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EXISTENCE OF NON-TRIVIAL QUASI-STATIONARY 
DISTRIBUTIONS IN THE BIRTH-DEATH CHAIN 

PABLO A. FERRARI,* Universidade de Sdo Paulo 
SERVET MARTINEZ,** Universidad de Chile 
PIERRE PICCO,*** Centre de Physique Theorique, CNRS-Luminy 

Abstract 

We study conditions for the existence of non-trivial quasi-stationary distributions 
for the birth-and-death chain with 0 as absorbing state. We reduce our problem to a 
continued fractions one that can be solved by using extensions of classical results of 
this theory. We also prove that there exist normalized quasi-stationary distributions 
if and only if 0 is geometrically absorbing. 

MARKOV CHAINS; NORMALIZED QUASI-STATIONARY DISTRIBUTION; BIRTH AND DEATH 

PROCESS 

AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J80 

SECONDARY 40A15 

1. Introduction 

We consider an irreducible discrete-time homogeneous Markov chain on a 
denumerable or finite state space S = {0O U S*, where 0 is the only absorbing state 
and S is the set of transient states. A normalized quasi-stationary distribution 

(n-q.s.d.) for the chain is a probability measure u on S* with the property that the 
conditional distribution of the chain at time 1 given that it is not absorbed is given 
by , if the initial measure is iu. It can be shown that such a i verifies the system of 

equations of a left eigenvector: 

(1.1) UP* = y(A ) 

where P* is the restriction of the stochastic matrix to S* and y(Pi) = P,(X(1) 0 O). 
We call a quasi-stationary distribution (q.s.d.) any measure satisfying (1.1). 

The earliest work on this subject was done by Yaglom (1947) for the branching 
process. He proved the existence of a normalized quasi-stationary distribution as the 
limit of the conditional distribution probability of the chain given that it is not 

absorbed, starting with any Dirac distribution. Similar results have been established 

by Darroch and Seneta (1965) for finite state space, Seneta (1966) for continuous- 
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time simple random walks on N, and Seneta and Vere-Jones (1966) for discrete-time 

simple random walks on N and for the simple branching process. 
For the birth and death process Good (1968) and Kijima and Seneta (1990) used 

results from Karlin and McGregor (1957) to study the q.s.d. which are limits of the 
conditional distribution probability given that it is not absorbed, starting with Dirac 
measures. Good proved that these limits do not depend on the particular Dirac 
measure and that it is null or a probability measure. Kijima and Seneta showed that 
the eigenvalue associated with this relevant q.s.d. is related to the exponential decay 
of the transition probabilities. Cavender (1978) studied the forward equations for 
the conditioned birth and death process and described the set of positive stationary 
solutions of those equations, i.e. the q.s.d. He proved that this set is a 

one-parameter family and is well ordered with respect to a stronger order than the 
usual stochastic one. It follows from his results that the mass of any q.s.d. is either 
0,1 or oo. 

The problem of convergence to the q.s.d. when the initial distribution is different 
from the Dirac distribution was initially considered by Seneta and Vere-Jones (1966) 
when the transition probability matrix of the Markov chain is R-positive. 

Our study deals mainly with the study of conditions on stochastic matrices to get 
non-trivial q.s.d. and normalized q.s.d. for the discrete birth and death process. Our 
main tools are derived from the analysis of the distribution of the absorbing time 

To = inf {n :X(n) = 0} and the dynamical form that we give to the equations verified 

by a q.s.d. 
In Section 2 we study n-q.s.d. for general Markov chains. We show that if the 

initial measure is an n-q.s.d. [M, then the random variable To is geometrically 
distributed. This implies that a necessary condition for the existence of an n-q.s.d. is 
that the Markov chain starting from any state is geometrically absorbed at 0. 

In Section 3 we begin our study of n-q.s.d. for the birth and death process. We 

prove that a probability measure [i is an n-q.s.d. if and only if To is geometrically 
distributed when we start from i, and that any n-q.s.d. has an exponential tail. 
Moreover, we show that if there exist non-trivial q.s.d. then all of them are 
normalized or all of them are of infinite mass. 

In Sections 4, 5 we deal mainly with the discrete birth and death process 
verifying p, = 1 - qx where 

pX = P(X(n + 1) =x + 1 X(n) =x), qx = P(X(n + 1) =x-1 l X(n) =x). 

In Proposition 4.2 we relate the non-null sequences , satisfying uP* = y(iy)yt and 
the sequences (W,y ,(x):x e FJ*) satisfying the dynamical equation: 

Wy, (x + 1) = 1 - y2W )) for x E N*, 
y2W, i(X) 

with initial condition Wy,(1) = 1. The variable y = y(u) parametrizes the set of 

q.s.d. 
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Existence of non-trivial quasi-stationary distributions 

We also show in Section 4 that the sequence of moment-generating functions of 
the first time of absorption Fy(x) = E(y-') with ye (0, 1) satisfies a similar 

dynamical equation. 
In Section 5 the analysis of the dynamical equations is carried out. In particular 

the problem of the existence of non-trivial q.s.d. is reduced to the positivity of the 

approximants of a continued fraction. 
In Section 6 we present our main results. By using the dynamical equations 

verified by q.s.d. and the moment-generating functions, we show in Theorem 6.1 
that there exist n-q.s.d. if and only if the chain is geometrically absorbed. This 
allows us to obtain in Corollary 6.3 that the condition lim infx,y qx > 2 implies the 
existence of n-q.s.d. 

In Theorem 6.4 we show that the condition 

lim sup (1 - qx-_)qx < 4 
X- >oo 

implies that there exist non-trivial q.s.d. Our proof uses a result of Scott and Wall 
(1940), Wall (1967) on continued fractions. The method was used earlier by Callaert 
and Keilson (1973) to study a similar continued fraction that appears in the study 
of continuous-time birth and death processes with natural boundaries. We remark 
that there exist q.s.d. which are not normalized, in fact our analysis made after 
Proposition 5.4 shows that the random walk with 0<q < possesses non-trivial 
q.s.d. which are not normalized. 

2. General definitions and preliminary results 

Let X(n) be a homogeneous Markov chain on the denumerable or finite state 
space S = {0} U S*. We assume its transition probabilities p(y, x) = P(X(x + 1)= 
x X(x) = y) satisfy the following hypotheses: 

(2.1) p(0, 0)= 1, i.e. 0 is an absorbing state, 

(2.2) P* = (p(x, y) :y, x E S*) is an irreducible matrix, 

(2.3) Vx E S the set {y E S :p(y, x) > 0} is finite and non-empty. 

Let v be an initial distribution concentrated in S*. We denote by 

Vn)() (X(n) =x) 

Pv(X(n) 0) 

the conditional probability of being at time n in site x e S* given that the process 
has not been absorbed at 0, starting from v. We remark that assumption (2.2) 
implies that PIF(X(n) 0) 0 O for any n e S*. 

Definition 2.1. If limnoo v(n)(x) = ,u(x) exists for any x E S* and EXEs- (x) = 1, 
then the probability measure , is called the Yaglom limit of v. 
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Let us remark that from the forward equations 

P (X(n) = x) = lP,(X(n - 1) = y)p(y, x), 
yeS* 

Pv(X(n) ) 0) = P,(X(n - 1) 0) - F P(X(n - 1) = y)p(y, 0) 
yeS* 

we easily deduce the following relation: 

(2.4) v(n(x) = E v(n-l)(y)(p(y, x) + p(y, 0)v()(x)). 
yES* 

From condition (2.3) the sum in the right-hand side of (2.4) is over a finite number 
of terms, therefore the limit n - oo and the sum can be interchanged. Hence, if p is 
the Yaglom limit of some probability measure it must satisfy the relations 

(2.5) Vx E S*: t(x) = > g(y)(p(y, x) + p(y, 0)i(x)), 
yeS* 

(2.6) Vx E S*:L(x) 0, 

(2.7) E (x)=1. 
XES* 

Irreducibility condition (2.2) implies that any Yaglom limit p verifies (x) > 0 for 

any x E S*. In fact if ,p(x) = 0, Equation (2.5) implies y(y) = 0 for any y E S* such 
that there exists a sequence x0 = y, xl, * * *, xn, xn+1 = x in S* satisfying p(xi, xi+l) > 
0 for every i = 0, * * *, n. 

Recall that if p verifies Equations (2.5), (2.6) and (2.7) above then pl(n) = - for all 
n > 1. Hence the class of Yaglom limits coincides with the set of t's verifying (2.5), 
(2.6) and (2.7). An element of this set is called a normalized quasi-stationary 
distribution (n-q.s.d.); the set of all of them is denoted by ~9. We also adopt the 
terminology of Cavender (1978), who uses the term quasi-stationary distribution 

(q.s.d.) for those M's satisfying Equations (2.5) and (2.6). The trivial measure =-0 
is the trivial q.s.d.; any other q.s.d. p satisfies p(x)>0 for any x S*. The set of 
all q.s.d. is denoted by 9. 

The first time of absorption is denoted by T = inf n :X(n)=0}, and for any 
probability measure v on S* we set 

(2.8) y(v) = 1 - > v(x)p(x, 0) = P,(To > 1) = PV(X(1) 0) 
XES* 

for the probability of not being absorbed at 0 in one step. Obviously y(v) e (0, 1). 
With this notation we can write Equation (2.5) as 

(2.9) MP* = 7(). 

Let us prove that a necessary condition for the existence of n-q.s.d. is that the 
chain is geometrically absorbed at 0. This last means that 338 < 1 such that Vx E S*, 

798 



Existence of non-trivial quasi-stationary distributions 

(1 - pn)) Bn". This property is equivalent to 

(2.10) 3 > 1 such that Vx e S*:nEx(AT) < oo. 

We have the following result. 

Lemma 2.2. If l is an n-q.s.d. then To is geometrically distributed with parameter 
y(/l) when the initial distribution is ,u. In particular 

1 A(1,- y()) 
(2.11) VA < (, E,(A')= 

y(A) 1- ,-y(F) 

Proof. Let ,p be an n-q.s.d. Call f,(n) = Pi,(X(n) # 0). We have 

f,(n+m)= E PF,(X(n) =x)I(X(m) O) =f(n) ()(x)x(X(m) O). 
xES* XES* 

Since M(n)= p we deduce that ExES* (n)($x)Px((m) 0) =f,(m). Hence f,(n + 
m) =f,(n)f,(m), so f^(n) = (f())n. Since f(l) = y(il), we conclude that for any 
n-q.s.d. Iu, Vn e N , P,(X(n) 0 O) = y(u)n. 

Since P,(X(n) O)=P,,(To>n), the last result means To is geometrically 
distributed with parameter y(AM). 

Hence we get the following. 

Corollary 2.3. A necessary condition for the existence of n-q.s.d. is that the chain 
is geometrically absorbed at 0, i.e. for some A > 1 we have Vx E S* ExE(AiT) < o. 

Proof. Since any n-q.s.d. ,i is strictly positive we have that 

1 1 
(2.12) VA < () Vx E S*:Ex(ATO?) ( ) E(ATo)< C. 

Remark. It can be proved from the last result that the domain of attraction 
of any n-q.s.d. bi with y(/1) non-minimal is not reduced to a singleton. In fact, if 

ui, L' are n-q.s.d. with y(s) > y(p') and v is a probability measure on S* satisfying 
one of the following conditions: 

3C>0 such that Vx E S*:lv(x)- g(x)l _ CY'(x), 

30 < r1 < 1 such that Vx E S*: v(x) = r(x) + (1 - rl)'(x), 

then v( n ,, > geometrically fast (see Ferrari et al. (1991)). 

3. Birth and death chains 

We consider a discrete-time birth and death chain X(n) with absorbing state 0. 
The Markov chain takes values on N = {0} U J* and its transition probabilities are 
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given by 

(3.1) p(O, 0)=1, 

2 Vy E N*:p(y, y - 1) = 
qy, py, y + 1) =pY, p(y,y)=1-(py + qy), 

with qy,py>0 and py+q_ .1 

This transition matrix (p(y, x)) satisfies conditions (2.1), (2.2) and (2.3). 
For the birth and death process, starting with an initial measure ip concentrated on 

N* the probability of not being absorbed in one step is y(p) = 1 - M(l)q1. In this 
case the system of equations (2.5) takes the form 

(3.3) Vy E N*: (p, + qy)p4y) = qy+1M(y + 1)+ p,y-IM(y - 1) + q1s(l)1)y(y). 

Based upon Lemma 2.2 we can establish the following characterization of n-q.s.d. 

Proposition 3.1. A probability measure ps is an n-q.s.d. for the birth and death 
chain if and only if the absorbing time T( has a geometric distribution when the initial 
measure is M. 

Proof. From Lemma 2.2 the condition is necessary; let us show that it is also 
sufficient. From the proof of Lemma 2.2 we get that any probability measure Mi 
verifies 

,(X(n + m) #0) = l'(X(n) #0) I jt#0)(x)P(X(m):AO). 
XEN* 

The hypothesis implies FP,(X(n) # 0) = (1 - Mg1)q )n. So 

Vn E N*:(1 - y41)q1) = E M (n)(X)pX(X(j) 0). 
XERJ* 

This is 

1 - Ms(l)ql = (n)~(1)(1 - q1)+ > Ui(n)(x) = M(n(1)(1 - q1) + (1 - ( 1) 
x>1 

Then it follows that Vn E R*, Mi(n)(1)= -(l). 
Let y ?2. Assume we have shown that Vn E N *, M (n(x) = M(x) holds for any 

x < y. For n E N J write (with the convention po = 0): 

M(ny - 1)= qy,j(n1)(y) + (1 -p,--1 - qy- )p (nl) - 1) (Y + Py-2Y2 
- 

l) (y - 2) 
+ ~(n-l)(j),(n)(y-1) 

Then by the induction hypothesis we deduce 

ts(y - 1) = qy,~(n-1)(y) + (1 -p-Py- qy1)Pt(y - 1) +py-2A.(Y -2) + qjM(1)M(y - 1). 

This implies that Vn E J*, M (n)(y) =(y). 

From Lemma 2.2 we get that n-q.s.d. have at least exponential decay. 

Proposition 3.2. If M is an n-q.s.d., then VX E N*, x) y(M( )(Xl)* In particular, 
the moment-generating function of Ms, ( Al"s(n), is finite if A < 1<y(p). 

800 



Existence of non-trivial quasi-stationary distributions 

Proof. We have PD(X(n) 0) - (1/l(x))P,(X(n) 0) = (1/P(x)))y()" . Since 

P(X(x - 1) # 0) = 1 we get the result. 

Now, if /t is a non-trivial q.s.d. we have i(1) > 0 and we deduce from (3.3) that 
x 1 

(3.4) > 8(y) = 1 - 1 (qx+l)(x + 1) - pxl(x)). 
y=-1 t(1)ql 

Therefore if , is a non-trivial q.s.d. such that ,l(x) xo > 0, then p is a probability 

measure, that is, an n-q.s.d. So, as mentioned by Cavender (1978), any q.s.d. / 
satisfies either yeyr* /(y) = 0, or 1, or oo. 

We have the following necessary conditions. 

Proposition 3.3. If there exist n-q.s.d. then 3Ai > 1 such that E1(XTO)< oo; and if 
there exists q.s.d. of infinite mass then IE(To) = oo. 

Proof. The first part is Corollary 2.3. Now assume there exists a q.s.d. ,t of 
infinite mass. Let xo be such that Exy0= (y) > 1. From equality (3.4) we deduce that 
for any x > x we have qx+1\(x + 1) - px(x) < 0, so 

(x+)' PX (X)y(l 
PY 

)Y(xo). 
qx+l y =xoqy+l 

Then 

E 8(X + 1) ' E f PY )8(X0) 
X>xo x>-xo =x- oqy+l 

Since Ex-o u(x + 1)= oo we deduce that 

x_l(yI =1 qy+l: ) 
Now if PIF(To < ) < 1, there exists a positive mass of To at 0, so, E1(To) = O. On 

the other hand if PI(To < o) = 1 the necessary and sufficient condition in order that 

El(To) = oo is 

x y1 Pyql y+l)= 

(Karlin and Taylor (1975), Theorem 7.1). Hence the result. 

Corollary 3.4. If a birth and death chain has non-trivial q.s.d. then all of them are 
probability measures or all of them are of infinite mass. 

4. Birth and death chains: dynamical systems associated to q.s.d. and to 
moment generating functions 

The birth and death chain we consider is assumed to satisfy conditions (3.1) and 
(3.2). 
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Lemma 4.1. A sequence ,u = (pt(x):x e N*) of non-null terms satisfies the system 
of equations (3.3) if and only if for some y =p1 + q1 it is equal to the sequence 
,ur = (py,(x) :x E N*) constructed as follows: 

(4.1) My(1) =- (1 + q4 - Z,(1)) 

(4.2) Vx > 2: -(x) = (1) (ZyY ) 
y=l \ qy+i 

where the sequence (Zy(y):y E N*) is constituted of non-null terms that satisfy the 
conditions 

(4.3) Z(1)= y, 

(4.4) y _ 2: Z(y) = f,y(Z,(y - 1)) 
where 

(4.5) f/.y(Z) = Y + py + qy -P1 - q -p 
z 

Proof. Assume p is a sequence of non-null terms and satisfies (3.3). Call 
y=p +q?-ql-q(1). Now any u(x) is a function of y and the vector 

(P..., , -1, q1, * , q). We set 

(4.6) z (y) = + 
P(y) 

The equation (3.3) for y = 1 is equivalent to Zy(1) = y, and for y '2 it can be 
written 

P(y) ((y) \ ( + 1) g y) 
p(l)qj ( y_ ) qy ,(( py- 1)qy-,p(y ) -qy+l-py (y) qy' 

or equivalently p(l)q1Z(y - 1) = (Z(y - 1)-py_)qy - (Zy(y) -py)Zy(y -1). 
Hence Z,(y) =ff,y(Z,(y - 1)), with f,y (z) satisfying (4.5). From (4.6) we deduce 
property (4.2). 

Reciprocally assume (Zy(x):x e N*) is a sequence of non-null terms satisfying 
conditions (4.3), (4.4) and (4.5) and p = p, is defined by (4.1) and (4.2). Then any 
term of y is non-null, and we shall prove that it satisfies the system of equations 
(3.3): from (4.1) and (4.2) for x = 2 we get the equality: 

Zy(1)= q2 = -(l)q, +pi + ql, 

which is equivalent to Equation (3.3) for y = 1. Analogously (4.4) and (4.5) imply 
that Equation (3.3) is also satisfied for y > 2. 
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Existence of non-trivial quasi-stationary distributions 

According to Lemma 4.1, in order to prove the existence of a non-trivial q.s.d. it 
suffices to exhibit strictly positive solutions for the dynamical system given by (4.4) 
and (4.5) with initial condition (4.3). Let us assume for simplicity that 

(4.7) Vy E N*:py + qy = 1. 

Then the dynamics (4.4) and (4.5) can be written as 

?Vy-2:Zy(y)=f ,y(Z,(y-1)) with fy,y(z)= y - qy l)qy z 

with initial condition Zy(1)= y, for y 1. Remark that parameter y defined in 

(4.1), (4.3) corresponds to y(p) defined in (2.8). 
From the condition 

p(2)= (1l) ZY() 0 
q2 

we deduce that y 4 0, 1. Now let us make the following change of variables: 

(4.8) Vy E N*: Wy,l(y) = () assuming y 0. 

Then we can write our last result in the following form. 

Proposition 4.2. Assume Vy e J* :py + qy = 1. Then a non-null vector i = 

(,(x) :x e FN*) satisfies the system of equations (3.3) if and only if for some y + 0, 1 
it is equal to the vector ,y = (jy(x) :x E IN*) satisfying: 

(4.9) M(l) =-(1 - 7) 

(4.10) Vx 2:, (x) = y(1-1 Wyl(y) 
y=l qy+l 

where (Wy ,(y):y E N*) is a non-null sequence satisfying 

(4.11) W, (l) = 1 

(4.12) Vy 2: W, 1(y) = g,y(W,I(y - 1)) 
with 

(4.13) g,(w) = 1l- y 
y2w 

Proof. It is direct from (4.8) and Lemma 4.1. 

When y = 1 we set l =0. This follows from (4.9). But notice that the evolution 
given by (4.11), (4.12), (4.13) is non-trivial for y = 1. 
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We are interested to find conditions for existence of non-trivial q.s.d. Since we 
must necessarily have ,y(1) > 0, iy(2) > 0, from Equations (4.9) and (4.10), this last 
one evaluated at x = 2, we deduce that y< 1 and y()(l)yW,yi(1) = ,v(1)y >0. 
Therefore a necessary condition is 

(4.14) 0<y<1. 

Hence there exists a non-trivial q.s.d. if and only if for some 0 < y < 1 we have that 
the sequence (Wy,(y):y E N*) determined by (4.11), (4.12) and (4.13) is strictly 
positive. 

We shall study the class of such sequences and find conditions on vectors 
q = (qx :x E N*) implying that they are strictly positive. 

Definition 4.3. Let y e (0, 1], r E (0, 1]. We denote by Wy,r = (Wy,r(x):x E F*) the 
vector given by the following equalities (recall 1/oo = 0, 1/0 = oo): 

(4.15) Wr(1) = r, 

(4.16) Vx > 2: W,r(X) = gyx(W,r(x - 1)) 

with gy,x(w) the transformation introduced in (4.13). 

Now we shall prove that the sequence of moment-generating functions of the first 
time of absorption, starting from x F*, belongs to the class of sequences 
introduced in the last definition. 

Recall that the birth and death chain is geometrically absorbed at 0 if 

(4.17) 3A > 1 such that Vx E N*: Ex(AT) < c. 

Remark that the last condition holds if for some A > 1: El(A?T) < oo. 
We denote by A1 the supremum of the A satisfying (4.17). We set y = 1/A and 

y = 1/A1. Write Fy(x) = Ex(y-To). Therefore, for any y > ?, x E J, we get Fy(x) < oo. 
We have Fl(x)= 1 for any n E N, and F,(0)=1 for any y>y. Also Fy(x)= 

En=x Y-np(To = n). 
Consider the forward equations: 

Vx E N*: PD(T( = n) = (1 -Px - qx)Px(T = n - 1) +xx+l(To = n - 1) 

+ qxPx-((, = n - 1). 

Multiplying the above equality by y-" = (l/y)y-(n-) and summing over all n >x we 
obtain 

1 
(4.18) F,(x) = ((1 -x - qx)F,(x) + pxF(x + 1) + qxF(x - 1)). 

These equations imply that if Fy(1) < oo then Fy(x) < o for any x N*. 
Now assume condition (4.7) holds: Vx e N*, p, = 1 - qx. Then 

(4.19) 

804 

Vx e N*: yFy(x) = (1 - qx)Fy(x + 1) + qxFy(x - 1). 



Existence of non-trivial quasi-stationary distributions80 

Define 

(4.20) V-yE (?,lI, X EN*:%,y(x) =!F(x + 1) (1qx). 
y F, (x) 

Hence Equation (4.19) can be written as 

_ ~~~~~2 U_(l-q 1)q 

i.e. t5U7(x) = g,,x(91,(x - 1)), where g~,,(x) is the same function that we have 
introduced in (4.13). We have 

(4.22) V-y E(?,lI1:9y(l) =1 -q,(1 

Since Fy(l) > (1lIy)q,, the initial condition satisfies 

(4.23) V'y E (?, 11: r). = V%,(1) E (0, 1). 

Hence with the notation of (4.15), (4.16) and (4.13) in Definition 4.3, we have 

(4.24) Vy E (~, 11: qty(X) = Wy,4,X). 

Proposition 4.4. Assume j' < 1, where ? is the infimum of the values y < 1 such 
that IFy(1) = El(y-TO) < oo. Then the sequence of moment-generating functions 
F, (x) = E. (y -To) < o satisfies 

(4.25) V-y E (~, 1], x ?:~ 2 Fy (x) = Fy(1)y~ H": WlYr(Y) 
y= i(I-q ) 

Proof. From the analysis made and equality (4.20). 

Proposition 4.5. If My(x) and Fy(x) exist for any X E N* then 

VX E RJ*: M,(X)F,(X)O = 1 (WY, I(x) -WYr,) 

Proof. For x ?_>2 we have 

WY, (x) - Wy,,~(X) =9g'X(W),,(x 1)) - 9YXWYr( - 1)) 

By induction we deduce 

(72)X y=1 WYI1(y) Wyr'(y))W1l 

From expressions (4.10) and (4.25) we find: 

W I( - WY =, (X-,1F 
1 

W,(1) - W',.rM()) 
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Now 

y(l)Fy(1)(Wy(l) - Wy,ry(l)) = (1 - y)Fy(l)- 1 -) = 

The result follows. 

5. Analysis of the dynamical equations 

We are interested in obtaining conditions, in terms of y, r, q, which allow us to 
assert that the sequence Wy,, introduced in Definition 4.3 is a strictly positive real 

sequence. To simplify notation we do not make explicit the dependence of W,r and 

gy,x on the vector q. 
Remark that for all applications concerning q.s.d. we must take y E (0, 1) (see 

(4.14)). But the analysis of y = 1 will help us to understand the problem of existence 
of positive solutions for y E (0, 1). 

The function gy,: (0, oo]- (-oo, 1] introduced in (4.13) is onto, one-to-one and 

strictly increasing. So its inverse g1: (-oo, 1]-(0, oo], which is given by 

(5.1) gyx(w)= y2(1-_w) gy-,X(W) 2(1 _ W) 

satisfies the same properties. 
Consider the following quantities 

(5.2) Vy x '2:hy(x, y) =gy o...ogy gy(0). 

Lemma 5.1. Let y E (0, 1], r e (0, 1]. Then W,r(y) > 0 for any y E hm* if and only 
if the following conditions are satisfied: 

(5.3) Vy - x 2: h(x,y)<1, 

(5.4) Vy - 2: h(2, y)< r. 

Proof. Let us assume W,,r(y) >0 for any y E N*. From the definition of gy., in 

(4.13) we must necessarily have: 

(5.5) for y >2:0< Wy,r(y)< 1. 
SincL y-1y g.y(0) < g, y(W,,(y))= Wr.r(y- 1) for 
Since gy is increasing in (-xc, 1) we deduce () <gy)) = W - 1) for 
y > 3. Therefore, by induction we get 

hy(X y) = gl * * * g(0) < Wy,r(x -1) 

for y 'x ' 3. For x = 2 we find 

h,(2, y) = gy 20 *. g 0) < Wyl)= 
for y 2. 
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Now let us assume that the conditions (5.3) and (5.4) are satisfied. For any 
y = x ?2 we have hMy, y) >0. Assume that for some pair y > x ?2 we have 
h'(x, y) =g(hy(x+1,y))<0. Then by definition of g-, on (5.1) we would 
necessarily have h7(x + 1, y)> 1 which contradicts (5.3). Thus (5.3), (5.4) imply that 

(5.6) 0<h,(x,y) forany y?x?2. 

Therefore 0< g o... og-(0) <r. Since gy,2 is increasing on (0, o) we get 
h,(3, y)=g7Ijo... og_}(0) <g1,2(r) We,r(2). Applying gy,3 to the above in- 

equality implies 0< he(4, y) <g,3(W,,r(2))= Wy,r(3). Therefore by induction we 
have 0 < hy(x + 1, y) < Wy,r(X) for any y?>x + 1 > 2. 

In particular the last lemma shows that if y e (0, 1J, r e (0, 1J and W,r, is a strictly 
positive vector, then W,y, is also strictly positive for any s e [r, 1]. 

Lemma 5.2. Let r E (0, 11. Then the set 

(5.7) Fr = ( 0 E (0, 11: W,,r(y)> 0for any y E R*} 

is either empty or a closed interval [yr, 1] for some Yr E (0, 11. 

Proof. Let us suppose that there exists ' E F,. Take -y E [c, 1]. Since gj(w) is 
decreasing in the set y>0, for some fixed x ?2 and w K 1, we find that 

h,(y, y) g '0) g '(0) = h (y, y) for any y ?_> 2. Since h.(y, y)< 1 the inequality 
is preserved when we apply g7j--1 to it. So, in general, we get h_(x, y) - h-(x, y) for 
any y >x ? 2. From Lemma 5.1 we deduce that y E Fr, SO Fr is an interval [Yr. 1] 
where Yr = inf Fr. We cannot have Yr= 0 because for y positive small enough we 
would find hy$2, 2) > 1, SO Yr > 0. 

Now let us prove that the interval Ir is closed. Remark that 

(5.8) for all y ~ x>2 we have H(x,y)=suph,(x, y)<1. 
yEP, 

In fact if for some y ? x >2 we would have H(x, y) 1, then for any E >0 there 
would exist y E Fr such that hy(x, y)> 1 - E. Since g -1 (w) increases to oo when w 
increases to 1, for some y E Fr we would have hr(x - 1, y) = g7,(h,(x,y)), 
contradicting the fact that YE 1r. 

Then, by continuity of g, on y > 0 and since h,(x, y) < H(x, y) < 1 for any y > Yr 
we deduce hl,(x, y) _ H(x, y) < 1 for any y > x > 2. Now by continuity we deduce 
also that hYr(2, y) ? r for any y 2. Assume for some y ?2 that we have 

h,y(2, y) = r. We have 0< g-%?1(0) K 1 so if y \ 3 we get g-,(0) Kg-'40) 
gI+ 1 (0). By induction h (3, y)< h ,(3, y + 1) < 1. Then hyr(2, y) Kh,(2, y + 1) 50 

h,y(2, y + 1) > r, which is a contradiction. So Yr E Fr. 

Lemma 5.3. For fixed r e (0, 1], X E *, the function Wy,r(X) is increasing in Y E Fr- 

Proof. We prove by induction that 

Vx E N* we have: Y ̀  Y' in Fr implies W_,r(x) Wy,r(X). 

807 



PABLO A. FERRARI, SERVET MARTINEZ AND PIERRE PICCO 

First we have Wy,r(1) = Wy,,r(1). Now assume Wy,,(x') _ Wy,r(x') is satisfied for 

any x' <x. Since y, y' e Fr, these quantities are >0. Let us show that the inequality 
holds for x' = x. Using the definition of gy , it is easy to check that 

g,x(w) '-g_,, (w) -g,x(w') for any 0< y' 1, w' w O0. 

Then 

Wy,r(X) 
= gy x(Wy,r(x 

- 1)) g ,x(Wy,r(x 
- 1)) gy,.x(Wy,r(x 

- 1)) = Wy'r(X). 

Hence the result follows. 

Now let us show that h(x, y) is decreasing for y e rr. We have that gyx(w) 
is increasing for w < 1, when x >2 and y e Fr are fixed, and decreasing for 

yeFr, when x 2 and w<l are fixed. So hy(y,y) =gy(0) is decreasing for 

y E Fr. By induction, if h,(x, y) - hy(x, y) for y < y' E rr, then h,y(x - 1, y) = 

gY X-i(h,(x, y)) < xg-i(h(x, y)) g, _ (h((x, y))= h(x - 1, y). 
Assume y e fr. Since 0< gyy+l < 1 we deduce that h(x, y) _ h(x y + 1), so 

hy(x, y) increases in y. Denote 

(5.9) h(x, oo) = lim h,(x, y). 
y-Xoo 

Now let us write hV(x, y) as an approximant of a continued fraction: 

hy(x, y)= hlx') Y a,(x) 
ah(x + 1) 

1- 
(5.10) 1-_ (x + 2) 

1-ay(y) 

where a,(x) =px_-qx /Y2. 
Now by induction on y -x it can be shown that (also see Wall (1967), Theorem 

11.1, pp. 45-48): 

(5.11) h,(x, y) = (1 - 
-)( (1 + 1 I ) 

I=x m=xPm I 

Hence Fr is non-empty: 

(5.12) Vy>-x_>2:h,(x,y)<l, i.e. leFI 

and 

(5.13) hl(x, oo) = (1- q_)(1-(1 + L(x))-) where L(x)= qm. 
y>x m=xPm 

Recall that a birth and death chain has certain absorption if and only if L(1) = o 

(Karlin and Taylor (1975)), Theorem 7.1, pp. 148-149) or equivalently L(x) = oo for 

any x _ 2. We get the following result. 
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Proposition 5.4. For any r E (0, 1J, a necessary condition in order that there exists 
ye(O,1) such that W,,r(y)>0 for any yEN* is sup-N.(1 -q,)(l-(1 + 

L(x + 1))-') <1. In particular, if the birth and death chain has certain absorption 
this necessary condition is inf q, > 0, x E V. 

Proof. We know that h,(x, y) decreases with y E F,. Therefore for any y E Fr we 
get 

px(l - (1 + L(x + hx= - 1, 2 Px qx 
y2(1 - hl(x + 2, oo)) 

Px-lqx 
- 2( - hy(x + 1, M)) 

=h,,(x + 2, oo) _"< 1. 

Therefore supxEN.(l - qx)(1 - (1 + L(x + 1))-') = 1 would imply that for any 
y E (0, 1) there exists x such that px(l - (1 + L(x + 1))-1)y-2 > 1. So F, n (0, 1) = 0. 

Now, it is easily shown that the non-symmetric random walks, i.e. q, =4 E (0, 1) 
constant for any x E N* such that 4 $ L with 0 an absorbing state, have non-trivial 
q.s.d.s (Cavender (1978)). If 1 >4 > 1 

they are normalized, if 0 < < ' 
they are of 

infinite mass. In the symmetric case, 4 = ', it is easily deduced from (Wall (1967)), 
Theorem 8.2, that there do not exist non-trivial q.s.d. 

Denote by g,,(w) = 1 - ((1 - q)qly2w) the transformation (4.13) for the non- 
symmetric random walk, by g`j- its inverse function and by h7(x, y) = g;j o.. 

g-'(0). By direct computation it is easily shown (also see Wall (1967), Theorem 8.2, 
p. 39) that 

if 4 then for any y E [2V'4( -41] we have 
(5.14) Vyx2 _ 

- x >x 2: h. (xl Y) < 1 

Proposition 5.5. If lim supXE, (1 - qx)qx?+ < $ then there exists y E (0, 1) such 
that Wy,j(y) >0 for any y E VJi. 

Proof. Let k?2 be such that Mk =SUPyk.k(1-qqy--)qy < . Take 4 E (, 1) 
satisfying Mk < 4(1 - 4) and consider the random walk of parameter 4 with 0 an 
absorbing state. Take y e Dk = [2Vq(1 - 4), 1J. 

For any y ? k we have 

_w p= iy 2(14) - y7(w) for any w < 1. 9 Y'Y I-y2(1 - w) y2(1- w) 

So h (y, y) < hy(y, y) < 1. Now take y - 1 ~ k. Since g (w) is increasing in 
w<1 we deduce h,(y -1, y) <g1(h(y,y)) g1(h(y, y)). Then h(y - 1, 
y) < h$(y - 1, y) < 1. By induction we obtain 

(515) foranyyDhVy ?x - k: h7(x, y) < hk(x, y)<1 
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From Lemma 5.1 and (5.15) to end the proof it is enough to prove that 

for some ye(2V/(1l-), 1) and for x=2, **,k-1 
we have Vy> 'x, hy(x,y)<l. 

From (5.15) we deduce that for any y Dk and x k, the continued fraction 

hy(x, oo) exists and satisfies hy(x, oo) 1. Moreover we have 

S sup sup p-lqY) < 
YEDk y\-k 72 

Hence, Worpityky's theorem (see Wall (1967), Theorem 10.1, pp. 42-43, also 
Theorem 18.1, pp. 78-79) implies that hy(k, oo) is continuous when y varies in Dk. 

In particular hy(k, oo) is continuous at y = 1. 
From (5.14) we have h,(k, oo) = (1 - qk-1)(l - (1 + L(k))-l) (1- qk-1). Then 

for any Ek >0 small enough we can find yk E (2\q(1 - q), 1) such that for any 
7 6 [Yk, 1] we have hy(k, oo) 

< 
(1 - qk-1) + Ek. Remark that hy(k, y) < h_(k, oo) < 

(1 - qk-1) + k for any y > k. 
Now, we shall prove (5.16) by induction in a decreasing way. Let x =k-1. 

Evidently we have hy(k -1, k - 1) < 1. Take y [yk, 1]. For y k we have 

h,(k - 1, y) = g<,l-(h(k, y)), and h(k, y) (1 - qk-l) + Ek < 1. So 

h/k /- 1 ' , y)- - g~1((1 - qk-1) + ) = ((1 - qk-2)qk-1 <(1 -qk-2)qk-1 h(k -1, y) <-gy,k-,((1 -qk-) + Ek) = 2(1 2(1_ ( ) + E )) - - _ E ) 
- ((1 - qk-1) + ak)) 7 (qk-1 - Ck) 

Take 0 < ek-l < qk-2. Let yk be sufficiently near to 1 so that Ek is small enough in 
order that order that 

(1 - qk-2)qk-i 
1 

y2 (qk -- < (1 qk-2) + Ek-1 < 1. 
yk(qk-l - Ek) 

Hence (5.16) is shown for x = k - 1. Since ?k_l 0 when Yk- 1, Ek - , we can 

apply the same argument to prove by induction that (5.16) holds, and we get the 
result. 

6. Main results on the existence of q.s.d. 

In this section we obtain the main results concerning existence of q.s.d.s and 

n-q.s.d. for the birth and death chain. This process is defined by a vector 

q = (q :x xE M*) with q, e (0, 1). We assume equality Px = 1 - q Vx eE N* in (3.2) 
and condition (3.1). 

All the notation introduced in previous sections will be used. Using Lemma 5.2 
and the discussion after it we get that the set of q.s.d.s is 

9 = {V: y e (0, 1] such that W, 1(y) > 0 for any y E N*} 

where My is given by (4.9) and (4.10). The set IF is of the form [yi, 1] for some 

yl E (0, 1]. If y = 1 the unique q.s.d.s is the trivial one tl=0, and y< l is 

810 



Existence of non-trivial quasi-stationary distributions 

equivalent to the existence of a non-trivial q.s.d. In this way we have shown that the 
set of q.s.d. is parametrized by y e [yi, 1) with y = 1 - i(l)qj, a result of Cavender 

(1978). Moreover from Corollary 3.4 when there exist non-trivial q.s.d. all of them 
are normalized or all of them are of infinite mass. 

The first result concerning existence of n-q.s.d. is the following. 

Theorem 6.1. In the birth and death chain there exists a normalized q.s.d. if and 
only if the chain is geometrically absorbed at 0. 

Proof. From Corollary 2.3 we get that the condition of geometric absorption 
is necessary. Let us show it is also sufficient. Assume it holds; this means that 

3 > 1 such that x e J*: Ex(AT) <oo 

or with the notation of Section 4: 

30< y < 1 such that Vx E N*: F(x) = Ex(y-T ) < o. 

Now Fy(1) = ry e (0, 1). From (4.25) we deduce Wy,,r(y) > 0 for any y E V*. Then, 
Lemma 5.1 gives 

Vy _> x _ 2, hY(x, y) < 1, Vy _-> 2, hy(2, y) < r, < 1. 

So, y e F1. Hence there exists a non-trivial q.s.d. On the other hand, Proposition 
3.3 allows us to deduce that all the non-trivial q.s.d. are normalized. 

We obtain the following estimation for yi = inf F,. 

Corollary 6.2. If E1(To) < o then yi = y, the infimum of the values y satisfying 
E1(7-T) )< . 

Proof. If yi = 1, then there does not exist non-trivial q.s.d., so = 1. Suppose 
yl < 1. Since E(To)< o we deduce the result from Proposition 3.3 and the last 
theorem. 

Also from Theorem 6.1 we get the following. 

Corollary 6.3. If lim infx,o. qx > then there exist n-q.s.d. 

Proof. The hypothesis implies the finiteness of E1(y-T"), so the last theorem gives 
us the result. 

An explicit condition for the existence of non-trivial q.s.d. is the following. 

Theorem 6.4. If lim supx_, (1 - qx- )qx < l then there exists a non-trivial q.s.d. 

Proof. In fact a necessary and sufficient condition for the existence of a 
non-trivial q.s.d. is the existence of 0< y < 1 belonging to Fl. Then Proposition 5.5 
implies the result. 

Remark. The constant ? in Theorem 6.1 cannot be sharpened. In fact, the 
symmetric random walk, qx = 2, for any x e N*, does not have a non-trivial q.s.d. 
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Also remark that the conditions lim supx,. (1 - qx-)qx < and lim supx_, qx < 

imply that there exists a q.s.d. of infinite mass. 
From Proposition 5.4 we get the following necessary condition. 

Proposition 6.5. If the birth and death chain has certain absorption then a 

necessary condition for the existence of a non-trivial q.s.d. is infx,* qx > 0. 

Proposition 6.6. If yli -y<y' then the associated q.s.d. is exponentially 
divergent: 

(6.1) (x - - 00 

Proof. Consider the expressions (4.9), (4.10), i.e. uy(l) =(l/ql)(1-y) and 
Vx-> 2: 

x--1 x-1 1 
M,(x) = iy(1)yX-1 H W, l(y) H 

y=l y=l qy+l 

So, 

t','(X) (ly ) 1y Ax-I 
x 

w 

,y(X) (1 - ) y y= Wy,1(Y) 

From Lemma 5.3 we deduce Wy,, (y) > Wy (y), then the result. 

This gives further insight on Corollary 3 proved by Cavender (1978), which asserts 
that if y -< y < y' then M,i,(x)/l,(x)-> o. 
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