SOME PROPERTIES OF QUASI STATIONARY DISTRIBUTIONS IN THE BIRTH AND DEATH CHAINS: A DYNAMICAL APPROACH

P.A. FERRARI
Instituto de Matemática e Estatistica
Universidade de São Paulo, São Paulo, Brasil.
S. MARTINEZ
Departamento de Ingeniería Matemática
Facultad de Ciencias Físicas y Matemáticas
Universidad de Chile, Santiago, Chile.
P. PICCO
Centre de Physique Théorique, C.N.R.S.
Luminy, Marseille, France.

Abstract

We study the existence of non-trivial quasi-stationary distributions for birth and death chains by using a dynamical approach. We also furnish an elementary proof of the solidarity property.

1. Introduction

Consider an irreducible discrete Markov chain $(X(n))$ on $S^{*} \cup\{0\}$ where 0 is the only absorbing state and S^{*} is the set of transient states. Let ν be a probability distribution. Denote by

$$
\begin{equation*}
\nu^{(n)}(x)=\mathbb{P}_{\nu}(X(n)=x \| X(n) \neq 0) \tag{1.1}
\end{equation*}
$$

the conditional probability that at time n the chain is at state x given that it has not been absorbed, starting with the initial distribution ν. A measure μ is called a Yaglom limit if for some probability measure ν we have: $\nu^{(n)}(x) \underset{n \rightarrow \infty}{\longrightarrow} \mu(x)$ for all $x \in S^{*}$.

Now assume that the transition probabilities $p(x, y)=\mathbb{P}(X(n+1)=y \mid X(n)=x)$ verify the following hypothesis:

$$
\begin{gathered}
p(0,0)=1 \\
P^{*}=\left(p(x, y): x, y \in S^{*}\right) \text { is irreducible } \\
\forall x \in S \text { the set }\{y \in S: p(y, x)>0\} \text { is finite and non-empty }
\end{gathered}
$$

Then it is easy to show that Yaglom limits μ verify the set of equations

$$
\begin{equation*}
\forall x \in S^{*}, \quad \mu(x)=\sum_{y \in S^{*}} \mu(y)(p(y, x)+p(y, 0) \mu(x)) \tag{1.2}
\end{equation*}
$$

or equivalently the row vector $\mu=\left(\mu(x): x \in S^{*}\right)$ satisfies

$$
\begin{equation*}
\mu P^{*}=\gamma(\mu) \mu \text { with } \gamma(\mu)=1-\sum_{x \in S^{*}} \mu(x) p(x, 0) \tag{1.3}
\end{equation*}
$$

In general a quasi-stationary distribution (q.s.d.) is a measure μ which verifies (1.3). If μ is also a probability measure we call it a normalized quasi-stationary distribution (n.q.s.d.). Obviously the trivial measure $\mu \equiv 0$ is a q.s.d. It is easy to show that the irreducibility condition we have imposed on the Markov chain implies that for any nontrivial q.s.d., $\mu(x)>0$ for all $x \in S^{*}$.

Some of the interesting problems of q.s.d. are concerned with the search for

- necessary and/or sufficient conditions on the transition matrices for the existence of non-trivial q.s.d.,
- domains of attractions of q.s.d.,
- evolution of $\delta_{x}^{(n)}, \delta_{x}$ being the Dirac distribution at point x.

For several kinds of Markov chains it has been proved that $\delta_{x}^{(n)}$ converges to a n.q.s.d. This was shown for branching process by Yaglom (1947), for finite state spaces by Darroch and Seneta (1965), for continuous time simple random walk on \mathbb{N} by Seneta (1966) and for discrete time random walk on \mathbb{N} by Seneta and Vere-Jones (1966).

For birth and death chains the existence of the limit of the sequence $\delta_{x}^{(n)}$ does not depend on x, and if the limit exists it is the same for all x. We provide in section 3 an elementary proof of this fact. Good (1968) gave a proof of this result based on some powerful results of Karlin and McGregor (1957); some technical details need additional explanations.

The problem of convergence of $\nu^{(n)}$ for ν other than Dirac distributions was initially considered by Seneta and Vere Jones (1966) for Markov chains with R-positive transition matrix.

For random walks it turns of that the Yaglom limit of $\delta_{x}^{(n)}$ is the minimal n.q.s.d. (this means $\gamma(\mu)$ is minimal). Then the study of the domains of attraction of non-minimal n.q.s.d. concerns the evolution $\nu^{(n)}$ for ν other than Dirac distributions. Recently we proved in [FMP] that the domains of attraction of non-minimal n.q.s.d. are non-trivial. More precisely we show that:

Theorem 1.1. Let μ, μ^{\prime} be n.q.s.d. with $\gamma(\mu)>\gamma\left(\mu^{\prime}\right)$. Assume that ν satisfies:

$$
\sup \left\{|\nu(x)-\mu(x)| \mu^{\prime}(x)^{-1}: x \in S^{*}\right\}<\infty \text { or } \nu=\eta \mu+(1-\eta) \mu^{\prime} \text { for } \eta \in(0,1]
$$

then $\nu^{(n)} \underset{n \rightarrow \infty}{\longrightarrow} \mu$.
Our main results deal with q.s.d. in birth and death chains. A first study concerning the description of the class of q.s.d.'s for birth and death process was made by Cavender (1978). Roughly, this class was characterized as an ordered one-parameter family and it was proved that any q.s.d. has total mass 0,1 or ∞.

2. Existence of Q.S.D. for Birth and Death Chains

2.1 GENERAL CONDITIONS FOR EXISTENCE

Consider a birth and death chain $\left(X_{n}\right)$ on \mathbb{N} with 0 as its unique absorbing state, so $p(0,0)=1$. Denote $q_{x}=p(x, x-1)$ and $p_{x}=p(x, x+1)$, so $p(x, x)=1-p_{x}-q_{x}$ for all $x \in \mathbb{N}^{*}$.

For a sequence $\mu=\left(\mu(x): x \in \mathbb{N}^{*}\right)$ the equations (1.2) take the form,

$$
\begin{equation*}
\forall y \in \mathbb{N}^{*}:\left(p_{y}+q_{y}\right) \mu(y)=q_{y+1} \mu(y+1)+p_{y-1} \mu(y-1)+q_{1} \mu(1) \mu(y) \tag{2.1}
\end{equation*}
$$

If $\mu(1)>0$ we get $\sum_{y=1}^{x} \mu(y)=1-\frac{1}{\mu(1) q_{1}}\left(q_{x+1} \mu(x+1)-p_{x} \mu(x)\right)$ so a non-trivial q.s.d. is normalized iff $\mu(x) \xrightarrow[x \rightarrow \infty]{\longrightarrow} 0$.

Now for $\gamma \neq p_{1}+\stackrel{x \rightarrow \infty}{q_{1}}$ define in a recursive way the following sequence $Z_{\gamma}=\left(Z_{\gamma}(x): x \in \mathbb{N}^{*}\right)$,

$$
\begin{gather*}
Z_{\gamma}(1)=\gamma \tag{2.2}\\
\forall y \geq 2: \quad Z_{\gamma}(y)=f_{\gamma, y}\left(Z_{\gamma}(y-1)\right) \tag{2.3}
\end{gather*}
$$

where

$$
\begin{equation*}
f_{\gamma, y}(z)=\gamma+p_{y}+q_{y}-p_{1}-q_{1}-\frac{p_{y-1} q_{y}}{z} \tag{2.4}
\end{equation*}
$$

Associate to Z_{γ} the following vector $\mu_{(\gamma)}=\left(\mu_{(\gamma)}(x): x \in \mathbb{N}^{*}\right)$

$$
\begin{gather*}
\mu_{(\gamma)}(1)=\frac{1}{q_{1}}\left(p_{1}+q_{1}-\gamma\right) \tag{2.5}\\
\forall x \geq 2: \quad \mu_{(\gamma)}(x)=\mu_{(\gamma)}(1) \prod_{y=1}^{x-1} \frac{Z_{\gamma}(y)}{q_{y+1}} \tag{2.6}
\end{gather*}
$$

In [FMP] it was shown that a vector $\mu=\left(\mu(x): x \in \mathbb{N}^{*}\right)$ with non-null terms verifies equations (2.1) iff there exists a $\gamma \neq p_{1}+q_{1}$ such that $\mu=\mu_{(\gamma)}$.

In particular this last result implies that there exist non-trivial q.s.d. μ iff for some $\gamma<p_{1}+q_{1}$ the sequence $Z_{\gamma}=\left(Z_{\gamma}(x): x \in \mathbb{N}^{*}\right)$ is strictly positive. Then we search for conditions under which the orbit

$$
Z_{\gamma}(y)=f_{\gamma, y} \circ f_{\gamma, y-1} \circ \cdots \circ f_{\gamma, 2}(\gamma)
$$

is strictly positive.

Assume for simplicity that $p_{x}+q_{x}=1$ for all $x \in \mathbb{N}^{*}$ so the evolution functions $f_{\gamma, y}$ take the form,

$$
\begin{equation*}
f_{\gamma, y}(z)=\gamma-\frac{p_{y-1} q_{y}}{z} \tag{2.7}
\end{equation*}
$$

Now make the following hypothesis: there exists a $\bar{q} \in\left(\frac{1}{2}, \frac{\sqrt{7}-1}{2}\right)$ such that

$$
\begin{equation*}
\forall y \in \mathbb{N}^{*}, \quad \frac{1}{2}<\bar{q}-\frac{1}{2}\left(\bar{q}-\frac{1}{2}\right)^{2}<q \leq q_{y} \leq q^{\prime}<\bar{q}+\frac{1}{2}\left(\bar{q}-\frac{1}{2}\right)^{2}<1 \tag{2.8}
\end{equation*}
$$

Denote $p=1-q, p^{\prime}=1-q^{\prime}$. Notice that if $\bar{q}=\frac{\sqrt{7}-1}{2}$ then $\bar{q}+\frac{1}{2}\left(\bar{q}-\frac{1}{2}\right)^{2}=1$. The above condition (2.8) means that the birth and death chain is a perturbation of a random walk of parameter \bar{q}.

It can be shown that the hypothesis (2.8) implies the inequality

$$
2 \sqrt{p q^{\prime}}<p^{\prime}+q<1
$$

Call $g_{\gamma}(z)=\gamma-\frac{p^{\prime} q}{z}$ and $h_{\gamma}(z)=\gamma-\frac{p q^{\prime}}{z}$. It is easy to check that:

$$
\begin{equation*}
\forall y \in \mathbb{N}^{*}, z \geq 0: \quad h_{\gamma}(z) \leq f_{\gamma, y}(z) \leq g_{\gamma}(z) \tag{2.9}
\end{equation*}
$$

Take $\gamma \in\left[2 \sqrt{p q^{\prime}}, 1\right.$), then $h_{\gamma}(z)$ has two fixed points (only one if $\gamma=2 \sqrt{p q^{\prime}}$), a stable one $\xi=\frac{\gamma+\sqrt{\gamma^{2}-4 p q^{\prime}}}{2}$ and an unstable one $\eta=\frac{\gamma-\sqrt{\gamma^{2}-4 p q^{\prime}}}{2}$. Also $g_{\gamma}(z)$ has two fixed points, a stable one $\tilde{\xi}=\frac{\gamma+\sqrt{\gamma^{2}-4 p^{\prime} q}}{2}$ and an unstable one $\tilde{\eta}=\frac{\gamma-\sqrt{\gamma^{2}-4 p^{\prime} q}}{2}$.

Theorem 2.1. If condition (2.8) holds then there exist n.q.s.d. More precisely, if $\gamma \in$ $\left[2 \sqrt{p q^{\prime}}, 1\right)$ then $\mu_{(\gamma)}$ is a non trivial q.s.d. and if $\gamma \in\left[2 \sqrt{p q^{\prime}}, p^{\prime}+q\right]$ then $\mu_{(\gamma)}$ is a n.q.s.d.

Proof. Take $\gamma \in\left[2 \sqrt{p q^{\prime}}, 1\right)$. We have $Z_{\gamma}(1)=\gamma \geq \xi$. Therefore

$$
Z_{\gamma}(y)=f_{\gamma, y} \circ \ldots \circ f_{\gamma, 2}\left(Z_{\gamma}(1)\right) \geq h_{\gamma}^{(y-1)}\left(Z_{\gamma}(1)\right) \geq h_{\gamma}^{(y-1)}(\xi)=\xi>0
$$

Then $Z_{\gamma}(y) \geq \xi>0$. Now $\gamma<1$ implies $\mu_{(\gamma)}(1)>0$ and expression (2.6) shows $\mu_{(\gamma)}(x)>0$ for any $x \geq 2$, so $\mu_{(\gamma)}$ is a non trivial q.s.d.

Now let us prove that:

$$
\begin{equation*}
\forall y \in \mathbb{N}^{*}, \quad Z_{\gamma}(y) \leq \tilde{\xi}+(\gamma-\tilde{\xi})\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1} \tag{2.10}
\end{equation*}
$$

Since $Z_{\gamma}(1)=\gamma$ the relation (2.10) holds for $y=1$. Now we have $Z_{\gamma}(y)=f_{\gamma, y} \circ f_{\gamma, y-1} \circ \cdots \circ f_{\gamma, 2}(\gamma) \leq g_{\gamma}^{(y-1)}(\gamma)$ where $g_{\gamma}^{(x)}=g_{\gamma} \circ \cdots \circ g_{\gamma} \quad x$ times. Since $g_{\gamma}^{(y-1)}(\tilde{\xi})=\tilde{\xi}$ we get from Taylor formula,

$$
g_{\gamma}^{(y-1)}(\gamma) \leq \tilde{\xi}+(\gamma-\tilde{\xi}) \sup _{z \in[\tilde{\xi}, \gamma]}\left\{\frac{\partial}{\partial t} g_{\gamma}^{(y-1)}(z)\right\}
$$

Now

$$
\frac{\partial}{\partial z} g_{\gamma}^{(y-1)}(z)=\prod_{x=0}^{y-2} g_{\gamma}^{\prime}\left(g_{\gamma}^{(x)}(z)\right)
$$

with $g_{\gamma}^{(0)}(z)=z$ and $g_{\gamma}^{\prime}(z)=\frac{p^{\prime} q}{z^{2}}=\frac{\tilde{\xi} \tilde{\eta}}{z^{2}}$.
Using the fact that g_{γ} is increasing and $\tilde{\xi}$ is a fixed point of g_{γ} we get easily that for all $0 \leq x \leq y-2$, and $z \in[\tilde{\xi}, \gamma]$, we have $g_{\gamma}^{(x)}(z) \geq \tilde{\xi}$. Therefore we get

$$
\sup _{z \in[\tilde{\xi}, \gamma]}\left\{\frac{\partial}{\partial t} g^{(y-1)}(z)\right\} \leq\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1}
$$

Then property (2.10) is fulfilled.
Recall that $q_{y} \geq q$. Use the bound (2.10) to get from (2.6),

$$
\mu_{(\gamma)}(x) \leq \mu_{\gamma}(1)\left(\prod_{y=1}^{x-1}\left(1+\frac{\gamma-\tilde{\xi}}{\tilde{\xi}}\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1}\right)\right)\left(\frac{\tilde{\xi}}{q}\right)^{x-1}
$$

Since $\sum_{y=1}^{\infty}\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1}<\infty$ we deduce that $C=\prod_{y=1}^{\infty}\left(1+\frac{\gamma-\tilde{\xi}}{\tilde{\xi}}\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1}\right)<\infty$. So $\mu_{(\gamma)}(x) \leq C \mu_{\gamma}(1)\left(\frac{\tilde{\xi}}{q}\right)^{x-1}$.

Now assume $\gamma \in\left[2 \sqrt{p q^{\prime}}, p^{\prime}+q\right]$. Since $p q^{\prime}>p^{\prime} q$ we get:

$$
\tilde{\xi}=\frac{1}{2}\left(\gamma+\sqrt{\gamma^{2}-4 p q^{\prime}}\right) \leq \frac{1}{2}\left(\left(p^{\prime}+q\right)+\sqrt{\left(p^{\prime}+q\right)^{2}-4 p^{\prime} q}\right)<\frac{1}{2}\left(\left(p^{\prime}+q\right)+\left(q-p^{\prime}\right)\right)=q
$$

Then $\frac{\tilde{\xi}}{q}<1$ so $\mu_{(\gamma)}(x) \underset{x \rightarrow \infty}{\longrightarrow} 0$. Then $\mu_{(\gamma)}$ is a n.q.s.d.

2.2 LINEAR GROWTH CHAINS WITH IMMIGRATION

These processes are birth and death chains with

$$
\begin{equation*}
p_{y}=\frac{p y+1}{(p+q) y+1}, \quad q_{y}=\frac{q y}{(p+q) y+a} \quad \text { for } y \in \mathbb{N}^{*} \tag{2.11}
\end{equation*}
$$

(so $p_{y}+q_{y}=1$) and an absorving barrier at $0, p(0,0)=1$.
We assume conditions

$$
\begin{equation*}
p>q \quad \text { and } \quad a<p+q \tag{2.12}
\end{equation*}
$$

It can be shown that these inequalities imply that the sequence of functions $\left(f_{\gamma, y}: y \in \mathbb{N}^{*}\right)$ defined in (2.7), is increasing with y. The pointwise limit of this sequence, when $y \rightarrow \infty$, is $f_{\gamma, \infty}(z)=\gamma-\frac{p q}{(p+q)^{2} z}$. Then we have:

$$
\begin{equation*}
f_{\gamma, 2} \leq \cdots \leq f_{\gamma, y} \leq f_{\gamma, y+1} \leq \cdots \leq f_{\gamma, \infty} \tag{2.13}
\end{equation*}
$$

Observe that $f_{\gamma, 2}$ plays the role of h_{γ} and $f_{\gamma, \infty}$ that of g_{γ} in (2.9).
Now, inequality $p_{1} q_{2}<1$ is equivalent to

$$
\begin{equation*}
2(q-p)^{2}+a(3 p+a-5 q)>0 \tag{2.14}
\end{equation*}
$$

This condition is verified if q is big enough, for instance if $q>p+\frac{5}{4} a+\sqrt{a\left(p+\frac{17}{16} a\right)}$. We assume (2.14) holds.

Take $\gamma \in\left(2 \sqrt{p_{1} q_{2}}, 1\right)$ so $\xi=\frac{\gamma+\sqrt{\gamma^{2}-4 p_{1} q_{2}}}{2}$ belongs to the interval $(0, \gamma)$ and it is a fixed point of $f_{\gamma, 2}$. Then $Z_{\gamma}(1)=\gamma$ and,

$$
Z_{\gamma}(y)=f_{\gamma, y} \circ \cdots \circ f_{\gamma, 2}(\gamma)>f_{\gamma, 2}^{(y-1)}(\xi)=\xi>0
$$

Since $\gamma<1$, from (2.5) and (2.6) we get $\mu_{(\gamma)}(y)>0$ for any $y \in \mathbb{N}^{*}$. Hence $\mu_{(\gamma)}$ is a non trivial q.s.d.

Recall that $f_{\gamma, 2} \leq f_{\gamma, \infty}$ is equivalent to $\frac{p q}{(p+q)^{2}}<p_{1} q_{2}$. Take $\gamma \in\left(\frac{2 \sqrt{p q}}{(p+q)}, 2 \sqrt{p_{1} q_{2}}\right)$. Then the point $\tilde{\eta}=\frac{\gamma-\sqrt{\gamma^{2}-\frac{4 p q}{(p+q)^{2}}}}{2}$ and $\tilde{\xi}=\frac{\gamma+\sqrt{\gamma^{2}-\frac{4 p q}{(p+q)^{2}}}}{}$ are respectively the unstable and the stable fixed points of $f_{\gamma, \infty}$. Replacing g_{γ} by $f_{\gamma, \infty}$ we get that condition (2.9) holds with $\tilde{\eta}, \tilde{\xi}$ the fixed points of $f_{\gamma, \infty}$. Then,

$$
\begin{equation*}
\mu_{(\gamma)}(x) \leq \mu_{(\gamma)}(1)\left\{\prod_{y=1}^{x-1}\left(1+\frac{\gamma-\tilde{\xi}}{\tilde{\xi}}\left(\frac{\tilde{\tilde{\xi}}}{\tilde{\xi}}\right)^{y-1}\right\} \tilde{\xi}^{x-1} \prod_{y=1}^{x-1} \frac{1}{q_{y+1}}\right. \tag{2.15}
\end{equation*}
$$

Denote $C=\prod_{y=1}^{\infty}\left(1+\frac{\gamma-\tilde{\xi}}{\tilde{\xi}}\left(\frac{\tilde{\eta}}{\tilde{\xi}}\right)^{y-1}\right)$ which is finite.
We have $\prod_{y=1}^{x-1} \frac{1}{q_{y+1}}=\left(\frac{p+q}{q}\right)^{x-1} \prod_{y=1}^{x-1}\left(1+\frac{a}{(p+q)(y+1)}\right) \leq\left(\frac{p+q}{q}\right)^{x-1} \exp \left\{\frac{a}{p+q} \sum_{y=1}^{x-1} \frac{1}{y+1}\right\}$.
Then $\prod_{y=1}^{x-1} \frac{1}{q_{y+1}} \leq\left(\frac{p+q}{q}\right)^{x-1}(x-1)^{\frac{a}{(p+q)}}$. Hence

$$
\begin{equation*}
\mu_{(\gamma)}(x) \leq \mu_{(\gamma)}(1) C\left(\tilde{\xi} \frac{(p+q)}{q}\right)^{x-1}(x-1)^{\frac{a}{p+q}} \tag{2.16}
\end{equation*}
$$

It can be easily verified that our assumptions imply that $\tilde{\xi}<\frac{q}{p+q}$. Then $\mu_{(\gamma)}(x) \underset{x \rightarrow \infty}{\longrightarrow} 0$. Then, for $\gamma \in\left(2 \frac{\sqrt{p q}}{p+q}, 2 \sqrt{p_{1} q_{2}}\right)$ the q.s.d. $\mu_{(\gamma)}$ is normalized.

3. Solidarity Property for Birth and Death Chains

Concerning the convergence of point measures to some Yaglom limit, the deepest results have been established in [S2,SV-J] for random walks ($q_{x}=q, p_{x}=1-q$) with continuous and discrete time. Here we shall show a solidarity process which asserts that it suffices to have the convergence for the probability measure concentrated at 1 . Our proof is elementary, in fact it does not use any higher technique. We must point out that Good [G] has also shown this result but in his proof some technical steps have been overlooked.

Theorem 3.1. If $\delta_{1}^{(n)}$ converges to a q.s.d. μ then for any $x \in \mathbb{N}^{*}, \delta_{x}^{(n)}$ converges to μ.
Proof. For $x, n \in \mathbb{N}^{*}$ set:

$$
\begin{aligned}
\alpha_{x}(n) & =\frac{\mathbb{P}_{x+1}(X(n-1) \neq 0)}{\mathbb{P}_{x}(X(n) \neq 0)}, \quad \beta_{x}(n)=\frac{\mathbb{P}_{x}(X(n-1) \neq 0)}{\mathbb{P}_{x}(X(n) \neq 0)} \\
\xi_{x}(n) & =\frac{\mathbb{P}_{x-1}(X(n-1) \neq 0)}{\mathbb{P}_{x}(X(n) \neq 0)}
\end{aligned}
$$

Observe that $\xi_{1}(n)=0$ for all $n \in \mathbb{N}^{*}$, all other terms being >0.
These quantities are related by the identity

$$
\begin{equation*}
\forall x \in \mathbb{N}^{*}, \quad \xi_{x+1}(n)=\beta_{x}(n) \beta_{x+1}(n)\left(\alpha_{x}(n)\right)^{-1} \tag{3.1}
\end{equation*}
$$

On the other hand from the equation

$$
\begin{align*}
\mathbb{P}_{x}(X(n) \neq 0) & =q_{x} \mathbb{P}_{x-1}(X(n-1) \neq 0) \\
& +\left(1-p_{x}-q_{x}\right) \mathbb{P}_{x}(X(n-1) \neq 0)+p_{x} \mathbb{P}_{x+1}(X(n-1) \neq 0) \tag{3.2}
\end{align*}
$$

we deduce that

$$
\begin{equation*}
\forall x, n \in \mathbb{N}^{*}, \quad q_{x} \xi_{x}(n)+\left(1-p_{x}-q_{x}\right) \beta_{x}(n)+p_{x} \alpha_{x}(n)=1 \tag{3.3}
\end{equation*}
$$

Also from definition we get

$$
\begin{equation*}
\beta_{x}(n)=\left(\mathbb{P}_{x}(X(n) \neq 0 \mid X(n-1) \neq 0)\right)^{-1}=\left(1-\delta_{x}^{(n-1)}(1) q_{1}\right)^{-1} \tag{3.4}
\end{equation*}
$$

If the limit of a sequence $\eta(n)$ exits denote it by $\eta(\infty)$. So the hypothesis of the theorem is: $\forall z \in \mathbb{N}^{*}, \delta_{1}^{(\infty)}(z)$ exists.

Since $\delta_{1}^{(\infty)}(1)$ exists and belongs to $[0,1]$ we deduce from (3.4) that $\beta_{1}(\infty)$ exists and belongs to $\left[1, \frac{1}{1-q_{1}}\right]$. From $\xi_{1}(n)=0$ and (3.3) we get that $\alpha_{1}(\infty)$ exists and is bigger or equal than $\frac{1}{p_{1}}\left(1-\frac{\left(1-p_{1}-q_{1}\right)}{1-q_{1}}\right)=\frac{1}{1-q_{1}}$.

Now let us show that,

$$
\begin{equation*}
\forall x \in \mathbb{N}^{*}, \quad \liminf _{n \rightarrow \infty} \alpha_{x}(n)>0 \tag{3.5}
\end{equation*}
$$

This holds for $x=1$. Now from (3.2) evaluated at $x+2$ we deduce the inequality

$$
\mathbb{P}_{x+1}(X(n-1) \neq 0) \leq q_{x+2}^{-1} \mathbb{P}_{x+2}(X(n) \neq 0)
$$

On the other hand since $\mathbb{P}_{y}(X(n) \neq 0)$ increases with $y \in \mathbb{N}^{*}$ and decreases with $n \in \mathbb{N}^{*}$ we get the following relations

$$
\begin{gathered}
\mathbb{P}_{x}(X(n) \neq 0) \geq p_{x} \mathbb{P}_{x+1}(X(n-1) \neq 0) \\
\alpha_{x+1}(n)=\frac{\mathbb{P}_{x+2}(X(n-1) \neq 0)}{\mathbb{P}_{x+1}(X(n) \neq 0)} \geq \frac{\mathbb{P}_{x+2}(X(n) \neq 0)}{\mathbb{P}_{x+1}(X(n-1) \neq 0)}
\end{gathered}
$$

Hence we obtain:

$$
\begin{aligned}
\alpha_{x}(n)=\frac{\mathbb{P}_{x+1}(X(n-1) \neq 0)}{\mathbb{P}_{x}(X(n) \neq 0)} & \leq\left(p_{x} q_{x+2}\right)^{-1} \frac{\mathbb{P}_{x+2}(X(n) \neq 0)}{\mathbb{P}_{x+1}(X(n-1) \neq 0)} \\
& \leq\left(p_{x} q_{x+2}\right)^{-1} \alpha_{x+1}(n)
\end{aligned}
$$

Then $\alpha_{x+1}(n) \geq p_{x} q_{x+2} \alpha_{x}(n)$. So $\liminf _{n \rightarrow \infty} \alpha_{x+1}(n)>0$ and relation (3.5) holds.
Now let us prove by recurrence that:

$$
\begin{equation*}
\text { the limits } \alpha_{x}(\infty), \beta_{x}(\infty), \xi_{x}(\infty) \text { and } \delta_{x}^{(\infty)}(z) \text { for all } z \in \mathbb{N}^{*} \text {, exist } \tag{3.6}
\end{equation*}
$$

We show above that these limits exist for $x=1$. Assuming that property (3.6) holds for $x \in\{1, \ldots, y\}$, we shall prove that it is also satisfied for $x=y+1$. With this purpose in mind, condition on the first step of the chain to get,

$$
\begin{align*}
\mathbb{P}_{y}(X(n)=z) & =q_{y} \mathbb{P}_{y-1}(X(n-1)=z)+\left(1-p_{y}-q_{y}\right) \mathbb{P}_{y}(X(n-1)=z) \tag{3.7}\\
& +p_{y} \mathbb{P}_{y+1}(X(n-1)=z)
\end{align*}
$$

Now from definitions of $\alpha_{y}(n), \beta_{y}(n), \xi_{y}(n)$ we have the following identities for $y \geq 2$:

$$
\begin{aligned}
\mathbb{P}_{y}(X(n) \neq 0) & =\alpha_{y}(n)\left(\mathbb{P}_{y+1}(X(n-1) \neq 0)\right)^{-1}=\beta_{y}(n)\left(\mathbb{P}_{y}(X(n-1) \neq 0)\right)^{-1} \\
& =\xi_{y}(n)\left(\mathbb{P}_{y}(X(n-1) \neq 0)\right)^{-1}
\end{aligned}
$$

Develop $\delta_{y}^{(n)}(z)=\mathbb{P}_{y}(X(n)=z)\left(\mathbb{P}_{y}(X(n) \neq 0)\right)^{-1}$ according to (3.7) and the last equalities to get:

$$
\begin{equation*}
\delta_{y}^{(n)}(z)=\delta_{y-1}^{(n-1)}(z) q_{y} \xi_{y}(n)+\delta_{y}^{(n-1)}(z)\left(1-p_{y}-q_{y}\right) \beta_{y}(n)+\delta_{y+1}^{(n-1)}(z) p_{y} \alpha_{y}(n) \tag{3.8}
\end{equation*}
$$

This last equality holds for any $y \geq 1$ (recall $\left.\xi_{1}(n)=0\right)$.
Since $\delta^{(\infty)}(z), \xi_{x}(\infty), \beta_{x}(\infty), \alpha_{x}(\infty)$ exist for any $x \leq y$ and $z \in \mathbb{N}^{*}$, and, by (3.5), $\alpha_{x}(\infty)>0$ we get that $\delta_{y+1}^{(\infty)}(z)$ exists for any $z \in \mathbb{N}^{*}$. On the other hand equality (3.4) implies that $\beta_{y+1}(\infty)$ exists. Then by (3.1) the limit $\xi_{y+1}(\infty)$ exists and equation (3.3) implies the existence of $\alpha_{y+1}(\infty)$.

From (3.5) and (3.4) we deduce $\alpha_{x}(\infty)>0$ and $\beta_{x}(\infty)>0$ for any $x \in \mathbb{N}^{*}$. So (3.1) implies $\xi_{x}(\infty)>0$ for $x \geq 2$.

Then if $\delta_{y}^{(\infty)}(z)=0$ for some $y, z \in \mathbb{N}^{*}$ we can deduce from equality (3.8) that $\delta_{x}^{(\infty)}(z)=0$ for all $x \in \mathbb{N}^{*}$. So the q.s.d.'s which are the limits of $\delta_{x}^{(n)}$ are all trivial or normalized.

Assume that $\delta_{1}^{(n)}$ converges to a normalized q.s.d. μ. Let us prove by recurrence that $\delta_{x}^{(n)}$ converges to μ for all x.

Since the limits $\delta_{y}^{(\infty)}$ exists and $\delta_{1}^{(\infty)}(z)>0$, when we evaluate (3.8) at $y=1, n=\infty$ we get the following equation:

$$
1=\left(1-p_{1}-q_{1}\right) \beta_{1}(\infty)+\left(\frac{\delta_{2}^{(\infty)}(z)}{\delta_{1}^{(\infty)}(z)}\right) p_{1} \alpha_{1}(\infty)
$$

Comparing this equation with (3.3) evaluated at $x=1, n=\infty$, and by taking into account that $\xi_{1}(\infty)=0$ we deduce $\delta_{2}^{(\infty)}(z)=\delta_{1}^{(\infty)}(z)$ for any $z \in \mathbb{N}^{*}$.

Assume we have shown for any $y \in\left\{1, \ldots, y_{0}\right\}$ that: $\forall z \in \mathbb{N}^{*}, \delta_{y}^{(\infty)}(z)=\delta_{1}^{(\infty)}(z)$. Let us show that this last set of equalities also hold for $y_{0}+1$. Evaluate equation (3.8) at $y=y_{0}, n=\infty$ to get

$$
1=q_{y_{0}} \xi_{y_{0}}(\infty)+\left(1-p_{y_{0}}-q_{y_{0}}\right) \beta_{y_{0}}(\infty)+\left(\frac{\delta_{y_{0}+1}^{(\infty)}(z)}{\delta_{y_{0}}^{(\infty)}(z)}\right) p_{y_{0}} \alpha_{y_{0}}(\infty)
$$

Comparing this equation with (3.3) evaluated at $x=y_{0}, n=\infty$ we deduce that $\delta_{y_{0}+1}^{(\infty)}(z)=$ $\delta_{y_{0}}^{(\infty)}(z)$. Hence the recurrence follows and for any $x \in \mathbb{N}^{*}, \delta_{x}^{(n)}$ converges to $\mu=\delta_{1}^{(\infty)}$.

Acknowledgments

We thank Antonio Galves and Isaac Meilijson for discussions. P.P. and S.M. acknowledge the very kind hospitality at Instituto de Matemática e Estatística, Universidade de

São Paulo. The authors acknowledge the very kind hospitality of Istituto Matematico, Università di Roma Tor Vergata. This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo. S.M. was partially supported by Fondo Nacional de Ciencias 0553-88/90 and Fundación Andes (becario Proyecto C-11050).

References

[C] J.A. Cavender (1978) Quasi-stationary distributions of birth and death processes. Adv. Appl. Prob., 10, 570-586.
[FMP] P. Ferrari, S. Martínez, P. Picco (1990) Existence of non trivial quasi stationary distributions in the birth and death chains. Submitted J. Appl. Prob.
[G] P. Good (1968) The limiting behaviour of transient birth and death processses conditioned on survival. J. Austral Math. Soc. 8, 716-722.
[KMcG1] S. Karlin and J. McGregor (1957) The differential equations of birth and death processes, and the Stieljes Moment Problem. Trans Amer. Math. Soc., 85, 489-546.
[KMcG2] S. Karlin and J. McGregor (1957) The classification of birth and death processes. Trans. Amer. Math. Soc., 86, 366-400.
[SV-J] E. Seneta and D. Vere-Jones (1966) On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. J. Appl. Prob., 3, 403-434.
[S1] E. Seneta (1981) Non-negative matrices and Markov chains. Springer Verlag.
[S2] E. Seneta (1966) Quasi-stationary behaviour in the random walk with continuous time. Australian J. on Statistics, 8, 92-88.
[SW] W. Scott and H. Wall (1940) A convergence theorem for continued-fractions. Trans. Amer. Math. Soc., 47, 115-172.
[Y] A.M. Yaglom (1947) Certain limit theorems of the theory of branching stochastic processes (in russian) Dokl. Akad. Nank SSSR, 56, 795-798.

