). Under
ondition (*) one proves the law of large numbers with asymptoty
 velo
ity 0 (by symme-try) and also the 
entral limit theorem. In this 
ase the limiting varian
e is show to beproportional to 1=N . The pro
ess in the plane (N =1) is well de�ned and Ferrari (1987)showed that the limiting varian
e in the plane is zero.The measure � des
ribed above is the Gibbs measure for this mode and is the oneintrodu
ed in statisti
al me
hani
s for studying this model. Une property of this measureis that 
onsidering the x axis as time, Y (k) is a Markov 
hain. This gives us that thespatial 
u
tuations of the measure are of the order of pk. The average velo
ity behavesas the number of maximuns of the Markov 
hain.When the strip is two dimensional (or more), that is in the state spa
e f�N; : : : ; Ng2�ZZ even the existen
e of the invariant measure is diÆ
ult to show. Only in very few 
asesthere are rigorous proofs, even if the heuristi
s are 
lear. See detais in Gates and Wes
ott(1990) and Mauro (1992).9. The ex
lusion pro
ess.To des
ribe the pro
ess we 
onsider that a Ppp is asso
iated at ea
h bond of thestrip. The verti
al bonds work as in the stirring pro
ess des
ribed above: when a stirringmark appears, the 
ontent of the two sites involved with the mark is inter
hanged. Thehorizontal bonds work as the stirring marks in the symmetri
 
ase, but in the asymmetri

ase we let the 
ontent of the sites to be ex
hanged only if the site to the left is o

upiedand the site to the right is empty. In the two 
ases the ex
lusion 
onstraint is present, butthe one parti
le motion has a drift in the asymmetri
 
ase.19



The produ
t measures are invariant for both the symmetri
 and the asymmetri
 pro-
ess. Assume that one starts with a produ
t measure with density � to the left of theorigin and density � 2 [0; 1℄ to the right of the origin. Assume also that �+ � = 1. Thenthe behaviour is very di�erent for the two pro
esses. For the symmetri
 
ase the pro
ess
onverges to �(�+�)=2 and for the asymmetri
 
ase the pro
ess 
onverves to (�� + ��)=2.The �rst result follows from the duality of the pro
ess (see Liggett (1985)) while the se
ondis harder to prove (Andjel, Bramson and Liggett (1988). The reason for this behaviour isthat for the asymmetri
 
ase it is possible to prove the existen
e of a mi
ros
opi
 interfa
eas de�ned in the introdu
tion. This was proven by Ferrari, Kipnis and Saada (1991) andFerrari (1992).A
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