
Published in Cellular Automata and Cooperative Systems N. Boara, E. Goles, S. Mar-tinez and P. Pio Eds. NATO ASI Series C: Mathematial and Physial Sienes Vol 396Kluwer (1993)Flutuations in the asymmetri simple exlusion proessP. A. Ferrari, L. R. G. FontesUniversidade de S~ao PauloSummary. We review reent results about the asymmetri simple exlusion proess inZZ. In that proess partiles jump to the right at rate p and to the left at rate q, p+ q = 1.At mosts one partile is allowed in eah site. We onsider the proess in equilibriumwith invariant measure ��, the produt measure with density �. The �rst result is theomputation of the the di�usion oeÆient of the urrent of partiles through a �xedpoint. We �nd D = jp � qj�(1 � �)j1 � 2�j. A law of large numbers and entral limittheorems for the resaled urrent are also proven. Analogous results hold for the urrentof partiles through a position travelling at a deterministi veloity r. As a orollary weget that the equilibrium density utuations at time t are a translation of the utuationsat time 0. We also show that the urrent utuations at time t are given, in the sale t1=2,by the initial density of partiles in an interval of length j(p � q)(1 � 2�)jt. The seondresult is a representation of the position Xt of a tagged partile of the system that allowsus to write Xt = Nt+Bt, where Nt is a Poisson proess of parameter (1��)(p�q) and Btis a random variable whose absolute value is stohastially bounded above by B, a randomvariable with distribution independent of t and with a �nite exponential moment. This isan extension of Burke's theorem for queuing theory.Keywords. Asymmetri simple exlusion. Current utuations. Burke's Theorem. Taggedpartile.AMS 1980 Classi�ation. 60K35, 82C22, 82C24, 82C41.1. Introdution.The nearest neighbor one dimensional asymmetri simple exlusion proess is theMarkov proess �t 2 f0; 1gZZ that orresponds to the following desription. At most onepartile is allowed at eah site. If there is a partile at site x, it jumps at rate p to sitex + 1 if there is no partile in x + 1. Analogously if site x � 1 is empty, the partile atsite x jumps to x � 1 at rate q. This proess was introdued by Spitzer (1970) and has1



reeived a great deal of attention. Its ergodi properties are well understood (Liggett (1976,1985)). The set of invariant measures is the set of onvex ombinations of the produtmeasures �� and bloking measures. These measures onentrate on a denumerable set ofon�gurations and for p > q have asymptoti density 0 and 1 to the left and right of theorigin, respetively. The hydrodynamial limit was studied by Andjel and Vares (1987)and extended by Benassi et al (1991) for monotone initial density pro�les. Rezakhanlou(1990) proposed a general approah to prove a law of large numbers for the density �eldsof attrative partile systems that works for general initial density pro�les. Landim (1992)uses this law of large numbers to prove loal equilibrium.The urrent through rt at time t is de�ned by Jrt;t = number of partiles to the leftof the origin at time zero and to the right of rt at time t minus number of partiles tothe right of the origin at time zero and to the left of rt at time t. We assume that thedistribution of the initial on�guration is the stationary measure ��, the produt measurewith density �. Under this initial distribution,EJrt;t = ((p� q)�(1� �)� r�)tIn Ferrari and Fontes (1992a) we show the following results1. Law of large numbers:limt!1 Jrt;tt = ((p� q)�(1� �)� r�) a:s:This result is not surprising but its proof for r 6= 0 is not immediate beause it is not learhow to prove that �� is an extremal invariant measure for the proess as seen from themoving position rt.2. Central limit theorem: Let G(0; D) be a entered normal random variable withvariane D. Then limt!1 Jrt;t � EJrt;tpt = G(0; DJ);in distribution, where DJ = limt!1(V Jrt;t=t) and V is the variane. For r = 0, this resultan be proven using tehniques of Kipnis (1986), as one an show that the urrent is anegative orrelated proess. We get it as a orollary of item 5 below.3. Computation of the variane. This omputation is the key to obtain the otherresults. The tehnial point in this omputation is to ontrol the behavior of a perturbationof the system. The result islimt!1 V Jrt;tt = limt!1 E(Jrt;t �EJrt;t)2t = �(1� �)j(p� q)(1� 2�)� rj2



Notie that for r = (p � q)(1 � 2�), DJ = 0. The partiular ase p = q, r = 0 an alsobe proven using Arratia (1983). The general ase is more surprising. In the next point amore detailed behavior is shown.4. Current and seond lass partile. For p = 1 and r = (1� 2�) we showV J(1�2�)t;t = �(1� �)EjR0t � (1� 2�)tjwhere R0t is the position of a seond lass partile initially loated at the origin. For p = 1,a seond lass partile interats with the other partiles in the following way: it jumps toempty sites to the right at rate 1 and interhange positions with (\�rst lass") partiles toits left at rate 1. A perturbation of the system behaves as a seond lass partile. Spohn(1991) gives heuristi arguments suggesting that V R0t behave as t4=3. This would implythat the variane of the urrent through (1� 2�)t behaves as t2=3.5. Dependene on the initial on�guration.limt!1 E(Jrt;t �Nth(r;�) � �2t)2t = 0where h(r; �) = r�(1�2�)(p�q), Nr(�) =Prx=0 �(x) for r > 0 and Nr(�) = �P0x=r �(x)for r � 0. Nth(�) depends only on the initial on�guration �. A result like this wasonjetured by Spohn (1991) and proved by G�artner and Presutti (1989) and Ferrari(1992a,b) for the position of a tagged partile.6. Equilibrium utuations translate rigidly in time. Let �"t be the utuations �eldsde�ned by �"t (�) = "1=2Xx �("x)[�"�1t(x)� E�"�1t(x)℄for smooth integrable funtions �. Call �r = (p� q)(1� 2�), thenlim"!0E(�"t � �"�1�rt�"0)2 = 0where the translation � is de�ned by �y�"t (�) = �"t (�y�) and �y�(x) = �(x+ y). In otherwords, the limiting equilibrium utuations �elds satisfy the linear equation��t�t(r) = �r ��r �t(r)with initial ondition �0, the Gaussian �eld with zero mean and ovariane given byE(�(	)�(�)) = �(1� �) Z dr	(r)�(r)3



as onjetured by Spohn (1991).Our other result has to do with the position of a tagged partile. LetXt be the positionof a tagged partile that at time zero was put at the origin. The joint proess (�t; Xt) isMarkov and the proess �Xt�t has as extremal invariant measure �0� = ��(:j�(0) = 1)(Ferrari (1986)). Under this distribution,EXt = (1� �)(p� q)tKipnis (1986) proved the following law of large numberslimt!1 Xtt = (1� �)(p� q)and entral limit theorem:limt!1 Xt � (1� �)(p� q)tpt = G(0; DX);in distribution. The variane DX is given byDX = limt!1 V Xtt = limt!1 E(Xt � (1� �)(p� q)t)2t = (1� �)(p� q):The limit was omputed by De Masi and Ferrari (1985). Ferrari and Fontes (1992b) showthe following stronger result:7. Assume that the initial distribution of �t is given by �0�. ThenXt = Nt +Btwhere Nt is a Poisson point proess of parameter (1��)(p�q), and jBtj � B stohastially,where B is a random variable on IN with a �nite exponential moment. That is there existsa positive � suh that E exp(�B) <1In words, it is possible to represent the position of a tagged partile almost as a Poissonproess. This an be understood as an extension of Burke's theorem in queueing theory.In the language of partile systems, Burke's theorem is just the statement above for p = 1and Bt � 0. This was observed by Kesten and quoted by Spitzer (1970). See also Kipnis(1986) and Ferrari (1992b).Aknowledgments. Partially supported by NATO, FAPESP, Projeto Tem�atio, 90/3918-5 and CNPq. 4
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