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tWe study a 
lass of probabilisti
 
ellular automata (PCA)whi
h in
ludes majority vote models, dis
rete time Glauber dynam-i
s and 
ombinations of these pro
esses with mixing dynami
s. Wegive suÆ
ient 
ondition for the ergodi
ity of the pro
esses. Themethod is based on a graphi
al representation and the 
onstru
tionof a \generalized dual pro
ess".AMS Classi�
ations: 60K35.Key Words: Probabilisti
 
ellular automata, ergodi
 systems,generalized duality, graphi
al representation.1.- Introdu
tionA probabilisti
 
ellular automata (PCA) is a dis
rete time Markovpro
ess �n in the state spa
e X := f�1; 1gZZd . At ea
h time n the spin atsite x; x 2 ZZd is updated a

ording to a random rule that takes a

ount ofthe 
on�guration at time n�1 in a �nite neighborhood of x. The rule 
an betime dependent, for instan
e when spins belonging to di�erent sublatti
esare updated at di�erent times. A measure � on X is 
alled invariant if �nhas distribution � implies that also �n+1 has distribution �.A PCA is 
alled ergodi
 if there exists only one invariant measure �and starting from any measure the system 
onverges to �. The study of93



94 Pablo A. Ferrariergodi
ity is one of the most relevants problems in systems with in�nitelymany 
omponents. The �rst suÆ
ient 
ondition for ergodi
ity of spin 
ippro
esses was given by Dobrushin [3℄. There are many papers dealing withsystems that a

ept as invariant and reversible the Gibbs states of statisti
alme
hani
s. There is a 
lose 
onne
tion between the la
k of ergodi
ity of thesystem and the existen
e of more than one Gibbs state for a given potential(phase transition). This is reviewed in [13℄ for intera
ting parti
le systems,the 
ontinuous time version of PCA. We refer to [6℄ and [14℄ for reviewsand examples of PCA. The sovieti
 literature is being reviewed in [18℄.The aim of this paper is to illustrate the use of what we 
all generalizedduality to prove ergodi
 properties for PCA. It extends the notion of dual-ity, a te
hnique introdu
ed in intera
ting parti
le systems. In words duality
onsists in expressing fun
tions of the 
on�guration at time t depending on
oordinates in a �nite set A by lo
al fun
tions of the 
on�guration at timezero depending of a �nite set At. The pro
ess admits a dual if At is Markovand the set of fun
tions for whi
h this is possible generates the 
ontinuousfun
tions on X. Using duality one transforms a problem that originally hasin�nitely many 
omponents in a problem depending only on a �nite numberof 
oordinates. This has been largely developed for proving ergodi
 proper-ties for the simple ex
lusion pro
ess, voter models, 
an
ellative systems andGlauber-type dynami
s. The standard referen
es are Gri�eath [11℄ Liggett[13℄ Gray [8℄ and Durrett [4℄.Nevertheless not all the pro
esses a

ept a dual. We show that it is pos-sible to give suÆ
ient 
onditions for ergodi
ity of any system by 
onstru
tinga generalized dual pro
ess. This pro
ess is not Markovian in general. The
onstru
tion that we present here appeared �rst for 
ontinuous time in [2℄for the study on the hydrodynami
s of Glauber-Kawasaky dynami
s and in[5℄ for the study of ergodi
ity of those pro
esses.2.- De�nitions and ResultsA probabilisti
 automata is a dis
rete time sto
hasti
 pro
ess on thestate spa
e X := f�1; 1gZZd . We study two types of dynami
s: spin-
ip andmixing.The spin-
ip dynami
s is represented as follows: let � 2 X be a given
on�guration. De�ne G� as the random 
on�guration with distributiongiven by P (G�(x) = ��(x)) = h(x; �)P (G�(x) = �(x)) = 1� h(x; �) (2:1)for all x 2 ZZd where the fun
tion h depends on a �nite set of 
oordinatesRx and satis�es 0 � h(x; �) � 1. Furthermore, for �xed �, the randomvariables fG�(x)gx are mutually independent.In order to represent the mixing dynami
s, let fVigi2I be a partitionof ZZd, where all the V ;i s have a uniformly bounded number of elements:
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 95jVij � v 2 IN , for all i. For a given 
on�guration �, we de�ne M�, the
on�guration obtained when the spins in ea
h of the Vi are permuted insome �xed way. More pre
isely, if for ea
h i; qi : Vi ! Vi is a bije
tion, wede�ne, for x 2 Vi, M�(x) = �(qi(x)): (2:2)where 1f�g is the 
hara
teristi
 fun
tion of f�g. This is a deterministi
 (norandom) dynami
s.The mixing dynami
s 
an also be random. To de�ne that, 
onsider,for ea
h Vi, a family of permutations (bije
tions) qi;j ; j 2 J , and de�ne therandom 
on�guration M� with distribution given by:P [M�(x) = �(qi;j(x)); for all x 2 Vi℄ = pi;j; (2:3)where, for ea
h i; pi; : is a probability over J , and the random ve
torsfM�(x); x 2 Vigi are mutually independent.We also 
onsider 
ases where more than one rule 
an be applied su

es-sively. For instan
e, ifG1 and G2 are as in (2.1), we may 
onsider G = G1G2.The same is valid for the mixing rules.We de�ne the spin 
ip mixing automata �n, as the Markov pro
ess onX with the following probability transition fun
tion:E(f(�n)j�n�1 = �) = E(f(GM�)): (2:4)2.1.- ExamplesPure noise. This is the simplest dynami
s. All spins 
ip independently.The 
ip probability is given by h(x; �) = �for all x; �.Nearest neighbors voter model. For this modelh(x; �) = 12d Xe:jej=1 j�(x)� �(x+ e)j2in su
h a way that the probability of 
ipping the spin at x is proportional tothe number of nearest neighbor sites with opposite spin. This system is notergodi
. It has at least 3 invariant measures: Æ1; Æ�1, and 12Æ�1+ 12Æ�2 , where�1(x1; :::; xd) = 1 (respe
tively �1) ifPxi is even (odd) and �2(x1; :::; xd) =�1 (respe
tively 1) ifPxi is even (odd). The last measure re
e
ts the fa
tthat in this model there are two independent spa
e-time sublatti
es.Deterministi
 majority vote model. In this 
aseh(x; �) = 1f Xe:jej=1 j�(x)� �(x+ e)j2 > dg



96 Pablo A. Ferrariin su
h a way that the spin 
ips if the majority of its nearest neighbor siteshave the opposite spin. This pro
ess has lots of 
on�gurations that areinvariant.Majority vote model. This is the model resulting when the deterministi
majority vote model rule and the pure noise with parameter � are appliedsu

essively. This model was widely studied by Gray [9℄, [10℄. The majorityvote model is expe
ted to be ergodi
 in one dimension and to be not ergodi
in two or more dimensions.Glauber dynami
s. We 
all Glauber any dynami
s that has as reversiblemeasure a Gibbs measure. There is a parametrized family of Glauber dy-nami
s for any Gibbs measure. As an example 
onsider the nearest neighborferromagneti
 Gibbs measure. It is de�ned using the 
onditional probabili-ties�(�(x) = �(x); x 2 F j�(x) = �(x); x =2 F ) = Z�1(�) expf�Xx;y �(x)�(y)g;where � is a parameter (the \inverse temperature") and the sum runs overthe set f(x; y) 2 ZZd : x 2 F � ZZ; jx � yj = 1g; F is any �nite set.The normalizing 
onstant Z(�) makes � a probability. De�ne H(x; �) :=Pjej=1�(x)�(x+ e). Let h(x; �) be a fun
tion satisfyingh(x; �)h(x; �x) = expf�H(x; �x)gexpf�H(x; �)g (2:5)where �x(z) = ��(z) if z 6= x��(z) if z = xNow, 
onsider the rules G1 and G2 (odd and even) de�ned byP (G1�(x) = ��(x)) = h(x; �)1fx is oddgP (G2�(x) = ��(x)) = h(x; �)1fx is evengwhere x = (x1; :::; xd) 2 ZZd is odd (even) if �xi is odd (even). Then thepro
ess �n de�ned by �n+1 = G1G2�n is a Glauber dynami
s. The reader
an also 
he
k that the simultaneous updating of all the spins does not giverise to a Glauber Dynami
s. The fun
tion h 
an be 
hosen in many ways.The most famous are Gibbs sampler:h(x; �) = expf�H(x; �x)gexpf�H(x; �)g+ expf�H(x; �x)g (2:6)and Metropolis:h(x; �) = � 1 if H(x; �) < H(x; �x)exp �fH(x; �x)�H(x; �)g otherwise
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 mixing. We de�ne this dynami
s inone dimension. Extensions to more dimensions are immediate. De�ne V 1i =f2i; 2i� 1g, i 2 ZZ; q1i (x) = nx+ 1 if x = 2i� 1x� 1 if x = 2i (2:7)and V 2i = f2i; 2i+ 1g,q2i (x) = nx+ 1 if x = 2ix� 1 if x = 2i+ 1 (2:8)and let M1 and M2 be the 
orresponding rules as in (2.2). Then de�ne�2n = M1�2n�1, �2n+1 = M2�2n. This dynami
s is the dis
rete analogousof the free gas with two velo
ities. Spins starting at even sites move at speedone while those starting at odd sites move at speed �1.There exists a simple program that simulates the above models andothers for p
 
ompatible mi
ro 
omputers [16℄.Let r = supx jRxj; (2:9)where Rx is the set of 
oordinates determining h(x; �), de�ned in (2.1). Letk = infx inf� minfh(x; �); 1� h(x; �)g: (2:10)Intuitively k is the minimun between the probability of 
ipping and theprobability of staying. Sin
e those probabilities sum one, k � 12 .We say that a pro
ess is exponentially ergodi
 if for any 
ylindri
 fthere exist positive 
onstants �1 = �1(f) and �2 su
h that jEf(�n)��f j ��1e��2n. In the next Theorem �1 is proportional to the number of sitesdetermining f times the in�nite norm of f .Theorem 2.1. Let �n be a spin 
ip mixing automata as de�ned in (2.4).If r(1� 2k) < 1; (2:11)then the pro
ess is exponentially ergodi
 for any mixing dynami
s M . Ifequality holds in (2.11), then the pro
ess is ergodi
.Noti
e that in (2.11) the maximun probability of 
ipping is 
ontrolledas well as the minimun. Otherwise a pro
ess with big probability of 
ipping
ould be not ergodi
. An extreme example in this dire
tion is the pro
essin whi
h all spins 
ip simultaneously with probability one.The Theorem is proved in the next se
tion.
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 Representation and DualityIn order to represent graphi
ally the pro
ess, we rewrite (2.1) partition-ing X in subsets Ai with 
onstant h(x; �):h(x; �) = pXi=1 ai(x)1f� 2 Ai(x)gwhere the ai's are nonnegative ordered 
onstants su
h that if � 2 Ai(x) thenh(x; �) = ai. The Ai(x)'s are 
ylindri
 sets depending on � only through Rxand for ea
h x, fAi(x)gi is a partition ofX. The number of terms of the sum,p = p(h(x; :)), is at most the number of parts of Rx; supx jRxj � r < 1.Assume that the 
ylindri
 set Ai(x) � X depends on the set Fj(x) � Rx.The pro
ess will be 
onstru
ted in the semi-spa
e ZZd � ZZ+, where thelast 
oordinate represents time. Now denote a0 := k, de�ned in (2.11) andagrupe terms to geth(x; �) = k pXi=1 1f� 2 Ai(x)g+ pXi=1(ai(x)� k)1f� 2 Ai(x)g= k + pXi=1(ai(x)� ai�1(x))Xj�i 1f� 2 Aj(x)g: (3:1)
In other words, with probability k the spin at x 
ips without regarding atthe 
on�guration �. It follows from the de�nition of k that with at leastprobability k the spin at x stays the same.Graphi
 
onstru
tion of the pro
ess. To ea
h point (x; n); x 2 ZZd,n 2 ZZ+ asso
iate a random variable I assuming values i = Æ+; Æ�; 1; : : : ; p,de�ned by P (I(x; n) = Æ+) = P (I(x; n) = Æ�) = a0P (I(x; n) = i) = ai(x)� ai�1(x); 1 � i � p: (3:2)Assume that fI(x; n)g are mutually independent and let (
;F; P ) bethe probability spa
e induzed by this family. Let fi(x; n) : x 2 ZZd; n � 1gbe a realization of these random variables.We 
onstru
t the pro
ess by indu
tion. Suppose known �n, the 
on�-guration at time n. Then, the (random) 
on�guration at time n+1 is givenby �n+1(x) = 8><>:+1 if i(x; n+ 1) = Æ+;�1 if i(x; n+ 1) = Æ�;��n(x) if �n 2 Aj(x); for some j � i(x; n+ 1);�n(x); otherwise. (3:3)
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 99It is not diÆ
ult to see that the pro
ess de�ned this way has distributiongiven by (3.1).Constru
tion of the dual pro
ess. The generalized dual of the pro
essis a marked bran
hing stru
ture 
onstru
ted in the spa
eZZd � fÆ; 1; : : : ; pg � ZZ+ (3:4)Assume that in the time interval [0; t℄ we have a realization i(x; n) of therandom variables I(x; n), 0 � n � t. Reverse the time, 
alling m = t � n.Let D be a subset of ZZd. This set is the \base" of our bran
hing stru
ture.It is the proje
tion of the stru
ture at time n = 0. Suppose that we knowthe stru
ture in the time interval [0;m℄. Call Dm its proje
tion at time m.Then, at time m+ 1, the proje
tion of the stru
ture is given by:Dm+1 = [x2Dm [j�i(x;t�m)Fj(x)where we use the 
onvention that, if i(x; t�m) = Æ�, then[j�i(x;t�m)Fj(x) = �.The knowledge of the stru
ture DDm; 0 � m � t; plus the marks i(x; t�m); x 2 Dm; 0 � m � t allows us to re
over the 
on�guration �t in theset D, as far as the initial 
on�guration � be known in the set Dt. Noti
ethat Dt 
an be the empty set. In this 
ase the 
on�guration �t in D doesnot depend on �0 = �. The stru
ture 
an be des
ribed formally. Let i(x; n)be a realization of the random variable I(x; n). Then the generalized dualpro
ess is D̂D[0;t℄ = f(m;x; i(x; t�m); DDm) : x 2 DDm; 0 � m � tg (3:5)where Dm is the proje
tion of D̂[0;t℄ at time m.The duality formula is just formal:1f�t(x) = 1 : x 2 Dg = �(D̂D[0;t℄; �(y); y 2 DDt ); (3:6)where � is some fun
tion that 
an be easily 
omputed for ea
h realization,but it is in general imposible to have a formula for it. When the fun
tion� depends just on �(y), y 2 DDt , we have the usual notion of duality. Thepoint in this 
onstru
tion is that, if DDt = �, then �t in D does not dependon �0. A suÆ
ient 
ondition forP (DDt = �) < �1e��2t (3:7)
an be found by dominating jDDt j with a usual dis
rete time bran
hingpro
ess RjDjt , for whi
h at ea
h step, ea
h bran
h dies and 
reates r =



100 Pablo A. Ferrarisupx jRxj o�springs with probability 1�2a0 and no o�spring with probability2a0; RjDj0 = jDj. Su
h a bran
hing pro
ess dies exponentially fast, i.e.P (RjDjt 6= �) � �1e�t�2 , �1; �2 > 0, if the average number of o�springsr(1� 2a0) < 1: (3:8)See for instan
e [12℄. Equation (3.6) implies (3.5) whi
h implies exponentialergodi
ity in Theorem 2.1 when there is no mixing pro
ess.Graphi
al representation of the mixing marks. We 
onsider that themixing rule is applied at times su
h that the spin 
ip rule is not applied.This is not a loss of generality as it stands only for a 
hange of time variables.The times of appli
ation of mixing rules 
an be random or deterministi
.In the �rst 
ase the realization of an appropriate random variable indi
ateswhi
h are the mixing times. Now, if t is a mixing time, 
onne
t ea
h site xat time t with the 
orresponding site x0 at t + 1, a

ording to the mixingrule applied at this time. To realize the pro
ess apply the Glauber rulesas des
ribed before at the Glauber times and if t is a mixing time, simplyde
ide that at time t+ 1 the spin x0 is the same than the spin at x at timet. The proof of the Theorem when mixing marks are present follows thelines of the proof above. The same bran
hing pro
ess still dominates thebran
hing stru
ture 
onstru
ted with the Glauber and mixing marks. Thereason is that the presen
e of mixing marks does not 
hange the number ofbran
hes of the bran
hing stru
ture.4.- Con
luding RemarksTo 
on
lude we 
omment some open problems. The positive rates 
on-je
ture is one of the most important open problems ([13℄ and [7℄). Is it truethat any one dimensional �nite range PCA with positive k is ergodi
? Thisis proven for Glauber dynami
s, by using absense of phase transition for the
orresponding Gibbs measure [13℄. One 
an start trying to show ergodi
ityfor the nearest neighbor majority vote model des
ribed above. In this modelat ea
h given time ea
h spin takes the value of the majority of the set 
om-posed by itself and the two nearest neighbors with probability 1� � and theopposite value with probability �. The analogous model in 
ontinuous timehas as invariant measure a Gibbs measure. Also dis
rete time majority votemodels are ergodi
 if the updating is done by sublatti
es is su
h a way thatnever two neighbors are updated at the same time and all sites are updatedin�nitely often. For simultaneous updating, it follows from Theorem 2.1that any (�nite range) majority vote model is ergodi
 if � is 
lose enough to1/2. This has been proven in [15℄ by 
oupling methods. Gray [10℄ provedthis result when � is small enough. One 
ould try to improve the 
onditionfor ergodi
ity (2.11) by dominating the bran
hing stru
ture by an orientedper
olation type of pro
ess [4℄.
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 101An important step in proving ergodi
ity would be to show monotoni
-ity properties for fun
tions of the noise �. For instan
e, for the majorityvote model, one would like to show that when the initial 
ondition is the
on�guration \all ones" the average magnetization (i.e. the average valueof the spin) at any given time is a de
reasing fun
tion of the noise parame-ter �. The diÆ
ulty here is that when � in
reases the spin 
orrelations willde
rease.Approa
h to a produ
t measure when the probability of mixing is big
ompared with the probability of 
ipping. Assume that the PCA has dis-tribution E(f(�n)j�n�1 = �) = �E(f(M�)) + (1� �)E(f(G�))where � is a parameter between 0 and 1. That is, the mixing and Glauberrules are applied randomly with probability � and 1 � � respe
tively. It ispresumably possible to prove that in the exponentially ergodi
 regime of Gthe only invariant measure �� 
onverges as � ! 1 to a produ
t measure.This was proven by [5℄ in the 
ontinuous 
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