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tuations in the asymmetri
 simple ex
lusion pro
essP. A. Ferrari, L. R. G. FontesUniversidade de S~ao PauloSummary. We review re
ent results about the asymmetri
 simple ex
lusion pro
ess inZZ. In that pro
ess parti
les jump to the right at rate p and to the left at rate q, p+ q = 1.At mosts one parti
le is allowed in ea
h site. We 
onsider the pro
ess in equilibriumwith invariant measure ��, the produ
t measure with density �. The �rst result is the
omputation of the the di�usion 
oeÆ
ient of the 
urrent of parti
les through a �xedpoint. We �nd D = jp � qj�(1 � �)j1 � 2�j. A law of large numbers and 
entral limittheorems for the res
aled 
urrent are also proven. Analogous results hold for the 
urrentof parti
les through a position travelling at a deterministi
 velo
ity r. As a 
orollary weget that the equilibrium density 
u
tuations at time t are a translation of the 
u
tuationsat time 0. We also show that the 
urrent 
u
tuations at time t are given, in the s
ale t1=2,by the initial density of parti
les in an interval of length j(p � q)(1 � 2�)jt. The se
ondresult is a representation of the position Xt of a tagged parti
le of the system that allowsus to write Xt = Nt+Bt, where Nt is a Poisson pro
ess of parameter (1��)(p�q) and Btis a random variable whose absolute value is sto
hasti
ally bounded above by B, a randomvariable with distribution independent of t and with a �nite exponential moment. This isan extension of Burke's theorem for queuing theory.Keywords. Asymmetri
 simple ex
lusion. Current 
u
tuations. Burke's Theorem. Taggedparti
le.AMS 1980 Classi�
ation. 60K35, 82C22, 82C24, 82C41.1. Introdu
tion.The nearest neighbor one dimensional asymmetri
 simple ex
lusion pro
ess is theMarkov pro
ess �t 2 f0; 1gZZ that 
orresponds to the following des
ription. At most oneparti
le is allowed at ea
h site. If there is a parti
le at site x, it jumps at rate p to sitex + 1 if there is no parti
le in x + 1. Analogously if site x � 1 is empty, the parti
le atsite x jumps to x � 1 at rate q. This pro
ess was introdu
ed by Spitzer (1970) and has1



re
eived a great deal of attention. Its ergodi
 properties are well understood (Liggett (1976,1985)). The set of invariant measures is the set of 
onvex 
ombinations of the produ
tmeasures �� and blo
king measures. These measures 
on
entrate on a denumerable set of
on�gurations and for p > q have asymptoti
 density 0 and 1 to the left and right of theorigin, respe
tively. The hydrodynami
al limit was studied by Andjel and Vares (1987)and extended by Benassi et al (1991) for monotone initial density pro�les. Rezakhanlou(1990) proposed a general approa
h to prove a law of large numbers for the density �eldsof attra
tive parti
le systems that works for general initial density pro�les. Landim (1992)uses this law of large numbers to prove lo
al equilibrium.The 
urrent through rt at time t is de�ned by Jrt;t = number of parti
les to the leftof the origin at time zero and to the right of rt at time t minus number of parti
les tothe right of the origin at time zero and to the left of rt at time t. We assume that thedistribution of the initial 
on�guration is the stationary measure ��, the produ
t measurewith density �. Under this initial distribution,EJrt;t = ((p� q)�(1� �)� r�)tIn Ferrari and Fontes (1992a) we show the following results1. Law of large numbers:limt!1 Jrt;tt = ((p� q)�(1� �)� r�) a:s:This result is not surprising but its proof for r 6= 0 is not immediate be
ause it is not 
learhow to prove that �� is an extremal invariant measure for the pro
ess as seen from themoving position rt.2. Central limit theorem: Let G(0; D) be a 
entered normal random variable withvarian
e D. Then limt!1 Jrt;t � EJrt;tpt = G(0; DJ);in distribution, where DJ = limt!1(V Jrt;t=t) and V is the varian
e. For r = 0, this result
an be proven using te
hniques of Kipnis (1986), as one 
an show that the 
urrent is anegative 
orrelated pro
ess. We get it as a 
orollary of item 5 below.3. Computation of the varian
e. This 
omputation is the key to obtain the otherresults. The te
hnial point in this 
omputation is to 
ontrol the behavior of a perturbationof the system. The result islimt!1 V Jrt;tt = limt!1 E(Jrt;t �EJrt;t)2t = �(1� �)j(p� q)(1� 2�)� rj2



Noti
e that for r = (p � q)(1 � 2�), DJ = 0. The parti
ular 
ase p = q, r = 0 
an alsobe proven using Arratia (1983). The general 
ase is more surprising. In the next point amore detailed behavior is shown.4. Current and se
ond 
lass parti
le. For p = 1 and r = (1� 2�) we showV J(1�2�)t;t = �(1� �)EjR0t � (1� 2�)tjwhere R0t is the position of a se
ond 
lass parti
le initially lo
ated at the origin. For p = 1,a se
ond 
lass parti
le intera
ts with the other parti
les in the following way: it jumps toempty sites to the right at rate 1 and inter
hange positions with (\�rst 
lass") parti
les toits left at rate 1. A perturbation of the system behaves as a se
ond 
lass parti
le. Spohn(1991) gives heuristi
 arguments suggesting that V R0t behave as t4=3. This would implythat the varian
e of the 
urrent through (1� 2�)t behaves as t2=3.5. Dependen
e on the initial 
on�guration.limt!1 E(Jrt;t �Nth(r;�) � �2t)2t = 0where h(r; �) = r�(1�2�)(p�q), Nr(�) =Prx=0 �(x) for r > 0 and Nr(�) = �P0x=r �(x)for r � 0. Nth(�) depends only on the initial 
on�guration �. A result like this was
onje
tured by Spohn (1991) and proved by G�artner and Presutti (1989) and Ferrari(1992a,b) for the position of a tagged parti
le.6. Equilibrium 
u
tuations translate rigidly in time. Let �"t be the 
u
tuations �eldsde�ned by �"t (�) = "1=2Xx �("x)[�"�1t(x)� E�"�1t(x)℄for smooth integrable fun
tions �. Call �r = (p� q)(1� 2�), thenlim"!0E(�"t � �"�1�rt�"0)2 = 0where the translation � is de�ned by �y�"t (�) = �"t (�y�) and �y�(x) = �(x+ y). In otherwords, the limiting equilibrium 
u
tuations �elds satisfy the linear equation��t�t(r) = �r ��r �t(r)with initial 
ondition �0, the Gaussian �eld with zero mean and 
ovarian
e given byE(�(	)�(�)) = �(1� �) Z dr	(r)�(r)3



as 
onje
tured by Spohn (1991).Our other result has to do with the position of a tagged parti
le. LetXt be the positionof a tagged parti
le that at time zero was put at the origin. The joint pro
ess (�t; Xt) isMarkov and the pro
ess �Xt�t has as extremal invariant measure �0� = ��(:j�(0) = 1)(Ferrari (1986)). Under this distribution,EXt = (1� �)(p� q)tKipnis (1986) proved the following law of large numberslimt!1 Xtt = (1� �)(p� q)and 
entral limit theorem:limt!1 Xt � (1� �)(p� q)tpt = G(0; DX);in distribution. The varian
e DX is given byDX = limt!1 V Xtt = limt!1 E(Xt � (1� �)(p� q)t)2t = (1� �)(p� q):The limit was 
omputed by De Masi and Ferrari (1985). Ferrari and Fontes (1992b) showthe following stronger result:7. Assume that the initial distribution of �t is given by �0�. ThenXt = Nt +Btwhere Nt is a Poisson point pro
ess of parameter (1��)(p�q), and jBtj � B sto
hasti
ally,where B is a random variable on IN with a �nite exponential moment. That is there existsa positive � su
h that E exp(�B) <1In words, it is possible to represent the position of a tagged parti
le almost as a Poissonpro
ess. This 
an be understood as an extension of Burke's theorem in queueing theory.In the language of parti
le systems, Burke's theorem is just the statement above for p = 1and Bt � 0. This was observed by Kesten and quoted by Spitzer (1970). See also Kipnis(1986) and Ferrari (1992b).A
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