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ABSTRACT. We study the existence of non-trivial quasi-stationary distributions for birth
and death chains by using a dynamical approach. We also furnish an elementary proof of
the solidarity property.

1. Introduction

Consider an irreducible discrete Markov chain (X(n)) on S∗ ∪ {0} where 0 is the only
absorbing state and S∗ is the set of transient states. Let ν be a probability distribution.
Denote by

ν(n)(x) = Pν(X(n) = x||X(n) 6= 0) (1.1)

the conditional probability that at time n the chain is at state x given that it has not been
absorbed, starting with the initial distribution ν. A measure µ is called a Yaglom limit if
for some probability measure ν we have: ν(n)(x) −−→

n→∞
µ(x) for all x ∈ S∗.

Now assume that the transition probabilities p(x, y) = P(X(n + 1) = y|X(n) = x)
verify the following hypothesis:

p(0, 0) = 1

P ∗ = (p(x, y) : x, y ∈ S∗) is irreducible

∀x ∈ S the set {y ∈ S : p(y, x) > 0} is finite and non-empty

Then it is easy to show that Yaglom limits µ verify the set of equations

∀x ∈ S∗, µ(x) =
∑

y∈S∗

µ(y)(p(y, x) + p(y, 0)µ(x)) (1.2)



or equivalently the row vector µ = (µ(x) : x ∈ S∗) satisfies

µP ∗ = γ(µ)µ with γ(µ) = 1−
∑

x∈S∗

µ(x)p(x, 0) (1.3)

In general a quasi-stationary distribution (q.s.d.) is a measure µ which verifies (1.3).
If µ is also a probability measure we call it a normalized quasi-stationary distribution
(n.q.s.d.). Obviously the trivial measure µ ≡ 0 is a q.s.d. It is easy to show that the
irreducibility condition we have imposed on the Markov chain implies that for any non-
trivial q.s.d., µ(x) > 0 for all x ∈ S∗.

Some of the interesting problems of q.s.d. are concerned with the search for
· necessary and/or sufficient conditions on the transition matrices for the existence of

non-trivial q.s.d.,
· domains of attractions of q.s.d.,
· evolution of δ

(n)
x , δx being the Dirac distribution at point x.

For several kinds of Markov chains it has been proved that δ
(n)
x converges to a n.q.s.d.

This was shown for branching process by Yaglom (1947), for finite state spaces by Darroch
and Seneta (1965), for continuous time simple random walk on N by Seneta (1966) and
for discrete time random walk on N by Seneta and Vere-Jones (1966).

For birth and death chains the existence of the limit of the sequence δ
(n)
x does not

depend on x, and if the limit exists it is the same for all x. We provide in section 3
an elementary proof of this fact. Good (1968) gave a proof of this result based on some
powerful results of Karlin and McGregor (1957); some technical details need additional
explanations.

The problem of convergence of ν(n) for ν other than Dirac distributions was initially
considered by Seneta and Vere Jones (1966) for Markov chains with R-positive transition
matrix.

For random walks it turns of that the Yaglom limit of δ
(n)
x is the minimal n.q.s.d.

(this means γ(µ) is minimal). Then the study of the domains of attraction of non-minimal
n.q.s.d. concerns the evolution ν(n) for ν other than Dirac distributions. Recently we
proved in [FMP] that the domains of attraction of non-minimal n.q.s.d. are non-trivial.
More precisely we show that:

Theorem 1.1. Let µ, µ′ be n.q.s.d. with γ(µ) > γ(µ′). Assume that ν satisfies:

sup{|ν(x)− µ(x)|µ′(x)−1 : x ∈ S∗} < ∞ or ν = ηµ + (1− η)µ′ for η ∈ (0, 1]

then ν(n) −−→
n→∞

µ.

Our main results deal with q.s.d. in birth and death chains. A first study concerning
the description of the class of q.s.d.’s for birth and death process was made by Cavender
(1978). Roughly, this class was characterized as an ordered one-parameter family and it
was proved that any q.s.d. has total mass 0,1 or ∞.



2. Existence of Q.S.D. for Birth and Death Chains

2.1 GENERAL CONDITIONS FOR EXISTENCE

Consider a birth and death chain (Xn) on N with 0 as its unique absorbing state, so
p(0, 0) = 1. Denote qx = p(x, x− 1) and px = p(x, x + 1), so p(x, x) = 1− px − qx for all
x ∈ N∗.

For a sequence µ = (µ(x) : x ∈ N∗) the equations (1.2) take the form,

∀y ∈ N∗ : (py + qy)µ(y) = qy+1µ(y + 1) + py−1µ(y − 1) + q1µ(1)µ(y) (2.1)

If µ(1) > 0 we get
x∑

y=1
µ(y) = 1− 1

µ(1)q1
(qx+1µ(x + 1)− pxµ(x)) so a non-trivial q.s.d.

is normalized iff µ(x) −−→
x→∞

0.

Now for γ 6= p1 + q1 define in a recursive way the following sequence
Zγ = (Zγ(x) : x ∈ N∗),

Zγ(1) = γ (2.2)

∀y ≥ 2 : Zγ(y) = fγ,y(Zγ(y − 1)) (2.3)

where

fγ,y(z) = γ + py + qy − p1 − q1 −
py−1qy

z
(2.4)

Associate to Zγ the following vector µ(γ) = (µ(γ)(x) : x ∈ N∗)

µ(γ)(1) =
1
q1

(p1 + q1 − γ) (2.5)

∀x ≥ 2 : µ(γ)(x) = µ(γ)(1)
x−1∏
y=1

Zγ(y)
qy+1

(2.6)

In [FMP] it was shown that a vector µ = (µ(x) : x ∈ N∗) with non-null terms verifies
equations (2.1) iff there exists a γ 6= p1 + q1 such that µ = µ(γ).

In particular this last result implies that there exist non-trivial q.s.d. µ iff for some
γ < p1 + q1 the sequence Zγ = (Zγ(x) : x ∈ N∗) is strictly positive. Then we search for
conditions under which the orbit

Zγ(y) = fγ,y ◦ fγ,y−1 ◦ · · · ◦ fγ,2(γ)

is strictly positive.



Assume for simplicity that px + qx = 1 for all x ∈ N∗ so the evolution functions fγ,y

take the form,

fγ,y(z) = γ − py−1qy

z
(2.7)

Now make the following hypothesis: there exists a q̄ ∈ ( 1
2 ,
√

7−1
2 ) such that

∀y ∈ N∗,
1
2

< q̄ − 1
2

(
q̄ − 1

2

)2

< q ≤ qy ≤ q′ < q̄ +
1
2

(
q̄ − 1

2

)2

< 1 (2.8)

Denote p = 1− q, p′ = 1− q′. Notice that if q̄ =
√

7−1
2 then q̄ + 1

2 (q̄ − 1
2 )2 = 1. The above

condition (2.8) means that the birth and death chain is a perturbation of a random walk
of parameter q̄.

It can be shown that the hypothesis (2.8) implies the inequality

2
√

pq′ < p′ + q < 1

Call gγ(z) = γ − p′q
z and hγ(z) = γ − pq′

z . It is easy to check that:

∀y ∈ N∗, z ≥ 0 : hγ(z) ≤ fγ,y(z) ≤ gγ(z) (2.9)

Take γ ∈ [2
√

pq′, 1), then hγ(z) has two fixed points (only one if γ = 2
√

pq′), a stable one

ξ = γ+
√

γ2−4pq′

2 and an unstable one η = γ−
√

γ2−4pq′

2 . Also gγ(z) has two fixed points, a

stable one ξ̃ = γ+
√

γ2−4p′q

2 and an unstable one η̃ = γ−
√

γ2−4p′q

2 .

Theorem 2.1. If condition (2.8) holds then there exist n.q.s.d. More precisely, if γ ∈
[2
√

pq′, 1) then µ(γ) is a non trivial q.s.d. and if γ ∈ [2
√

pq′, p′ + q] then µ(γ) is a n.q.s.d.

Proof. Take γ ∈ [2
√

pq′, 1). We have Zγ(1) = γ ≥ ξ. Therefore

Zγ(y) = fγ,y ◦ ... ◦ fγ,2(Zγ(1)) ≥ h(y−1)
γ (Zγ(1)) ≥ h(y−1)

γ (ξ) = ξ > 0

Then Zγ(y) ≥ ξ > 0. Now γ < 1 implies µ(γ)(1) > 0 and expression (2.6) shows µ(γ)(x) > 0
for any x ≥ 2, so µ(γ) is a non trivial q.s.d.

Now let us prove that:

∀y ∈ N∗, Zγ(y) ≤ ξ̃ + (γ − ξ̃)
(

η̃

ξ̃

)y−1

(2.10)

Since Zγ(1) = γ the relation (2.10) holds for y = 1. Now we have
Zγ(y) = fγ,y ◦ fγ,y−1 ◦ · · · ◦ fγ,2(γ) ≤ g

(y−1)
γ (γ) where g

(x)
γ = gγ ◦ · · · ◦ gγ x times. Since

g
(y−1)
γ (ξ̃) = ξ̃ we get from Taylor formula,



g(y−1)
γ (γ) ≤ ξ̃ + (γ − ξ̃) sup

z∈[ξ̃,γ]

{ ∂

∂t
g(y−1)

γ (z)
}

Now

∂

∂z
g(y−1)

γ (z) =
y−2∏
x=0

g′γ(g(x)
γ (z))

with g
(0)
γ (z) = z and g′γ(z) = p′q

z2 = ξ̃η̃
z2 .

Using the fact that gγ is increasing and ξ̃ is a fixed point of gγ we get easily that for
all 0 ≤ x ≤ y − 2, and z ∈ [ξ̃, γ], we have g

(x)
γ (z) ≥ ξ̃. Therefore we get

sup
z∈[ξ̃,γ]

{ ∂

∂t
g(y−1)(z)

}
≤

(
η̃

ξ̃

)y−1

Then property (2.10) is fulfilled.
Recall that qy ≥ q. Use the bound (2.10) to get from (2.6),

µ(γ)(x) ≤ µγ(1)(
x−1∏
y=1

(1 +
γ − ξ̃

ξ̃
(
η̃

ξ̃
)y−1))(

ξ̃

q
)x−1

Since
∞∑

y=1
( η̃

ξ̃
)y−1 < ∞ we deduce that C =

∞∏
y=1

(1 + γ−ξ̃

ξ̃
( η̃

ξ̃
)y−1) < ∞. So

µ(γ)(x) ≤ Cµγ(1)( ξ̃
q )x−1.

Now assume γ ∈ [2
√

pq′, p′ + q]. Since pq′ > p′q we get:

ξ̃ =
1
2
(γ +

√
γ2 − 4pq′) ≤ 1

2
((p′ + q) +

√
(p′ + q)2 − 4p′q) <

1
2
((p′ + q) + (q − p′)) = q

Then ξ̃
q < 1 so µ(γ)(x) −−→

x→∞
0. Then µ(γ) is a n.q.s.d.

2.2 LINEAR GROWTH CHAINS WITH IMMIGRATION

These processes are birth and death chains with

py =
py + 1

(p + q)y + 1
, qy =

qy

(p + q)y + a
for y ∈ N∗, (2.11)

(so py + qy = 1) and an absorving barrier at 0, p(0, 0) = 1.
We assume conditions



p > q and a < p + q (2.12)

It can be shown that these inequalities imply that the sequence of functions
(fγ,y : y ∈ N∗) defined in (2.7), is increasing with y. The pointwise limit of this sequence,
when y →∞, is fγ,∞(z) = γ − pq

(p+q)2z . Then we have:

fγ,2 ≤ · · · ≤ fγ,y ≤ fγ,y+1 ≤ · · · ≤ fγ,∞ (2.13)

Observe that fγ,2 plays the role of hγ and fγ,∞ that of gγ in (2.9).
Now, inequality p1q2 < 1 is equivalent to

2(q − p)2 + a(3p + a− 5q) > 0 (2.14)

This condition is verified if q is big enough, for instance if q > p + 5
4a +

√
a(p + 17

16a).
We assume (2.14) holds.

Take γ ∈ (2
√

p1q2, 1) so ξ = γ+
√

γ2−4p1q2

2 belongs to the interval (0, γ) and it is a
fixed point of fγ,2. Then Zγ(1) = γ and,

Zγ(y) = fγ,y ◦ · · · ◦ fγ,2(γ) > f
(y−1)
γ,2 (ξ) = ξ > 0

Since γ < 1, from (2.5) and (2.6) we get µ(γ)(y) > 0 for any y ∈ N∗. Hence µ(γ) is a non
trivial q.s.d.

Recall that fγ,2 ≤ fγ,∞ is equivalent to pq
(p+q)2 < p1q2. Take γ ∈ ( 2

√
pq

(p+q) , 2
√

p1q2).

Then the point η̃ =
γ−

√
γ2− 4pq

(p+q)2

2 and ξ̃ =
γ+

√
γ2− 4pq

(p+q)2

are respectively the unstable
and the stable fixed points of fγ,∞. Replacing gγ by fγ,∞ we get that condition (2.9) holds
with η̃, ξ̃ the fixed points of fγ,∞. Then,

µ(γ)(x) ≤ µ(γ)(1){
x−1∏
y=1

(1 +
γ − ξ̃

ξ̃
(
η̃

ξ̃
)y−1}ξ̃x−1

x−1∏
y=1

1
qy+1

(2.15)

Denote C =
∞∏

y=1
(1 + γ−ξ̃

ξ̃
( η̃

ξ̃
)y−1) which is finite.

We have
x−1∏
y=1

1
qy+1

= (p+q
q )x−1

x−1∏
y=1

(1 + a
(p+q)(y+1) ) ≤ (p+q

q )x−1 exp { a
p+q

x−1∑
y=1

1
y+1}.

Then
x−1∏
y=1

1
qy+1

≤ (p+q
q )x−1(x− 1)

a
(p+q) . Hence

µ(γ)(x) ≤ µ(γ)(1)C(ξ̃
(p + q)

q
)x−1(x− 1)

a
p+q (2.16)



It can be easily verified that our assumptions imply that ξ̃ < q
p+q . Then µ(γ)(x) −−→

x→∞
0.

Then, for γ ∈ (2
√

pq

p+q , 2
√

p1q2) the q.s.d. µ(γ) is normalized.

3. Solidarity Property for Birth and Death Chains

Concerning the convergence of point measures to some Yaglom limit, the deepest results
have been established in [S2,SV-J] for random walks (qx = q, px = 1− q) with continuous
and discrete time. Here we shall show a solidarity process which asserts that it suffices
to have the convergence for the probability measure concentrated at 1. Our proof is
elementary, in fact it does not use any higher technique. We must point out that Good
[G] has also shown this result but in his proof some technical steps have been overlooked.

Theorem 3.1. If δ
(n)
1 converges to a q.s.d. µ then for any x ∈ N∗, δ

(n)
x converges to µ.

Proof. For x, n ∈ N∗ set:

αx(n) =
Px+1(X(n− 1) 6= 0)

Px(X(n) 6= 0)
, βx(n) =

Px(X(n− 1) 6= 0)
Px(X(n) 6= 0)

,

ξx(n) =
Px−1(X(n− 1) 6= 0)

Px(X(n) 6= 0)

Observe that ξ1(n) = 0 for all n ∈ N∗, all other terms being > 0.
These quantities are related by the identity

∀x ∈ N∗, ξx+1(n) = βx(n)βx+1(n)(αx(n))−1 (3.1)

On the other hand from the equation

Px(X(n) 6= 0) = qxPx−1(X(n− 1) 6= 0)
+ (1− px − qx)Px(X(n− 1) 6= 0) + pxPx+1(X(n− 1) 6= 0)

(3.2)

we deduce that

∀x, n ∈ N∗, qxξx(n) + (1− px − qx)βx(n) + pxαx(n) = 1 (3.3)

Also from definition we get

βx(n) = (Px(X(n) 6= 0|X(n− 1) 6= 0))−1 = (1− δ(n−1)
x (1)q1)−1 (3.4)

If the limit of a sequence η(n) exits denote it by η(∞). So the hypothesis of the
theorem is: ∀z ∈ N∗, δ

(∞)
1 (z) exists.



Since δ
(∞)
1 (1) exists and belongs to [0,1] we deduce from (3.4) that β1(∞) exists and

belongs to [1, 1
1−q1

]. From ξ1(n) = 0 and (3.3) we get that α1(∞) exists and is bigger or

equal than 1
p1

(1− (1−p1−q1)
1−q1

) = 1
1−q1

.
Now let us show that,

∀x ∈ N∗, lim inf
n→∞

αx(n) > 0 (3.5)

This holds for x = 1. Now from (3.2) evaluated at x + 2 we deduce the inequality

Px+1(X(n− 1) 6= 0) ≤ q−1
x+2Px+2(X(n) 6= 0)

On the other hand since Py(X(n) 6= 0) increases with y ∈ N∗ and decreases with
n ∈ N∗ we get the following relations

Px(X(n) 6= 0) ≥ pxPx+1(X(n− 1) 6= 0)

αx+1(n) =
Px+2(X(n− 1) 6= 0)

Px+1(X(n) 6= 0)
≥ Px+2(X(n) 6= 0)

Px+1(X(n− 1) 6= 0)

Hence we obtain:

αx(n) =
Px+1(X(n− 1) 6= 0)

Px(X(n) 6= 0)
≤ (pxqx+2)−1 Px+2(X(n) 6= 0)

Px+1(X(n− 1) 6= 0)
≤ (pxqx+2)−1αx+1(n)

Then αx+1(n) ≥ pxqx+2αx(n). So lim inf
n→∞

αx+1(n) > 0 and relation (3.5) holds.
Now let us prove by recurrence that:

the limits αx(∞), βx(∞), ξx(∞) and δ(∞)
x (z) for all z ∈ N∗, exist (3.6)

We show above that these limits exist for x = 1. Assuming that property (3.6) holds
for x ∈ {1, ..., y}, we shall prove that it is also satisfied for x = y + 1. With this purpose
in mind, condition on the first step of the chain to get,

Py(X(n) = z) = qyPy−1(X(n− 1) = z) + (1− py − qy)Py(X(n− 1) = z)
+ pyPy+1(X(n− 1) = z)

(3.7)

Now from definitions of αy(n), βy(n), ξy(n) we have the following identities for y ≥ 2:

Py(X(n) 6= 0) = αy(n)(Py+1(X(n− 1) 6= 0))−1 = βy(n)(Py(X(n− 1) 6= 0))−1

= ξy(n)(Py(X(n− 1) 6= 0))−1



Develop δ
(n)
y (z) = Py(X(n) = z)(Py(X(n) 6= 0))−1 according to (3.7) and the last equalities

to get:

δ(n)
y (z) = δ

(n−1)
y−1 (z)qyξy(n) + δ(n−1)

y (z)(1− py − qy)βy(n) + δ
(n−1)
y+1 (z)pyαy(n) (3.8)

This last equality holds for any y ≥ 1 (recall ξ1(n) = 0).
Since δ(∞)(z), ξx(∞), βx(∞), αx(∞) exist for any x ≤ y and z ∈ N∗, and, by (3.5),

αx(∞) > 0 we get that δ
(∞)
y+1(z) exists for any z ∈ N∗. On the other hand equality (3.4)

implies that βy+1(∞) exists. Then by (3.1) the limit ξy+1(∞) exists and equation (3.3)
implies the existence of αy+1(∞).

From (3.5) and (3.4) we deduce αx(∞) > 0 and βx(∞) > 0 for any x ∈ N∗. So (3.1)
implies ξx(∞) > 0 for x ≥ 2.

Then if δ
(∞)
y (z) = 0 for some y, z ∈ N∗ we can deduce from equality (3.8) that

δ
(∞)
x (z) = 0 for all x ∈ N∗. So the q.s.d.’s which are the limits of δ

(n)
x are all trivial or

normalized.
Assume that δ

(n)
1 converges to a normalized q.s.d. µ. Let us prove by recurrence that

δ
(n)
x converges to µ for all x.

Since the limits δ
(∞)
y exists and δ

(∞)
1 (z) > 0, when we evaluate (3.8) at y = 1, n = ∞

we get the following equation:

1 = (1− p1 − q1)β1(∞) + (
δ
(∞)
2 (z)

δ
(∞)
1 (z)

)p1α1(∞)

Comparing this equation with (3.3) evaluated at x = 1, n = ∞, and by taking into account
that ξ1(∞) = 0 we deduce δ

(∞)
2 (z) = δ

(∞)
1 (z) for any z ∈ N∗.

Assume we have shown for any y ∈ {1, ..., y0} that: ∀z ∈ N∗, δ
(∞)
y (z) = δ

(∞)
1 (z). Let

us show that this last set of equalities also hold for y0 + 1. Evaluate equation (3.8) at
y = y0, n = ∞ to get

1 = qy0ξy0(∞) + (1− py0 − qy0)βy0(∞) + (
δ
(∞)
y0+1(z)

δ
(∞)
y0 (z)

)py0αy0(∞)

Comparing this equation with (3.3) evaluated at x = y0, n = ∞ we deduce that δ
(∞)
y0+1(z) =

δ
(∞)
y0 (z). Hence the recurrence follows and for any x ∈ N∗, δ

(n)
x converges to µ = δ

(∞)
1 .
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