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Fluctuations in the asymmetric simple exclusion process
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Summary. We review recent results about the asymmetric simple exclusion process in
Z. In that process particles jump to the right at rate p and to the left at rate ¢, p+q = 1.
At mosts one particle is allowed in each site. We consider the process in equilibrium
with invariant measure v,, the product measure with density p. The first result is the
computation of the the diffusion coefficient of the current of particles through a fixed
point. We find D = |p — ¢|p(1 — p)|1 — 2p|. A law of large numbers and central limit
theorems for the rescaled current are also proven. Analogous results hold for the current
of particles through a position travelling at a deterministic velocity r. As a corollary we
get that the equilibrium density fluctuations at time ¢ are a translation of the fluctuations
at time 0. We also show that the current fluctuations at time ¢ are given, in the scale ¢!/2,
by the initial density of particles in an interval of length |(p — ¢)(1 — 2p)|t. The second
result is a representation of the position X; of a tagged particle of the system that allows
us to write X; = N; + By, where IV is a Poisson process of parameter (1—p)(p—¢) and B;
is a random variable whose absolute value is stochastically bounded above by B, a random
variable with distribution independent of ¢t and with a finite exponential moment. This is

an extension of Burke’s theorem for queuing theory.
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1. Introduction.

The nearest neighbor one dimensional asymmetric simple exclusion process is the
Markov process n; € {0,1}Z that corresponds to the following description. At most one
particle is allowed at each site. If there is a particle at site x, it jumps at rate p to site
x + 1 if there is no particle in  + 1. Analogously if site x — 1 is empty, the particle at
site  jumps to z — 1 at rate ¢. This process was introduced by Spitzer (1970) and has
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received a great deal of attention. Its ergodic properties are well understood (Liggett (1976,
1985)). The set of invariant measures is the set of convex combinations of the product
measures v, and blocking measures. These measures concentrate on a denumerable set of
configurations and for p > ¢ have asymptotic density 0 and 1 to the left and right of the
origin, respectively. The hydrodynamical limit was studied by Andjel and Vares (1987)
and extended by Benassi et al (1991) for monotone initial density profiles. Rezakhanlou
(1990) proposed a general approach to prove a law of large numbers for the density fields
of attractive particle systems that works for general initial density profiles. Landim (1992)
uses this law of large numbers to prove local equilibrium.

The current through r¢ at time ¢ is defined by J,;: = number of particles to the left
of the origin at time zero and to the right of r¢ at time ¢ minus number of particles to
the right of the origin at time zero and to the left of r¢ at time t. We assume that the
distribution of the initial configuration is the stationary measure v,, the product measure

with density p. Under this initial distribution,

EJie = ((p—q)p(1—p) —rp)t

In Ferrari and Fontes (1992a) we show the following results

1. Law of large numbers:

. J’I"t t
)

=((p—q)p(l—p)—rp) as.

t—oo ¢t

This result is not surprising but its proof for » = 0 is not immediate because it is not clear
how to prove that v, is an extremal invariant measure for the process as seen from the
moving position rt.

2. Central limit theorem: Let G(0,D) be a centered normal random variable with

variance D. Then
li th,t - Eth,t
im —————~

t—o00 \/E

in distribution, where D ; = lim;_, oo (V' Jy4,¢/t) and V is the variance. For r = 0, this result

= G(0,Dy),

can be proven using techniques of Kipnis (1986), as one can show that the current is a
negative correlated process. We get it as a corollary of item 5 below.

3. Computation of the variance. This computation is the key to obtain the other
results. The technial point in this computation is to control the behavior of a perturbation

of the system. The result is

_ 2
lim Vth,t — lim E(th,t Eth,t)
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Notice that for » = (p — ¢)(1 — 2p), Dy = 0. The particular case p = ¢, r = 0 can also
be proven using Arratia (1983). The general case is more surprising. In the next point a
more detailed behavior is shown.

4. Current and second class particle. For p =1 and r = (1 — 2p) we show
VI = p(l— p)E|R] — (1 —2p)t|

where RY is the position of a second class particle initially located at the origin. For p =1,
a second class particle interacts with the other particles in the following way: it jumps to
empty sites to the right at rate 1 and interchange positions with (“first class”) particles to
its left at rate 1. A perturbation of the system behaves as a second class particle. Spohn
(1991) gives heuristic arguments suggesting that VR behave as t*/3. This would imply
that the variance of the current through (1 — 2p)t behaves as t2/3.

5. Dependence on the initial configuration.

E(Jrt.t — Nin(r ) — p2t)?
lim (Jrt,¢ th(r,p) p°t)

t— o0 t

=0

where h(r,p) = r— (1= 20)(p—a), Ny (1) = S n(x) for r > 0 and N, (n) = — ¥0_ n(a)
for » < 0. N (n) depends only on the initial configuration 7. A result like this was
conjectured by Spohn (1991) and proved by Géartner and Presutti (1989) and Ferrari
(1992a,b) for the position of a tagged particle.

6. Equilibrium fluctuations translate rigidly in time. Let £; be the fluctuations fields
defined by

E(®) =27 @(ea) [y () — Enesy(2)

for smooth integrable functions ®. Call 7 = (p — ¢)(1 — 2p), then
: e _ Y = 2 —
Eh_% E(& — me-174&0) 0

where the translation 7 is defined by 7,&; (®) = &; (7, ®) and 7,®(z) = ®(x + y). In other

words, the limiting equilibrium fluctuations fields satisfy the linear equation

0

0
aﬁt(r) = 775&(7")

with initial condition &y, the Gaussian field with zero mean and covariance given by

B(E(V)E(®) = pl1 - p) [ dr(rB(r)
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as conjectured by Spohn (1991).
Our other result has to do with the position of a tagged particle. Let X; be the position

of a tagged particle that at time zero was put at the origin. The joint process (n;, X;) is

Markov and the process 7x,7; has as extremal invariant measure v, = v,(.[n(0) = 1)
(Ferrari (1986)). Under this distribution,
EX; = (1-p)(p—q)t
Kipnis (1986) proved the following law of large numbers
Xy
Jim === (1-p)p-q)
and central limit theorem:
Xy —(1- —q)t
t— oo \/E
in distribution. The variance Dx is given by
X E(X;—(1- —q)t)?
DX — lim t — lim ( t ( p)(p q) ) — (1—p)(p—q)-

t—oo t—o0 t

The limit was computed by De Masi and Ferrari (1985). Ferrari and Fontes (1992b) show
the following stronger result:

7. Assume that the initial distribution of &; is given by 1/;,. Then
Xt == Nt + Bt

where IV; is a Poisson point process of parameter (1—p)(p—q), and |B;| < B stochastically,
where B is a random variable on IN with a finite exponential moment. That is there exists
a positive # such that

Eexp(#B) < o

In words, it is possible to represent the position of a tagged particle almost as a Poisson
process. This can be understood as an extension of Burke’s theorem in queueing theory.
In the language of particle systems, Burke’s theorem is just the statement above for p =1
and B; = 0. This was observed by Kesten and quoted by Spitzer (1970). See also Kipnis
(1986) and Ferrari (1992b).
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