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Abstract

We study a class of probabilistic cellular automata (PCA)
which includes majority vote models, discrete time Glauber dynam-
ics and combinations of these processes with mixing dynamics. We
give sufficient condition for the ergodicity of the processes. The
method is based on a graphical representation and the construction
of a “generalized dual process”.

AMS Classifications: 60K35.

Key Words: Probabilistic cellular automata, ergodic systems,
generalized duality, graphical representation.

1.- Introduction

A probabilistic cellular automata (PCA) is a discrete time Markov

process 0, in the state space X := {—1, I}Zd. At each time n the spin at
site z, z € Z? is updated according to a random rule that takes account of
the configuration at time n—1 in a finite neighborhood of z. The rule can be
time dependent, for instance when spins belonging to different sublattices
are updated at different times. A measure g on X is called invariant if o,
has distribution p implies that also 0,41 has distribution .

A PCA is called ergodic if there exists only one invariant measure p
and starting from any measure the system converges to p. The study of
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ergodicity is one of the most relevants problems in systems with infinitely
many components. The first sufficient condition for ergodicity of spin flip
processes was given by Dobrushin [3]. There are many papers dealing with
systems that accept as invariant and reversible the Gibbs states of statistical
mechanics. There is a close connection between the lack of ergodicity of the
system and the existence of more than one Gibbs state for a given potential
(phase transition). This is reviewed in [13] for interacting particle systems,
the continuous time version of PCA. We refer to [6] and [14] for reviews
and examples of PC'A. The sovietic literature is being reviewed in [18].

The aim of this paper is to illustrate the use of what we call generalized
duality to prove ergodic properties for PC'A. It extends the notion of dual-
ity, a technique introduced in interacting particle systems. In words duality
consists in expressing functions of the configuration at time ¢ depending on
coordinates in a finite set A by local functions of the configuration at time
zero depending of a finite set A;. The process admits a dual if A; is Markov
and the set of functions for which this is possible generates the continuous
functions on X. Using duality one transforms a problem that originally has
infinitely many components in a problem depending only on a finite number
of coordinates. This has been largely developed for proving ergodic proper-
ties for the simple exclusion process, voter models, cancellative systems and
Glauber-type dynamics. The standard references are Griffeath [11] Liggett
[13] Gray [8] and Durrett [4].

Nevertheless not all the processes accept a dual. We show that it is pos-
sible to give sufficient conditions for ergodicity of any system by constructing
a generalized dual process. This process is not Markovian in general. The
construction that we present here appeared first for continuous time in [2]
for the study on the hydrodynamics of Glauber-Kawasaky dynamics and in
[5] for the study of ergodicity of those processes.

2.- Definitions and Results

A probabilistic automata is a discrete time stochastic process on the
state space X := {—1, 1}Zd. We study two types of dynamics: spin-flip and
mixing.

The spin-flip dynamics is represented as follows: let ¢ € X be a given
configuration. Define Go as the random configuration with distribution
given by

P(Go(z) = —o(x)) = h(z,0)

P(Go(x) = o(x)) = 1 = h(z,0) (2.1)

for all z € Z® where the function h depends on a finite set of coordinates
R, and satisfies 0 < h(xz,0) < 1. Furthermore, for fixed o, the random
variables {Go(x)}, are mutually independent.

In order to represent the mixing dynamics, let {V;};c;r be a partition
of Z?, where all the V. s have a uniformly bounded number of elements:
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Vil < v € IN, for all i. For a given configuration o, we define Mo, the
configuration obtained when the spins in each of the V; are permuted in
some fixed way. More precisely, if for each 7,q; : V; — V; is a bijection, we
define, for x € V;,

Mo(z) = o(qi(x)). (2.2)
where 1{-} is the characteristic function of {-}. This is a deterministic (no
random) dynamics.

The mixing dynamics can also be random. To define that, consider,
for each V;, a family of permutations (bijections) ¢; j,j € J, and define the
random configuration Mo with distribution given by:

PMo(xz) =0(q; j(z)),for all x € V;] = p; ;, (2.3)

where, for each ¢,p;,. is a probability over J, and the random vectors
{Mo(z),x € V;}; are mutually independent.

We also consider cases where more than one rule can be applied succes-
sively. For instance, if G; and G are as in (2.1), we may consider G = G1Gs.
The same is valid for the mixing rules.

We define the spin flip mixing automata o,,, as the Markov process on
X with the following probability transition function:

E(f(on)lon-1 = 0) = E(f(GM0)). (2.4)

2.1.- Examples

Pure noise. This is the simplest dynamics. All spins flip independently.
The flip probability is given by

h(z,0) =€

for all x, 0.
Nearest neighbors voter model. For this model

o) = 1 3 o= ola+o

e:le|]=1

in such a way that the probability of flipping the spin at z is proportional to

the number of nearest neighbor sites with opposite spin. This system is not

ergodic. It has at least 3 invariant measures: d;,d_1, and %5,,1 + %57]2, where

m(z1,...,xq) = 1 (respectively —1) if > x; is even (odd) and n2(z1, ..., x4) =

—1 (respectively 1) if " x; is even (odd). The last measure reflects the fact

that in this model there are two independent space-time sublattices.
Deterministic magjority vote model. In this case

h(ZL‘,O'): 1{ Z CT(CL‘)—;’(.T-}-@) >d}

e:le|]=1
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in such a way that the spin flips if the majority of its nearest neighbor sites
have the opposite spin. This process has lots of configurations that are
invariant.

Magjority vote model. This is the model resulting when the deterministic
majority vote model rule and the pure noise with parameter € are applied
successively. This model was widely studied by Gray [9], [10]. The majority
vote model is expected to be ergodic in one dimension and to be not ergodic
in two or more dimensions.

Glauber dynamics. We call Glauber any dynamics that has as reversible
measure a GGibbs measure. There is a parametrized family of Glauber dy-
namics for any Gibbs measure. As an example consider the nearest neighbor
ferromagnetic Gibbs measure. It is defined using the conditional probabili-
ties

plo(z) = &(z),z € Flo(z) = (), x ¢ F) = Z7H(€) exp{B)_ E(2)é(y)},

T,y

where [ is a parameter (the “inverse temperature”) and the sum runs over
the set {(z,y) € Z* : © € F C Z,|x —y| = 1}, F is any finite set.
The normalizing constant Z(£) makes p a probability. Define H(x,0) :=
> o(x)o(x+e). Let h(x,o) be a function satisfying

e|=1

h(z,0)  exp{BH(x,0")}

h(w0")  explBH(z0)) (2:5)

where
am(z):{a(z) if 242

—o(z) ifz=zx

Now, consider the rules G; and G5 (odd and even) defined by

P(Gyo(x) = —o(x)) = h(z,0)1{z is odd}
P(Gyo(x) = —o(x)) = h(z,0)1{z is even}

where © = (z1,...,24) € Z" is odd (even) if Xx; is odd (even). Then the
process o, defined by 0,41 = G1G20, is a Glauber dynamics. The reader
can also check that the simultaneous updating of all the spins does not give
rise to a Glauber Dynamics. The function h can be chosen in many ways.
The most famous are Gibbs sampler:

exp{BH (z,07)}
exp{BH (z,0)} + exp{BH (z,0%)}

h(z,o) = (2.6)

and Metropolis:

(1 it H(z,0) < H(z,0")
h(z,0) {exp B{H(z,0") — H(z,0)} otherwise
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Nearest neighbors deterministic mixing. We define this dynamics in
one dimension. Extensions to more dimensions are immediate. Define V! =
{2i,2i -1}, i€ Z,

z+1 fx=20—-1
qil($):{x—l if o =2: (2.7)

and V2 = {2i,2i + 1},

2, v _fx+1 ifz=2:
q%'(l')_{x—l fr=2+1 (2:8)

and let M; and Ms be the corresponding rules as in (2.2). Then define
Oon = Mi0o2p—1, 02n+1 = Msoa,. This dynamics is the discrete analogous
of the free gas with two velocities. Spins starting at even sites move at speed
one while those starting at odd sites move at speed —1.

There exists a simple program that simulates the above models and
others for pc compatible micro computers [16].

Let

r = sup |Rz|, (2.9)
where R, is the set of coordinates determining h(x, o), defined in (2.1). Let

k = infinf min{h(z,0),1 — h(z,0)}. (2.10)

Intuitively £ is the minimun between the probability of flipping and the
probability of staying. Since those probabilities sum one, k < %

We say that a process is exponentially ergodic if for any cylindric f
there exist positive constants «y = a1 (f) and «ag such that |Ef(o,) — pf] <
ar1e”*"  In the next Theorem «y is proportional to the number of sites
determining f times the infinite norm of f.

Theorem 2.1. Let o, be a spin flip mixing automata as defined in (2.4).
If

r(l—2k) <1, (2.11)

then the process is exponentially ergodic for any mixing dynamics M. If
equality holds in (2.11), then the process is ergodic.

Notice that in (2.11) the maximun probability of flipping is controlled
as well as the minimun. Otherwise a process with big probability of flipping
could be not ergodic. An extreme example in this direction is the process
in which all spins flip simultaneously with probability one.

The Theorem is proved in the next section.
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3.- Graphic Representation and Duality

In order to represent graphically the process, we rewrite (2.1) partition-
ing X in subsets A; with constant h(z,o):

h(z,0) =Y _ai(z)l{o € A;(x)}

=1

where the a;’s are nonnegative ordered constants such that if o € A;(z) then
h(z,0) = a;. The A;(x)’s are cylindric sets depending on ¢ only through R,
and for each x, { A;(x)}; is a partition of X. The number of terms of the sum,
p = p(h(z,.)), is at most the number of parts of R;; sup, |R,| < r < oc.
Assume that the cylindric set A;(z) C X depends on the set F;(z) C R,.
The process will be constructed in the semi-space Z% x Z*, where the
last coordinate represents time. Now denote ag := k, defined in (2.11) and
agrupe terms to get

p

Wz, o) =k Z 1{o € A;(z)} + Z(ai(x) — k)1{o € A;(z)}

, (3.1)
= k+ Z(ai(aj) —ai—1(2)) Y 1o € Aj(x)}.

ji

In other words, with probability £ the spin at x flips without regarding at
the configuration o. It follows from the definition of k£ that with at least
probability k£ the spin at z stays the same.

Graphic construction of the process. To each point (z,n),z € Zd,
n € Z* associate a random variable I assuming values i = 6%,67,1,...,p,
defined by

P(I(z,n)=0%)=P(I(z,n)=6") =aop (3.2)
P(I(xz,n) =1) = a;(z) —a;—1(z), 1<i<p. '
Assume that {I(xz,n)} are mutually independent and let (2, F, P) be
the probability space induzed by this family. Let {i(z,n): z € Z% n > 1}
be a realization of these random variables.
We construct the process by induction. Suppose known o,,, the confi-

guration at time n. Then, the (random) configuration at time n + 1 is given
by

+1 if i(z,n+ 1) = 67

1 if i(z,n+ 1) = 0=

—op(z) ifo, € Aj(x), for some j > i(x,n+ 1);
on(xz),  otherwise.

Ony1(r) = (3.3)
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It is not difficult to see that the process defined this way has distribution
given by (3.1).

Construction of the dual process. The generalized dual of the process
is a marked branching structure constructed in the space

Z4x {6,1,....p) x Z* (3.4)

Assume that in the time interval [0,¢] we have a realization i(z,n) of the
random variables I(z,n), 0 < n < t. Reverse the time, calling m =t — n.
Let D be a subset of Z%. This set is the “base” of our branching structure.
It is the projection of the structure at time n = 0. Suppose that we know
the structure in the time interval [0, m]. Call D,, its projection at time m.
Then, at time m + 1, the projection of the structure is given by:

D1 = U U Fj(x)

T€Dy,  j>i(z,t—m)

where we use the convention that, if i(z,t —m) = 6%, then
Uj>i(z,t—m)Fj(z) = 0.

The knowledge of the structure D2, 0 < m < t, plus the marks i(z,t —
m), x € Dy, 0 < m <t allows us to recover the configuration oy in the
set D, as far as the initial configuration ¢ be known in the set D;. Notice
that D; can be the empty set. In this case the configuration o; in D does
not depend on o¢g = o. The structure can be described formally. Let i(z,n)
be a realization of the random variable I(z,n). Then the generalized dual
process is

lA)[lg’t] = {(m,z,i(x,t —m),DE) : 2 € DP 0 <m <t} (3.5)
where D,, is the projection of lA)[O,t] at time m.

The duality formula is just formal:
Hou(s) =122 € D} = &(DB . o(y),y € DP), (36)

where ® is some function that can be easily computed for each realization,
but it is in general imposible to have a formula for it. When the function
® depends just on o(y), y € DP, we have the usual notion of duality. The
point in this construction is that, if DP = ¢, then oy in D does not depend
on oqg. A sufficient condition for

P(DP = ¢) < e (3.7)

can be found by dominating |DP| with a usual discrete time branching

process RLD, for which at each step, each branch dies and creates r =
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sup, |R,| offsprings with probability 1—2a and no offspring with probability
2a9; Ry"' = |D|. Such a branching process dies exponentially fast, i.e.
P(RLD| # ¢) < are”t2 ay,an > 0, if the average number of offsprings

r(1 = 2ap) < 1. (3.8)

See for instance [12]. Equation (3.6) implies (3.5) which implies exponential
ergodicity in Theorem 2.1 when there is no mixing process.

Graphical representation of the mixing marks. We consider that the
mixing rule is applied at times such that the spin flip rule is not applied.
This is not a loss of generality as it stands only for a change of time variables.
The times of application of mixing rules can be random or deterministic.
In the first case the realization of an appropriate random variable indicates
which are the mixing times. Now, if ¢ is a mixing time, connect each site x
at time ¢ with the corresponding site z’ at ¢ + 1, according to the mixing
rule applied at this time. To realize the process apply the Glauber rules
as described before at the Glauber times and if ¢ is a mixing time, simply
decide that at time ¢ + 1 the spin 2’ is the same than the spin at = at time
t.

The proof of the Theorem when mixing marks are present follows the
lines of the proof above. The same branching process still dominates the
branching structure constructed with the Glauber and mixing marks. The
reason is that the presence of mixing marks does not change the number of
branches of the branching structure.

4.- Concluding Remarks

To conclude we comment some open problems. The positive rates con-
jecture is one of the most important open problems ([13] and [7]). Is it true
that any one dimensional finite range PC'A with positive k is ergodic? This
is proven for Glauber dynamics, by using absense of phase transition for the
corresponding Gibbs measure [13]. One can start trying to show ergodicity
for the nearest neighbor majority vote model described above. In this model
at each given time each spin takes the value of the majority of the set com-
posed by itself and the two nearest neighbors with probability 1 — e and the
opposite value with probability e. The analogous model in continuous time
has as invariant measure a Gibbs measure. Also discrete time majority vote
models are ergodic if the updating is done by sublattices is such a way that
never two neighbors are updated at the same time and all sites are updated
infinitely often. For simultaneous updating, it follows from Theorem 2.1
that any (finite range) majority vote model is ergodic if € is close enough to
1/2. This has been proven in [15] by coupling methods. Gray [10] proved
this result when € is small enough. One could try to improve the condition
for ergodicity (2.11) by dominating the branching structure by an oriented
percolation type of process [4].
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An important step in proving ergodicity would be to show monotonic-
ity properties for functions of the noise €. For instance, for the majority
vote model, one would like to show that when the initial condition is the
configuration “all ones” the average magnetization (i.e. the average value
of the spin) at any given time is a decreasing function of the noise parame-
ter €. The difficulty here is that when € increases the spin correlations will
decrease.

Approach to a product measure when the probability of mixing is big
compared with the probability of flipping. Assume that the PCA has dis-
tribution

E(f(on)lon-1 =0) = AE(f(M0o)) + (1 = N E(f(Go))

where ) is a parameter between 0 and 1. That is, the mixing and Glauber
rules are applied randomly with probability A and 1 — A respectively. It is
presumably possible to prove that in the exponentially ergodic regime of GG
the only invariant measure pu) converges as A — 1 to a product measure.
This was proven by [5] in the continuous case.
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