
Rev. Mat. Apl. 12:93-102 Revista deMatem�atias Apliadas1991 Universidad de ChileDepartamento de Ingenier��a Matem�atia
ERGODICITY FOR A CLASS OF PROBABILISTICCELLULAR AUTOMATAP.A. FERRARIInstituto de Matem�atia e Estat��stiaUniversidade de S~ao PauloCx. Postal 2057001498 S~ao Paulo, Brasilpferrari�brusp.bitnetAbstratWe study a lass of probabilisti ellular automata (PCA)whih inludes majority vote models, disrete time Glauber dynam-is and ombinations of these proesses with mixing dynamis. Wegive suÆient ondition for the ergodiity of the proesses. Themethod is based on a graphial representation and the onstrutionof a \generalized dual proess".AMS Classi�ations: 60K35.Key Words: Probabilisti ellular automata, ergodi systems,generalized duality, graphial representation.1.- IntrodutionA probabilisti ellular automata (PCA) is a disrete time Markovproess �n in the state spae X := f�1; 1gZZd . At eah time n the spin atsite x; x 2 ZZd is updated aording to a random rule that takes aount ofthe on�guration at time n�1 in a �nite neighborhood of x. The rule an betime dependent, for instane when spins belonging to di�erent sublattiesare updated at di�erent times. A measure � on X is alled invariant if �nhas distribution � implies that also �n+1 has distribution �.A PCA is alled ergodi if there exists only one invariant measure �and starting from any measure the system onverges to �. The study of93



94 Pablo A. Ferrariergodiity is one of the most relevants problems in systems with in�nitelymany omponents. The �rst suÆient ondition for ergodiity of spin ipproesses was given by Dobrushin [3℄. There are many papers dealing withsystems that aept as invariant and reversible the Gibbs states of statistialmehanis. There is a lose onnetion between the lak of ergodiity of thesystem and the existene of more than one Gibbs state for a given potential(phase transition). This is reviewed in [13℄ for interating partile systems,the ontinuous time version of PCA. We refer to [6℄ and [14℄ for reviewsand examples of PCA. The sovieti literature is being reviewed in [18℄.The aim of this paper is to illustrate the use of what we all generalizedduality to prove ergodi properties for PCA. It extends the notion of dual-ity, a tehnique introdued in interating partile systems. In words dualityonsists in expressing funtions of the on�guration at time t depending onoordinates in a �nite set A by loal funtions of the on�guration at timezero depending of a �nite set At. The proess admits a dual if At is Markovand the set of funtions for whih this is possible generates the ontinuousfuntions on X. Using duality one transforms a problem that originally hasin�nitely many omponents in a problem depending only on a �nite numberof oordinates. This has been largely developed for proving ergodi proper-ties for the simple exlusion proess, voter models, anellative systems andGlauber-type dynamis. The standard referenes are Gri�eath [11℄ Liggett[13℄ Gray [8℄ and Durrett [4℄.Nevertheless not all the proesses aept a dual. We show that it is pos-sible to give suÆient onditions for ergodiity of any system by onstrutinga generalized dual proess. This proess is not Markovian in general. Theonstrution that we present here appeared �rst for ontinuous time in [2℄for the study on the hydrodynamis of Glauber-Kawasaky dynamis and in[5℄ for the study of ergodiity of those proesses.2.- De�nitions and ResultsA probabilisti automata is a disrete time stohasti proess on thestate spae X := f�1; 1gZZd . We study two types of dynamis: spin-ip andmixing.The spin-ip dynamis is represented as follows: let � 2 X be a givenon�guration. De�ne G� as the random on�guration with distributiongiven by P (G�(x) = ��(x)) = h(x; �)P (G�(x) = �(x)) = 1� h(x; �) (2:1)for all x 2 ZZd where the funtion h depends on a �nite set of oordinatesRx and satis�es 0 � h(x; �) � 1. Furthermore, for �xed �, the randomvariables fG�(x)gx are mutually independent.In order to represent the mixing dynamis, let fVigi2I be a partitionof ZZd, where all the V ;i s have a uniformly bounded number of elements:



Ergodiity for a Class of Probabilisti 95jVij � v 2 IN , for all i. For a given on�guration �, we de�ne M�, theon�guration obtained when the spins in eah of the Vi are permuted insome �xed way. More preisely, if for eah i; qi : Vi ! Vi is a bijetion, wede�ne, for x 2 Vi, M�(x) = �(qi(x)): (2:2)where 1f�g is the harateristi funtion of f�g. This is a deterministi (norandom) dynamis.The mixing dynamis an also be random. To de�ne that, onsider,for eah Vi, a family of permutations (bijetions) qi;j ; j 2 J , and de�ne therandom on�guration M� with distribution given by:P [M�(x) = �(qi;j(x)); for all x 2 Vi℄ = pi;j; (2:3)where, for eah i; pi; : is a probability over J , and the random vetorsfM�(x); x 2 Vigi are mutually independent.We also onsider ases where more than one rule an be applied sues-sively. For instane, ifG1 and G2 are as in (2.1), we may onsider G = G1G2.The same is valid for the mixing rules.We de�ne the spin ip mixing automata �n, as the Markov proess onX with the following probability transition funtion:E(f(�n)j�n�1 = �) = E(f(GM�)): (2:4)2.1.- ExamplesPure noise. This is the simplest dynamis. All spins ip independently.The ip probability is given by h(x; �) = �for all x; �.Nearest neighbors voter model. For this modelh(x; �) = 12d Xe:jej=1 j�(x)� �(x+ e)j2in suh a way that the probability of ipping the spin at x is proportional tothe number of nearest neighbor sites with opposite spin. This system is notergodi. It has at least 3 invariant measures: Æ1; Æ�1, and 12Æ�1+ 12Æ�2 , where�1(x1; :::; xd) = 1 (respetively �1) ifPxi is even (odd) and �2(x1; :::; xd) =�1 (respetively 1) ifPxi is even (odd). The last measure reets the fatthat in this model there are two independent spae-time sublatties.Deterministi majority vote model. In this aseh(x; �) = 1f Xe:jej=1 j�(x)� �(x+ e)j2 > dg



96 Pablo A. Ferrariin suh a way that the spin ips if the majority of its nearest neighbor siteshave the opposite spin. This proess has lots of on�gurations that areinvariant.Majority vote model. This is the model resulting when the deterministimajority vote model rule and the pure noise with parameter � are appliedsuessively. This model was widely studied by Gray [9℄, [10℄. The majorityvote model is expeted to be ergodi in one dimension and to be not ergodiin two or more dimensions.Glauber dynamis. We all Glauber any dynamis that has as reversiblemeasure a Gibbs measure. There is a parametrized family of Glauber dy-namis for any Gibbs measure. As an example onsider the nearest neighborferromagneti Gibbs measure. It is de�ned using the onditional probabili-ties�(�(x) = �(x); x 2 F j�(x) = �(x); x =2 F ) = Z�1(�) expf�Xx;y �(x)�(y)g;where � is a parameter (the \inverse temperature") and the sum runs overthe set f(x; y) 2 ZZd : x 2 F � ZZ; jx � yj = 1g; F is any �nite set.The normalizing onstant Z(�) makes � a probability. De�ne H(x; �) :=Pjej=1�(x)�(x+ e). Let h(x; �) be a funtion satisfyingh(x; �)h(x; �x) = expf�H(x; �x)gexpf�H(x; �)g (2:5)where �x(z) = ��(z) if z 6= x��(z) if z = xNow, onsider the rules G1 and G2 (odd and even) de�ned byP (G1�(x) = ��(x)) = h(x; �)1fx is oddgP (G2�(x) = ��(x)) = h(x; �)1fx is evengwhere x = (x1; :::; xd) 2 ZZd is odd (even) if �xi is odd (even). Then theproess �n de�ned by �n+1 = G1G2�n is a Glauber dynamis. The readeran also hek that the simultaneous updating of all the spins does not giverise to a Glauber Dynamis. The funtion h an be hosen in many ways.The most famous are Gibbs sampler:h(x; �) = expf�H(x; �x)gexpf�H(x; �)g+ expf�H(x; �x)g (2:6)and Metropolis:h(x; �) = � 1 if H(x; �) < H(x; �x)exp �fH(x; �x)�H(x; �)g otherwise



Ergodiity for a Class of Probabilisti 97Nearest neighbors deterministi mixing. We de�ne this dynamis inone dimension. Extensions to more dimensions are immediate. De�ne V 1i =f2i; 2i� 1g, i 2 ZZ; q1i (x) = nx+ 1 if x = 2i� 1x� 1 if x = 2i (2:7)and V 2i = f2i; 2i+ 1g,q2i (x) = nx+ 1 if x = 2ix� 1 if x = 2i+ 1 (2:8)and let M1 and M2 be the orresponding rules as in (2.2). Then de�ne�2n = M1�2n�1, �2n+1 = M2�2n. This dynamis is the disrete analogousof the free gas with two veloities. Spins starting at even sites move at speedone while those starting at odd sites move at speed �1.There exists a simple program that simulates the above models andothers for p ompatible miro omputers [16℄.Let r = supx jRxj; (2:9)where Rx is the set of oordinates determining h(x; �), de�ned in (2.1). Letk = infx inf� minfh(x; �); 1� h(x; �)g: (2:10)Intuitively k is the minimun between the probability of ipping and theprobability of staying. Sine those probabilities sum one, k � 12 .We say that a proess is exponentially ergodi if for any ylindri fthere exist positive onstants �1 = �1(f) and �2 suh that jEf(�n)��f j ��1e��2n. In the next Theorem �1 is proportional to the number of sitesdetermining f times the in�nite norm of f .Theorem 2.1. Let �n be a spin ip mixing automata as de�ned in (2.4).If r(1� 2k) < 1; (2:11)then the proess is exponentially ergodi for any mixing dynamis M . Ifequality holds in (2.11), then the proess is ergodi.Notie that in (2.11) the maximun probability of ipping is ontrolledas well as the minimun. Otherwise a proess with big probability of ippingould be not ergodi. An extreme example in this diretion is the proessin whih all spins ip simultaneously with probability one.The Theorem is proved in the next setion.



98 Pablo A. Ferrari3.- Graphi Representation and DualityIn order to represent graphially the proess, we rewrite (2.1) partition-ing X in subsets Ai with onstant h(x; �):h(x; �) = pXi=1 ai(x)1f� 2 Ai(x)gwhere the ai's are nonnegative ordered onstants suh that if � 2 Ai(x) thenh(x; �) = ai. The Ai(x)'s are ylindri sets depending on � only through Rxand for eah x, fAi(x)gi is a partition ofX. The number of terms of the sum,p = p(h(x; :)), is at most the number of parts of Rx; supx jRxj � r < 1.Assume that the ylindri set Ai(x) � X depends on the set Fj(x) � Rx.The proess will be onstruted in the semi-spae ZZd � ZZ+, where thelast oordinate represents time. Now denote a0 := k, de�ned in (2.11) andagrupe terms to geth(x; �) = k pXi=1 1f� 2 Ai(x)g+ pXi=1(ai(x)� k)1f� 2 Ai(x)g= k + pXi=1(ai(x)� ai�1(x))Xj�i 1f� 2 Aj(x)g: (3:1)
In other words, with probability k the spin at x ips without regarding atthe on�guration �. It follows from the de�nition of k that with at leastprobability k the spin at x stays the same.Graphi onstrution of the proess. To eah point (x; n); x 2 ZZd,n 2 ZZ+ assoiate a random variable I assuming values i = Æ+; Æ�; 1; : : : ; p,de�ned by P (I(x; n) = Æ+) = P (I(x; n) = Æ�) = a0P (I(x; n) = i) = ai(x)� ai�1(x); 1 � i � p: (3:2)Assume that fI(x; n)g are mutually independent and let (
;F; P ) bethe probability spae induzed by this family. Let fi(x; n) : x 2 ZZd; n � 1gbe a realization of these random variables.We onstrut the proess by indution. Suppose known �n, the on�-guration at time n. Then, the (random) on�guration at time n+1 is givenby �n+1(x) = 8><>:+1 if i(x; n+ 1) = Æ+;�1 if i(x; n+ 1) = Æ�;��n(x) if �n 2 Aj(x); for some j � i(x; n+ 1);�n(x); otherwise. (3:3)



Ergodiity for a Class of Probabilisti 99It is not diÆult to see that the proess de�ned this way has distributiongiven by (3.1).Constrution of the dual proess. The generalized dual of the proessis a marked branhing struture onstruted in the spaeZZd � fÆ; 1; : : : ; pg � ZZ+ (3:4)Assume that in the time interval [0; t℄ we have a realization i(x; n) of therandom variables I(x; n), 0 � n � t. Reverse the time, alling m = t � n.Let D be a subset of ZZd. This set is the \base" of our branhing struture.It is the projetion of the struture at time n = 0. Suppose that we knowthe struture in the time interval [0;m℄. Call Dm its projetion at time m.Then, at time m+ 1, the projetion of the struture is given by:Dm+1 = [x2Dm [j�i(x;t�m)Fj(x)where we use the onvention that, if i(x; t�m) = Æ�, then[j�i(x;t�m)Fj(x) = �.The knowledge of the struture DDm; 0 � m � t; plus the marks i(x; t�m); x 2 Dm; 0 � m � t allows us to reover the on�guration �t in theset D, as far as the initial on�guration � be known in the set Dt. Notiethat Dt an be the empty set. In this ase the on�guration �t in D doesnot depend on �0 = �. The struture an be desribed formally. Let i(x; n)be a realization of the random variable I(x; n). Then the generalized dualproess is D̂D[0;t℄ = f(m;x; i(x; t�m); DDm) : x 2 DDm; 0 � m � tg (3:5)where Dm is the projetion of D̂[0;t℄ at time m.The duality formula is just formal:1f�t(x) = 1 : x 2 Dg = �(D̂D[0;t℄; �(y); y 2 DDt ); (3:6)where � is some funtion that an be easily omputed for eah realization,but it is in general imposible to have a formula for it. When the funtion� depends just on �(y), y 2 DDt , we have the usual notion of duality. Thepoint in this onstrution is that, if DDt = �, then �t in D does not dependon �0. A suÆient ondition forP (DDt = �) < �1e��2t (3:7)an be found by dominating jDDt j with a usual disrete time branhingproess RjDjt , for whih at eah step, eah branh dies and reates r =



100 Pablo A. Ferrarisupx jRxj o�springs with probability 1�2a0 and no o�spring with probability2a0; RjDj0 = jDj. Suh a branhing proess dies exponentially fast, i.e.P (RjDjt 6= �) � �1e�t�2 , �1; �2 > 0, if the average number of o�springsr(1� 2a0) < 1: (3:8)See for instane [12℄. Equation (3.6) implies (3.5) whih implies exponentialergodiity in Theorem 2.1 when there is no mixing proess.Graphial representation of the mixing marks. We onsider that themixing rule is applied at times suh that the spin ip rule is not applied.This is not a loss of generality as it stands only for a hange of time variables.The times of appliation of mixing rules an be random or deterministi.In the �rst ase the realization of an appropriate random variable indiateswhih are the mixing times. Now, if t is a mixing time, onnet eah site xat time t with the orresponding site x0 at t + 1, aording to the mixingrule applied at this time. To realize the proess apply the Glauber rulesas desribed before at the Glauber times and if t is a mixing time, simplydeide that at time t+ 1 the spin x0 is the same than the spin at x at timet. The proof of the Theorem when mixing marks are present follows thelines of the proof above. The same branhing proess still dominates thebranhing struture onstruted with the Glauber and mixing marks. Thereason is that the presene of mixing marks does not hange the number ofbranhes of the branhing struture.4.- Conluding RemarksTo onlude we omment some open problems. The positive rates on-jeture is one of the most important open problems ([13℄ and [7℄). Is it truethat any one dimensional �nite range PCA with positive k is ergodi? Thisis proven for Glauber dynamis, by using absense of phase transition for theorresponding Gibbs measure [13℄. One an start trying to show ergodiityfor the nearest neighbor majority vote model desribed above. In this modelat eah given time eah spin takes the value of the majority of the set om-posed by itself and the two nearest neighbors with probability 1� � and theopposite value with probability �. The analogous model in ontinuous timehas as invariant measure a Gibbs measure. Also disrete time majority votemodels are ergodi if the updating is done by sublatties is suh a way thatnever two neighbors are updated at the same time and all sites are updatedin�nitely often. For simultaneous updating, it follows from Theorem 2.1that any (�nite range) majority vote model is ergodi if � is lose enough to1/2. This has been proven in [15℄ by oupling methods. Gray [10℄ provedthis result when � is small enough. One ould try to improve the onditionfor ergodiity (2.11) by dominating the branhing struture by an orientedperolation type of proess [4℄.



Ergodiity for a Class of Probabilisti 101An important step in proving ergodiity would be to show monotoni-ity properties for funtions of the noise �. For instane, for the majorityvote model, one would like to show that when the initial ondition is theon�guration \all ones" the average magnetization (i.e. the average valueof the spin) at any given time is a dereasing funtion of the noise parame-ter �. The diÆulty here is that when � inreases the spin orrelations willderease.Approah to a produt measure when the probability of mixing is bigompared with the probability of ipping. Assume that the PCA has dis-tribution E(f(�n)j�n�1 = �) = �E(f(M�)) + (1� �)E(f(G�))where � is a parameter between 0 and 1. That is, the mixing and Glauberrules are applied randomly with probability � and 1 � � respetively. It ispresumably possible to prove that in the exponentially ergodi regime of Gthe only invariant measure �� onverges as � ! 1 to a produt measure.This was proven by [5℄ in the ontinuous ase.Referenes[1℄ M. Aizenmann, R. Holley, \Rapid overgene to equilibrium of stohas-ti Ising models in the Dobrushin-Shlosman regime", in PerolationTheory and Ergodi Theory of In�nite Partile Systems, Springer, Ber-lin, H. Kesten (ed), IMA Vol. Math. Appl. 8, 1-11 (1987).[2℄ A. De Masi, P.A. Ferrari, J.L. Lebowitz, \Reation-di�usion equationsfor interating partile systems", J. Stat. Phys. 44, 589-644 (1986).[3℄ R.L. Dobrushin, \Markov with a large number of loally interatingomponents: existene of a limit proess and its ergodiity", ProblemsInform. Transmission 7, 149-164 (1971).[4℄ R. Durrett, \Leture notes on partile systems and perolation", Word-worth & Brooks/Cole. Advaned Books and Software, Pai� Grove,California (1988).[5℄ P.A. Ferrari, \Ergodiity for spin systems with stirrings", Ann. Probab.18(4), 1523-1538 (1990).[6℄ A. Georges, P. Le Doussal, \From equilibrium to probabilisti ellularautomata", Preprint (1988).[7℄ L. Gray, \The positive rates problem for attrative nearest neighborspin systems on ZZ", Z. Wahrsh. Verw. Gebiete. 51, 171-184 (1982).[8℄ L. Gray, \Duality for general attrative spin systems with appliationsin one dimension", Ann. Probab. 14, 371-396 (1986).
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