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Examples

A point process is a random countable subset S of a measurable space R.

Times of arrival of a bus. R

Location of earthquakes during last year. S1 (sphere).

Zd is a point process on Rd.

{x+ Yx : x ∈ Zd, Yx iid in Rd}.

{x ∈ Zd : Yx = 1, Yx iid in {0, 1}} Binomial or Bernoulli process.

Point processes

From the book Poisson processes by J.F.C. Kingman. Oxford Studies in
Probability. Claredon Press. 1993, Reprinted 2002. [43]

We consider a space R and a subset of P(R) of measurable sets, satisfying

1) empty set is measurable.

2) complement of measurable set is measurable
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3) countable union of measurable sets is measurable

This is a σ-field or σ-algebra.

We want that for a point process S and for all measurable A ⊂ R,

NS(A) :=
∑
s∈S

1{s ∈ A} (0.1)

is a random variable and want that the points in R are measurable. We ask
that the diagonal {(x, y) ∈ R × R : x = y} is measurable. This implies {x}
is measurable for all x ∈ R.

We can think NS as a random counting measure on R.

Usually R = Rd and the σ-algebra as the Borel sets. The diagonal in Rd×Rd
is closed, so measurable. Later we consider Poisson processes of straight lines
and of trajectories of random walks.

A point process is a random countable subset S of R.

1 Poisson process

Want a point process S on R such that for N = NS :

(1) for disjoint A1, A2, . . . , An we have N(Ai) are independent.

(2) N(A) ∼ Poisson(µ(A)) where µ : A 7→ µ(A) satisfies 0 ≤ µ(A) ≤ ∞.

If N satisfies (1) and (2) we have

EN(A) = µ(A) (1.1)

and if Ai is a partition of A with µ(Ai) <∞, then∑
i

N(Ai) = N(A) (1.2)

and ∑
i

EN(Ai) = EN(A), that is,
∑
i

µ(Ai) = µ(A) (1.3)

so that µ is a measure on R (sigma-additive and µ(∅) = 0).

Let us compute the joint distribution of (N(Aj) : j = 1, . . . , n): Consider
the family

{B = A∗1 ∩ · · · ∩A∗i : A∗i ∈ {A,Ac}} (1.4)
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Sets in this family are disjoint. Denote B1, . . . , B2n the elements of that set.
Then,

Aj = ∪i∈γjBi (1.5)

and

N(Aj) =
∑
i∈γj

N(Bi) (1.6)

By (2) N(Bi) are Poisson(µ(Bi)) and since Bi are disjoint, by (1), Bi are
independent. So we can write the joint distribution of Ai:

(N(A1), . . . , N(An)) = (
∑
i∈γ1

N(B1), . . . ,
∑
i∈γn

N(Bn)). (1.7)

For instance, for n = 2, we want the joint distribution of (A1, A2):

B1 = A1 ∩A2, B2 = A1 ∩Ac2, B3 = Ac1 ∩A2, B4 = Ac1 ∩Ac2

and

A1 = B1 ∪B2, A2 = B1 ∪B3. (1.8)

so that, calling Xi := N(Bi) we have that Xi are independent and

E(N(A1)N(A2)) = E((X1 +X2)(X1 +X3))

= EX2
1 + E(X1X3) + E(X2X1) + E(X2X3)

= EX2
1 + EX1EX3 + EX2EX1 + EX2EX3 (1.9)

On the other hand, the product of the expectations gives

EN(A1)EN(A2) = (EX1)2 + EX1EX3 + EX2EX1 + EX2EX3, (1.10)

so that

Cov(N(A1)N(A2)) = VarX1 = Var(N(A1 ∩A2)) = E(N(A1 ∩A2)).

because the mean equals the variance for Poisson random variables.

Exercise, use (1.7) to compute

E(N(A1)N(A2)N(A3)) (1.11)

Intensity If µ is absolutely continuous with respect to Lebesgue,

µ(A) =

∫
A

λ(x) dx (1.12)

6



where dx = dx1 . . . dxn, the function λ : Rd → R+ is called the intensity
measure.

If λ is continuous at x and A 3 x,

µ(A) ≈ λ(x)|A|, es decir lim
ε→0

µ(Aε(x))

|Aε(x)|
= λ(x) (1.13)

where Aε(x) is a decreasing sequence of sets containing x with volume going
to 0 with ε.

When λ(x) ≡ λ ∈ R+, we say that the Poisson process is homogeneous.

Superposition Theorem We want to show that the superposition of
Poisson processes is Poisson. For that we need to show that independent
Poisson processes have empty intersection.

Lemma 1.1 (Disjointness Lemma). Let S1 and S2 be independent Poisson
processes on R, and let A be a measurable set with µ1(A) and µ2(A) finite.
Then S1 and S2 are disjoint with probability 1 on A:

P (S1 ∩ S2 ∩A = ∅) = 1. (1.14)

Proof. See Kingman pag 15.

Exercise. Prove the disjointness Lemma when the processes in Rd have
continuous intensities λ1 and λ2, repectively.

Take A = [0, 1] and µi(dx) = dx, i = 1, 2 the Lebesgue measure. Let Bn =
partition of [0, 1] with |B| = 2−n for all B ∈ Bn. Observe that #Bn = 2n.

{S1 ∩ S2 ∩A 6= ∅} ⊂ Cn, (1.15)

where
Cn := ∪B∈Bn{S1 ∩B 6= ∅, S2 ∩B 6= ∅}

for all n ≥ 1

P (Cn) =
∑
B∈Bn

P (S1 ∩B 6= ∅, S2 ∩B 6= ∅}

≤
∑
B∈Bn

ENS1∩BENS2∩B

=
∑
B∈Bn

2−2n = 2n2−2n = 2−n (1.16)

7



Borel Cantelli:

P (Cn i.o.) ≤
∑
n

P (Cn) <∞. (1.17)

This means that for almost all S1, S2 there is an n(S1, S2) such S1 ∩ B = ∅
or S2 ∩B = ∅ for all B ∈ Bn.

Theorem 1.2 (Superposition of Poisson processes). Let S1, S2, . . . be inde-
pendent Poisson processes with mean measures µ1, µ2, . . . respectively. Then
S := ∪nSn is a Poisson process with mean measure µ :=

∑
n µn.

Proof. Let Nn(A) := number of points in A for the Poisson process Sn.
Then, by the countably additivity theorem,

N(A) =
∑
n

Nn(A) (1.18)

has distribution Poisson(
∑
n µn). Here we used the disjointness Lemma to

be sure that there are no superposition of points.

If
∑
n µn(A) =∞, then

∑
nNn(A) = N(A) =∞.

To show independence of N(Ai) for disjoint Ai, it suffices to observe that de
double array of variables Nn(Ai) are independent.

Theorem 1.3 (Restriction Theorem). Let S be a Poisson process on the
space R with mean measure µ and B ⊂ R. Then SB := S ∩ B is a Poisson
Process with mean measure µB(A) = µ(A ∩B).

Proof. Let N and NB be the counting measures of S and SB , respectively.
We need to show that NB(A) is Poisson for all A, and the independence
property. This follows from the definitions.

Def: a measure ν has an atom at y if ν({y}) > 0. In particular, µ∗ has an
atom in y ∈ T if f−1(y) is a set of R with positive µ measure.

Theorem 1.4 (Mapping). Let S be a Poisson process on the space R with
mean measure µ. Let f : R→ T be a measurable function such that

µ∗(B) := µ(f−1(B)) (1.19)

has no atoms. Then S∗ := f(S) is a Poisson process on T with mean
measure µ∗.

Proof. This is a bit technical in general spaces. It is an exercise if R = Rd
and µ has intensity measure λ(x) > 0 for all x.
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Example. Let S be an homogeneous Poisson process with mean measure
µ(A) = |A| and λ : R → R+ a positive intensity λ(x) > 0 for all x. Define
M : R→ R by M(0) = 0 and M(x) =

∫ x
0
λ(y)dy. Then

S∗ = M(S) is a Poisson process with intensity λ. (1.20)

If λ(x) is 0 for some subset of R with positive Lebesgue measure, we are in
trouble.

Projections Let µ be a mean measure on Rd with intensity λ(x) and
Ŝ be a homogeneous Poisson process of intensity 1 on Rd × R+. Define
f(x1, . . . , xn) = x1

Then f(S) is a Poisson process on R1 with intensity

λ∗(x) :=
∫
λ(x, . . . , xn)dx2 . . . dxn.

Polar coordinates Let S be a PP with constant intensity λ on R2. Let

f(x, y) = ((x2 + y2)1/2, tan−1(y/x)), (1.21)

and

µ∗(B) =

∫ ∫
f−1(B)

λ dxdu =

∫ ∫
B

λ r dr dθ. (1.22)

Then (r, θ) form a Poisson process in the strip {(r, θ) : r > 0, 0 ≤ θ < 2π}
with rate function λ∗(r, θ) = λr. The r-projection gives a Poisson process
S1 in R with intensity

λ1(r) =

∫ 2π

0

λ∗(r, θ)dθ = 2πλr. (1.23)

1.1 The Bernoulli process

Let S be a Poisson process with measure µ on R, µ(R) < ∞. Condition S
to have n points. What is the distribution of those points? Let A1, . . . , An
be disjoint subsets of R, then

P (NS(A1) = n1, . . . , NS(Ak) = nk |NS(R) = n)

=

∏k
j=1 e

−µ(Aj)(µ(Aj))
nj (nj !)

−1

e−µ(R)(µ(R))n(n!)−1

9



=
n!

n1! . . . nk!

(µ(A0)

µ(R)

)n0

. . .
(µ(Ak)

µ(R)

)nk
where n0 = n − (n1 + · · · + nk) and A0 = R \ (A1 ∪ · · · ∪ Ak). That is,
the point numbers in Ai’s have multinomial distribution with parameters
pi = µ(Ai)/µ(R).

Definition 1.5. A random process S on R with n points and such that for
any partition A0, . . . , Ak of R and nk ≤ n,

P (NS(A1) = n1, . . . , NS(Ak) = nk) =
n!

n1! . . . nk!

(
µ(A0)
µ(R)

)n0

. . .
(
µ(Ak)
µ(R)

)nk
,

where n0 = n− (n1 + · · ·+nk), is called Bernoulli process on A with param-

eters n and p(A) = µ(A)
µ(R) .

Notice that p is a probability on R.

Construction of a Bernoulli process. Take X1, . . . , Xn iid random variables
with values on R and distribution p:

P (Xi ∈ A) = p(A). (1.24)

Then S := {X1, . . . , Xn} (as a set) is a Bernoulli process with counting
measure

NS(A) =

n∑
i=1

1{Xi ∈ A} = #(S ∩A) (1.25)

Existence theorem Let µ be a non-atomic measure on R that can be
decomposed as

µ =
∑
n

µn (1.26)

such that µn(R) < ∞ for all n. Define Nn and Xn,j , j ≥ 1 independent
random variables with

Nn ∼ Poisson(µn(R)) (1.27)

and Xn,j is a random variable with distribution

P (Xn,j ∈ A) = pn(A) :=
µn(A)

µn(R)
, for all j. (1.28)
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Theorem 1.6 (Existence Theorem). The process

S := ∪n{Xn,1, . . . , Xn,Nn}

is a Poisson process on R with mean measure µ.

Proof. Denote Sn := {Xn,1, . . . , Xn,Nn}. This process consists of a Poisson
random number of independent points on R, each with distribution pn.

First we prove that the process Sn is a Poisson process.

Observe that, given Nn = m, the process is Bernoulli:

P (Nn(A1) = m1, . . . , Nn(Ak) = mk |Nn = m)

=
m!

m0! . . .mk!

(
µn(A0)
µn(R)

)m0

. . .
(
µn(Ak)
µn(R)

)mk
. (1.29)

where m0 = m− (m1 + · · ·+mk) and A0 = R \ (A1 ∪ · · · ∪Ak).

By the total probability lemma (P (C) =
∑
m P (Bm)P (C|Bm), if (Bm) is a

partition of C), we have

P (Nn(A1) = m1, . . . , Nn(Ak) = mk)

=
∑

m≥m1+···+mk

e−µn(R)(µn(R))m

m!
m!

m0!...mk!

(
µn(A0)
µn(R)

)m0

. . .
(
µn(Ak)
µn(R)

)mk
=

∑
m≥m1+···+mk

e−µn(A0)(µn(A0))m0

m0!
e−µn(A1)(µn(A1))m1

m1! . . . e
−µn(Ak)(µn(Ak))mk

mk!

= e−µn(A1)(µn(A1))m1

m1! . . . e
−µn(Ak)(µn(Ak))mk

mk! .

Hence, the process Sn := {Xn,1, . . . , Xn,Nn} is a Poisson process. Since
Sn are independent, the superposition Theorem implies that S is a Poisson
process with mean measure µ.

1.2 Campbell Theorem

Want to study variables of a point process S of the form

Σ :=
∑
s∈S

f(s) (1.30)

Examples. (a) Radioactivity. Suppose each point of S ⊂ R produces an
effect that decays exponentially. The cumulated effect for a site x ∈ R can
be computed with Σ with the function fx(s) = exp(x− s)1{s < x}.

(b) The gravitational field in R3: assuming all stars s ∈ S have the same
mass, fx(s) = 1

‖x−s‖ .
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Theorem 1.7 (Campbell Theorem). Let S be a Poisson process on R with
mean measure µ. Let f : R→ R be measurable. Then, the sum

Σ :=
∑
s∈S

f(s) (1.31)

is absolutely convergent with probability one if and only if∫
R

min(|f(x)|, 1)µ(dx) <∞. (1.32)

Under this condition,

E(eθΣ) = exp
{∫

R

(
eθf(x) − 1

)
µ(dx)

}
. (1.33)

for any θ complex when the integral on the right converges or for purely
imaginary θ. Moreover,

EΣ =

∫
R

f(x)µ(dx) (1.34)

meaning that the expectation exists if and only if the integral converges, in
which case they are equal. If (1.34) converges, then

V Σ =

∫
R

(f(x))2µ(dx). (1.35)

where V is variance.

Proof. We prove first for simple functions, that is, a function that takes only
a finite number of values and vanishes outside a set of finite µ measure. Let
A1, . . . , Ak be disjoint measurable subsets of R with mj := µ(Aj) <∞ and
let f(x) = aj for x ∈ Aj , with f(x) = 0 if x /∈ ∪jAj . We have then that
Nj := NS(Aj) are independent with law Poisson(mj) and

Σ =
∑
x∈S

f(x) =
∑
j

ajNj . (1.36)

Since we know the characteristic function of the Poisson random variable,
for real or complex θ we have

EeθΣ = Eeθ
∑
j ajNj =

∏
j

EeθajNj (independence of PP)

=
∏
j

exp
(
e(θaj−1)mj

)
(characteristic of Poisson rv)
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= exp
(∑

j

∫
Aj

(eθf(x) − 1)µ(dx)
)

= exp
(∫

R

(eθf(x) − 1)µ(dx)
)

(1.37)

If f(x) ≥ 0, it is better to consider θ = −u for real u ≥ 0. In this case,

Ee−uΣ = exp
(∫

R

(e−uf(x) − 1)µ(dx)
)

We know that any non-negative function f can be expressed as the limit
f = limj fj where fj is an increasing family of simple functions, that is,
fi ≤ fi+1. Taking θ = −u for real u ≥ 0, and setting Σj =

∑
s∈S fj(s), we

have

E(e−uΣ) = lim
j
E(e−uΣj )

= lim
j

exp
(∫

R

(e−ufj(x) − 1)µ(dx)
)

)

= exp
(∫

R

(e−uf(x) − 1)µ(dx)
)
. (1.38)

by monotone convergence theorem. Under condition (1.32) the integral
above converges and goes to zero as u → 0. This implies Σ is a random
variable; otherwise, if Σ =∞ with positive probability, E(e−uΣ) ≡ 1.

Expanding (1.37) and denoting µf :=
∫
f(x)µ(dx), we get∫

R

(eθf(x) − 1)µ(dx) = θµf +
θ2

2!
µf2 + . . .

taking the exponential of both sides and expanding again,

exp(

∫
R

(eθf(x) − 1)µ(dx)) = 1 + θµf +
θ2

2!
((µf)2 + µf2) + . . . (1.39)

On the other hand,

EeθΣ = 1 + θEΣ +
θ2

2!
EΣ2 + . . . (1.40)

We conclude then

EΣ = µf, V Σ = µf2. (1.41)

This proves the formula for positive f . We leave as an exercise to prove for
all f .
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1.3 The characteristic functional

Taking Campbell formula for f ≥ 0 and θ = −1 we get

Ee−Σf = exp
{
−
∫
R

(1− e−f(x))µ(dx)
}

(1.42)

where Σf :=
∑
s∈S f(s).

Proposition 1.8 (Characterizing functional characterizes process). If S
satisfies (1.42) for f non-negative and simple, then S is a Poisson process.

Proof. LetA1, . . . , Ak disjoint withmi := µ(Ai) <∞. Let f(s) =
∑
i ai1{s ∈

Ai}. Then Σf =
∑
j ajN(Aj) and

Ee−Σf = exp
{
−

k∑
j=1

(1− e−aj )mj

}
(1.43)

Hence, taking zj := e−aj we have

E(z
N(A1)
1 . . . z

N(Ak)
k ) =

∏
j

emj(zj−1). (1.44)

but this is the product of the moment generation functions of Poisson(mj)
random variables calculated at arbitray points zj ∈ (0, 1). This implies that
N(Aj) are independent Poisson(mj) random variables, which in turn implies
S is a PP(µ).

1.4 Avoidance functions characterize point processes

Given a point process S define the avoidance function α : F → [0, 1] by

α(A) := P (S ∩A = ∅) (1.45)

If S is a PP(µ), we have α(A) = e−µ(A). Avoidance function are sometimes
called void probabilities.

For any a ≤ b ∈ Rd, define the cube (a, b] ⊂ Rd by

(a, b] := {(x1, . . . , xd) ∈ Rd : ai < xi ≤ bi, for all i}

Theorem 1.9 (Rényi Theorem). Let µ be a non-atomic measure on Rd with
µ(A) <∞ if A is bounded. Let S be a point process on Rd such that for any
finite union of cubes A,

P (S ∩A = ∅) = e−µ(A) (1.46)

Then S is a Poisson process with mean measure µ.
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Two ways of using the theorem. (1) if A is a finite union of cubes and NS(A)
is Poisson(µ(A)), then (1.46) and the theorem implies S is PP(µ). Notice
that here we have not assumed independence.

(2) if α(A) > 0 for bounded A and the sets {S ∩ A = ∅} and {S ∩ B = ∅}
are independent for disjoint A,B, then

α(A ∪B) = P ({S ∩A = ∅} ∩ {S ∩B = ∅}) = α(A)α(B) (1.47)

so that µ(A) := − logα(A) is finitely additive and non-atomic and the The-
orem implies that S is a Poisson process with mean measure µ. Here we
have not assumed Poisson distribution for N(A).

Sketch proof. Let a k-cube be a cube (a, b] ⊂ Rd with a = (a1, . . . , ad) and
ai = zi2

−k, bi = (zi + 1)2−k for integers zi ∈ Z. For each k, k-cubes are a
partition of Rd.

For k-cubes C1, . . . , Cn we have

P (∩r{S ∩ Cr = ∅}) = P (S ∩ ∪rCr = ∅)
= e−µ(∪rCr) by hipothesis

= e−
∑
r µ(Cr) (Cr disjoint and µ measure)

=
∏
r

e−µ(Cr). (1.48)

Let G be open bounded set and

Nk(G) := #{k-cubes C contained in G with S ∩ Cr 6= ∅}

=
∑
C⊂G

(1− 1{S ∩ C = ∅}) (1.49)

where the sum is over k-cubes. We have

N(G) = lim
k
Nk(G) (1.50)

By (1.48), the events {S ∩ Cr = ∅} are independent, hence the generat-
ing function of the variable Nk(G) is product of generating functions of
Bernoulli:

E(zNk(G)) =
∏
C⊂G

(e−µ(C) + (1− e−µ(C)) z)

in |z| < 1, where the product is over k-cubes. Last expression equals

=
∏
C⊂G

(z + (1− z)e−µ(C)) ≈
∏
C⊂G

(z + (1− z)(1−µ(C)))
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≈
∏
C⊂G

e−(1−z)µ(C) = e−(1−z)
∑
C µ(C) = e−(1−z)µ(G) (1.51)

where the ≈ is a bit technical, see Kingman. It is motivated by the expansion
of the exponentials:

z + (1− z)e−µ = z + (1− z)(1− µ+ µ2/2 + . . . )

= 1− (1− z)µ+ (1− z)µ2/2 + . . .

e−(1−z)µ = 1− (1− z)µ+ ((1− z)µ)2/2 + . . . (1.52)

Identity (1.51) shows that N(G) is a Poisson(µ(G)) random variable.

The same argument works to show independence of N(G1), . . . , N(Gk) for
mutually disjoint G1, . . . , Gk. This shows that S is Poisson process with
mean measure µ.

Exercise: Prove that under the conditions of the theorem, N(G1), . . . , N(Gk)
are independent for mutually disjoint G1, . . . , Gk.

Coupling Assume Pi is the distribution of a random element Xi, assum-
ming values in a space Ri. A coupling between X1 and X2 is a random
vector (X̂1, X̂2) ∈ R1 ×R2 with distribution called P̃ , satisfying

P̃ (X̂1 ×R2 ∈ A) = P1(X1 ∈ A), (1.53)

P̃ (R1 × X̂2 ∈ A) = P2(X2 ∈ A) (1.54)

that is, the marginal variables X̂i ∼ Xi, where ∼ means “with the same
distribution”.

Alternative proof via Coupling An alternative proof can be obtained
via coupling. See Section 5 of Chapter 1 of Thorisson.

Coupling Bernoulli and Poisson. Let U ∼ Uniform[0, 1] and α > 0, a param-
eter. Define

X := 1{U ≥ e−α} (1.55)

Y :=
∑
j≥0

j1{U ∈ Ij}, where Ij has volume |Ij | = e−ααj/j! (1.56)

and form a partition of [0, 1] are disjoint sets.

This is a coupling between those variables. We have defined a random vector
(X,Y ) in the space where U is defined, such that its marginals are Bernoulli
and Poisson, respectively:
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X ∼ Bernoulli(1− e−α) and Y ∼ Poisson(α).

We have

P (X = 0) = P (Y = 0) = P (U ≤ e−α)

P (X = 1) = P (U ∈ I1 ∪ I2 ∪ I3 ∪ . . . )
P (Y = 1) = P (U ∈ I1) (1.57)

Hence

P (X 6= Y ) = P (U ∈ I2 ∪ I3 ∪ . . . ) ≤
α2

2
. (1.58)

Proof of Nk(G) converges to Poisson(µ(G)) via coupling.

Fix k and let Ck(G) be the k-cubes intersecting the open set G. Then, the
variables

XC := 1{NS(C) 6= 0}, C ∈ Ck(G) (1.59)

are independent, by (1.46) (exercise).

For each k-cube C ⊂ G define a coupling (XC , YC), such that:

XC := 1{NS(C) 6= 0} and YC ∼Poisson(µ(C)).

XG :=
∑
C

XC , YG :=
∑
C

YC (1.60)

where the sum is over k-cubes. By the coupling,

P (XG 6= YG) ≤
∑
C⊂G

P (XC 6= YC) ≤ 1

2

∑
C

µ(C)2 (1.61)

If µ(C) =
∫
C⊂G λ(x)dx y λ(x) ≤M , using |C| = 2−dk∑

C⊂G
µ(C)2 ≤M2

∑
C⊂G

|C|2 = M2 |G| 2−dk, (1.62)

where the sum is over k-cubes. This implies P (X 6= Y, i.v.) = 0.

Exercise: extend the proof to any non atomic measure µ.
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1.5 Slivnyak-Mecke Theorem

Proposition 1.10. Let S be a Poisson process in Rd with measure µ(dx) =
λ(x)dx, B a Borel set with µ(B) < ∞, and G a measurable set of point
configurations. We have

P (X ∩B ∈ G) =
∑
n≥0

exp(−µ(B))
n!

∫
B
. . .
∫
B

1{{x1, . . . , xn} ∈ G}
× λ(x1) . . . λ(xn) dx1 . . . dxn. (1.63)

Let h : S 7→ h(S) ≥ 0 be a nonnegative measurable function. We have

Eh(X ∩B) =
∑
n≥0

exp(−µ(B))
n!

∫
B
. . .
∫
B
h({x1, . . . , xn})

× λ(x1) . . . λ(xn) dx1 . . . dxn. (1.64)

Proof. Exercise. It follows from the construction of the Poisson process.

Theorem 1.11 (Slivnyak-Mecke). Let S be a Poisson process with measure
µ(dx) = λ(x)dx on R = Rd. Let h : (x;X) 7→ h(x;X) ∈ R, where X is a
denumerable set of R. Then

E
(∑
s∈S

h(s;S \ {s})
)

=

∫
R

Eh(x;S)λ(x) dx.

Proof when µ(S) <∞.

E
(∑
s∈S

h(s;S \ {s})
)

=
∑
n≥0

exp(−µ(B))
n!

∑n
i=1

∫
B
. . .
∫
B
h(xi; {x1, . . . , xn} \ {xi})

× λ(x1) . . . λ(xn) dx1 . . . dxn.

=
∑
n≥0

exp(−µ(B))
(n−1)!

∫
B
. . .
∫
B
h(xn; {x1, . . . , xn−1})

× λ(x1) . . . λ(xn) dx1 . . . dxn.

=

∫
R

Eh(x;S)λ(x) dx.

Theorem 1.12 (Extended Slivnyak-Mecke). Let S be a Poisson process with
intensity λ(·) on R = Rd. Let h : (s1, . . . , sn;S) 7→ h(s1, . . . , sn;S) ∈ R,
where S is a denumerable set of R. Then

E
( ∑
s1,...,sn∈S

h(s1, . . . , sn;S \ {s1, . . . , sn})
)

(1.65)
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=

∫
R

· · ·
∫
R

Eh(x1, . . . , xn;S)λ(x1) . . . λ(xn) dx1 . . . dxn.

where the sum is over distinct s1, . . . , sn.

Proof. We have solved it for n = 1. For n ≥ 2 define

h̃(s, S) =
∑

s2,...,sn∈S
h(s, s2, . . . , sn;S \ {s2, . . . , sn}) (1.66)

We have that (1.65) is

E
∑
s∈S

h̃(s, S \ {s}) =

∫
R

h̃(s, S)λ(s)ds

=

∫
R

· · ·
∫
R

Eh(s, s2, . . . , sn;S)λ(s2) . . . λ(sn) ds2 . . . dsn λ(s)ds.

See Møller-Waagpetersen [39], Theorem 3.3. for a proof.

Moment measures Define the n-th moment measure of a point process
S by

µn(C) = E
( ∑
s1,...,sn∈S

1{(s1, . . . , sn) ∈ C}
)
, C ⊂ Rn. (1.67)

and the reduced measure by

αn(C) = E
( 6=∑
s1,...,sn∈S

1{(s1, . . . , sn) ∈ C}
)
, C ⊂ Rn. (1.68)

The measure µn determines the joint moments of the count measure N(·):
For B1, . . . , Bn ⊂ R we have

µn(B1 × · · · ×Bn) = E

n∏
i=1

N(Bi). (1.69)

and if the Bi are disjoint, and S is a Poisson process:

αn(B1 × · · · ×Bn) = E

n∏
i=1

N(Bi) =

n∏
i=1

µ(Bi). (1.70)
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1.6 One dimensional Poisson processes

Let S be a Poisson process on R with mean measure µ(A) = λ|A|. In the one
dimensional case, the intensity is called rate λ. We enumerate the points of
S as follows: S = {Xi : i ∈ Z} with

· · · < X−2 < X−1 < X0 < 0 < X1 < X2 < . . . (1.71)

Xi are random variables, depending on N . For instance, if we think Xi as
the time of the i-th arrival, we have that N(0, x] is the number of arrivals
between time 0 and x. It is clear that the n-th arrival occurs after time x if
and only if there are less than n arrivals between 0 and x:

{Xn > x} = {N(0, x] < n}. (1.72)

Notice that (X1, X2, . . . ) has the same law as (−X0,−X−1, . . . ).

Theorem 1.13 (Interval theorem). Let S = {Xi : i ∈ Z} be a PP(λ).
The random variables Y1 = X1, Yn = Xn − Xn−1 are independent with
exponential(λ) distribution.

Proof. Consider the process

S′ := {X2 −X1, X3 −X1, X4 −X1, . . . } (1.73)

We want to show that X1 is independent of S′ and that S′ is PP(λ). It
suffices to show that for given f , the characteristic functionals

Σ =
∑
n≥1

f(Xn), Σ′ =
∑
n≥2

f(Xn −X1) (1.74)

have the same distribution.

Denote ξk = 2−kd2kX1e the least integer multiple of 2−k greater than X1.
Then ξk is a random variable converging to X1: ξk ↘k X1. We have

Σ′ = lim
k

Σk, Σk :=
∑
n≥2

f(Xn − ξk), (1.75)

Now for any z, x,

P (Σk ≤ z, X1 ≤ x) =
∑
`

P (Σk ≤ z, X1 ≤ x, ξk = l2−k). (1.76)

When ξk = l2−k, the points Xn in (le−k,∞) form a Poisson process and are
independent of {X1 < l2−k, ξk = l2−k}. Hence

P (Σk ≤ z, X1 ≤ x, ξk = l2−k) = P (Σ ≤ z)P (X1 ≤ x, ξk = l2−k) (1.77)
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Substituting in (1.76),

P (Σk ≤ z, X1 ≤ x) = P (Σ ≤ z)P (X1 ≤ x) = P (Σ ≤ z)P (N(0, x] ≥ 1)
(1.78)

Letting k →∞, Σk converges almost surely to Σ′ and we are done.

Applying induction, we can prove that Y1, . . . , Ym are independent and in-
dependent of Sm = {Xm+1 −Xm, Xm+2 −Xm, . . . }.

Waiting time paradox We saw that Xi+1−Xi, i ≥ 1 are iid exponential
(λ). However X1 −X0 has distribution Gamma(2, λ). The density function
of X1−X0 is g2(x) = λxg(x), where g is the density of the “typical” interval.
This is a general result for stationary point processes.

1.6.1 Law of large numbers

From the interval theorem, the distribution of Xn is Gamma(n, λ); indeed
it is the sum of n exponential(λ):

Xn = Y1 + · · ·+ Yn. (1.79)

Yj iid exponential(λ).

Theorem 1.14 (law of large numbers).

lim
n→∞

Xn

n
=

1

λ
. (1.80)

Proof. EYn = 1
λ and V Yn = 1

λ2 , hence by the lln for iid with finite mean
and variance, we get (1.80).

As a corollary we get a lln for N(0, t]. Since

N(0, t]→t ∞, (1.81)

it follows that

lim
t

XN(0,t]

N(0, t]
=

1

λ
. (1.82)

and since

XN(0,t] ≤ t < XN(0,t]+1 (1.83)
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we get

lim
t

t

N(0, t]
=

1

λ
. (1.84)

We conclude

lim
t

N(0, t]

t
= λ. a.s. (1.85)

We give another proof of (1.85) without using the interval theorem.

Theorem 1.15. Let S be a PP(λ) on (0,∞). Then

lim
t

N(0, t]

t
= λ. a.s. (1.86)

Proof. First proof. Using Chevichev:

P (|1
t
N(0, t]− λt| > ε) ≤ λ

ε2t
(1.87)

taking tk = k2:∑
k

P (| 1

k2
N(0, k2]− λt| > ε) ≤

∑
k

λ

ε2k2
<∞ (1.88)

Hence, by Borel Cantelli,

lim
k

1

k2
N(0, k2] = λ, a.s. (1.89)

Taking k = k(t) = b
√
tc,

N(0, k2] ≤ N(0, t] ≤ N(0, (k + 1)2] (1.90)

which dividing by (k + 1)2 > t ≥ k2 implies

N(0, k2]

(k + 1)2
≤ N(0, t]

t
≤ N(0, (k + 1)2]

k2
(1.91)

Since k2/(k + 1)2 converges to 1, we get the result.

Second proof. It suffices to see that Nk := N(k, k + 1] are iid and that

N(0, t] =

btc∑
i=0

Nk +N(btc, t− btc] (1.92)

and use the lln for iid.
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This extends to Poisson processes in general spaces. For instance, for ho-
mogeneous Poisson processes in Rd, let B(0, ak) is the ball of center at the
origin and radious ak, where ak is the radious of the ball of volume k. Then
we have ak →∞ and

lim
k→∞

N(B(0, ak))

|B(0, ak)|
= λ. (1.93)

To prove it, let Yk := N(B(0, ak))\N(B(0, ak−1)). Then Yk are iid Poisson(λ),

N(B(0, ak) = X1 + · · ·+ Yk. (1.94)

and we can use the same proof.

1.6.2 Non homogeneous processes in R

Non homogeneous processes in one dimension are monotone transformations
of homogeneous processes.

Let µ be a positive locally integrable measure on R. Let S be a PP(µ) in R
and define M(0) = 0 and for r < t,

M(t)−M(r) = µ(r, t]. (1.95)

µ is non-atomic if and only if M is continuous. We have seen that

S̃ := {M(s) : s ∈ S} (1.96)

is a homogeneous PP(1) on the interval (M(−∞),M(∞)).

Notice that the inter-point distances Xk+1 − Xk are not independent. To
obtain properties of S, we study S̃.

Example. The distances to the origin of the points of a homogeneous Poisson
process. Let S2 be a homogeneous PP(λ) in R2 and let S = {‖s‖ : s ∈ S2} ⊂
R+, the set of distances to the origin of the points in S2. Then S is a Poisson
process of density λ(x) = 2πλx, so that

M(x) = πλx2. (1.97)

and S̃ = M(S) is a Poisson process of rate 1 on R+. So that if S =
{X1, X2, . . . } with Xi < Xi+1, then S̃ = {X̃1, X̃2, . . . } with X̃i = πλX2

i

is a PP(1).
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Export law of large numbers Let S = {Xi : i ∈ Z} be a non-homogeneous
process with cumulated densityM(x). We know that S̃ = {M(Xi) : i ∈ Z} is
a homogeneous Poisson Process in (−M(−∞),M(∞)) and that if M(∞) =
∞, then

lim
n

X̃n

n
= 1; lim

t

Ñ(0, t]

t
= 1 (1.98)

Using

Ñ(0,M(t)] = N(0, t] (1.99)

we get

1 = lim
t

Ñ(0,M(t)]

M(t)
= lim

t

N(0, t]

M(t)
(1.100)

Law of large numbers for empirical processes Let µ be a measure
and ε > 0 be a parameter.

Consider a family of Poisson processes Sε with mean measure ε−1µ and
denote Nε its counting measure. Nε(A) is a Poisson(ε−1µ(A)) random vari-
able. The empirical measure πε is defined by

πε(A) := εNε(A). (1.101)

Note that the measure πε is random and its expectation and variance are
given by

Eπε(A) = εENε(A) = εε−1µ(A) = µ(A).

V πε(A) = ε2V Nε(A) = ε2ε−1µ(A) = εµ(A).

Theorem 1.16 (Law of large numbers for the empirical process). We have

lim
ε→0

πε(A) = µ(A). a.s. (1.102)

Proof. To prove it, take ε = 1
n to get

P (|π1/n(A)− µ(A)| > δ) ≤ V π1/n(A)

δ2
=
µ(A)

δ2 n
−−−−→
n→∞

0. (1.103)

This shows convergence in probability. The argument of Theorem 1.15 can
be applied to show strong convergence (1.102).
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1.7 Marked Poisson processes

Theorem 1.17 (Coloring Theorem). Let S be a PP(µ) and (p1, . . . , pk)
be a probability. To each point of s ∈ S assign color i with probability pi,
independently of S and the colors of the other points. Let Si be the set of
points with color i. Then S1, . . . , Sk are independent Poisson processes with
mean measure µi := piµ, respectively.

Proof. Exercise using the superposition theorem. S is the superposition of
independent Poisson processes S1, . . . , Sk, with mean measures p1µ, . . . , pkµ,
respectively.

Marked processes In general. Let S be a PP(µ) in R and for some
space M , let (ms, s ∈ S) be a family of independent random variables in M
satisfying that ms (marks) may depend on s but it is independent of S \{s}.
Consider the random set

S∗ = {(s,ms) : s ∈ S} (1.104)

Consider a family of mark distributions (p(x, ·), x ∈ R), where p(x,A) for a
mesurable A ⊂ M is the probability that the mark mx ∈ A. To construct
S∗, start with S and then, for each s ∈ S choose ms independently of S \ s
with law p(s, ·).

Theorem 1.18 (Marking theorem). S∗ is a Poisson process on S×M with
mean measure

µ∗(C) =

∫ ∫
C

µ(dx) p(x,dm), C ⊂ S ×M. (1.105)

Proof. We use the Characteristic functional. For f : S ×M → R+ denote
Σ∗ :=

∑
(s,ms)∈S∗ f(s,ms) and compute

E(e−Σ∗ |S) =
∏
s∈S

E(e−f(s,ms)|S)

=
∏
s∈S

∫
M

e−f(s,m) p(s, dm)

=
∏
s∈S

e−f
∗(s), (1.106)

where f∗ := − log
∫
M
e−f(s,m) p(s, dm). Hence,

E(e−Σ∗) = E(E(e−Σ∗ |S)) = E
∏
s∈S

e−f
∗(s)
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Use Campbell formula to get

E
∏
s∈S

e−f
∗(s) = exp

(
−
∫
R

(1− e−f
∗
)dµ
)

= exp
(
−
∫
R

∫
M

(1− e−f(x,m))µ(dx) p(x,dm)
)

= exp
(
−
∫
R×M

(1− e−f )dµ∗
)
.

Corollaries 1. If µ(R) < ∞, the points {ms : s ∈ S} form a Poisson
process on M with mean measure µm given by

µm(B) :=

∫
R

∫
B

µ(dx) p(x, dm), B ⊂M. (1.107)

2. If m takes countable values denoted a1, a2, . . . , the point process Si with
i-marks is PP(µi), where

µi(A) =

∫
A

µ(dx) p(x, {ai}) (1.108)

and S1, S2, . . . are independent. Notice that the color distribution may de-
pend on the position of the point x.

Rain It rains over R = R2. Drops are in the space-time R ×M , where
M = R+ corresponds to the time (= distance) a given drop will touch the
pavement R. The point process S∗ is a Poisson process with mean measure
λ dx dt. Fix a time T (duration of the rain) and observe that the projected
set

S := (s : (s, t) ∈ S∗, t ≤ T )

is a Poisson process in R with mean measure λT dx.

Each fallen drop s has a random radious rs ≥ 0. We consider then the
marked Poisson process {(s, rs) : s ∈ S}. Call wet set the random set

Wet Set := ∪s∈SB(s, rs), (1.109)

where B(x, r) ⊂ R is the ball of center x and radious r; let b := E|B(x, r)|.
Each connected component of the Wet Set is called cluster. We say that
there is wetting if the probability θ(λ, T, ρ) that the origin belongs to a
cluster with infinite area is positive.

The classical result in percolation is that θ > 0 if λTb is sufficiently large
and that θ < 0 if that product is sufficiently small.
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Theorem 1.19 (Boolean percolation; Penrose [41], Peter Hall [26], Georgii
[21], Meester-Roy [38]). For fixed ρ, T , there are 0 < a1 ≤ a2 <∞ such that

θ(λ, T, ρ) > 0 if λTb > a2,

θ(λ, T, ρ) = 0 if λTb < a1. (1.110)

Galaxies Galaxies are points of a Poisson process S on R = R3. Each
galaxy s ∈ S has a random mass ms > 0 with continuous distribution with
density ρ(s,m). The process S∗ = {(s,ms)} is Poisson with intensity

λ∗(x,m) = λ(x)ρ(x,m), (1.111)

that is, with mean measure µ∗(d(x,m)) = λ(x) dx ρ(x,m) dm.

The gravitatory field at the origin 0 ∈ R3 is the vector (F1, F2, F3) given by

Fj =
∑
s∈S

Gmssj
(s2

1 + s2
2 + s2

3)3/2
(1.112)

where G is the gravitational constant. The characteristic functional of S∗

applied to t1F1 + t2F2 + t3F3 gives

E(eit1F1+it2F2+it3F3) (1.113)

= exp
(∫

R3

∫ ∞
0

(eiGmt·ψ(x) − 1)λ(x)ρ(x,m) dx, dm
)
, (1.114)

where

ψj(x) = (x2
1 + x2

2 + x2
3)−3/2xj (1.115)

and t · ψ is the scalar product. This holds if (by Campbell Theorem)∫
R3

m|ψ(x)|λ(x) ρ(x,m) dx, dm <∞ (1.116)

If we denote the expected mass of a galaxy at x by

m̄(x) :=

∫
mρ(x,m)dm (1.117)

(1.116) is equivalent to ∫
R3

m̄|ψ(x)|λ(x)

x2
1 + x2

2 + x2
3

dx <∞ (1.118)

Under (1.117) we would have the joint distribution of F1, F2, F3.

The problem is that in an uniform universe, where m̄(x) and λ(x) are con-
stant, then (1.118) does not hold.
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The ideal gas An element (q, v) ∈ R := R2 is a particle with position
q ∈ R and velocity v ∈ R. Assume S is a Poisson process with mean
measure F , with intensity f : R2 → R+.

The ideal gas dynamics let each particle x = (q, v) ∈ S move at speed v,
conserving speed, with no interaction with other particles. The operator Tt
is defined by

TtS := {(q, v) ∈ R2 : (q − vt, v) ∈ S} (1.119)

TtS is the configuration of particles at time t,

Notice that Tt is a bijection of R2, with inverse T−t.

By the Mapping Theorem, TtS is a Poisson process with mean measure Ft
defined by

dFt(A) = F (T−tA). (1.120)

Exercise. Show that if f(q, v) = λ f2(v) such that
∫
|v|2f2(v)dv <∞, then

S is a PP(F ) if and only if TtS is a PP(F ). (1.121)

This is a process with homogeneous spatial intensity λ and with independent
speeds, satisfying a second moment condition.

1.8 Cox Processes

A Cox process is a “Poisson process with a random mean measure µ”.

For instance, let Si be a Poisson process with intensity λi and K be a random
variable in N with probability P (K = i) = pi, independent of (Si)i∈N

Then, the process S = SK is a Cox process. The random mean measure µ
in this case has distribution

P (µ(·) =

∫
·
λi(x)dx) = pi. (1.122)

Given a random variable Λ in the space of intensities, with some distribution
F , a Cox process is a process that, conditioned to Λ = λ, is a Poisson process
with intensity λ.

P (S ∩A = ∅ |Λ = λ) = e−
∫
A
λ(x)dx. (1.123)

so that,

P (S ∩A = ∅) = E
[
P (S ∩A = ∅ |Λ)

]
(1.124)
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=

∫
e−

∫
A
λ(x)dxF (dλ). (1.125)

In this case, µ can be written as

µ(·) =

∫
·
Λ(x)dx. (1.126)

so that

EN(A) = E[E(N(A) |µ]] =

∫ ∫
·
Λ(x)dxF (dλ). (1.127)

Compute the second moment:

E(N(A))2 = E[E(N(A)2|µ)]

= E(µ(A) + µ(A)2)

= Eµ(A) + (Eµ(A))2 + Var(µ(A)) (1.128)

so that, for a Cox process:

Var(N(A)) ≥ EN(A)

The identity only holds if µ(A) concentrates on a point (degenerate). Cox
processes are “over dispersed”. N(A) has greater variance than a Poisson
random variable with the same mean.

Void probabilities, characteristic functional, correlations The void
probabilities of a Cox process are given by

α(A) = P (S ∩A = ∅)
= E[P (S ∩A = ∅|Λ)]

= E exp
(
−
∫
A

Λ(x)dx
)

(1.129)

this is the expectation of a function of the random density Λ.

The generating functional is given by

E−Σf = E exp
(
−
∫
R

(1− e−f(x))Λ(x)dx
)

(1.130)

The intensity function is given by

ρ(x) = EΛ(x). (1.131)
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and the n-point correlation function for distinct x1, . . . , xn:

ψ(x1, . . . , xn) = E(Λ(x1) . . .Λ(xn)) (1.132)

so that, for mutually disjoint A1, . . . , An

E(N(A1) . . . N(An)) = E
(∫

A1

· · ·
∫
An

Λ(x1) . . .Λ(xn) dx1 . . . dxn

)
. (1.133)

Ecology The members of a population form a non-homogeneous PP(λ(·))
denoted S.

For each spatial position x, let φ(x) be the mean number of daughters of
a plant at x and g(x, ·), the density of the continuous distribution of the
position of each daughter. Let the daughters of a plant at x be a Poisson
process Sx with intensity

λx(y) = φ(x)g(x, y − x).

Given S, let the daughter processes (Ss)s∈S be independent Poisson pro-
cesses of intensity λs and define the cumulative daughter process by

S′ = ∪s∈SSs. (1.134)

By the superposition theorem, the set of daughters S′ is a Poisson process
of (random) intensity

Λ′(y) =
∑
s∈S

φ(s) g(s, y − s).

EΛ′(y) = E[
∑
s∈S

φ(s)
∑
s∈S

g(s, y − s)] (1.135)

=

∫
R2

φ(x)g(x, y − x)λ(x)dx. (1.136)

In particular, if

λ(x) ≡ λ, φ(x) ≡ φ, g(x, y − x) = g(y − x), (1.137)

that is, the functions do not depend on x, we have

EΛ′(y) =

∫
R2

φ g(y − x)λ dx = λφ. (1.138)
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And, if φ = 1 we have the same density in each generation.

Evolution of the generations. The random intensity of the granddaughter
generation under (1.137) is

Λ′′(x) = φ
∑
s′∈S′

g(x− s′) (1.139)

where s′ ∈ S′ are the positions of the daughters. Since, given Λ′′ the grand-
daughter process S′′ is Poisson, one could use Campbell to compute its
distribution. We compute the first and second order moments. As before,

E(Λ′(x) |Λ′) =

∫
R2

φg(x− y)Λ′(y)dy (1.140)

and

E(Λ′(x)) = φ

∫
R2

g(x− y)EΛ′(y)dy (1.141)

Hence, if E(Λ′(y)) = λ, then E(Λ′′(y)) = φλ. In particular, if φ = 1 we have
the same expected intensity λ in each generation.

E(Λ′′(x)Λ′′(y) |Λ′) =

∫
R2

g(x− z)Λ′(z)dz
∫
R2

g(y − z̃)Λ′(z̃)dz̃ (1.142)

+

∫
R2

g(x− z)g(y − z)Λ′(z)dz (1.143)

So that

E(Λ′′(x)Λ′′(y)) =

∫
R2

∫
R2

g(x− z)g(y − z̃)E(Λ′(z)Λ′(z̃)) dzdz̃ (1.144)

+ λ

∫
R2

g(x− z)g(y − z)dz (1.145)

In particular, if Λ′ is second order stationary, with covariance

E(Λ′(x)Λ′(y)) = λ2 + σ′(x− y). (1.146)

for some σ′ (depends only on the difference). Then Λ′′ is also second order
stationary with covariance

λ2 + σ′′(x− y) =

∫
R2

∫
R2

g(x− z)g(y − z̃) (λ2 + σ′(x− y)) dzdz̃ (1.147)

+

∫
R2

g(x− z)g(y − z)dz (1.148)
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and writing

γ(x) =

∫
R2

g(x− y)g(y)dy (1.149)

we conclude

σ′′(x) =

∫
R2

σ(x− y)γ(y)dy + λγ(x). (1.150)

A useful recursive formula.

Exercise (optional). Let Sn the process of the n-th generation of plants when
φ = 1. We know that the density is φ = 1 for all n. Compute the asymptotic
distribution of Sn. That is, for instance,

lim
n→∞

P (Sn ∩ Λ = ∅)

Neyman-Scott processes These are special cases of the ecology models
of previous paragraph.

Let C be a stationary Poisson Process on Rd with intensity κ > 0. Condi-
tioned on C, let Xc be independent Poisson processes on Rd with intensity
function

ρc(x) = αk(x− c)
where the kernel k(·) is a density function; that is, k(x) ≥ 0 and

∫
k = 1.

Then X = ∪c∈CXc is a Neyman-Scott process with cluster centres C and
clusters Xc. More general Neyman-Scott processes do not ask C to be Pois-
son.

X is a Cox process with (random) intensity

Λ(x) =
∑
c∈C

αk(x− c). (1.151)

2 Cadenas de Markov a tiempo continuo

Sea X un conjunto finito o numerable, llamado espacio de estados. El proceso
(Xt)t∈R, Xt ∈ X es un proceso Markoviano de saltos si

P (Xt+h = y |Xt = x, Xs = xs, 0 ≤ s < t) = h q(x, y) + o(h). (2.1)

q(x, y) es la tasa de salto del estado x al estado y 6= x. Note que la tasa de
salto en el instante t depende sólo del estado Xt−.

32



Denotamos

pt(x, y) = P (Xt = y |X0 = x) (2.2)

Por ejemplo, la medida de conteo de el proceso de Poisson S ⊂ R de intensi-
dad λ induce un proceso Markoviano de salto. Defina N(t) := #(S ∩ [0, t]).

P (N(t+ h) = x+ 1)|N(t) = x) = P (N(t+ h]−N(t)

= λh e−λh + P (otras cosas) .

El evento “otras cosas” está contenido en el evento “hay 2 o más puntos del
proceso de Poisson en el intervalo de tiempo [t, t+ h)” y la probabilidad de
ese evento es o(h). Esto implica que q(x, x+ 1) = λ. El resto de las tasas es
0, q(x, y) = 0 si y 6= x+ 1.

Construcción usando procesos de Poisson bi-dimensionales Esta
construcción está basada en [14] y [11]. Queremos construir un proceso Xt

con tasas q(x, y), es decir, que satisfaga (2.1). La tasa de salida del estado
x se denota

λx :=
∑
y

q(x, y).

Asumimos supx λx < ∞. Consideremos un proceso de Poisson bi-dimen-
sional S de intensidad 1, con medida de conteo M(A) := #(S ∩ A), A
Boreliano en R2. Para cada estado x consideramos una partición del intervalo
Ix = [0, λx] en Borelianos B(x, y) de medida q(x, y), y 6= x:

Ix = ∪̇y∈X\{x}B(x, y); B(x, y) ∩B(x, y′) = ∅, for y 6= y′.

|B(x, y)| = q(x, y), x 6= y. (2.3)

Fijemos Y0 = x0, un estado arbitrario y T0 = 0. Sea T1 la primera coorde-
nada del primer evento del proceso M(·) en la banda [0,∞)× Ix0 :

T1 := inf{t > 0 : M([0, t]× IY0) > 0}.

Defina (T1, U1) ∈ S, el único punto que realiza el ı́nfimo, con U1 ∈ IY0
.

Como (B(Y0, y) : y ∈ X) es una partición de IY0 , hay un único Y1 ∈ X tal
que U1 ∈ B(Y0, Y1).

Iterativamente, asumimos que Tn−1, Yn−1 están determinados y definimos

Tn := inf{t > Tn−1 : M((IYn−1
× Tn−1, t] > 0}.
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Defina (Tn, Un) ∈ S, el único punto que realiza el ı́nfimo, con Un ∈ IYn−1
.

Como (B(Yn−1, y) : y ∈ X) es una partición de IYn−1
, hay un único Yn ∈ X

tal que Un ∈ B(Yn−1, Yn).

Defina
Xt := Yn, si t ∈ [Tn, Tn+1), para t ∈ [0,∞) (2.4)

Aśı, para cada realización del proceso de Poisson bidimensional M , cons-
truimos una realización del proceso (Xt : t ∈ [0,∞)). Tn es el n-ésimo
instante de salto; Yn es el n-ésimo estado visitado por el proceso.

El proceso (Xt)t≥0 es una función, denotada φ, del estado inicial x0 y del
proceso de Poisson bidimensional M :

(Xt)t≥0 = φ(x0,M). (2.5)

Proposition 2.1. El proceso (Xt : t ∈ [0, T∞)) definido en (2.4) satisface
(2.1).

Proof. Por definición,

P(Xt+h = y |Xt = x) (2.6)

= P
{
M((t, t+ h]×B(x, y)) = 1

}
+ P(otras cosas), (2.7)

donde el evento {otras cosas} está contenido en el evento

{M((t, t+ h]× [0, λx]) ≥ 2},

(M contiene dos o más puntos en el rectángulo [0, λx] × (t, t + h]). Por
definición de M(·), tenemos

P(M((t, t+ h]× [0, λx]) ≥ 2) = o(h) y (2.8)

P(M((t, t+ h]×B(x, y) = 1) = hq(x, y) + o(h). (2.9)

Esto demuestra la proposición.

Nacimiento puro. Xt en {0, 1, 2, . . . } con tasas

q(x, x+ 1) = λx (2.10)

q(x, y) = 0, en los otros casos. (2.11)

La tasa de llegadas en el instante t es proporcional al número de llegadas
hasta ese instante. Los intervalos son

B(x, x+ 1) = [0, λx) (2.12)
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Fila M/M/1 Consideramos el proceso Xt en {0, 1, 2, . . . } con tasas λ, µ ∈
R≥0 dadas por

q(x, x+ 1) = λ, x ≥ 0, (2.13)

q(x+ 1, x) = µ, x ≥ 0. (2.14)

La tasa de llegadas es constante igual a λ. La tasa de servicios es µ. Los
intervalos son

B(x, x+ 1) = [0, λ) (2.15)

B(x+ 1, x) = [0, µ) (2.16)

Xt cuenta el número de clientes en el sistema en el instante t.

Este proceso se puede realizar también con dos procesos de Poisson ho-
mogeneos independientes A y S, de intensidades λ y µ, respectivamente.
(Ejercicio).

2.1 Kolmogorov equations

It is useful to use the following matrix notation. Let Q be the matrix with
entries

q(x, y) se x 6= y (2.17)

q(x, x) = −λx = −
∑
y 6=x

q(x, y). (2.18)

and Pt be the matrix with entries

pt(x, y) = P(Xt = y |X0 = x).

Con esta notación, las ecuaciones de Chapman-Kolmogorov dicen

Pt+s = PtPs. (2.19)

for all s, t ≥ 0. To see it compute

pt+s(x, y) = P(Xt+s = y |X0 = x)

=
∑
z

P(Xs = z |X0 = x)P(Xt+s = y |Xs = z)

=
∑
z

ps(x, z)pt(z, y). (2.20)

This is the (x, y) entry of PtPs.
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Proposition 2.2 (Kolmogorov equations). The following identities hold

P ′t = QPt (Kolmogorov Backward equations)

P ′t = PtQ (Kolmogorov Forward equations)

for all t ≥ 0, where P ′t is the matrix having as entries p′t(x, y) the derivatives
of the entries of the matrix Pt.

Proof. Backward equations. Using Chapman-Kolmogorov,

pt+h(x, y)− pt(x, y) =
∑
z

ph(x, z)pt(z, y)− pt(x, y)

= (ph(x, x)− 1)pt(x, y)) +
∑
z 6=x

ph(x, z)pt(z, y).

Dividing by h and taking h to zero we obtain p′t(x, y) in the left hand side.
To compute the right hand side, observe that

ph(x, x) = 1− λxh+ o(h).

Hence

lim
h

ph(x, x)− 1

h
= −λx = q(x, x).

Analogously, for x 6= y

ph(x, y) = q(x, y)h+ o(h)

and

lim
h

ph(x, y)

h
= q(x, y).

This shows the Kolmogorov Backward equations. The forward equations are
proven analogously. To start, use Chapman-Komogorov to write

pt+h(x, y) =
∑
z

pt(x, z)ph(z, y).

Las ecuaciones backward dicen P ′t = QPt. Si Pt fuera un número, tendŕıamos

Pt = eQt
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Formalmente podemos definir la matriz

eQt =
∑
n≥0

(Qt)n

n!
=
∑
n≥0

Qn
tn

n!

y diferenciar para obtener

d

dt
eQt =

∑
n≥1

Qn
tn−1

(n− 1)!
= Q

∑
n≥1

Qn−1 tn−1

(n− 1)!
= QPt

A pesar que en general el producto no es conmutativo, tenemos que QPt =
PtQ. Para verlo de otra manera,

QPt =
∑
n≥0

QQn−1 tn−1

(n− 1)!
=
∑
n≥0

Qn−1 tn−1

(n− 1)!
Q = PtQ.

2.2 Invariant measures

Definition 2.3. We say that π is an stationary distribution or invariant
measure for the transition matrix Pt, with rate matrix Q if∑

x

π(x)pt(x, y) = π(y) (2.21)∑
x

π(x) = 1 (2.22)

that is, if the distribution of the initial state is given by π, then the distri-
bution of the process at time t is also given by π for any t ≥ 0. In matrix
form, an invariant measure satisfies

π = πPt, t ≥ 0. (2.23)

Theorem 2.4. A distribution π is stationary for a process with rates q(x, y)
if and only if πQ = 0, that is,∑

x

π(x)q(x, y) = π(y)
∑
z

q(y, z). (2.24)

Condition (2.24) can be interpreted as a flux condition: the entrance rate
under π to state y is the same as the exit rate from y. For this reason the
equations (2.24) are called balance equations.
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Proof. Differentiating (2.21) we get

0 =
∑
x

π(x)p′t(x, y) =
∑
x

π(x)
∑
z

pt(x, z)Q(z, y)

=
∑
z

∑
x

π(x)pt(x, z)Q(z, y) =
∑
z

π(z)Q(z, y)

where we have applied the forward equations. This proves (2.24).

Reciprocally, applying Kolmogorov backwards equations we get

(πPt)
′ = πP ′t = πQPt = 0;

This implies that πPt is constant. Since P0 = I (the identity matrix), we
get πPt = πP0 = π.

Clima. Hay 3 estados: sol, nublado, lluvia. El tiempo que está en sol es
exponencial 1/3 de donde pasa a nublado, queda un tiempo exponencial 1/4
cuando empieza a llover y llueve un tiempo exponencial 1, cuando vuelve a
sol. La matriz de tasas es −1/3 1/3 0

0 −1/4 1/4
1 0 −1


πQ = π equivale a las ecuaciones

− 1
3π(1) +π(3) = 0

1
3π(1) − 1

4π(2) = 0
1
4π(2) −π(3) = 0

La solución es π = ( 3
8 ,

4
8 ,

1
8 ).

Generadores La matriz de tasas Q es llamada generador. Aplicada a una
función f : X→ R, tenemos

Qf(x) =
∑
y∈X

q(x, y)f(y) (2.25)

=
∑

y∈X\{x}

q(x, y) [f(y)− f(x)]. (2.26)

Esta forma es la que se usa en espacios no numerables. Se interpreta como
que la tasa de salto de x a y es q(x, y).
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Esa notación es cómoda también para caracterizar Pt:

E[f(Xt)|X0 = x] = Ptf(x) (2.27)

y sus derivadas:

d

dt
Ptf(x) = QPtf(x) = PtQf(x) (2.28)

por las ecuaciones de Kolmogorov.

2.3 Recurrencia de Harris y convergencia

En el siguiente teorema probamos simultaneamente la existencia y la con-
vergencia a velocidad exponencial bajo una condición que es conocida como
recurrencia de Harris. El enfoque está basado en [11]. Defina

γ(z) := min
x
Q(x, z), γ(Q) :=

∑
z

γ(z) (2.29)

Theorem 2.5. Sea Xt un proceso de Markov con tasas Q. Si γ > 0, en-
tonces (Xt) tiene una única distribución estacionaria π. Además, el proceso
converge a π en variación total, a velocidad exponencial con coeficiente γ:

sup
x

1

2

∑
z

|π(z)− Pt(x, z)| < e−γt.

Proof. Primero vamos a demostrar que si hay una distribución estacionaria
π, entonces vale la convergencia en variación total. Después demostraremos
la existencia y unicidad de π.

Sin pérdida de generalidad asumimos que el espacio de estados es {1, . . . ,K},
para algún K > 0.

Acoplamiento. La construcción (2.5) del proceso Xt en función de x0 y
M sirve para realizar un acoplamiento de procesos con condiciones iniciales
distintas pero con el mismo M :

(Xt, X
′
t)t≥0 = (φ(x0,M), φ(x′0,M)). (2.30)

Ahora vamos a diseñar las particiones B(x, y) en forma conveniente.

Sea (J(z))z∈X una partición del intervalo [0, γ) en intervalos de tamaño

|J(z)| = γ(z).
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Para cada estado x construya intervalos disjuntos sucesivos (I(x, z))z∈X\{x}
de tamaño

|I(x, z)| = q(x, z)− γ(z);

localizados a la derecha de los intervalos J(z), es decir I(x, z) ⊂ [γ,∞).

Defina

B(x, z) := J(z) ∪ I(x, z)

Como B(x, z) tiene medida q(x, z), la construcción de Xt usando el proceso
de Poisson bidimensional M se puede hacer con estas particiones.

Considere (Xt, X
′
t)t≥0 con estado inicial (X0, X

′
0) = (x0, x

′
0), definido en

(2.30). Cada marginal es governada por los puntos de M , y la partición B
recién constrúıda; cada marginal tiene su estado inicial.

Si el proceso en el instante t− se encuentra en el estado (x, x′) y M contiene
al punto (t, u), con

u ∈ ∪zJ(z) = [0, γ),

entonces hay tres casos:

(a) u ∈ J(z) para z /∈ {x, x′}, en ese caso ambas marginales saltan a z;

(b) u ∈ J(x), en ese caso la segunda marginal salta a x y la primera marginal
se queda en x;

(c) u ∈ J(x′), en ese caso la primera marginal salta a x′ y la segunda marginal
se queda en x′.

En śıntesis, si u ∈ [0, γ) entonces Xt = X ′t. Los procesos coalescen.

Esto es aśı porque por debajo de γ la partición B(x, z) no depende de x:

B(x, z) ∩ [0, γ) = B(x′, z) ∩ [0, γ), para todo z, x, x′.

El instante de coalescencia se denota τ :

τ = inf{t > 0 : M([0, t]× [0, γ)) > 0}.

Por lo tanto,

t ≥ τ implica Xt = X ′t, (2.31)

además

τ ∼ Exponencial(γ) : P (τ > t) = e−γt. (2.32)
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Para concluir, escribimos∑
z

|Pt(y, z)− Pt(x, z)| =
∑
z

|P (Xt = z)− P (X ′t = z)|

=
∑
z

|E(1{Xt = z} − 1{X ′t = z})|

≤ E
(∑

z

|1{Xt = z} − 1{X ′t = z}|
)

= 2E1{Xt 6= X ′t} = 2P (Xt 6= X ′t)

≤ 2P (τ > t) = 2e−γt, usando (2.31) y (2.32).

Si el estado inicial X ′0 es aleatorio con distribución estacionaria π,∑
z

|π(z)− Pt(x, z)| =
∑
z

∣∣∣∑
y

π(y)Pt(y, z)−
∑
y

π(y)Pt(x, z)
∣∣∣

≤
∑
y

π(y)
∑
z

|Pt(y, z)− Pt(x, z)|

≤
∑
y

π(y)2e−γt = 2e−γt

Esto demuestra la convergencia a velocidad exponencial a la distribución
estacionaria, cuando t→∞.

2.4 Existencia y simulación perfecta de π

Denote (Xx
[s,t])t≥s el proceso que tiene una condición inicial Xx

[s,s] = x, en

el instante s y utiliza los puntos de M en la banda [s,∞) × [0,∞). Esa
construcción es invariante por traslaciones:

(Xx
[s,s+t])t≥0 tiene la misma distribución que (Xx

[0,t])t≥0.

Observe que (Xx
[s,t])t≥s está definido para todo s en función del mismo M .

Sea

τ(t) := sup{s ≤ t : M([s, t]× [0, γ)) > 0}

En el instante τ(t) hay un punto u(t) ∈ [0, γ) tal que

(u(t), τ(t)) ∈M.

Defina

z(t) := z, si u(t) ∈ J(z). (2.33)
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Defina (Zt)t∈R por

Zt := X
z(t)
[τ(t),t], t ∈ R. (2.34)

Zt es Markov con tasas Q y es estacionaria: P (Zt = z) no depende de t. Por
lo tanto, llamando π a la distribución de Zt, vale que π es invariante para
Q.

Ejemplo. Estados {1, 2, 3}.

Q =

 −3 1 2
4 −5 1
2 3 −5

 (2.35)

(γ(z)) = (2, 1, 1) γ = 4. (2.36)

(J(z)) = ([0, 2), [2, 3), [3, 4))

(Q(i, z)− γ(z)) =

 ∗ 0 1
2 ∗ 0
0 2 ∗



I(i, j) =

 ∗ ∅ [4, 5)
[4, 6) ∗ ∅
∅ [4, 6) ∗


2.5 Convergencia al equilibrio

Theorem 2.6 (Teorema de convergencia). Sea Xt un proceso de Markov
en un espacio finito o numerable X con tasas q. Si pt(x, y) > 0 para todo
x, y ∈ X, y π es una medida invariante para q, entonces π es la única medida
invariante y

lim
t→∞

pt(x, y) = π(y), x ∈ X. (2.37)

Proof. Ejercicio en el caso de recurrencia de Harris. Omitida en el caso
general
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2.6 Reversibilidad

Sea Q una matriz de tasas con una distribución estacionaria π. Sea (Xt)t≥0

una realización de la cadena de Markov con distribución inicial

P (X0 = x) = π(x).

Considere el proceso (X∗t )t∈[0,s] dado por X∗t = Xs−t.

Lemma 2.7. El proceso X∗t es Markov con tasas

q∗(x, y) =
π(y)q(y, x)

π(x)
. (2.38)

Además π es una distribución estacionaria para Q∗.

Proof. Por definición,

p∗t (x, y) = P (X∗t = y|X∗0 = x)

= P (Xs−t = y|Xs = x)

=
P (Xs−t = y,Xs = x)

P (Xs = x)

=
P (X0 = y,Xt = x)

P (Xs = x)

=
P (Xt = x|X0 = y)P (X0 = y)

P (X0 = x)

=
π(y)pt(y, x)

π(x)

Las tasas del proceso X∗t se obtienen derivando p∗t y usando las ecuaciones
de Kolmogorov en t = 0:

q∗(x, y) =
d

dt

π(y)pt(y, x)

π(x)

∣∣∣
t=0

=
π(y)q(y, x)

π(x)
. (2.39)

Note que la tasa de salida de x es la misma para el proceso directo y reverso:

λ∗x :=
∑
y

q∗(x, y) =
∑
y

π(y)

π(x)
q(y, x) =

∑
y

π(x)

π(x)
q(x, y) = λx,

usando en la tercera identidad que π es estacionaria para Q. Finalmente,∑
x

π(x)p∗t (x, y) =
∑
x

π(x)
π(y)

π(x)
pt(y, x) = π(y),

lo que demuestra que π es estacionaria para p∗t .
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Corollary 2.8. Supongamos que la matriz de tasas Q tiene una medida
invariante π. Sea (X̂t)t≥0 un proceso de Markov con tasas q y condición

inicial P (X̂0 = x) = π(x). Sea (X̂∗t )t≥0 un proceso de Markov con tasas q∗

y condición inicial X̂∗0 = X̂0.

El proceso (Xt)t∈R definido por

Xt =

{
X̂t, t ≥ 0

X̂∗−t, t ≤ 0,
(2.40)

es un proceso de Markov estacionario con tasas q y el proceso X∗t = X−t es
tambien estaciorio con tasas q∗. Ambos procesos tienen medida invariante π.

Procesos reversibles Cuando π satisface las ecuaciones de balance de-
tallado:

π(x)q(x, y) = π(y)q(y, x) (2.41)

tenemos

q∗(x, y) =
π(y)

π(x)
q(y, x) = q(x, y).

La peĺıcula yendo para atrás o para adelante tiene la misma distribución. Es
decir (Xt)t∈R y (X∗t )t∈R tienen la misma distribución.

2.7 Simulación. Metrópolis y Baño caliente

El objetivo es generar muestras de una distribución π dada. Para eso vamos
a construir cadenas de Markov cuya distribución estacionaria es π.

Empezamos con una matriz de saltos arbitraria p(x, y) que será usada para
proponer un salto. Tipicamente p(x, y) > 0 cuando π(x)/π(y) es fácil de
calcular y hay “pocos” estados y con p(x, y) > 0.

Metropolis. En el algoritmo Metrópolis, el salto será aceptado con probabil-
idad

r(x, y) = min
{π(y)p(y, x)

π(x)p(x, y)
, 1
}

(por ejemplo, se elige p para saltos a los vecinos, o teniendo en cuenta el
cálculo de π(y)/π(x)). La matriz de tasas Metrópolis se define por

q(x, y) = p(x, y) r(x, y), x 6= y
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Lemma 2.9. La distribución π es reversible para el proceso con tasas q.

Proof. Supongamos que π(y)p(y, x) > π(x)p(x, y). En este caso,

π(x)q(x, y) = π(x)p(x, y) 1

π(y)q(y, x) = π(y)p(y, x)
π(x)p(x, y)

π(y)p(y, x)
= π(x)p(x, y).

Es decir que se satisfacen las ecuaciones de balance detallado.

Baño caliente. La matriz de baño caliente se define por

q(x, y) = p(x, y)
π(y)

π(y) + π(x)
(2.42)

donde p(x, y) es la matriz que define los saltos. Proponemos y y lo aceptamos
con probabilidad proporcional a π(y).

La medida π es reversible para q. Ejercicio.

Processes restricted to a subset of X. Let Xt be a process with rate
matrix Q and π is reversible for Q, that is,

π(x)Q(x, y) = π(y)Q(y, x). (2.43)

Let A ⊂ X and define a matrix QA such that the jumps outside A vanish,
that is,

QA(x, y) := Q(x, y)1{y /∈ A}, (2.44)

then the measure π(·|A) is reversible for QA.

Hence, to simulate a random variable with distribution π(·|A) one can use
the Markov process with rate matrix QA.

Ejemplo. Estacionamiento discreto. Considere el espacio X = {0, 1}{1,...,K},
para un natural K. Son vectores η de K coordenadas con entradas η(x) = 0 o
η(x) = 1, x ∈ {1, . . . ,K}. Considere la medida π(η) = 1

Z1{η(x)η(x+1) = 0},
donde K+1 = 1 por convención (condiciones de contorno periódicas), y Z es
la normalización. Es la medida condicionada a que no haya dos coordenadas
vecinas con valor 1. Defina ηy(x) = η(x)1{x 6= y} + (1 − η(x))1{x = y})
(cambiar la coordenada en y). Decimos que ηy es vecino de η. Sea p(η, ηy) =
1, y = 1 . . . ,K y p(η, η′) = 0 para η′ no vecino de η. Describa la matriz de
tasas del proceso baño caliente en este ejemplo.
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Simulación Usando los teoremas de convergencia se pueden obtener mues-
tras aproximadas de π, o las esperanzas en relación a π de funciones objetivo.
Por ejemplo:

1

n

n∑
m=1

f(Xm)→n

∑
x

f(x)π(x).

3 Branching processes

Proceso de ramificación Zn = tamaño de una población en el instante
n. Cada individuo tiene un número aleatorio de hijos distribuidos como
una variable aleatoria ξ ≥ 0 con media Eξ = µ < ∞ y distribución P (ξ =
j) = pj . Sean ξn,k, n, k ≥ 1 iid con la misma distribución de ξ. Aqúı ξn,k
es el número de hijos que tiene el k-ésimo individuo vivo en el instante n.
Definimos Z0 = 1 y para n ≥ 1,

Zn =

Zn−1∑
k=1

ξn,k

Condicionando a Zn−1,

EZn = E(E(Zn|Zn−1)) = µEZn−1 = µ2EZn−2 = µn.

Theorem 3.1 (subcŕıtico). Si µ < 1 entonces

P (Zn ≥ 1, para todo n ≥ 0) = 0

Proof. Por la desigualdad de Markov

P (Zn ≥ 1) ≤ EZn = µn −→
n→∞

0, si µ < 1.

Como {Zn ≥ 1} ↗ {Zn > 0, para todo n ≥ 0}, podemos concluir.

Theorem 3.2 (cŕıtico). Si µ = 1, P (ξ = 0) > 0 y P (ξ = 1) < 1, entonces

P (Zn ≥ 1, para todo n ≥ 0) = 0

Theorem 3.3 (supercŕıtico). Si µ > 1, entonces

P (Zn ≥ 1, para todo n ≥ 0) > 0
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Función generadora de momentos Defina la función φ : [0, 1] → [0, 1]
por φ(0) = p0 y para s ∈ (0, 1],

φ(s) =
∑
j≥0

sjpj

φ es continua en [0, 1]. Para s ∈ (0, 1) tenemos

φ′(s) =
∑
j≥1

jsj−1pj > 0

φ′′(s) =
∑
j≥2

j(j − 1)sj−2pj > 0

Las desigualdades se deben a que p0 + p1 < 1 (porque si no, µ = p1 ≤ 1,
contradiciendo µ > 1).

Las desigualdades implican que φ es estrictamente creciente y estrictamente
convexa en el intervalo (0, 1).

Además
lim
s↗1

φ′(s) = µ.

Defina
θn = P (Zn = 0|Z0 = 1).

Como {Zn = 0} ⊂ {Zn+1 = 0}, tenemos θn ≤ θn+1. Además θ0 = 0, θn ≤ 1.
Por lo tanto θn ↗ θ∞ ≤ 1.

Condicionando a la primera generación,

θn =
∑
j≥0

P (Zn = 0|Z1 = j)P (Z1 = j|Z0 = 1)

=
∑
j≥0

(
P (Zn−1 = 0|Z0 = 1)

)j
pj

= φ(θn−1).

La segunda igualdad se explica aśı: la probabilidad que el proceso se extinga
en el instante n dado que hay j individuos en el instante 1 es igual a la
probabilidad que cada una de las familias de los j individuos vivos en el
instante 1 se haya extinguido en el instante n. Para concluir observe que las
j familias evolucionan independientemente, y hay n − 1 generaciones entre
el instante 1 y el n.

Sacando ĺımites, vemos que θ∞ = φ(θ∞). Es decir, θ∞ es un punto fijo de
φ.
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Si ρ es un punto fijo de φ, es decir ρ = φ(ρ), tenemos

ρ =
∑
k≥0

ρkpk ≥ ρ0p0 = P (Z1 = 0) = θ1.

Como φ creciente, la desigualdad implica φ(θ1) ≤ φ(ρ) = ρ.

Iterando, obtenemos

θn = φ(θn−1) ≤ φ(ρ) = ρ para todo n.

Es decir que θn converge al menor de los puntos fijos.

Demostración del teorema cŕıtico. Si φ′(1) = µ = 1 y p1 < 1, como φ es
estrictamente convexa φ(s) > s para s ∈ (0, 1) y φ tiene 1 como único punto
fijo. Por lo tanto θn → 1.

Demostración del teorema supercŕıtico. Si φ′(1) = µ > 1, entonces hay un
único ρ < 1 tal que φ(ρ) = ρ. Para ver esto, observe que φ(0) = p0 ≥ 0,
φ(1) = 1 y φ′(1) = µ > 0, lo que implica que hay un único punto fijo ρ
menor que 1. Unicidad es consecuencia de la estricta convexidad de φ. Por
lo tanto θn ↗ ρ < 1.

Distinguimos dos casos:

A la izquierda φ(s) > s para todo s ∈ (0, 1) y a la derecha φ(s) = s para
algún s ∈ (0, 1). En la figura de la izquierda φ′(1) ≤ 1 y en la de la derecha
φ′(1) > 1.

Ejemplo. Considere que la distribución del número de hijos es Poisson
con parámetro λ. Es decir

pj =
e−λλj

j!
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La función generadora de momentos es

φ(s) = exp(λ(s− 1))

Por lo que la ecuación para el punto fijo es

ρ = exp(λ(ρ− 1))

4 Gibbsian point processes

This section is based on the paper [20] by Georgii.

4.1 Discrete Gibbsian models

The set of spin configurations is ξ = (ξi)i∈Zd , where ξi belongs to a finite set

S. Ω = SZd is the configuration space, provided of the product topology and
the Borel sigma-algebra F . We are interested in probability measures on the
space (Ω,F). Lattice systems. For ξ ∈ Ω and Λ ⊂ Zd denote ξΛ = (ξi)i∈Λ;
same notation as the projection of Ω on SΛ.

Specifications Prescribe the probability of a finite set of spins when the other
spins are fixed. That is, we look for probability measures P on (Ω,F) with
conditional probabilities

GΛ(ξΛ|ξΛc) (4.1)

for finite Λ.

Examples: 1) Markovian case. (4.1) depends only on the spins in the bound-
ary of Λ defined by ∂Λ := {i /∈ Λ : |i− j| = 1 for some j ∈ Λ}, that is,

GΛ(ξΛ|ξΛc) = GΛ(ξΛ|ξ∂Λ) (4.2)

2) Gibbsian case. Hamiltonian HΛ and Boltzmann-Gibbs formula

GΛ(ξΛ|ξΛc) = Z−1
Λ|ξΛc exp[−HΛ(ξ)], (4.3)

where Z−1
Λ|ξΛc =

∑
ξ′:ξ′Λ=ξΛ

exp[−HΛ(ξ′)]. (4.3) are the DLR equations.

See the book of Georgii [18] for a exhaustive account of this matter

Definition 4.1 (Gibbs measures). A probability measure P on (Ω,F) is a
Gibbs measure for G = (GΛ)Λfinite if

P (ξΛ occurs in Λ | ξΛc occurs off Λ) = GΛ(ξΛ|ξΛc) (4.4)

for P -almost all ξ and all finite Λ ⊂ Zd.
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Gibbs measures do not exist automatically. However, in the present case of
a finite state space S, Gibbs measures do exist whenever G is Markovian
in the sense of (2), or almost Markovian in the sense that the conditional
probabilities (1) are continuous functions of the outer configuration ξΛc . In
this case one can show that any weak limit of GΛ(·|ξΛc) for fixed ξ Λ↗ Zd
is a Gibbs measure.

A basic observation is that the Gibbs measures for a given consistent family
G of conditional probabilities form a convex set G. Therefore one is interested
in its extremal points, which are characterized in the next theorem.

Let FΛ be the sigma algebra generated by
{
{ξi = ki} : i ∈ Λ, ki ∈ S

}
and

T := ∩Λ:|Λ|<∞FΛc , the tail sigma algebra –generated by sets not depending
on the values of any finite set of spins.

Theorem 4.2 (Extremal Gibbs measures). The following statements hold:

(a) A Gibbs measure P ∈ G is extremal in G if and only if P is trivial on
T , i.e., if and only if any tail measurable real function is P -almost surely
constant.

(b) Distinct extremal Gibbs measures are mutually singular on T .

(c) Any non-extremal Gibbs measure is the barycenter of a unique probabil-
ity weight on the set of extremal Gibbs measures. (Convex combination of
extremal measures).

A proof can be found in Georgii [18], Theorems (7.7) and (7.26).

(a) means that the extremal Gibbs measures are macroscopically determin-
istic: on the macroscopic level all randomness disappears, and an experi-
menter will get non-fluctuating measurements of macroscopic quantities like
magnetization or energy per lattice site.

(b) asserts that distinct extremal Gibbs measures show different macroscopic
behavior. So, they can be distinguished by looking at typical realizations of
the spin configuration through macroscopic glasses.

(c) implies that any realization which is typical for a non-extremal Gibbs
measure is in fact typical for a suitable extremal Gibbs measure. In physical
terms: any configuration which can be seen in nature is governed by an
extremal Gibbs measure, and the non-extremal Gibbs measures can only be
interpreted in a Bayesian way as measures describing the uncertainty of the
experimenter. These observations lead us to the following definition.

Definition 4.3 (Phase transition). Any extremal Gibbs measure is called a
phase of the corresponding physical system. If distinct phases exist, one says
that a phase transition occurs.
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So, in terms of this definition the existence of phase transition is equivalent
to the nonuniqueness of the Gibbs measure.

One mechanism related to phase transition is the formation of infinite clus-
ters in suitably defined random graphs. Such infinite clusters serve as a link
between the local and global behavior of spins, and make visible how the
individual spins unite to form a specific collective behavior.

4.1.1 Holley inequality

Suppose the state space S is a subset of R and thus linearly ordered. Then
the configuration space Ω has a natural partial order given by ξ ≤ ξ′ if
and only if ξi ≤ ξ′i for all i, and we can speak of increasing real functions
f : Ω→ R.

Let P , P ′ be two probability measures on Ω. We say that P is stochastically
smaller than P ′, denoted P ≤ P ′, if

∫
fdP ≤

∫
fdP ′ for all measurable

bounded increasing f on Ω. This is equivalent to have a coupling P̂ on Ω2

with marginals P and P ′ such that P̂ (ξ ≤ ξ′) = 1.

A sufficient condition for stochastic monotonicity is given in the proposition
below. Although this condition refers to the case of finite products (for which
stochastic monotonicity is similarly defined), it is also useful in the case of
infinite product spaces. This is because (by the very definition) the relation
≤ is preserved under weak limits.

Proposition 4.4 (Holley inequality). Let Λ be a finite index set, and µ, µ′

two probability measures on {0, 1}Λ giving positive weight to each element of
{0, 1}Λ. Suppose the single-site conditional probabilities at any i ∈ Λ satisfy

µ(ξi = 1|ξΛ\{i}) ≤ µ′(ξ′i = 1|ξ′Λ\{i}) for ξ ≤ ξ′,

then µ ≤ µ′.

Proof. Let

p(i, ξΛ\{i}) = µ(ξ(i) = 1|ξΛ\{i} occurs off i) (4.5)

the conditional probability that the site i takes value 1 given the configura-
tion ξΛ\{i} in the other sites. Then when ξi = 1 we have

µ(ξ) = p(i, ξΛ\{i})µ(ξΛ\{i}) (4.6)

µ(ξi) = (1− p(i, ξΛ\{i}))µ(ξΛ\{i}) (4.7)
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where (ξi)j = ξj if j 6= i; (ξi)i = 1− ξi, a configuration differing from ξ only
at site i. In the above case (ξi)i = 0.

Define analogously p′(i, ξΛ\{i}). By hypothesis, we have

p(i, ξΛ\{i}) ≤ p(i, ξ′Λ\{i}) whenever ξ ≤ ξ′. (4.8)

Consider a pure jump Markov process ξ(t) on {0, 1}Λ with the following
evolution. Each site i, at rate 1, is updated with a Bernoulli distribution
with parameter p(i, ξΛ\{i}(t−)).

The positive entries of the matrix are

Q(ξ, ξi) =

{
p(i, ξΛ\{i}) if ξi = 0

1− p(i, ξΛ\{i}) if ξi = 1
(4.9)

The measure µ is reversible for the process ξ(t). Indeed, (4.6)-(4.7) imply

µ(ξ)Q(ξ, ξi) = µ(ξi)Q(ξi, ξ). (4.10)

Let Pt(ξ, ζ) = P (ξ(t) = ζ|ξ(0) = ξ) the semigroup associated to Q. Then,
the ergodic theorem for finite jump Markov processes says

lim
t→∞

Pt(ξ, ζ) = µ(ζ). (4.11)

LetN = (Ni : i ∈ Λ) be a collection of independent marked Poisson processes
in R× [0, 1] with intensity dt du.

We construct the process as a function of N , ξ(t) = (ξ(t))t≥0[N ], as follows.
Fix an initial configuration ξ(0) and assume we know ξ(s) up to time t− and
(t, u) ∈ Ni. Then at time t update ξi as follows:

ξi(t) = 1{u ≤ p(i, ξΛ\{i}(t−))} (4.12)

The updating does not depend on the value of ξi(t−). The process so defined
has transition matrix Q. Indeed if ξi = 1, we have

P (ξ(t+ δ) = ξi|ξ(t) = ξ)

= P
(
Ni ∩ ([t, t+ δ)×

[
p(i, ξΛ\{i}(t)), 1

)
= 1
)

+ P (other things)

= δ(1− p(i, ξΛ\{i})) + o(δ). (4.13)

and analogously when ξi = 0,

P (ξ(t+ δ) = ξi|ξ(t) = ξ) = δp(i, ξΛ\{i}) + o(δ). (4.14)
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Define Q′ and P ′t analogously with µ′.

Take ξ(0) ≤ ξ′(0) and consider the coupling(
(ξ(t))t≥0[N ], (ξ′(t))t≥0[N ]

)
(4.15)

Both marginals use the same marked Poisson processes N .

If (t, u) ∈ Ni and the configurations are ordered at time t−, we have

ξi(t) = 1{u ≤ p(i, ξΛ\{i}(t−))} ≤ 1{u ≤ p(i, ξ′Λ\{i}(t−))} = ξ′i(t)

where the inequality comes from (4.8). Hence, ξ ≤ ξ′ implies (ξ(t))t≥0[N ] ≤
(ξ′(t))t≥0[N ] for all t. In turn, this implies that their distributions satisfy
Pt(ξ, ·) ≤ P ′t (ξ′, ·). Use (4.11) to conclude that µ ≤ µ′.

4.2 Bernoulli percolation

Consider Zd, d ≥ 2 as a graph with vertex set Zd and edge set E(Zd) =
{e = {i, j} ⊂ Zd : |i− j| = 1}.

Parameters 0 ≤ ps, pb ≤ 1, site and bond probabilities.

Random subgraph Γ = (X,E) of (Zd, E(Zd)), where X = {i ∈ Zd : ξi = 1}
, E = {e ∈ E(X) : ηe = 1} , where E(X) = {e ∈ E(Zd) : e ⊂ X} is the
set of edges between the sites of X, and (ξi : i ∈ Zd), (ηe : e ∈ E(Zd)) are
independent Bernoulli variables with P (ξi = 1) = ps, P (ηe = 1) = pb.

This is Bernoulli mixed site-bond percolation. Setting pb = 1 we obtain pure
site percolation, and ps = 1 corresponds to pure bond percolation.

Let {0↔∞} denote the event that Γ contains an infinite path starting from
0, and θ(ps, pb;Zd) = P (0↔∞) be its probability.

By Kolmogorov’s zero-one law, we have θ(ps, pb;Zd) > 0 if and only if Γ
contains an infinite connected component –called cluster– with probability
1. In this case one says that percolation occurs.

The following proposition asserts that this happens in a non-trivial region of
the parameter square, which is separated by the so-called critical line from
the region where all clusters of Γ are almost surely finite. The change of
behavior at the critical line is the simplest example of a critical phenomenon.

Proposition 4.5 (Bernoulli percolation). The function θ(ps, pb;Zd) is in-
creasing in ps, pb and d. Moreover,

(1) θ(ps, pb;Zd) = 0 when pspb is small enough;

(2) θ(ps, pb;Zd) > 0 when d ≥ 2 and pspb is sufficiently close to 1.
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Proof. The monotonicity in ps and pb follows from coupling by defining the
ηe(Ue) = 1{Ue ≤ pb} and ηx(Ux) = 1{Ux ≤ ps}, where Ue Ux are iid
Uniform[0, 1] or using Holley inequality; the monotonicity in d follows by
noticing that an infinite percolation cluster in Z2 is contained in an infinite
percolation cluster in Zd for d ≥ 3.

The following arguments are taken from Grimmett [25].

(1) A self avoiding walk (SAW) is a path that visit no vertex more than once.
Let σn be the number of SAW starting at the origin with length n. Let Nn
be the set of those walks having all edges and sites open (open SAW). Then

θ = P (Nn ≥ 1 for all n ≥ 1).

This is because the cluster of the origing has infinitely many points if and
only if there are open SAW starting at the origin of all lenghts. The above
expresion equals

lim
n→∞

P (Nn ≥ 1)

Now
P (Nn ≥ 1) ≤ ENn = (pspb)

nσn

An upperbound for σn is

σn ≤ (2d)(2d− 1)n−1, n ≥ 1

because the first step of a SAW can be performed in 2d different ways and
each subsequent step can be performed at most in 2d−1 different ways (since
the walk is self avoiding, it cannot come back).

Hence
θ ≤ lim

n→∞
(2d)(2d− 1)n−1(pspb)

n

But this is 0 if pspb < (2d− 1)−1. This gives

pspb <
1

2d− 1
implies θ = 0.

(2) Planar duality. Given the graph Z2 with edges E(Z2), construct a dual
graph Γ∗ = (V ∗, E(V ∗)) with vertices V ∗ = Z2 + (1

2 ,
1
2 ) and edges E(V ∗) =

{{x, y} ⊂ V ∗ : |x − y| = 1}. This is the graph Γ = (Z2, E(Z2)) translated
by (1

2 ,
1
2 ). See Fig. 1
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Figure 1: The dual graph.

Each edge e = {x, y} of the graph Γ is crossed by an edge e∗ of the dual
graph Γ∗. Bond Percolation model in Γ∗ by declaring

e∗ open if and only if e = {x, y} open and x open.

Circuit: A selfavoiding path x1, . . . , xn such that ‖xi − xi+1‖ = 1 and
‖xn − x1‖ = 1, with edges {xi, xi+1} and {xn, x1}.

Peierls argument. If there exists a closed circuit in the dual graph contain-
ing the origin, there cannot be an infinite open path containing the origin,
that is,

{0 6↔ ∞} ⊂ {there is a closed circuit of the dual graph Γ∗ (4.16)

containing the origin} (4.17)

Let Mn be the number of closed circuits of the dual graph of lenght n sor-
rounding the origin. Then

1− θ = P (0 6↔ ∞) = P
(∑
n≥4

Mn ≥ 1)
)
≤ E

(∑
n≥4

Mn

)
,

where we used that the shorter circuit sorrounding the origin has lenght 4.
The above expression equals∑

n≥4

EMn ≤
∑
n≥4

(n4n)(1− pspb)n

In fact, the number of circuits of lenght n sorrounding the origin in the dual
graph must cross in at least one point the semiline [0,∞). The leftmost point
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the circuit intersects this semiline can take at most n values: { 1
2 ,

3
2 , . . . , n+

1
2}. Starting the circuit from this point, at each step it can take at most
4 different values. Hence, the number of circuits of lenght n sorrounding
the origin in the dual graph is dominated by n4n. This circuit is closed if
all bonds are closed, hence the probability that it is closed is dominated by
(1− pspb)n. It is possible to take ε > 0 such that∑

n≥4

nεn < 1

Then pspb ≥ 1− ε implies θ > 0.

4.3 Continuum percolation

This section is based on Georgii [19]. The model consists on Poisson points
connected by Bernoulli edges.

Let X = countable subsets X of Rd.

σ-algebra generated by the counting variablesN(B) := #(X∩B) for bounded
Borel sets B ⊂ Rd; (XΛ := X ∩ Λ).

E = locally finite subsets of E(Rd) = {{x, y} ⊂ Rd : x 6= y}.
E = possible edge configurations with an analogous σ-algebra.

For X ∈ X let E(X) = {e ∈ E(Rd) : e ⊂ X} = possible edges between
the points of X, and E(X) = {E ∈ E : E ⊂ E(X)} = edge configurations
between the points of X.

Random graph Γ = (X,E) in Rd as follows.

• Pick a random point configuration X ∈ X according to the Poisson point
process πz on Rd with intensity z > 0.

• For given X ∈ X , pick a random edge configuration E ∈ E(X) according
to the Bernoulli measure µpX on EX for which the events {E 3 e}, e =
{x, y} ∈ E(X), are independent with probability µpX(E 3 e) = p(x − y);
here p : Rd → [0, 1] is a given even measurable function.

The distribution of the random graph Γ on X × E is

P z,p(dX, dE) = πz(dX)µpX(dE) (4.18)

It is called the Poisson random-edge model, or Poisson random-connection
model, Penrose [41] Meester and Roy [38].

Boolean model: p(x− y) = 1{|x− y| ≤ 2r} for some r > 0.
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x and y are connected if and only if B(x, r) and B(y, r) overlap. Same as
random set Ξ = ∪x∈XB(x, r), for random X with distribution πz.

Percolation probability of a typical point: As before, {x ↔ ∞}
is the set of configurations satisfying that x belongs to an infinite cluster
of Γ = (X,E). The density of points belonging to an infinite cluster is a
function of z, p denoted θ:

θ(z, p;Rd) :=

∫
#{x ∈ XΛ : x↔∞}

|Λ|
P z,p(dX, dE)

for an arbitrary bounded box Λ with volume |Λ|. By translation invariance,
θ(z, p;Rd) does not depend on Λ.

Palm measure In terms of the Palm measure, θ(z, p;Rd) = P̂ z,p(0↔∞)
.

The Palm measure of P z,p, denoted P̂ z,p is the distribution of P z,p condi-
tioned to have a point at the origin. In the case of Poisson processes, this
means just to add a point at the origin and divide by the rate:

Êz,p(f(X,E)) :=
1

z
Ez,p(f(X ∪ {0}, E)) (4.19)

=
1

z

∫
f(X ∪ {0}, E)πz(dX)µpX∪{0}(dE). (4.20)

Theorem 4.6 (Percolation phase transition. Penrose, [41]). θ(z, p;Rd) is in-
creasing as function of z and p(·). Moreover, θ(z, p;Rd) = 0 when z

∫
p(x)dx

is sufficiently small, while θ(z, p;Rd) > 0 when z
∫
p(x)dx is large enough.

Sketch proof. Monotonicity follows from a stochastic comparison argu-
ment. Exercise.

Since z
∫
p(x)dx is the expected number of edges emanating from each point,

a branching argument shows that θ(z, p;Rd) = 0 when z
∫
p(x)dx < 1. Ex-

ercise: complete the details.

It remains to show that θ(z, p;Rd) > 0 when z
∫
p(x)dx is large enough. For

simplicity assume
∫
p(x)dx = 1 and p(x− y) ≥ δ > 0 whenever |x− y| ≤ 2r.

The following is taken from Georgii and Haggstrom [22].

Divide Rd into cubic cells ∆(i), i ∈ Zd, with diameter at most r an pick a
sufficiently large number n.

Call a cell ∆(i) good if it contains a connected component of the graph Γ
with at least n points. This does not depend on the other cells and

P (∆(i) is good) ≥ πz(Ni ≥ n)[1− (n− 1)(1− δ2)n−2] =: ps (4.21)
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where Ni is the number of points in ∆(i), and the second term is an estimate
for the probability that one of the n points is not connected to the first point
by a sequence of two edges. We say that x →2 z if there is an y such that
x→ y → z. For each x there are (n−1) z’s, and x 6→2 z if the n−2 possible
connections fail (there are (n− 2) possible y’s to connect; connections occur
independently with probability at least δ2.

ps is arbitrarily close to 1 when n and z are large enough.

Call two good adjacent cells ∆(i),∆(j) linked if there exists an edge from
some point in the connected component of ∆(i) to some point in the con-
nected component of ∆(j). Conditionally on the event that ∆(i) and ∆(j)

are good, this has probability at least 1− (1− δ)n2

=: pb, which is also close
to 1 when n is large enough.

We have constructed a site-bond percolation model in Zd with ps and pb as
a function of our original continuum percolation model with parameters z
and p.

{there exists an infinite cluster of linked good cells}
⊂ {there exists an infinite cluster in the Poisson random-edge model}.

Hence,

θ(z, p;Rd) ≥ n

|∆(0)|
θ(ps, pb;Zd), (4.22)

where θ(ps, pb;Zd) is the probability that the origin is connected to infinity
in the discrete model. The right hand side dominates from below the average
number of points of X in ∆(0) connected to infinity divided by the volume
of ∆(0).

Hence θ(z, p;Rd) > 0 when z is large enough.

4.3.1 Stochastic domination

Assume the random elements X, Y assume values in a space R, with a
partial order denoted ≤. We say that

X ≤ Y, stochastically (4.23)

if there exists a coupling (X̂, Ŷ ) ∈ R2, that is, a random vector in R2 with
distribution P̃ , with marginals X̂ ∼ X and Ŷ ∼ Y (∼ means “with the same
distribution”) such that

P̃ (X ≤ Y ) = 1. (4.24)
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Proposition 4.7. X is stochastically dominated by Y if and only if for all
nondecreasing f : R→ R we have

Ef(X) ≤ Ef(Y ). (4.25)

Proof. Exercise when R = R, see §3.2 in Thorisson [48]. For general R the
result “(4.25) implies X ≤ Y stochastically” is known as Strassen Theorem.

Examples: (1) Xi ∼ Bernoulli(pi), with p1 ≤ p2. Define X̂i = 1{U ≤ pi}, to
show that X1 ≤ X2, stochastically.

(2) Poisson processes Xi with intensities zi, z1 ≤ z2. Construct the coupling
as an exercise.

Stochastic domination of point processes

A simple point process P on a bounded Borel subset Λ of Rd (a probability
measure on XΛ = {X ∈ X : X ⊂ Λ}) has Papangelou (conditional)
intensity γ : Λ×XΛ → [0,∞[ if P satisfies∫

P (dX)
∑
x∈X

f(x,X \ {x}) =

∫
dx

∫
P (dX)γ(x|X)f(x,X) (4.26)

for any measurable function f : Λ×XΛ → [0,∞[.

γ(x|X)dx is the “conditional intensity” for the existence of a particle in dx
when the remaining configuration is X.

The Poisson process πzΛ on Λ has Papangelou intensity γ(x|X) = z.

Holley Preston inequality Consider the partial order induced by the
inclusion relation on XΛ.

Proposition 4.8 (Holley-Preston inequality, Georgii and Kuneth [23]). Let
Λ ⊂ Rd be a bounded Borel set and µ, µ′ probability measures on XΛ with
Papangelou intensities γ resp. γ′. Suppose γ(x|X) ≤ γ′(x|X ′) whenever
X ⊂ X ′ and x /∈ X ′ \X. Then µ ≤ µ′.

This inequality is useful to compare systems with dependencies with Poisson-
Bernoulli percolation models. Proof postponed to the next section.
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4.4 The continuum Ising model

Point particles in Rd of two different types, plus and minus.

A configuration is a pair ξ = (X+, X−).

Configuration space: Ω = X 2.

Repulsive interspecies interaction pair potential of finite range, given by an
even function J : Rd → [0,∞] with bounded support.

The Hamiltonian in a bounded Borel set Λ ⊂ Rd of a configuration ξ =
(X+, X−) is given by

HΛ(ξ) :=
∑

x∈X+,y∈X−:{x,y}∩Λ6=∅

J(x− y). (4.27)

Example: classical Widom-Rowlinson model (1970) with a hard-core inter-
species repulsion: J(x − y) = ∞ when |x − y| ≤ 2r and J(x − y) = 0
otherwise.

Assumption:

There exist δ, r > 0 such that J(x− y) ≥ δ if |x− y| ≤ 2r. (4.28)

Definition. The Gibbs distribution in Λ with activity z > 0 and boundary
condition ξΛc = (X+

Λc , X
−
Λc) ∈ X 2

Λc is

GΛ(dξΛ|ξΛc) = Z−1
Λ|ξΛc

∏
x∈X+

y∈X−
{x,y}6⊂Λc

1{‖x− y‖ > r}πzΛ(dX+
Λ )πzΛ(dX−Λ ) (4.29)

where the normalization factor ZΛ|ξΛc , also called partition function is given
by

Z−1
Λ|ξΛc =

∫
X×X

∏
x∈X+

y∈X−
{x,y}6⊂Λc

1{‖x− y‖ > r}πzΛ(dX+
Λ )πzΛ(dX−Λ ) (4.30)

so that, G(·|ξΛc) is a probability distribution in X × X .

Definition. The set of Gibbs measures G = G(z) are the measures having
GΛ as conditional probabilities, for all Λ bounded Borel set in Rd.

That is, G defined on the set of infinite point configurations X ×X is Gibbs
for the specifications (GΛ(·|ξ) : Λ bounded, ξ ∈ X × X ) if

G(f(ξ)|ξΛc) = GΛ(f(ξ)|ξΛc) (4.31)
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The family GΛ must be consistent, meaning that for bounded sets Λ ⊂ ∆,
the following must be satisfied

G∆(f(ξ)|ξ∆c) = G∆(GΛ(f(ξ) | ξΛc) | ξ∆c) (4.32)

Existence of Gibbs measures The Papangelou intensity of the measure
GΛ(·|ξΛc) is given by

γ(x|X+, X−) =

{
z
∏
y∈X− 1{‖x− y‖ > r} if x ∈ Λ+

z
∏
y∈X+ 1{‖x− y‖ > r} if x ∈ Λ−

}
≤ z.

where we think Λ+,Λ− as copies of Λ and X+ ⊂ Λ+, X− ⊂ Λ−.

Holley-Preston implies that GΛ(·|ξΛc) ≤ πzΛ×πzΛ. Compactness theorems for
point processes show that for each ξ ∈ X 2, GΛ(·|ξΛc) has an accumulation
point P as Λ↗ Rd.

Exercise. Use (4.32) to show that any limit P ∈ G.

Uniqueness and phase transition We will show that the Gibbs measure
is unique when z is small, whereas a phase transition (non-uniqueness) occurs
when z is large.

It remains open problem whether there is a sharp activity threshold sep-
arating intervals of uniqueness and non-uniqueness. That is, a zc such that
for z > zc there are more than one extremal Gibbs measure and for z < zc
there is only one Gibbs measure.

Proposition For the continuum Ising model we have #G(z) = 1 when z is
sufficiently small.

Proof. Let P , P ′ ∈ G(z). We will show that P = P ′ when z is small enough.

Let R be the range of J , i.e., J(x) = 0 when |x| > R.

Divide Rd into cubic cells ∆(i), i ∈ Zd, of linear size R.

Let p∗c be the Bernoulli site percolation threshold of the graph with vertex
set Zd and edges between all points having distance 1 in the max-norm.

Consider the Poisson measure Qz = πz × πz on Ω = X 2.

Let ξ ,ξ′ be two independent realizations of Qz, and suppose z is so small
that Qz × Qz(Ni + N ′i ≥ 1) < p∗c , where Ni and N ′i are the numbers of
particles (plus or minus) in ξ ∩∆(i), respectively ξ′ ∩∆(i).
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Then, for any finite union Λ of cells we have

Qz ×Qz(Λ ≥1←→∞) = 0,

where {Λ ≥1←→ ∞} denotes the event that a cell in Λ belongs to an infinite
connected set of cells ∆(i) containing at least one particle in either ξ or ξ′.

Holley-Preston imply that P × P ′ ≤ Qz ×Qz. Hence

P × P ′(Λ ≥1←→∞) = 0.

In other words, given two independent realizations ξ and ξ′ of P and P ′

there exists a random corridor of width R around Λ which is completely
free of particles.

Given ∆ ⊃ Λ, denote KΛ(∆) the set of (ξ, ξ′) such that “there is an empty
corridor of width R in ∆ around Λ and there is no ∆′ ⊂ ∆ with this prop-
erty”.

Now, suppose that for any local set B depending on Λ and boundary condi-
tions ξ and ξ′, we have

G∆ ×G∆(B ×X ∩KΛ(∆)|(ξ, ξ′)∆c)

= G∆ ×G∆(X ×B ∩KΛ(∆)|(ξ, ξ′)∆c) (4.33)

then, integrate with respect to P × P ′ to obtain

(P × P ′)(B ×X ∩KΛ(∆)) = (P × P ′)(X ×B ∩KΛ(∆)) (4.34)

Summing over all choices of KΛ(∆), we get P (B) = P ′(B), for any bounded
measurable B in Ω. This implies P = P ′.

It remains to show (4.33).

If ∆ does not contain a corridor of width R around Λ free of ξ and ξ′ particles,
then both sides of (4.33) are 0.

If ∆ does contain such corridor, the boundary conditions (ξ, ξ′)∆c have the
same effect as the empty boundary conditions. Hence, we can replace ξ and
ξ′ by empty configurations. Since the event KΛ(∆) and the specifications
(G∆×G∆)(·|∅×∅) are invariant under the map (ξ, ξ′)→ (ξ′, ξ), the equation
(4.33) holds.

Existence of phase transition We will see that there are at least two
Gibbs measures for z large, using a coupling with a random-cluster model at
high density.
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Gibbs distribution with + boundary conditions.

G+
Λ =

∫
πzΛc(dY

+
Λc)GΛ(·|Y +

Λc , ∅) (4.35)

This is a mixture of specifications with a boundary conditions: Poisson(z)
of plus-particles and no minus-particles in Λc.

Random-cluster model: Fix the activity z. Define the probability mea-
sure χzΛ on X × E describing random graphs (Y,E):

χzΛ(dY, dE) = Z−1
Λ|YΛc

2k(Y,E) πz(dY )µp,ΛY (dE).

where k(Y,E) is the number of clusters of the graph (Y,E);

ZΛ|YΛc
:=

∫
2k(Y,E) πz(dYΛ)µp,ΛY (dE).

is the normalization factor and µp,ΛY is the probability measure on E for
which the edges e = {x, y} ⊂ Y are drawn independently with probability

p(x− y) =

{
1− e−J(x−y) if e = {x, y} 6⊂ YΛc

1 otherwise.
(4.36)

χΛ is called the continuum random-cluster distribution in Λ with connection
probability function p and wired boundary condition. This means that all
points connected to YΛc belong to the same cluster. See [24] for a discrete
version of the random cluster model.

If we eliminate the factor 2k(Y,E) we have just the continuum percolation
model with a unique cluster containing YΛc .

Dependent Boolean percolation In the case of a hard-core interspecies
repulsion we have the deterministic rule

p(x− y) = 1{‖x− y‖ < r}. (4.37)

In this case χzΛ describes a dependent Boolean percolation model. The de-
pendency comes from the factor 2k(Y,E).

4.4.1 Coupling random-cluster and continuum Ising

Let PΛ be the distribution on X × X × E given by

PΛ(dX+, dX−, dE) = πz(dX+)πzΛ(dX−)µp,ΛX+∪X−(dE)
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with p given by (4.36) with Y = X+ ∪ X−. In words, the model consists
of two independent Poisson processes with random edges connecting points
regardless of the sign of the connected points.

In the hard core case the distribution of the edges is deterministic. Just
connect all pair of points that are at distance less than r.

Let AΛ be the set of configurations with no connections between particles of
different sign:

AΛ := {(X+, X−, E) ∈ X × X × E : E ∈ E(X+ ∪X−) (4.38)

and E 63 {x, y} for x ∈ X+, y ∈ X−} (4.39)

Configurations contained in A have the property that any connected com-
ponent C is either contained in X+ or contained in X−. Define QΛ as the
conditioned measure

QΛ = PΛ(·|AΛ) (4.40)

QΛ(dX+, dX−, dE) =
1

PΛ(AΛ)
1{(X+, X−, E) ∈ AΛ} (4.41)

× πz(dX+)πzΛ(dX−)µp,ΛX+∪X−(dE) (4.42)

To obtain a sample of QΛ in the hard core case (4.37), sample Poisson
processes X+ and X−. If ‖x− y‖ > r for all x ∈ X+, y ∈ X−, then accept
the sample. Otherwise, reject and sample again.

Proposition 4.9. For any bounded box Λ in Rd, let (X+, X−, E) be dis-
tributed with QΛ. Then,

1. The the point processes (X+, X−) has marginal distribution G+
Λ .

2. The random graph (X+ ∪X−, E) has distribution χzΛ.

Proof. 1.

QΛ(dX+, dX−)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∫
E:(X+,X−,E)∈AΛ

µp,ΛX+∪X−(dE)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∏
x∈X+,y∈X−

(1− pΛ({x, y}))

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∏
x∈X+,y∈X−

exp(−J(x− y))

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−) exp(−HΛ(X+, X−))
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= G+
Λ(dX+,dX−) (4.43)

In the hard core case:

QΛ(dX+, dX−)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∫
E:(X+,X−,E)∈AΛ

µp,ΛX+∪X−(dE)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∏
x∈X+,y∈X−

1{‖x− y‖ > r}

= G+
Λ(dX+,dX−) (4.44)

2. Let f : X × E be a test function. Then, denoting E the expectation as-
sociated to PΛ, and abusing notation, considering X+, X−, E as integration
variables in the first line and as random variables in the others, we get∫

X×X×E
f(X+ ∪X−, E)QΛ(dX+, dX−, dE)

=
1

PΛ(AΛ)
E
(
f(X+ ∪X−, E) 1{(X+, X−, E) ∈ AΛ}

)
=

1

PΛ(AΛ)
E
[
E
(
f(X+ ∪X−, E) 1{(X+, X−, E) ∈ AΛ} | (Ỹ , E)

)]
(4.45)

where Ỹ := X+ ∪X− is a Poisson process πzΛ in Rd with intensity zΛ(x) =
z(1 + 1{x ∈ Λ}).

=
1

PΛ(AΛ)
E
[
f(Ỹ , E) PΛ((X+, X−, E) ∈ AΛ | (Ỹ , E))

]
(4.46)

=
1

PΛ(AΛ)
E
[
f(Ỹ , E)

2k(Ỹ ,E)

2#Ỹ

]
(4.47)

because the set {(X+, X−) : X+ ∪ X− = Ỹ and (X+, X−, E) ∈ AΛ} has

2k(Ỹ ,E) elements, and each element has probability 2−#Ỹ , by the color the-
orem. The above expression equals

=
1

ZPΛ(AΛ)
E
[
f(Y,E) 2k(Y,E)

]
(4.48)

where Y is a Poisson process with law πz (exercise). The above expression
equals

=

∫
f(Y,E)χzΛ(dY, dE). (4.49)

The normalization comes for free because we started with a probability.
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Figures from Georgii’s web page. Left picture: a sample of the measure QΛ.
Right picture: the Ising marginal (erasing the edges). If we erase the colors
in the left picture we get a sample of the random cluster model.

Proposition 4.10. 3. The conditioned law of (X+ ∪ X−, E) given ξ =
(X+, X−) is the following. Independently for all e = {x, y} ∈ E(Y ) let
e ∈ E with probability

pΛ,X+,X−(e) =

 1− e−J(x−y), e ⊂ X+ or e ⊂ X−, e 6⊂ Λc,
1, e ⊂ Λc,
0, otherwise.

(4.50)

In the hard core case,

pΛ,X+,X−(e) (4.51)

=

 1{‖x− y‖ < r}, e ⊂ X+ or e ⊂ X−, e 6⊂ Λc,
1, e ⊂ Λc,
0, otherwise.

(4.52)

That is, put the edge {x, y} if ‖x−y‖ < r and {x, y} ⊂ X+ or {x, y} ⊂ X−.

4. The conditional distribution of (X+, X−) given (Y,E),

QΛ(dX+,dX−|(Y,E)),

is the following. For each finite cluster C of (Y,E) let C ⊂ X+ or C ⊂ X−
according to independent flips of a fair coin; the unique infinite cluster of
(Y,E) containing YΛc is included into X+.
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Proof. 3. Fix E and denote p(x, y) = QΛ({x, y} ∈ E|X+, X−). Since
(X+, X−, E) ∈ AΛ, we have that p(x, y) = 0 if x ∈ X+ and y ∈ X−, so that
E does not contain vertices with different sign. The other edges intersecting
Λ may take any value while those contained in Λc must be 1. Hence

p(x, y) = pΛ,X+,X−(x, y),

as defined in (4.50) and

QΛ((X+ ∪X−, E) |X+, X−) =
∏

{x,y}∈E

p(x, y). (4.53)

In the hard core case, connect all pair of points (with same sign) distant
less than r, see (4.51). Indeed, in this case

p(x, y) = 1{‖x− y‖ < r}, x, y ∈ X+ ∪X−. (4.54)

4. Given (Y,E) the only possible configurations (X+, X−) satisfying that
any cluster C is contained either in X+ or in X−. Since each cluster has the
same probability to be in either of those sets, we have

QΛ(X+, X− | (Y,E)) =
∏

C cluster of (Y,E)

1

2
=
(1

2

)k(Y,E)

.

Percolation and phase transition

The random-cluster representation gives the following key identity: For any
finite box ∆ ⊂ Λ,∫

[#X+
∆ −#X−∆ ]G+

Λ(dX+, dX−) =

∫
#{x ∈ Y∆ : x↔ YΛc}χΛ(dY, dE);

where x ↔ YΛc means that x is connected to a point of YΛc in the graph
(Y,E). This is because the finite clusters have the same probability to belong
to X+ and to X− and the points connected to the infinite cluster belong to
X+.

The difference between the mean number of plus- and minus-particles
in ∆ is the same as expected number of points in ∆ connected to the infinite
cluster in χΛ.

Percolation in the random cluster model The point marginal distri-
bution of χΛ is given by

νΛf :=

∫
f(Y )χΛ(dY, dE), (4.55)
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for test functions f : X → R.

Then, item 4 of Proposition 4.9 implies

χΛ(dY, dE) = νΛ(dY )ϕΛ,Y (dE)

with

ϕΛ,Y (dE) =
1

ZΛ
2k(Y,E)µp,ΛY (dE)

In the hard core case:

ϕΛ,Y (dE) =
1

ZΛ
2k(Y,E)

∏
{x,y}∈E

1{‖x− y‖ < r} dE

E is deterministic, depending only on Y in this case.

Proposition 4.11 (Edge domination). ϕΛ,Y is stochastically larger than the

Bernoulli edge measure µp̃Y for which edges are drawn independently between
points x, y ∈ Y with probability

p̃(x− y) =
1− e−δ

(1− e−δ) + 2e−δ
, for |x− y| ≤ 2r, (4.56)

and with probability 0 otherwise, where δ and r satisfy (4.28).

Proof. We fix Y ∼ ν and consider edges distributed with µ(dE) := ϕΛ,Y (dE)

on one hand and with µ′(dE)µp̃Y on the other hand. In order to apply Holley
inequality compute

p(e) := µ(η(e) = 1|ηE(Y )\{e})

=
p(x, y)2k(Y,E(η1))µpY (ηE(Y )\{x,y})[

p(x, y)2k(Y,E(η1)) + (1− p(x, y))2k(Y,E(η0))
]
µpY (ηE(Y )\{x,y})

where E(η) = {e ∈ E(Y ) : η(e) = 1} and

η1({x, y}) = 1 and η1(e) = η(e) for e 6= {x, y},
η0({x, y}) = 0 and η0(e) = η(e) for e 6= {x, y} (4.57)

The numerator is the probability under µpY of the configuration ηE(Y )\{e}
off e and η(e) = 1. In the denominator we have the marginal distribution of
ηE(Y )\{e} under the same measure.

We have

k(Y,E(η0)) ≤ k(Y,E(η1)) + 1, (4.58)
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because connecting x and y decreases at most by one the number of clusters.
Hence,

p(x, y) ≥ p(x, y)

p(x, y) + 2(1− p(x, y))
≥ 1− e−δ

(1− e−δ) + 2e−δ
= p̃(x, y).

if |x− y| > 2r, by hypothesis. Apply Holley inequality to conclude.

Proposition 4.12 (Point domination). There exists α > 0 such that the
point marginal νΛ of χΛ dominates a Poisson process of rate αz:

ν ≥ παz. (4.59)

Proof. The point marginal νΛ has Papangelou intensity

γ(x|Y ) =

z

∫
2k(Y ∪x,E)φΛ,Y ∪x(dE)∫

2k(Y,E)φΛ,Y (dE)

.

In the hard rod case, E is deterministically determined by Y and we get the
simplified expression

γ(x|Y ) =
z 2k(Y ∪x,E)

2k(Y,E)
.

To get a lower estimate for γ(x|Y ) one has to compare the effect on the
number of clusters in (Y,E) when a particle at x and corresponding edges
are added. In principle, this procedure could connect a large number of
distinct clusters lying close to x, so that k(Y ∪ x, ·) was much smaller than
k(Y, ·). However, one can show that this occurs only with small probability,
so that

γ(x|Y ) ≥ αz for some α > 0. (4.60)

for instance for R2 hard core, we can connect at most 6 disjoint clusters
(exercise) and we get

γ(x|Y ) ≥ z

26
> 0. (4.61)

So, it works for α = 2−6.

Conclusion: The previous propositions imply that χΛ is stochastically
larger than the Poisson random-edge measure Pαz,p̃ defined in (11).
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Hence, ∫
#{x ∈ Y∆ : x↔ YΛc}χΛ(dY, dE) ≥ `(∆) θ(αz, p̃;Rd)

Finally, since G+
Λ ≤ πz × πz by (17), the Gibbs distributions G+

Λ have a
cluster point P+ ∈ G(z), a Gibbs measure satisfying∫

[#X+
∆ −#X−∆ ]P+(dX+, dX−) ≥ θ(αz, p̃;Rd).

By spatial averaging one can achieve that P+ is in addition translation invari-
ant. Together with the continuum percolation Theorem, saying θ(z, p;Rd) >
0 for sufficiently large zp, this leads to the following theorem.

Theorem For the continuum Ising model on Rd, d ≥ 2, with Hamiltonian
(4.27) and sufficiently large activity z there exist two translation invariant
Gibbs measures P+ and P− having a majority of plus- resp. minus-particles
and related to each other by the plus-minus interchange.

This result is due to Georgii and Haggstrom (1996). In the special case of the
Widom-Rowlinson model it has been derived independently in the same way
by Chayes, Chayes, and Kotecky (1995). The first proof of phase transition
in the Widom-Rowlinson model was found by Ruelle in 1971, and for a soft
but strong repulsion by Lebowitz and Lieb in 1972. Gruber and Griffiths
(1986) used a direct comparison with the lattice Ising model in the case of
a species-independent background hard core.

As a matter of fact, one can make further use of stochastic monotonicity.
(In contrast to the preceding theorem, this only works in the present case
of two particle types.) Introduce a partial order ‘≤ ’ on Ω = X 2 by writing
(X+, X−) ≤ (Y +, Y −) when X+ ⊂ Y + and X− ⊃ Y −. (21). A straightfor-
ward extension of Holley-Preston then shows that the measures G+

Λ decrease
stochastically relative to this order when Λ increases. (This can be also de-
duced from the couplings obtained by perfect simulation, see the paper of
Georgii, Section 4.4.) It follows that P+ is in fact the limit of these mea-
sures, and is in particular translation invariant. Moreover, one can see that
P+ is stochastically maximal in G in this order.

Corollary For the continuum Ising model with any activity z > 0, a phase
transition occurs if and only if∫

P̂+(dX+, dX−)µp,X+(0
+←→∞) > 0;

here P̂+ is the Palm measure of P+, and the relation 0
+←→∞ means that

the origin belongs to an infinite cluster in the graph with vertex set X+ and
random edges drawn according to the probability function p = 1− e−J .
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It is not known whether P+ and P− are the only extremal elements of G(z)
when d = 2, as it is the case in the lattice Ising model. However, using a
technique known in physics as the Mermin–Wagner theorem one can show
the following.

Theorem If J is twice continuously differentiable then each P ∈ G(z) is
translation invariant.

A proof can be found in Georgii (1999). The existence of non-translation
invariant Gibbs measures in dimensions d ≥ 3 is an open problem.

5 Perfect simulation of point processes

This section is based on joint work with Fernandez and Garcia [13]. Here
we propose a perfect simulation algorithm and construction of a hard core
measures locally absolutely continuous with respect to a Poisson process.
They will be invariant measures of birth-and-death processes of points in-
teracting by exclusion. We obtain perfect samples of finite windows of the
infinite-volume measure

Background. See Wilson page for a complete list of references on perfect sim-
ulation: http://www.dbwilson.com/exact/. Spatial processes: Kendall
and Moeller. All the above apply for finite state space or finite regions
(coupling with finite coalescence time).

5.1 Free birth and death spatial process in Rd

Let X = Rd and consider a mean measure w on X.

We construct a birth and death process (Xt)t∈R, Xt ∈ X , the set of countable
subsets of X; that is, the evolution of a point process.

Let C be a Poisson process on X× R× R+ with intensity

w(x) dx dt e−sds (5.1)

An element of C is a triplet C = (x, T, S), with x ∈ X, T ∈ R, S ∈ R+. We
identify the point C = (x, T, S) with the space-time cilinder

C = x× [T, T + S) (abusing notation) (5.2)

and interpret x as the basis, T as the birth-time, S as the life-time and T +S
as the death-time of a the basis x of the cylinder C.
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We say that C ∈ C is alive at time t if T ≤ t < T + S. Define the process

X̃t :=
{

Basis(C) : C ∈ C, C alive at t
}
. (5.3)

Call (X̃t)t∈R the stationary free birth death process.

Semigroup and generator. For a function f : X→ R with compact support,
we define

S̃tf(X) := E(f(X̃t)|X̃0 = X)). (5.4)

S̃t is a semigroup with generator L̃, an operator defined on test f with
bounded support, by

L̃f(X) =
∑
x∈X

[f(X \ {x})− f(X)] +

∫
X
dxw(x) [f(X ∪ {x})− f(X)].

(5.5)

That is, it satisfies the Kolmogorov equations

d

dt
S̃tf(X) = L̃S̃tf(X) Backward equations (5.6)

d

dt
S̃tf(X) = S̃tL̃f(X) Forward equations (5.7)

Proposition 5.1 (Stationary measure). Denote µ̃ the marginal law of X̃t.
Then µ̃ is a Poisson process on X of intensity w.

Proof. We show that X0 has distribution µ̃. Let Φ(x, t, s) := x1{−s < t <
0}. By the mapping theorem, X0 = Φ(C) is a Poisson process with intensity∫ 0

−∞
dt

∫ ∞
−t

e−sds w(x) = w(x). (5.8)

Details and general t as an exercise.

The process in finite time intervals. We define the free process for positive
times in [0,∞) with initial configuration X0 = X ⊂ X by including initial
cylinders

C0(X) =
{(
x, 0, Sx) : x ∈ X

}
, (5.9)

where Sx are independent exp(1) variables. The sets of cylinders of C born
at positive times are denoted by

C+ := {C ∈ C : Birth(C) ≥ 0}. (5.10)
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Define

X̃X
t =:

{
Basis(C) : C ∈ C+ ∪C0(X), C alive at time t

}
Then (X̃X

t )t≥0 has initial configuration X and generator L̃.

5.2 Birth and death spatial process with exclusions

We define now a measure with exclusions and then a birth death process
having the measure as invariant. Let Λ be a bounded Borel subset of X.

A hard core measure Define the set

AΛ = {X ⊂ X : ‖x− x′‖ > r, x, x′ ∈ X ∩ Λ}. (5.11)

The condition ‖x − x′‖ > r can be thought of as B(x) ∩ B(x′) = ∅, where
B(x) is a ball of radious r

2 and center x. Denote

µΛ = µ̃(·|AΛ). (5.12)

µΛ is the distribution of the Poisson process µ̃, conditioned to the hard
core exclusion rule: “no pair of points stay at distance less than r”. The
Papangelou intensity of µΛ is given by

γΛ(x|X) = w(x) 1{X ∪ {x} ∈ AΛ}, x ∈ Λ. (5.13)

We will see that the process with birth rate γΛ(x|X) and rate of death of x
equal 1 has µΛ as invariant.

Construction of a birth and death process with exclusion Recall
the Poisson process CΛ on Λ × R × R≥0, with intensity (5.1) and the sets
CΛ

+ of cylinders born after time 0 and, for an X ∈ AΛ, the set of cylinders
born at time 0 with bases X, denoted CΛ

0 (X), see (5.10) (5.9).

Recall that the intensity of CΛ is locally integrable, and that there are a
finite number of cylinders in C.

We say that a cylinder C = (x, t, s) is compatible with a given configuration
of cylinders C′ if

‖x− x′‖ > r, for all cylinder (x′, t′, s′) ∈ C′, alive at time t. (5.14)
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Let X ∈ AΛ and define iteratively the set of kept cylinders KΛ
0 = KΛ

0 (X),
as follows. Define t0 = 0 and K0 := CΛ

0 (X) and, assuming we have defined
tk and Kk, let

tk+1 := inf{t > tk : (x, t, s) ∈ CΛ
+ ∪CΛ

0 (X)},

and, denoting C = (x, t, s) the cylinder realizing the infimum, that is, with
t = tk+1, let

Kk+1 :=

{
Kk ∪ {C} if C is compatible with Kk

Kk otherwise.

This corresponds to iteratively erase cylinders (x, t, s) with γ(x|Xt−) = 0.
Denote by

KΛ
0 := ∪k≥0Kk, (5.15)

the resulting set of kept cylinders.

Define

XΛ
t :=

{
x : (x′, t′, s′) ∈ KΛ

0 (X), (x′, t′, s′) alive at t
}
, t ≥ 0 . (5.16)

Proposition 5.2. The process (XΛ
t )t≥0 defined in (5.16) is Markov with

generator

Lf(X) :=
∑
x∈X

[f(X \ {x})− f(X)] +

∫
X
dx γ(x |X) [f(X ∪ {x})− f(X)].

(5.17)
when applied to test functions f .

Proof. Hint to show (5.17). Denote K = KΛ
0 and write

E[f(Xh)|X0 = X] (5.18)

= E[
∑

(x,0,s)∈K:s<h

f(X \ {x})] (5.19)

+ E[
∑

(x,t,s)∈K:t<h

f(X ∪ {x})] (5.20)

+ f(X)
(
1− E1

{
{(x, 0, s) ∈ K : s < h} ∪ {(x, t, s) ∈ K : t < h} = ∅)}

})
(5.21)

+ E(1{other things}), (5.22)

where the set “other things” has intensity o(h|Λ|).
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5.2.1 Time-stationary construction in finite-volume

For each bounded box Λ ⊂ X, there are random times {τj(C) ∈ R : j ∈ Z},
such that

(a) τj → ±∞ for j → ±∞ and

(b) There is no C ∈ CΛ alive at time τj , for all j ∈ Z.

We obtain the kept cylinders by using the algorithm (5.16) in each interval
[τi, τi+1). Denote by

KΛ := the (time stationary random) set of kept cylinders. (5.23)

XΛ
t :=

{
Basis(C) : C ∈ KΛ, C alive at t

}
(5.24)

By construction, XΛ
t is a stationary process. By Proposition 5.2, it is Markov

with generator L. Denote µΛ the law of XΛ
t .

Proposition 5.3. The measure µΛ is invariant for this dynamics.

Proof. We drop the dependence of Λ in the notation and write µ instead of
µΛ. It suffices to show that µLf = 0 for test functions f . That is,∫

µ(dX)
∑
x∈X

[f(X \ {x})− f(X)] (5.25)

+

∫
µ(dX)

∫
X
γ(x|X) [f(X ∪ {x})− f(X)] dx = 0. (5.26)

Recalling (5.12), µ(dX) = µ̃(dX) 1{X ∈ AΛ}(µ̃(AΛ))−1. Since the factor
(µ̃(AΛ))−1 is in both terms of (5.26), it suffices to show∫

µ̃(dX) 1{X ∈ AΛ}
∑
x∈X

[f(X \ {x})− f(X)] (5.27)

+

∫
µ̃(dX) 1{X ∪ {x} ∈ AΛ}w(x) [f(X ∪ {x})− f(X)] = 0, (5.28)

because γ(x|X) = w(x) 1{X ∪ {x} ∈ AΛ} and 1{X ∈ AΛ} ≥ 1{X ∪ {x} ∈
AΛ}.

Recall Slivniak-Mecke Theorem 1.11: for h : X × X → R and µ̃ Poisson
process with intensity w:∫

µ̃(dX)
(∑
x∈X

h(x;X \ {x})
)

=

∫
X

∫
µ̃(dX)h(x;X)w(x) dx. (5.29)
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Taking h(x;X) := 1{X ∪ {x} ∈ AΛ}[f(X)− f(X ∪ {x}], we have

h(x;X \ {x}) = 1{X ∈ AΛ} [f(X \ {x})− f(X)]. (5.30)

Using (5.29), we get that (5.27) equals∫
X

∫
µ̃(dX)1{X ∪ {x} ∈ AΛ}w(x) [f(X)− f(X ∪ {x})] (5.31)

which cancels (5.28).

The proof confirms the following heuristic: for X ′ = X ∪ {x},

(weight of X ′)× (rate of X ′ → X) = (weight of X)× (rate of X → X ′)
(5.32)

that is,

µ̃(dX ′)1{X ′ ∈ AΛ} × 1 = µ̃(dX)× w(x)1{X ′ ∈ AΛ} (5.33)

and µ̃(dX ′) = w(x)µ̃(dX).

5.2.2 Infinite-volume construction

The goal is to construct an infinite volume version of the process XΛ
t via the

identification of a set of kept cylinders K. The problem is that there is no
cylinder C in C to start the algorithm (5.16). We then propose to explore
backwards in time if a cylinder C ∈ C belongs or not to the set of kept
cylinders.

Consider an arbitrary cylinder configuration C. The first generation of an-
cestors of a cylinder C is the set of cylinders C ′ born before C and alive at
the birth-time of C whose basis intersect the basis of C.

AC
1 : First generation of ancestors of C.

AC
n : n-th generation of ancestors of C := union of first generation of ances-

tors of the cylinders belonging to the (n− 1)-th generation of C:

AC
n =

⋃
C′∈AC

n−1

AC′

1 (5.34)

Notice that a cylinder C ′ may belong to more than one generation of ances-
tors of C. The Clan of ancestors of C is defined by

AC := ∪n≥1A
C
n . (5.35)
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When necessary, we write AC [C], to stress that the ancestors are taken from
the set C.

The construction of the set K of kept cylinders works if the clan of an-
cestors of C is finite for all C ∈ C. We apply the algorithm (5.16) to this
finite set, pretending there are no other cylinders. The set of kept cylinders
in the clan of C is denoted K(C).

Denote K[C] := ∪C∈CK(C) ⊂ C, the set of kept cylinders of C.

Denote C0(X) the set of cylinders (x, 0, Sx) with basis x ∈ X, all born at
time zero and with iid exponential life times Sx. Denote C(0,t] the set of
cylinders born in the interval (0, t] and

C[0,t](X) := C(0,t] ∪C0(X). (5.36)

Theorem 5.4 (Infinite volume birth and death. Existence). Let X ∈ AX,
C a Poisson process with intensity (5.1) and assume AC [C[0,t](X)] is almost
surely finite for all C ∈ C[0,t](X). Then, the process

Xt =
{

Basis(C) : C ∈ K[C[0,t](X)], C alive at t
}

is Markov with generator L.

Theorem 5.5 (Infinite volume birth and death. Time invariance). If AC

is almost surely finite for all C ∈ C, then

Xt =
{

Basis(C) : C ∈ K[C], C alive at t
}

is Markov with generator L and stationary.

The marginal law of Xt, denoted µ is the unique invariant measure for the
process. Furthermore, for all bounded supported f : X→ R, we have

lim
Λ↗X

µΛf = µf. (5.37)

So that µ is Gibbs for the specification (µΛ)Λ.

We now give sufficient conditions on w to satisfy the conditions of Theo-
rem 5.4 and Theorem 5.5.

Define

α := sup
x∈X

∫
X

1{‖y − x‖ < r}w(y) dy. (5.38)

Theorem 5.6 (Finiteness of ancestor clan). Let C be a Poisson process with
intensity (5.1).
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(i) Let X ∈ AX. If α <∞ then AC [C[0,t](X)] is almost surely finite for all
C ∈ C[0,t](X).

(ii) If α < 1, then AC [C] is almost surely finite for all C ∈ C.

We prove this theorem in the next section, by dominating the clan of ances-
tors of C by a multitype branching process with offspring distribution AC

1 .

5.2.3 Oriented percolation and branching

Oriented percolation Define the random graph G := (C, E) with vertices
C and oriented edges

E(C) = {(C,C ′) ∈ C2 : C ′ ∈ AC
1 }; (5.39)

that is, the edge (C,C ′) is present if C ′ is an ancestor of C. We say that
there is oriented percolation in C if some C ∈ C has an infinite number of
ancestors: #AC =∞. The goal of this subsection is to show that under the
conditions of Theorem 5.5, there is no percolation in C, almost surely.

Multitype branching process Given a cylinder D, define BD
0 := D and

inductively

BD
n := ∪C∈BDn−1

BC
1 , (5.40)

such that the conditioned distribution of the family (BC
1 : C ∈ BD

n−1) given
BD
n−1, consists on independent clans BC

1 with the same distribution as AC
1 .

The total progeny of D is denoted

BD := ∪C∈BDn−1
BD
n . (5.41)

This is just the ecology model we have studied in the Cox process section.
The difference is that now the points are called cylinders and we have only
one cylinder D in the initial configuration. Then each cylinder C has daugh-
ters BC

1 independent of the other points. We say that (BD
n )n≥0 is a mul-

titype branching process with offspring distribution BC
1 , a Poisson process

with mean measure given for C = (x, T, S) by

1{‖y − x‖ < r, t < T, s > T − t}w(y) e−s dydtds. (5.42)

Proposition 5.7 (Coupling percolation and branching). For any cylinder

D, there exist a coupling (ÂD, B̂D) satisfying

ÂD ⊂ B̂D, (5.43)

78



where the marginal B̂D is distributed as the multitype branching process BD

defined in (5.41) and the marginal ÂD is distributed as the clan of ancestors
AD defined in (5.35).

New proof. In this proof we construct B̂D using independent Poisson pro-
cesses as in (5.40). Then we give a rule to erase cylinders B ∈ B̂D to obtain

a clan ÂD contained in B̂D.

Denote B = B̂D. Let n(B) = n if and only if B ∈ Bn, the generation
number of B. For B,B′ ∈ B, we say that B′ precedes B, denoted B′ ≺ B, if
n(B′) < n(B) or n(B′) = n(B) and Birth(B′) > Birth(B). Since B with ≺ is
a well ordered set, we can label the elements of B to have B = {B1, B2, . . . }
with B1 = D and Bi ≺ Bi+1, i ≥ 1.

We say that B′ is the mother of B if B ∈ BB′

1 . We say that B′ = (x′, t′, s′)
is a potential mother of B = (x, t, s) if B′ is not the mother of B and
‖x− x′‖ < r and t′ ∈ (t, t+ s).

Color the cylinders of B iteratively as follows. Paint B1 blue. For k ≤
#B, assume B1, . . . , Bk−1 are colored. If the mother of Bk is blue and she
precedes all blue potential mothers of Bk, then paint Bk blue; otherwise,
paint Bk red.

Denote ÂD := set of blue cylinders. By construction ÂD ⊂ B̂D and ÂD

has the same distribution as AD (exercise).

Old proof. In this proof we construct first the clan AD of a given cylinder
D ∈ C and add new (random) cylinders B to obtain BD.

Let n(C) = min{` ≥ 0 : C ∈ AC
` }. For C,C ′ ∈ AD, we say that C ′ precedes

C, denoted C ′ ≺ C, if n(C ′) < n(C) or n(C ′) = n(C) and Birth(C ′) >
Birth(C). For each C ∈ AD define

ǍC
1 := AC

1 ∩
(
∪C′≺CAC′

1

)
, ÃC

1 := AC
1 \ ǍC

1 . (5.44)

Cylinders in ÃC
1 are not direct ancestors of those C ′ ≺ C. Given C and

{C ′ ∈ AD : C ′ ≺ C}, the random sets ÃC
1 and ǍC

1 are independent Poisson
processes (with intensity depending on C and C ′ ≺ C). We have

AC
1 = ÃC

1 ∪̇ ǍC
1 , AD

n = ∪C∈AD
n−1

ÃC
1 . (5.45)

Introduce a family of independent random sets (B̌C
1 )C∈AD , independent of

(AC
1 )C∈AD , such that, given {C ′ ∈ AD : C ′ ≺ C}, B̌C

1 has the same distri-
bution as ǍC

1 . Define

BC
1 := ÃC

1 ∪ B̌C
1 . (5.46)
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By construction, BC
1 has the same law as AC

1 , and, given AD
n , the sets

(BC
1 : C ∈ AD

n ) are independent. Introduce

B̂D
n := (∪C∈AD

n−1
B̌C

1 ) ∪
(
∪B∈B̂Dn−1

BB
1

)
, B̂D

0 := ∅, (5.47)

where, given B̂D
n−1 the random sets (BB

1 : B ∈ B̂D
n−1) are independent

Poisson processes with intensity (5.40). In words, B̂D
n consists on the progeny

of cylinders B created at times k < n. Finally define the process (BD
n )n≥0

by BD
0 = {D} and, iteratively

BD
n :=

(
∪C∈AD

n−1
ÃC

1

)
∪
(
∪B∈B̂Dn−1

BB
1

)
, (5.48)

By construction, BD
n is a branching process with mean measure (5.40). The

total progeny is

BD := ∪n≥1B
D
n (5.49)

Finally (5.43) follows from (5.45) and (5.48).

The ecology model in X The bases of the cylinders in the branching
process BD induce a continuous time branching process in X. For a cylinder
D with basis x and alive at time 0, define bxn ⊂ X as the basis of the cylinders
in the nth generation of ancestors of D:

bxn =
{

Basis(C) : C ∈ BD
n

}
. (5.50)

Denote I(x, y) := 1{‖x − y‖ < r}. Recall BC
1 is a Poisson process on X ×

R × R+ with intensity w(y) I(x, y) 1{t < T} dt1{s > t} dx. The Mapping
theorem says then that bx1 is a Poisson process with mean measure

m(x, y) dy = w(y)I(x, y)
[∫ 0

−∞
dt

∫ ∞
t

ds e−s
]
dy = w(y)I(x, y)dy. (5.51)

Define m1(x, y) := m(x, y) and for n ≥ 1, iteratively,

mn(x, y) :=

∫
dz mn−1(x, z)m(z, y). (5.52)

Lemma 5.8. We have

E#bxn =

∫
mn(x, y) dy ≤ αn, (5.53)

where α is defined in (5.38). If α < 1, then

E#bx =
∑
n≥0

∫
X
mn(x, y) dy ≤

∑
n≥0

αn =
1

1− α
. (5.54)

80



Proof. The first identity is left as an exercise. By definition,∫
X
mn(x, y) dy =

∫
w(x1)I(x, x1)

∫
w(x2)I(x1, x2) . . . (5.55)

×
∫
w(y) I(xn−1, y) dx1 . . . dxn−1dy ≤ αn.

This Lemma shows, in particular, that the multitype branching process bn
is subcritical if α < 1.

5.3 Continuous-time branching process

Let C be a cylinder with basis a and alive at time 0. Exploring the clan BC

backwards in time, we define a continuous-time process Y at with initial state
Y a0 = a, and

Y at = {Basis(B) : B ∈ BC , B alive at time − t,Birth(Mom(B)) > −t}

(5.56)

where Mom(B) is the unique B′ ∈ BC such that B ∈ BB′

1 .

Each individual x waits an exponential time of parameter 1 after which she
dies and produces offsprings distributed as a Poisson process µx with mean
measure w(x)I(x, y)dy. The generator is

Lf(Y ) =
∑
x∈Y

∫
µx(dZ)[f(Y \ {x} ∪ Z)− f(Y )] (5.57)

Let

Rt(a) := E(#Y at ), (5.58)

the expected number of points at time t.

Lemma 5.9 (Mean number of individuals). The mean number of individuals
at time t, Rt(a) satisfies

Rt(a) ≤ e(α−1)t. (5.59)

Proof. Let p(j) = e−ααj/j!, the law of a Poisson random variable with
mean α. Let yt be a jump Markov process in N with starting point y0 = 1
and rates Q, given for j ≥ 1 by

q(j, `) = j p(`+ 1− j), for ` ≥ j − 1, ` 6= j. (5.60)
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When the process is at state k, at rate k it chooses a j with law Poisson(α),
and increments its value by j−1; the state 0 is absorbing. There is a coupling
(#Y at , yt) such that #Y at ≤ yt, implying that for rt := Eyt, we have

Rt(a) ≤ rt. (5.61)

We have rt = Ptf(1) for f(j) := j and Pt = eQt. By (2.25) and (2.28),

d

dt
Ptf(1) =

∑
j≥1

∑
`≥j−1

pt(1, j) q(j, `) [`− j] (5.62)

=
∑
j≥1

pt(1, j) j
∑
`≥j−1

p(`+ 1− j) [`− j] (5.63)

=
∑
j≥1

pt(1, j) j
∑
`′≥0

p(`′) (`′ − 1) (`′ = `− j + 1) (5.64)

= rt (α− 1). (5.65)

Since r0 = 1, the solution is rt = exp(t(α − 1)). This and (5.61) imply
(5.59).

The above construction gives bounds for the total number of cylinders alive
at some time in [−t, 0]. Let

Ŷ at = {Basis(B) : B ∈ BC , B alive at time − t′, for some − t < t′ < 0}
(5.66)

this is a growth process where there are no deaths. The generator is

L̂f(Y ) =
∑
x∈Y

∫
µx(dZ)[f(Y ∪ Z)− f(Y )] (5.67)

Let

R̂t(a) := E(#Ŷ at ), (5.68)

the expected number of points until time t.

Lemma 5.10. We have

R̂t(a) ≤ eαt. (5.69)

Proof. Exercise.
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5.4 Time length and space width

Define the time length and space width of a finite cluster AC , for C alive at
time τ , by

TL(AC) := sup{Birth(D) : D ∈ AC} − τ, SW(AC) := r#AC . (5.70)

The branching process Y at allows us to estimate the time-length of a clan,
due to the fact:

Y at = ∅ implies TL(BC) < t . (5.71)

Theorem 5.11 (Percolation, time length and space width).

(i) If α <∞, then for C alive at time t,

E#AC [C[0,t](X)] ≤ 2eαt. (5.72)

(ii) If α < 1, then the probability of backward oriented percolation is zero.

(iii) If α < 1, then for any positive t,

P
(
TL(AC) > t

)
≤ e−(1−α)t (5.73)

(iv) If α < 1, then

E
(
SW(AC)

)
≤ r

1− α
(5.74)

Proof. (i) The total number of cylinders in AD[C[0,t](X)] is dominated by
the number of cylinders in AD alive at some time in [0, t] plus the number
of cylinders C ∈ C0(X) such that C is ancestor of some cylinder C ′ alive at
some point of [0, t].

The number of cylinders alive at some point of [0, t] has the same distribution
as those alive at some point of [−t, 0] in the clan of a D alive at time t. This
is dominated by Ŷ xt , whose expectation is R̂t ≤ eαt, by Lemma 5.10. There
are at most Ŷ xt cylinders at time 0 that can intersect those in AD ⊂ BD

alive at some point of [0, t]. This is the origin of the “2” in (5.72).

(ii) We follow Hall (1985). For C = (x, T, S) ∈ C, recall the domination
AC ⊂ BC in (5.43) and the definition (9.1) saying that bx consists of the
bases of BC . So, E#bx < 1/(1− α) in (5.54) shows part (i).

(iii) By definition, if C = (x, T, S) ∈ C is alive at time 0, we have

Y xt = ∅ implies TL(AC) ≤ t. (5.75)
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Hence,

P (TL(AC) > t) ≤ P (Y xt = ∅) ≤ e−(1−α)t (5.76)

by the rightmost inequality in (5.59).

(iv) We find upperbounds for the space diameter of the backwards percola-
tion clan through upperbounds for the total number of occupied points by the
multitype branching process bn defined by (9.1). In fact, for C = (a, T, S),

SW(AC) ≤ r#ba (5.77)

By (5.54)

E SW(AC) ≤ r E#ba ≤ r

α
.

Proof. Proof of Theorem 5.6 The first part follows from (i) of previous
theorem. The second part follows from (ii). Complete the details as an
exercise.

5.5 Thermodynamic limit

Let α < 1 and C the Poisson process with mean measure (5.1). Let KΛ be
the set of kept cylinders when the we consider ancestors only cylinders with
basis in Λ and K the set of kept cylinders in the infinite volume. Let XΛ be
the set of basis of cylinders in KΛ alive at time 0 and X be the set of basis
of cylinders in K alive at time 0. Let X̃ be the set of bases of cylinders in
C alive at time 0. Then, for every x ∈ X̃,

lim
Λ↗X

1{x ∈ XΛ} = 1{x ∈ X}, a.s. (5.78)

Let ∆ ⊂ X be a bounded box. The above limit implies that, taking Λ ⊃ ∆,

lim
Λ↗X

XΛ ∩∆ = X ∩∆, a.s.. (5.79)

This implies

lim
Λ↗X

∫
µΛ(dX)f(X ∩∆) =

∫
µ(dX)f(X ∩∆). (5.80)

which is the thermodynamic limit.
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5.6 Perfect simulation

Assume α < 1. We describe an algorithm to simulate X ∩ ∆, for X dis-
tributed with the Gibbs measure µ and ∆ ⊂ X finite.

1. Construct AC for C alive at time 0 and with basis in ∆. These clans
are finite as α < 1.

2. Cleaning algorithm: Decide, using the exclusion rule from younger to
older which cylinders are kept or erased inside each clan.

Call KC the set of kept cylinders in AC .

3. Define

X ∩∆ := {Basis(C) : C ∈ KC , C alive at time 0}

for x ∈ ∆.

This configuration has the marginal distribution of the infinite-volume mea-
sure µ on the set ∆ ⊂ X.

5.7 Construction of Gibbs measures

If the measure is locally absolutely continuous with respect to µ̃ when re-
stricted to a finite region:

µΛ(dη) =
1

Z
e−HΛ(η)µ̃(dη)

that is, the Hamiltonian acts only inside Λ. We are interested in Gibbs
measures with respect to the specification (µΛ : Λ bounded subset of X).

We propose a dynamics with rate of birth:

w(dx)× e−H(η∪x)

e−H(η)

which is the Papangelou intensity measure for µ, and rate of death 1.

The generator is now

Lf(η) =
∑
x∈η

[f(η \ x)− f(η)] +

∫
X
w(dx)

e−H(η∪x)

e−H(η)
[f(η ∪ {x})− f(η)]
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and the semigroup

Stf(η) := E(f(ηt)|η0 = η)). (5.81)

We say that µ is reversible for (ηt) if for any test function f, g, we have∫
dµ g Stf =

∫
dµ f Stg

Under suitable conditions, the next identity implies µ reversible.∫
dµ g Lf =

∫
dµ f Lg

These equations are consequence of the following heuristic microscopics:

= (weight of η ∪ x)× (rate of η ∪ x→ η).

(weight of η)× (rate of η → η ∪ x)

which gives:

e−H(η∪x) × 1 = e−H(η) × e−H(η∪x)

e−H(η)

We construct the dynamics in function of the Poisson process C on X×R×
R+ × [0, 1] with intensity

w(x)dx dt e−s ds du. (5.82)

A point of this Poisson process is a flagged cylinder

C = (x, T, S, U) (5.83)

where T = birth(C) ∈ R
S =life(C) ∼ exponential(1)
U =flag(C) ∼ Uniform[0, 1]

We perform the same construction as before but now we include C(x, T, S, U)
in K if

U ≤M(x|ηT−) (5.84)

where

M(x|η) =
e−H(η∪x)

e−H(η)
. (5.85)

86



6 Ballistic particles and hard rods

This section is based on work in preparation with Dante Grevino and Herbert
Spohn. The original model comes from a paper by Boldriguini, Dobrushin
and Soukhov [6]

6.1 Ideal gas dynamics

An element (q, v, `) ∈ X := R2×R≥0 is called particle with position q, velocity
v and length `. Elements of X are called configurations.

Under the ideal gas dynamics, each particle x = (q, v, `) ∈ X moves at
speed v, conserving speed and length, with no interaction with other parti-
cles. Define

TtX := {(q, v, `) ∈ X : (q − vt, v, `) ∈ X}. (6.1)

This is a deterministic dynamics. Denote

X :=
{
X ⊂ X : TtX is locally finite for all t ∈ R

}
(6.2)

We will consider random initial configurations on X .

6.1.1 Macroscopic gas evolution

Assume F is absolutely continuous with density f and let

Γ :=
{
γ : R× R≥0 → R≥0 :

∫∫
γ(v, `)dvd` <∞

}
(6.3)

F :=
{
f : X→ R≥0 : there is γ ∈ Γ such that sup

q
f(q, v, `) ≤ γ(v, `),∀q, v

}
Define the ideal gas time evolution as the operator Tt : F → F given by
Ttf := f ◦ T−t:

Ttf(q, v, `) := f(q − vt, v, `) (6.4)

This operator is a bijection with inverse T−t. Notice that Tt conserves F :

f ∈ F if and only if Ttf ∈ F . (6.5)

6.1.2 Random initial configuration

Let P denote a probability on X and E the expectation with respect to P.
The first moment measure of P is the measure on X defined by F (·) :=
E
∑

x∈X 1{x ∈ ·} (mean measure).
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Lemma 6.1. Assume X is a point process on X . If X has mean measure F
with density f ∈ F , then TtX has mean measure F ◦ T−1 with density Ttf .

Lemma 6.2. If X is Poisson with intensity f ∈ F , then TtX is Poisson with
intensity Ttf .

Proof. Mapping theorem.

Invariant measures Define the shift operator Sa : X → X by SaX =
{(q − a, v, `) : (q, v, `) ∈ X} (configuration as seen from a). A measure P is
shift invariant or S-invariant if SaX has distribution P for all a ∈ R.

A measure P on X is T -invariant if TtX has distribution P for all t.

If P is shift invariant and F is the mean measure of P, with density f ∈ F ,
then f takes the form

f(q, v, `) = ρf̃(v, `), (6.6)

where ρ is a positive constant and f̃ is a positive measure on R×R≥0.

Lemma 6.3. Let X be a shift invariant Poisson process on X with distribu-
tion P and intensity f ∈ F . Then, P is T -invariant.

Proof. By Lemma 6.2, TtX is a Poisson process with intensity Ttf = f ◦T−t.
Using (6.6),∫

ϕ Ttf =

∫∫∫
ϕ(q + vt, v, `) ρF dq F̃ (dv, d`) (6.7)

=

∫∫∫
ϕ(q, v, `) ρF dq F̃ (dv, d`) =

∫
ϕdF.

We say that a shift invariant measure P on X is space mixing if

lim
a→∞

∣∣E[α1(X)α2(SaX)] − E(α1(X))E(α2(X))
∣∣ = 0, (6.8)

for test functions αi : X → R≥0 with finite expectation and compact space
support.

Let X be a point process in X with distribution P, such that the n-point
correlation function of P is absolutely continuous with density fn, n ≥ 1.
That is, fn : Xn → R≥0 satisfy

E
[
κX(A1) . . . κX(An)

]
=

∫
A1×···×An

fn(x1, . . . , xn) dx1 . . . dxn, (6.9)

88



for any collection of bounded, pairwise disjoint Borel sets A1, . . . , An ⊂ X,
where κX(A) is the number of elements in X ∩A.

Proposition 6.4. Let X be a point process in X with distribution P, with
correlation densities fn satisfying (6.9). If P is T -invariant and mixing, then
P is a Poisson process with intensity f1.

Sketch proof. Since P is T -invariant, the one-point correlation function P
must be shift invariant: f(q, v, `) = f(q + vt, v, `). By T -invariance, the
n-correlation function fn satisfies

fn(x1, . . . , xn) = fn(Sv1tx1, . . . , Svntxn), (6.10)

for t ∈ R, xi = (qi, vi, `i) ∈ X, where vi are distinct speed values. Since P is
mixing,

lim
t→∞

fn(Sv1tx1, . . . , Svntxn) = f(x1) · · · f(xn), (6.11)

which is the n-correlation function of a Poisson process with intensity f . A
result by Lenard 1973 implies that X is a Poisson process with intensity f .

Superposition of particle configurations with the same speed Ex-
amples of invariant measures that are not absolutely continuous include su-
perposition of particle configurations with the same speed.

Let W be a finite or countable set of speeds and for each w ∈ W , denote
X′w := {(q, v, `) ∈ X : v = w} the set of configurations with speed w. Let
X′ := ∪w∈WX′w and consider a point process X ∈ X ′ := {X ∈ X : X ⊂ X′}
with distribution P. Denote Pw the distribution of Xw := X ∩ X′w. In this
case we say that Pw is the w-marginal of P.

Proposition 6.5. Let P be a probability on X ′ with shift invariant marginals
(Pw)w∈W . (a) If the w-marginals are independent then P is T -invariant. (b)
If P is mixing and T -invariant, then the w-marginals are independent.

Proof. (a) Under the free gas dynamics the w-marginal at time t is a trans-
lation by wt of the time zero marginal, which has law Pw for all t. Shifted
marginals are also independent, so the superposition of the marginals at time
t has law P, showing P is T -invariant.

(b) Let X = ∪wXw have T -invariant and mixing distribution P, where Xw
is the w-marginal configuration. Note that the marginal law of Xw is also
mixing. Take measurable sets Aw ⊂ Xw, all depending on the same finite
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interval of positions. For any finite number of speeds w, use T -invariance to
get

P
(
∩
w
{Xw ∈ Aw}

)
= P

(
∩
w
{Xw ∈ StwAw}

)
→
t→∞

∏
w

P
(
{Xw ∈ Aw}

)
,

by shift invariance and mixing.

6.1.3 Ideal gas hydrodynamics

Let f ∈ F , and denote

fε(q, v, `) := f(εq, v, `). (6.12)

Xε := Poisson processes on X with intensity fε, (6.13)

Denote P,E the distribution of the family (Xε)ε>0. Denote κε the counting
empirical measure associated to Xε, defined on test functions ϕ : X→ R≥0,
by

κεϕ := ε
∑

(q,v,`)∈Xε
ϕ(εq, v, `). (6.14)

Since ϕ is nonnegative, the expectation of κεϕ is well defined by

E(κεϕ) = ε

∫∫∫
ϕ(εq, v, `) f(εq, v, `) dqdvd` =

∫
ϕf ≤ ∞. (6.15)

The law of large numbers in this subsection holds for any nonnegative ϕ. If∫
ϕf < ∞, then the convergence is to that value. Otherwise, the conver-

gence is to ∞.

It is convenient to have a joint construction of (Xε)ε−1∈N. Take ε−1 ∈ N,
consider a family (Xi)i≥1 of i.i.d. Poisson processes with intensity f , and
define

Xε := ∪ε
−1

i=1{(q, v, `) : (εq, v, `) ∈ Xi}. (6.16)

By the superposition Theorem, Xε as defined in (6.16) is a Poisson process
with intensity fε. This is consistent with the former definition (6.13).

Lemma 6.6 (LLN). Let Xε be the Poisson process defined in (6.16). For
any f ∈ F and test function ϕ ≥ 0, we have

lim
ε→0

κεϕ =

∫
ϕf, a.s. (6.17)
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Proof. From the construction (6.16), we can write

κεϕ = ε

ε−1∑
i=1

κiϕ, κiϕ :=
∑

(q,v,`)∈Xi

ϕ(q, v, `). (6.18)

Since E(κiϕ) =
∫
ϕdF , the result for ε−1 ∈ N follows from the strong law of

large numbers for iid nonnegative random variables, see [10], for instance.

The empirical counting measure κεt for the ideal gas at time t is defined by

κεtϕ := ε
∑

(q,v,`)∈Tε−1tX
ε

ϕ(εq, v, `) (6.19)

Lemma 6.7 (LLN at time t). Let Xε be a Poisson process with intensity
fε. For any test function ϕ ≥ 0, we have

lim
ε→0

κεtϕ =

∫
ϕ Ttf, a.s., t ∈ R. (6.20)

Proof. By Lemma 6.2, Tε−1tX
ε is a Poisson process with intensity Tε−1tf

ε =
fε ◦ T−ε−1t. Hence, the mean of κεtϕ is

Eκεtϕ = ε

∫∫∫
ϕ(ε(q + vε−1t), v, `) f(εq, v, t) dqdvd` (6.21)

=

∫∫∫
ϕ(q + vt, v, `) f(q, v, t) dqdvd` =

∫
ϕ Ttf. (6.22)

To conclude use Lemma 6.6.

Mass convergence Let the empirical mass (length) measure be defined
on nonnegative test functions ϕ by

λεtϕ := ε
∑

(q,v,`)∈Tε−1tX
ε

` ϕ(εq, v, `). (6.23)

The following Lemma follows from Lemmas 6.6 and 6.7.

Lemma 6.8. Let ϕ ≥ 0 be a test function. Then,

lim
ε→0

λεtϕ =

∫∫∫
`ϕ(q, v, `) Ttf(q, v, `) dqdvd`, a.s., t ∈ R. (6.24)
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6.1.4 Flow convergence

Recall the definition of flows (6.33) and for each process Xε, q and v define
the ε-scaled mass flows along the trajectory (q + vs)s∈[0,t] by

j+
ε (q, v, t) := ε j+

Xε(ε
−1q, v, ε−1t), j−ε (q, v, t) := ε j−Xε(ε

−1q, v, ε−1t).

jε(q, v, t) := j+
ε (q, v, t)− j−ε (q, v, t).

Lemma 6.9. Let f ∈ F and q, v ∈ R. Then,

lim
ε→0

j+
ε (q, v, t) = j+

f (q, v, t), lim
ε→0

j−ε (q, v, t) = j−f (q, v, t).

lim
ε→0

jε(q, v, t) = jf (q, v, t)
(6.25)

where the macroscopic flows j±f , jf are defined in (6.65).

Proof. Let ϕ+ be the indicator of the set of points (a,w, `) whose ideal
trajectory (a+ws)s∈[0,t] cross the trajectory (q+vs)s∈[0,t] from right to left:

ϕ+(a,w, `) := 1{a > q and a+ wt < q + vt}. (6.26)

Then,

j+
ε (q, v, t) = ε

∑
(a,w,`)∈Xε

` ϕ+(εa, w, `) = λε0ϕ
+, (6.27)

and Eλε0ϕ
+ = Ej+

ε (q, v, t) = j+
f (q, v, t) < ∞, for f ∈ F , see (6.67). Use

Lemma 6.8 to get the first limit in (6.25). Use the same argument for the
second limit and the identity j = j+ − j− for the third limit.

Corollary 6.10. Let f ∈ F , fε and Xε as in (6.13) and (6.12). ot(X) :=
jX(0, 0, t), as defined in (6.35). Then,

lim
eps→0

εoε−1t(X
ε) = ot = jf (0, 0, t), (6.28)

as defined in (6.70).

6.2 Hard rods

The mass of a configuration X is the sum of the lengths of its particles:

m(X) :=
∑

(q,v,`)∈X

`. (6.29)
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Finite configurations have finite mass but infinite configurations may have
infinite mass. The signed mass of a configuration X between real points a
and b is defined by

mb
a(X) := m((q, v, `) ∈ X : a ≤ q < b)−m((q, v, `) ∈ X : b ≤ q < a), (6.30)

that is, the mass of the particles with positions in [a, b) if a < b or minus
the mass of the particles with positions in [b, a), otherwise. If a = b, then
mb
a(X) = 0.

Consider the lexicographic order between particles and for any configuration
X, time t in R and trajectory (q + sv)s∈R, define

J+
q,v,tX := {(a,w, `) ∈ X : a > q and a+ wt < q + vt} (6.31)

J−q,v,tX := {(a,w, `) ∈ X : a < q and a+ wt > q + vt} (6.32)

These are the particles of X whose ideal gas trajectories intersect the trajec-
tory of (q + sv)s∈R from right to left and from left to right, respectively, up
to time t. The masses of these sets are called mass flows and denoted by

j+
X (q, v, t) := m(J+

q,v,tX), j−X (q, v, t) := m(J−q,v,tX). (6.33)

The set of configurations X with finite mass flows is defined by

X := {X ⊂ X : j+
X (q, v, t) < +∞ and j−X (q, v, t) < +∞, for all q, v, t ∈ R}.

(6.34)

For X ∈ X , the net mass flow is defined by

jX(q, v, t) := j+
X (q, v, t)− j−X (q, v, t). (6.35)

6.2.1 Dilation and contraction

The hard rod configuration space Y is defined by

Y := {Y ∈ X : (q, q + `) ∩ (q′, q′ + `′) = ∅, (q, v, `), (q′, v′, `′) ∈ Y}. (6.36)

The expression hard rods refers to “rods cannot intersect”, which is the
exclusion condition characterizing Y. The set of configurations in Y with no
rod containing a ∈ R is denoted by

Ya := {Y ∈ Y : a /∈ (q, q + `), (q, v, `) ∈ Y}. (6.37)

For every a in R, define the dilation (w.r.t. a) map Da : X → Ya, by

DaX :=
{(
q +mq

a(X), v, `
)

: (q, v, `) ∈ X
}
, (6.38)
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see (6.30) for the definition of the signed mass mq
a(X). The map Da is a

bijection and its inverse is the contraction (w.r.t. a) map Ca : Ya → X ,
given by

CaY :=
{(
q −mq

a(Y), v, `
)

: (q, v, `) ∈ Y
}
. (6.39)

Define the mapped position of a point b in the dilation with respect to a of
X and in the contraction with respect to a of Y ∈ Ya, by

DX,a(b) := b+mb
a(X), CY,a(b) := b−mb

a(Y). (6.40)

The operators DX,a and CY,a conserve mass: for a < b we have

mb
a(X) = m

DX,a(b)
a (DaX) = mb

DX,a(b)(DbX), X ∈ X , (6.41)

mb
a(Y) = m

CY,a(b)
a (CaY) = mb

CY,a(b)(CbY), (6.42)

where we assume Y ∈ Ya in the first identity of (6.42) and Y ∈ Yb in the
second one.

6.2.2 Hard rod dynamics

The evolution of a hard rod configuration is deterministic: each rod travels
ballistically at its own speed until there is a collision: if at time t− we have
rods located at (q, v, `) and (q′, v′, `′) with q′ = q + ` and v > v′, then, at
time t each rod is shifted by the length of the other rod, interchanging order:

Before collision, at time t− After collision, at time t
(q, v, `), (q′, v′, `′) (q + `′, v, `), (q′ − `, v′, `′) (6.43)

After collision each rod continues at its speed until the next collision. The
dynamics is well defined for any finite number of initial rods.

We define now the dynamics when there are infinitely many rods. The hard
rod dynamics as seen from a zero-length zero-speed hard rod sitting initially
at the origin is the operator (Ût)t∈R defined by

ÛtY := D0TtC0Y, Y ∈ Y0. (6.44)

Denote Sa the shift operator, acting on real numbers, particles and configu-
rations by

Sab = b− a, Sa(q, v, `) = (Saq, v, `), SaX = {Sax : x ∈ X}. (6.45)

SaX is the configuration as seen from a.
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Define the hard rod dynamics for configurations Y ∈ Y0 by

UtY := S−ot(C0Y)ÛtY, Y ∈ Y0, (6.46)

ot(X) := jX(0, 0, t), X ∈ X , (6.47)

see (6.35). ot(C0Y) coincides with the position at time t of the a hard rod
o := (0, 0, 0) added to the configuration Y at time 0. The addition of the
particle o at an empty site does not modify the evolution of the rods of Y.

If Y ∈ Y \ Y0, then Y has a rod (q, v, `) containing the origin, that is, with
q < 0 < q + `. Since SqY ∈ Y0, we can use (6.46) to define

UtY := S−qUtSqY, Y ∈ Y \ Y0. (6.48)

Lemma 6.11. For finite Y ∈ Y, this dynamics coincides with the one de-
scribed by (6.43).

Proof. By pictures.

Tagged rod motion Given a hard rod configuration Y ∈ Yq, that is with
no rod containing q, we study the motion of a tagged rod with arbitrary
length inserted at time zero in q with speed v and look at its position uY,v;t(q)
at time t, defined by

uY,v;t(q) := q + vt+ jCqY(q, v, t), (6.49)

in particular, for Y ∈ Y0, ot(Y) = uY,0;t(0). The definition makes sense as
the tagged particle jumps to the right by ` when it is crossed by a size ` rod
from right to left, and by −`, if the crossing is from left to right. The rods
crossing the tagged rod are the same in the compressed or uncompressed
dynamics.

6.2.3 Palm measures and invariance for hard rods

Palm measures Recall Y0 is the set of hard rod configurations with no
rod containing the origin, as defined in (6.37). Assume P is a shift invariant

measure on Y. Define the Palm measure P̂ by

P̂ = P( · |Y0), (6.50)

that is, P̂ is the measure P conditioned to the event “no rod contains the
origin”.

Denote D0P(A) := P(D−1
0 A) and write

D
= to mean “same distribution”
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Proposition 6.12 (Ideal gas and hard rod invariance). If P is shift invariant
on X , then

P is T -invariant if and only if D0P is Û -invariant. (6.51)

Proof. Let X be random with law P and Y := D0X. If P is T -invariant, then

ÛtY = D0TtX
D
= D0X = Y. Hence D0P is Û -invariant, as Y has law D0P.

Reciprocally, TtX = TtC0Y = C0ÛtY
D
= C0Y = X.

Empty shift and anti-Palm For Y ∈ Y0 and a a real number, define

b(a,Y) := DC0Y,0(a); (6.52)

so, the empty space in Y between 0 and b(a,Y) is a, if a is positive and −a
otherwise. Define the empty shift by a by

ŜaY := Sb(a,Y)Y = D0SaC0Y, Y ∈ Y0, a ∈ R. (6.53)

We say that a measure P̂ on Y0 is empty-shift invariant if it is Ŝa-invariant
for all a:

Êϕ(X) = Êϕ(ŜaX), (6.54)

where Ê is expectation with respect to P̂ and ϕ is a test function.

Given an empty-shift invariant measure P̂ on Y0, define the inverse-Palm
measure P,E on Y by

Eϕ(Y) :=
1

Êb(a,Y)
Ê
(∫ b(a,Y)

0

ϕ(SxY)dx
)
, a 6= 0. (6.55)

(See formula (4.14o) in Thorisson [48].) A sample of this measure is obtained

by sampling a configuration Y with law 1
Êb(a,Y)

b(a,Y)P̂(dY) (size biased by

b(a,Y)) and then make a random shift uniformly distributed in the interval
(0, b(a,X)). To see this interpretation, just multiply and divide by b(a,X)
the expression (6.55) to get:

1

Êb(a,Y)
Ê
(
b(a,Y)

1

b(a,Y)

∫ b(a,Y)

0

ϕ(SxY)dx
)
. (6.56)

The resulting mesure P is shift invariant and its definition does not depend
on the choice of a 6= 0.
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Proposition 6.13 (Harris [27]). Let P be a shift invariant measure and P̂
its Palm measure. Then

P is U -invariant if and only if P̂ is Û -invariant (6.57)

For a proof of this proposition see also [42] and [15].

The above results can be condensated in the following theorem

Theorem 6.14. Let P be a shift invariant and U -invariant measure on Y.
Let P̂ := P(·|Y0) and assume that C0P̂ is mixing. Then C0P̂ is a Poisson
process.

Proof. Since P is shift invariant and U -invariant, Harris Theorem 6.13 im-
plies P̂ is Ût invariant which, in turn, implies C0P̂ is T -invariant, by Propo-
sition 6.12. Since by hypothesis C0P̂ is mixing, part (b) of Proposition 6.5

implies C0P̂ is a Poisson process.

6.3 Macroscopic dynamics

6.3.1 Admissible functions, dilations and contractions

Let f be a density and define its mass and momentum functions as

σf (q) :=

∫∫
` f(q, v, `) dvd` (6.58)

ζf (q) :=

∫∫
v ` f(q, v, `) dvd` (6.59)

Define the set F of densities with uniformly bounded mass and momentum:

F :=
{
f : X ∈ R≥0 : max{‖ζ̇f‖∞, ‖ζf‖∞, ‖σf‖∞, ‖σ̇f‖∞} <∞

}
(6.60)

Dilation and contraction Define the set of dilated macroscopic densities
as

G := {f ∈ F : ‖σf‖∞ < 1}.

For a ∈ R, f ∈ F and g ∈ G, define the point dilation and contraction, by

Df,a(b) := b+

∫ b

a

σf (q)dq, Cg,a(b) := b−
∫ b

a

σg(q)dq, a, b ∈ R.
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Define the dilation and contraction (w.r.t. a) operators as the bijections
Da : F → G, Ca : G → F by

Daf(q, v, `) =
f(D−1

f,a(q), v, `)

1 + σf (D−1
f,a(q))

, Cag(q, v, `) =
g(C−1

g,a(q), v, `)

1− σg(C−1
g,a(q))

. (6.61)

The derivatives are given by

d

dq
Df,a(q) = 1 + σf (q) ∈ [1,∞),

d

dq
Cg,a(q) = 1− σg(q) ∈ (0, 1]. (6.62)

In particular, d
dqCg,a(q) ≥ 1 − ‖σg‖∞ > 0. Thus, both functions are diffeo-

morphisms, the former is a dilation and the later is a contraction.

Both operators conserve mass:∫ Df,a(c)

Df,a(b)

σDaf (q)dq =

∫ c

b

σf (q)dq,

∫ Cg,a(c)

Cg,a(b)

σCag(q)dq =

∫ c

b

σg(q)dq.

By additivity of the integral, it suffices to consider a = b. Consider each
expression as a function of q = c, check each equality for q = a and conclude
by checking the equality of the derivatives.

Shift The shift operator Sa applied to f ∈ F of g ∈ G is given by

Saf(q, v, `) := f(q − a, v, `). (6.63)

The shift conserves density, mass and momentum. For f in F , a, b, c, v, `,
q in R, we have ∫ c+a

b+a

Saf(q, v, `)dq =

∫ c

b

f(q, v, `)dq,

σSaf (q) = σf (q − a), ζSaf (q) = ζf (q − a).

6.3.2 Macroscopic evolution of hard rods

Mass Flows The macroscopic counterpart of the mass flows defined in
(6.35) are defined by

j+
f (q, v, t) :=

∫ ∞
0

∫ v

−∞

∫ q+(v−w)t

q

` f(a,w, `) da dw d` (6.64)

j−f (q, v, t) :=

∫ ∞
0

∫ ∞
v

∫ q

q+(v−w)t

` f(a,w, `) da dw d`, (6.65)
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jf (q, v, t) := j+
f (q, v, t)− j−f (q, v, t). (6.66)

The right-left flow j+
f (q, v, t) gives the mass crossing from right to left the

trajectory (q + vs)s∈R in the time interval [0, t], when the initial density is
f . Analogously, j−f (q, v, t) collects the left-to-right flow. The net flow is the
difference of those.

Notice that if f ∈ Fγ , for some γ ∈ L, then

0 ≤ j+
f (q, v, t) ≤

∫ v

−∞

∫ ∞
0

(v − w)` γ(w, `) d` dw < ∞, (6.67)

by definition of L. Analogously j−f (q, v, t) <∞. We can conclude that

j+
f (q, v, t) <∞, j+

f (q, v, t) <∞, |jf (q, v, t)| <∞, f ∈ F , q, v, t ∈ R.
(6.68)

Hard-rod evolution Define the operator Ut : G → G by

Utg(q, v, `) := S−otD0TtC0g(q, v, `) (6.69)

ot := jC0g(0, 0, t). (6.70)

As in the microscopic case, D0TtC0g is the macroscopic hard rod evolution
as seen from a zero-speed, zero-length particle (0, 0, 0), added at the origin
at time 0, and ot is the position of this test particle at time t. The shift by
−ot is performed in order to obtain the hard rod evolution of g (as seen from
the origin).

Lemma 6.15 (Group property). The family (Ut)t∈R is a group. In partic-
ular

Ut+s = UtUs, t, s ∈ R. (6.71)

Tagged rod evolution For every g in G, we define the macroscopic posi-
tion at time t of a hard rod (q, v, `), as the bijection ug,v,t : R→ R

ug,v,t(q) := q + vt+ jC0g(q, v, t). (6.72)

Notice that this definition does not depend on the length ` of the hard rod.

6.4 Hydrodynamics of hard rods

6.4.1 Law of large numbers for dilations

We prove now law of large numbers for dilations of Poisson processes.
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Lemma 6.16 (LLN for dilations). Let f ∈ F and Xε a Poisson process with
intensity fε. Then,

lim
ε→0

εDXε,0(ε−1a) = Df,0(a), a.s.. (6.73)

Proof. Take a > 0 and recall (6.40) to get

lim
ε→0

εDXε,0(ε−1a) = lim
ε→0

ε
∑

(q,v,`)∈Xε
`1{εq ∈ [0, a)} (6.74)

=

∫∫∫
`1{εq ∈ [0, a)} f(q, v, `) dqdvd`, a.s. (6.75)

= Df,0(a), (6.76)

where the limit was proven in Lemma 6.6.

Lemma 6.17 (LLN for empirical measure of dilations). Let F , G and H
be measures on X absolutely continuous with densities f ∈ F , and g, h ∈ G,
respectively, satisfying g = D0f and h(q, v, `) = `g(q, v, `). Let Xε be a
Poisson processes on X with intensity fε and let Yε := D0X

ε. For any
bounded interval A ⊂ R and ϕ̃ : R×R≥0 → R≥0, denote

ϕ(q, v, `) = 1{q ∈ A} ϕ̃(v, `). (6.77)

Then,

lim
ε→0

ε
∑

(q,v,`)∈Yε
`ϕ(εq, v, `) =

∫
ϕh, a.s. (6.78)

Proof. The limit (6.78) is equivalent to

lim
ε→0

ε
∑

(q,v,`)∈Xε
`ϕ(εDXε,0(q), v, `) (6.79)

=

∫∫∫
`ϕ(Df,0(q), v, `) f(q, v, `) dqdvd`, a.s.. (6.80)

This follows from (a) the sum in (6.79) equals the sum in (6.78), by defini-
tion of D0, and (b) by definition,

∫
ϕh =

∫∫∫
`ϕ(q, v, `)D0f(q, v, `) dqdvd`.

Change variables q = Df,0(q̂) and use (6.61) and (6.62) to get (6.80).

We now show (6.80) for A = [0, b], for b > 0, the general case follows from
this case. Denote

ϕb(q, v, `) := 1{q ∈ [0, b]} ϕ̃(v, `). (6.81)
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Denote a := D−1
f,0(b) and a′, a′′ satisfying 0 < a′ < a < a′′ and Df,0(a′) <

Df,0(a) < Df,0(a′′). By (6.73), there is ε∗ > 0 such that,

εDXε,0(ε−1a′) ≤ b, (6.82)

for ε < ε∗, and

1{εq ∈ [0, a′]} = 1{εDXε,0(q) ∈ [0, εDXε,0(ε−1a′)]} ≤ 1{εDXε,0(q) ∈ [0, b]},

for all (q, v, `) ∈ Xε, for ε < ε∗. Since `ϕ̃(q, v, `) ≥ 0, the above inequality
implies

Iε(a′) := ε
∑

(q,v,`)∈Xε
`ϕa′(εq, v, `) (6.83)

≤ ε
∑

(q,v,`)∈Xε
`ϕ̃(v, `) 1{εDXε,0(q) ∈ [0, b]} =: Ĩε(b), (6.84)

for ε < ε∗. Use Lemma 6.8 with t = 0 to obtain that Iε(a′) converges to I(a′),
defined below, implying I(a′) ≤ lim inf Ĩε(b) ≤ lim sup Ĩε(b) ≤ Iε(a′′), using
the same argument for the upperbound. Since this holds for all a′ < a < a′′,
we can conclude that

lim
ε→0

ε
∑

(q,v,`)∈Xε
`ϕ̃(v, `) 1{εDXε,0(q) ∈ [0, b]} (6.85)

=

∫∫∫
`ϕa(q, v, `) f(q, v, `) dqdvd` =: I(a) (6.86)

Since

ϕa(q, v, `) = 1{q ≤ a}ϕ̃(v, `) (6.87)

= 1{Df,0(q) ≤ Df,0(a)}ϕ̃(v, `) = ϕb(Df,0(q), v, `), (6.88)

as b = Df,0(a), we have that I(a) equals the right hand side of (6.80) for
ϕ = ϕb.

6.4.2 Hard rod hydrodynamics

Let (Yε)ε>0 be a family of point processes on the hard rod space Y. Define
the ε-scaled empirical mass measure for hard rods associated to this family
by

πεtϕ := ε
∑

(q,v,`)∈Uε−1tY
ε

`ϕ(εq, v, `). (6.89)
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Theorem 6.18 (Hard rod hydrodynamics). Let F and G be absolutely con-
tinuous measures on X with densities f ∈ F and g ∈ G, respectively, satis-
fying g = D0f . Denote by Ht the absolutely continuous measure on X with
density ht(q, v, `) := `Utg(q, v, `).

For each ε > 0, let fε be defined by fε(q, v, `) := f(εq, v, `). Let Xε be a
Poisson processes on X with intensity fε, and let Yε := D0X

ε. Let πεt be the
empirical mass measure associated to Yε, defined in (6.89).

For any bounded interval A ⊂ R and ϕ̃ : R×R≥0 → R≥0, denote ϕ(q, v, `) :=
1{q ∈ A} ϕ̃(v, `). Then,

lim
ε→0

πεtϕ =

∫
ϕht, a.s. (6.90)

Proof. Since Yε = D0X
ε ∈ Y0, by definition (6.46) we have

Uε−1tY
ε = S−oεtD0X

ε
t , (6.91)

where oεt := oε−1t(X
ε) and Xεt := Ttε−1Xε. Substituting in (6.89), we have

πεt ϕ = ε
∑

(q,v,`)∈S−oεtD0Xεt

`ϕ(εq, v, `) = ε
∑

(q,v,`)∈Xεt

`ϕ
(
ε(DXεt ,0

(q) + oεt ), v, `
)
.

Take b > 0 and consider ϕb, as defined in (6.81), with the convention that
for negative b, ϕb(q, v, `) := 1{b < q < 0} ϕ̃(v, `). Take b > 0 to get

πεt ϕb = ε
∑

(q,v,`)∈Xεt

`1
{

0 ≤ ε(DXεt ,0
(q) + oεt ) ≤ b

}
ϕ̃(v, `) (6.92)

The laws of large numbers (6.28) and (6.78) imply

lim
ε→0

ε oεt = ot, lim
ε→0

εDXεt ,0
(q) = DTtf,0(q), (6.93)

where ot = jf (0, 0, t), as defined in (6.70). The second limit holds because
Xε
t is a Poisson process with intensity (Ttf)ε.

An argument as in (6.83) and (6.86) gives, for −ot > 0,

lim
ε→0

πεt ϕb =

∫∫∫
` ϕb

(
DTtf,0(q) + ot, v, `

)
Ttf(q, v, `) dqdvd` (6.94)

=

∫∫∫
` ϕb(q, v, `)S−o(t)DoTtf(q, v, `) dqdvd` (6.95)

=

∫∫∫
` ϕb(q, v, `)Utg(q, v, `) dqdvd` =

∫
ϕb dHt.
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6.4.3 Density evolution equation

Theorem 6.19 (Density evolution equation). Let g̃ in G and ĝ(q, v, `; t) :=
Utg̃(q, v, `). Then ĝ(q, v, `; t) is the unique solution of the following Cauchy
problem for functions ĝ : X×R→ R such that ĝ(·; t) ∈ G for all t.

∂tĝ(q, v, `; t) + v ∂q ĝ(q, v, `; t)

+ ∂q

(
ĝ(q, v, `; t)

∫ +∞
0

∫ +∞
−∞ `′ (v − w) ĝ(q, w, `′; t) dw d`′

1−
∫ +∞

0
`′
∫ +∞
−∞ ĝ(q, w, `′; t) dw d`′

)
= 0

ĝ(q, v, `; 0) = g̃(q, v, `)

Recall the microscopic tagged rod evolution (6.49) and macroscopic (6.72).

Corollary 6.20. We have the following alternative formulation of the hard
rod evolution:

Utg(q, v, `) = g
(
u−1
g,v,t(q), v, `

) d
dq
u−1
g,v,t(q) (6.96)

Define the evolving effective velocity field associated to ĝ as the function

veff
ĝ := v +

∫ +∞
0

`′
∫ +∞
−∞ (v − w)ĝ(q, w, `′; t)dwd`′

1− σh(q, t)
∈ R

We have the following equivalent formulation,

veff
ĝ (q, v, t) =

v − ζĝ(q, t)
1− σĝ(q, t)

(6.97)

Now we can consider the following Cauchy problem{
q̇ĝ,q,v = veff

ĝ (qĝ,q,v(t), v, t)

qĝ,q,v(0) = q
(6.98)

Since ĝ is in G, for every v in R we have that veff
ĝ (·, v, ·) and ∂qv

eff
ĝ (·, v, ·) are

in C2(R2). Then, by the general theory of ODEs, for each (q, v) in R2, there
exists a global solution to the problem (6.98). Let us define

uĝ,v,t(q) = qĝ,q,v(t).

which is a diffeomorphism.

Proposition 6.21. For every (q, v, `; t) in R3 × R≥0, we have{
ĝ(q, v, `; t) = g0(u−1

ĝ,v,t(q), v, `)
d
dqu
−1
ĝ,v,t(q)

uĝ,v,t = ug̃,v,t
(6.99)
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7 Poisson line processes

Poisson line processes is a well known subject in point processes (Kingman
[43], Daley and Vere Jones [9]) and Stochastic Geometry (Chiu, Stoyan,
Kendall and Mecke [8]) and geostatistics (Lantuéjoul [31, 32, 33]).

7.1 Line processes in R2

Let L be the set of infinite, undirected straight lines in R2. A countable
random subset of L is called line process. To construct a Poisson line process
on L, it suffices to define a mean measure µ on L. To do that it is convenient
to use convenient line representations.

Mapping L to a band A Given ` ∈ L, let `⊥ be the unique line per-
pendicular to ` containing the origin. Let x = (x, y) := ` ∩ `⊥ the intersec-
tion point of these lines. Let p be the signed distance (x2 + y2)1/2Sign(y)
and α := arctan y

x , the angle between `⊥ and the positive oriented x-axis,
0 ≤ α < π.

Denote A := R× [0, π). The map φ : ` 7→ (p, α) is a bijection between L and
A.

The lines of the figures above map to the points below:

The line ` has the following parametrization

x cosα+ y sinα = p (7.1)
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Any measure µ on L induces a measure on A, and vice-versa. We do not
distinguish these two measures.

The set of lines in L intersecting the ball B(0, r) = {(x, y) : x2 + y2 ≤ r} is
the set{(p, α) ∈ A : |p| ≤ r}.

We say that a set of lines is locally finite if only if a finite number of lines
intersect any bounded Borel set. A locally finite set L ⊂ L maps into a
locally finite set φ(L) ⊂ A.

7.2 Uniform Poisson line process

If µ is a locally integrable measure on A, then the existence theorem shows
that there is a Poisson process with mean measure µ on A and L; we use the
same symbol µ for the measure in any of those sets.

When µλ is Lebesgue measure on A of constant intensity λ, the correspond-
ing Poisson process is called uniform Poisson line process with intensity λ.

Lemma 7.1 (Invariance by isometries). The Poisson line process is invari-
ant by translations, rotations and reflexions.

Proof. Exercise. Hint for translation invariance: use the line parametrization
formula (7.1). Denote (p̂, α̂) = S(x,y)(p, α), the line (p, α), as seen from (x, y).
Clearly α̂ = α. To conclude it suffices to show that p̂ = r((x, y), α)−p, where
r((x, y), α) is the distance between `((x, y), α), the line of angle α containing
the point (x, y), and the origin.

Lines intersecting a ball The number of lines hitting the ball B(0, r)
follows a Poisson distribution with mean

λπ 2r = λPerimeter(B(0, r)).
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Lantuejoul

Crossing line process We now parametrize lines according to their in-
tersection with the abscissa axis. Mapl a line ` ∈ L to the pair (q, β), where
q is the intersection of ` with the abscissa axis and β is the incidence angle
of ` with the positively oriented abscissa axis. The parametrizations (p, α)
and (q, β) are related by the bijection

ψ(p, α) :=
( p

cosα
, π − α

)
, ψ−1(q, β) = (q sinβ, π − β). (7.2)

Lemma 7.2 (Crossing line process). Let L be the uniform Poisson line
process. Then, the random set

Z :=
{(
q(`), β(`)

)
: ` ∈ L

}
(7.3)

is a Poisson process in R× [0, π) with mean measure

dq sinβ dβ. (7.4)

Furthermore, Z can be seen as a homogeneous Marked Poisson process on R
with intensity 2 and marks β distributed with density

f(β) =
1

2
sinβ, β ∈ [0, π). (7.5)

Proof. We have Z = ψ(L), where ψ : A→ A is given by (7.2). Hence, Z is a
Poisson process with mean measure

dµ(ψ−1(q, β)) = dq sinβ dβ, (7.6)
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showing the first part of the lemma. For the second part, multiply and divide
the mean measure (7.4) by 2, to get that Z is rate 2 homogeneous Poisson
process in R with mark distribution (7.5).

Corollary 7.3. Let ˆ̀= (p̂, α̂) be a fixed line and L the uniform Poisson line

process. The set of lines of L crossing ˆ̀ is a rate 2 Poisson process in ˆ̀ with
mark distribution

sin |α̂− α|
2

dα, 0 < α < π. (7.7)

Proof. Exercise of isometry invariance.

Corollary 7.4. Under the conditions of Lemma 7.2, the mean number of
lines of L crossing a segment I contained in (p̂, α̂) is 2|I|, for any line (p̂, α̂).

Corollary 7.5 (Crossing line construction). Let Y be a Poisson process with

mean measure 2λ dq | sin β|2 dβ in R× [0, π). Recall ψ defined in (7.2) and let

L := {ψ−1(`) : ` ∈ Y} (7.8)

Show that this process is the uniform line process of intensity λ in L.

This corollary tells that one way to construct the uniform process L is to
take a rate 2λ Poisson process in R and to each point attach a line with
random incident angle β with distribution sin β

2 .

Line processes and ideal gas There is a correspondence between ideal
gas configurations X and line configurations L by the map

(q, v, l) 7→ ` = (q + vt)t∈R (7.9)

for the moment l plays no role in this map.

Exercise: find the distribution of X producing a isometry invariant Poisson
line process L.

Strip construction Let S be the strip R × [0, 1] and Y be a uniform
Poisson process on S× [0, π)× [0, 1). Let

L = {(z, α) ∈ S× [0, π) : (z, α, u) ∈ Y, u < cosα}. (7.10)
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Since the set of points in the intersection `(z, α) ∩ S has length a = 1
cosα ,

we need to divide by a to get intensity 1 for each line. Instead, we include
a Uniform[0, 1] mark u as an accept/reject test: the line (z, α) is accepted if
u < 1

a = cosα.

Lemma 7.6 (Strip construction). The process L defined in (7.10) is a uni-
form Poisson line process on L.

Proof. Exercise. Show that the intersection L ∩ {(x, y) : y = 0} ⊂ R is
a Poisson process of intensity 2 and that the angles are distributed as in
(7.7).

Lines hitting a convex set Let D ⊂ R2 be a bounded convex set and L
a uniform Poisson Line process. Define the Poisson line process crossing D
by

LD := {` ∈ L : ` ∩D 6= ∅}. (7.11)

For each angle α, there is an interval I(α) of length w(α) such that `(p, α) ∈
LD if and only if p ∈ I(α):

Lemma 7.7 (Perimeter lemma). Let L be a uniform Poisson line process of
intensity λ. Then, the mean number of lines crossing a bounded convex set
D ⊂ R2 is ∫ π

0

w(α)dα = λ Perimeter(D), (7.12)
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Proof. See Chapter 3 in Santalo [44] and Proposition 15.3.IV of Daley-Vere
Jones, [9]. The idea in [9] is to first show the result for a convex polygon with
vertices in the boundary of D and then perform a limit when the maximal
side of the polygon goes to 0. By Corollary 7.4, the mean number of lines
crossing each side I of the polygon is 2λ|I|. Since each line crossing D crosses
2 sides, the mean number of crossings is λ times the sum of the side lengths,
that is, the perimeter. Exercise: perform the limit to get the result for any
convex set.

Angle of lines crossing a convex set The direction of a line hitting a
convex set D is not uniform. The measure of the lines crossing D with angle
α is the size of the projection of D on the line having angle α with the absice
axis, w(α) in the figure. Hence, the probability density for a line of angle α
hit D is

f(α) =
w(α)∫ π

0
w(α)dα

=
w(α)

Perimeter(D)
(7.13)

Let D′ ⊂ D convex sets. Then, given that a line ` crossed D, the conditional
probability that ` also crossed D′ is given by

Lantuejoul

P (` ∩D′ 6= ∅ | ` ∩D 6= ∅) =
Perimeter(D′)

Perimeter(D)
(7.14)

Debiasing construction Consider a Poisson process Y in R2×[0, π)×R≥0

with Lebesgue intensity 1, that is, with mean measure

dz dα du (7.15)

A point y ∈ Y has 3 components: y = (z, α, u) ∈ R2 × [0, π) × R≥0. Let A
be a bounded Borel set and LA the set of lines intersecting A.
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For z ∈ R2, α ∈ [0, π], let `(z, α) be the unique line with perpendicular angle
α containing z. Let |` ∩A| be the length of ` ∩A. Define

LA :=
{
`(z, α) : (z, α, u) ∈ Y, u ≤ |`(z, α) ∩A|−1 <∞

}
. (7.16)

Proposition 7.8 (Debiasing construction in a bounded convex set). Let D
be a convex set and LD the process defined in (7.16). Then LD is a uniform
Poisson line process of rate 1 intersecting D.

Proof. (with Julio Rossi) The mean number of lines intersecting D is∫
D

∫ π

0

∫ ∞
0

1
{
u <

1

|`(z, α) ∩D|

}
du dα dz (7.17)

=

∫
D

∫ π

0

1

|`(z, α) ∩D|
dα dz (7.18)

Fubini and a change of variables (see Figure 2), gives

=

∫ π

0

∫ w(α)

0

∫ b(u,α)

0

1

b(u, α)
dv du dα =

∫ π

0

w(α)dα.

Figure 2: Change of variables

Theorem 7.9 (Debiasing construction in R2). Let A = {A1, A2, . . . } be a
partition of R2 with bounded Borel elements. Let LA := {` ∈ L : ` ∩ A 6= ∅}
and define

L := ∪k≥1

[
LAk \ (LA1

∪ · · · ∪ LAk−1
)
]
. (7.19)

The process L defined in (7.19) is the uniform Poisson line process in R2.

Proof. Exercise.
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Uniform Poisson oriented line process The uniform Poisson oriented
line process ~L is the usual process, but now each line has an independent
random orientation, chosen with probability 1

2 .

Proposition 7.10. Let ~L be the uniform oriented line Poisson process. Let
∂D be the perimeter of a convex bounded set D. Then the set of lines of ~L
entering D is a marked Poisson process on ∂L× [0, π) with nonhomogeneous
mean measure

du
cos |α(u)− α|)

2
dα (7.20)

where α(w) is the angle of the tangent line to ∂D at the point w ∈ ∂D.

Proof. Mapping theorem.

Corollary 7.11 (Lines crossing a convex set). Let w be a point in the bound-

ary of a convex set D. The intensity of lines in ~L entering D and containing
w is 1.

Proof. Let α(w) be the angle of the tangent of the boundary at w. For
α 6= α(w), let w(b, α) be the length of `(z, α) ∩D. The intensity of the line

`(w,α) entering D is cos(α−α(w))
2 . Hence, the total intensity of lines entering

D at w is: ∫ π

0

cos |α− α(w)|
2

dα = 1.

As a corollary of this lemma, we have an alternative proof to the perimeter
lemma.

Alternative proof of the Perimeter Lemma. The intensity of lines en-
tering D is the integral along the perimeter of the line intensity at each point
of the perimeter, which is 1, by Corollary 7.11.

7.3 Chentsov’s model

This model is taken from [31, 32].

Let ~L be a uniform Poisson oriented-line process with intensity λ. An ori-
ented line ` divides R2 in the right and left semiplanes. Consider the function
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V`(z) = 1 for z in the right semiplane of `, and V`(z) = −1 for z in the left
semiplane of `. Define

ξ(z) =
∑
`∈~L

(V`(z)− V`(0)), z ∈ R2 (7.21)

where 0 is the origin of R2.

Notice that ξ(z) = signed number of crossings of ~L of 0z, the interval with
extremes in 0 and z. The height difference ξ(z) − ξ(z′) depends only on
crossings of the interval zz′.

Lemma 7.12 (Height differences along lines are random walks). For any
z, w ∈ R2 the process (ξ(z + ws) − ξ(z))s∈R is a continuous time nearest
neighbor random walk with rate λ.

Proof. Under construction.

Corollary 7.13 (Covariances).

Cov(ξ(z + us), ξ(z)) = Var(ξ(z)). (7.22)

Lemma 7.14 (Brownian motion). Denote

ξεt := ε
(
ξ(z)− ξ(z + uε−2t)

)
(7.23)

Then, as ε→ 0, the process ξεt converges weakly to Brownian motion.

7.3.1 Chentsov’s model and hard rods

Consider a hard rod Poisson process X with mean measure µ and the marked
Poisson oriented line process ~L given by

~L = {((q + vs)s∈R, l) : (q, v, l) ∈ X} (7.24)

Consider that all lines in ~L are oriented in the positive time direction.

Define Chentsov functions V`,l and ξ(z) by

V`,l(z) := l 1{z is in the right semiplane of `} (7.25)

ξ(z) :=
∑
`,l∈~L

(V`,l(z)− V`,l(0)), z ∈ R2 (7.26)

In particular, if z = (0, q),

ξ((0, x)) = m({(q, v, l) ∈ X : 0 < q < x}). (7.27)

is the mass of the hard rods in the interval (0, x).
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Hard rods with negative mass Let X be a Poisson process on X := R3

and ~L as in (7.24). Observe that we are also considering hard rods (q, v, l)
with negative l. Define

V`,l(z) := l
(
1{z is in the right semiplane of ` and l > 0} (7.28)

+ 1{z is in the left semiplane of ` and l < 0} (7.29)

ξ(z) :=
∑
`,l∈~L

(V`,l(z)− V`,l(0)), z ∈ R2 (7.30)

We can compute all quantities of hard rods, using this definition. For in-
stance, if z0 = (q, 0) and zt = (q + vt, t), the difference between the heights
at zt and z0 gives the mass flow of the ideal gas along the segment (z0, zt):

ξ(zt)− ξ(z0) = jX(q, v, t).

8 The free Bose gas

This section is based on joint work with Armendáriz and Yuhjtman [3].

Finite-volume spatial random permutation In 1953 Feynman [16]
proposes the following partition function for the free Bose Gas:

ZΛ,n =
(α/π)nd/2

n!

∑
σ∈Sn

∫
Λn

e−α
∑
i ‖xi−xσ(i)‖2 dx1 . . . dxn, (8.1)

where α > 0 is the temperature, Sn is the set of permutations of {1, . . . , n}
and Λ is a compact subset of Rd.

Let the Hamiltonian H : ∪n≥1(Λn × Sn)→ R be defined by

H(x, σ) :=

n∑
i=1

‖xi − xσ(i)‖2. (8.2)

For each compact Λ and n ≥ 1, define the measure GΛ,n on Λn × Sn, by

GΛ,ng :=
(α/π)nd/2

ZΛ,n

1

n!

∑
σ∈Sn

∫
Λn

g(x, σ) e−αH(x,σ)dx, (8.3)

where ZΛ,n is the partition function defined in (8.1), x = (x1, . . . , xn) and
g is a test function. The measure GΛ,n is the canonical measure associated
to H and empty boundary conditions. Canonical means that the measure
concentrates on configuration with a fixed number of points.
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Infinite-volume spatial random permutations We want to construct
a random spatial permutation (X, σ), where X is a point process in Rd and
σ : X→ X is a bijection (permutation). For each ρ > 0, we require that the
law of (X, σ) be translation-invariant, with point density ρ and Gibbs for the
specification induced by GΛ,n, to be defined later.

Loops and spatial permutations Denote the space of unrooted loops
of size k by Dk := (Rd)k/∼, where the equivalence relation ∼ is defined by
(x1, . . . , xk) ∼ (x2, . . . , xk, x1). The class of equivalence of (x1, . . . , xk) is
denoted [x1, . . . , xk]. We denote the space of loops by D := ∪k≥1Dk.

The support of γ is denoted by {γ} := {x1, . . . , xk}. We look at γ as a spatial
permutation ({γ}, γ), by abusing notation and denoting γ(xi) = xi+1 and
γ(xk) = x1.

For finite X, there is a bijection between spatial permutations and loop con-
figurations

(X, σ) 7→ Γ, (8.4)

where γ ∈ Γ if γ is an unrooted loop satisfying {γ} ⊂ X and γ(x) = σ(x)
for all x ∈ {γ}. Reciprocally, Γ 7→ (X, σ), the spatial permutation defined
by X = ∪γ∈Γ{γ}; σ(x) = γ(x) for x ∈ {γ}, γ ∈ Γ.

Loops induced by a spatial
random permutation. An ar-
row from x to y means y =
σ(x). An isolated dot at x
means x = σ(x), a loop of
length 1.

8.1 Gaussian loop soup in Rd

Loop factorization For finite X, the weight of (X, σ) in (8.3) is the prod-
uct of the weights of its loops:

e−α
∑
x∈X ‖σ(x)−x‖2 =

∏
γ∈σ e

−α
∑
x∈{γ} ‖γ(x)−x‖2

This observation by Sütő [45] suggests that a spatial random permutation
can be seen as a Poisson process of loops. We will define a Poisson pro-
cess in D, called loop soup and show that it is a Gibbs measure for the
Hamiltonian H.
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Loop soup mean measure Fix an activity parameter λ ∈ (0, 1], denote
γ = [x1, . . . , xk] ∈ D and define the measure Qλ on D, by

Qλ(d[x1, . . . , xk]) := λk

k

(
α
π

)kd/2
e−α

∑k
i=1 ‖xi−γ(xi)‖2 dx1 . . . dxk.

The denominator k compensates the fact that each rooted k-loop is counted
k times.

The mean density of points belonging to k-loops is defined as

ρk(A) :=
1

|A|

∫
Dk

∑k
j=11A(xj) Qλ(d[x1, . . . , xk]) . (8.5)

Proposition 8.1. For any nonempty compact set A ⊂ Rd, we have

ρk(A) =
(α
π

)d/2 λk

kd/2
=: ρk . (8.6)

Proof. Denote

p(x, y) :=
(α
π

)d/2
exp

(
− α‖x− y‖2

)
.

the density of a Gaussian random variable in Rd with mean x and covariance
matrix (2/α)Id, where Id is the identity matrix. We have

ρk(A) =
λk

k|A|

∫
(Rd)k

( k∑
j=1

1A(xj)
) k∏
i=1

p(xi, xi+1) dx1 . . . dxk

=
λk

k|A|

k∑
j=1

∫
(Rd)k

1A(xj)

k∏
i=1

p(xi, xi+1) dx1 . . . dxk

=
λk

k|A|

k∑
j=1

∫
Rd

1A(xj)
( α
πk

)d/2
dxj = ρk.

The point density of Qλ is defined by

ρ(λ) :=
∑
k≥1

ρk . (8.7)

By (8.6), we have

ρ(λ) =
(α
π

)d/2∑
k≥1

λk

kd/2
<∞ ⇐⇒

{
d ≤ 2 and 0 ≤ λ < 1, or

d ≥ 3 and 0 ≤ λ ≤ 1 .
(8.8)
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For d ≥ 3 define the critical density ρc := ρ(1), so that

ρc =
(α
π

)d/2∑
k≥1

1

kd/2
. (8.9)

The function ρ : [0, 1]→ [0, ρc] is invertible for d ≥ 3 and ρ : [0, 1)→ [0,∞)
is invertible for d = 1, 2. Let λ(ρ) be its inverse.

Proposition 8.2. Let d and λ be as in (8.8). Then Qλ is σ-finite.

Proof. It suffices to show that there is a countable partition of D in sets with
finite Qλ measure. A partition of Rd in bounded Borel sets Ai produces the
following partition of D: D0 = ∅ and

Di :=
{
γ ∈ D : {γ} ∩Ai 6= ∅

}
\ (D0 ∪ · · · ∪Di−1), i ≥ 1. (8.10)

Since the number of loops in a compact set is bounded by the number of
points in the support of those loops,

Qλ(Di) ≤ ρ(λ) |Ai| <∞, for all i,

by (8.5) and Proposition 8.1.

Loop soup Let D be the set of locally finite loop soup configurations,

D :=
{

Γ ⊂ D :
∑
γ∈Γ

1
{
{γ} ∩A 6= ∅

}
<∞, ∀ compact A ⊂ Rd

}
. (8.11)

Let d and λ satisfy (8.8). Define the loop soup at fugacity λ by

Γλ := Poisson process on D with intensity Qλ, (8.12)

µλ := Law of Γλ. (8.13)

This process is analogous to the Brownian loop soup introduced by Lawler
and Werner [35], and the random walk loop soup of Lawler and Trujillo
Ferreras [34], see also Le Jan [36].

A sample Γ of a Gaussian loop soup is a countable collection of unrooted
Gaussian loops in Rd, with the property that any compact set contains
finitely many points in the support of the loops.
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Loop soup density Given a compact A ⊂ Rd let the set of loops (with
support) contained in A and configurations with loops contained in A be,
respectively

DΛ :=
{
γ ∈ D : {γ} ⊂ Λ

}
, DΛ := {Γ ∈ D : Γ ⊂ DΛ}. (8.14)

SinceQλ(DA) <∞, by definition of Poisson process, for measurable, bounded
g : DA → R,

µλg = e−Qλ(DA)
∑
`≥0

1

`!

∫
DA
· · ·
∫
DA
g
(
{γ1, . . . , γ`}

)
Qλ(dγ1) . . . Qλ(dγ`)

(8.15)

=
∑
`≥0

e−Qλ(DA)

`!

∫
DA
· · ·
∫
DA
g
(
{γ1, . . . , γ`}

)
fλ
(
{γ1, . . . , γ`}

)
dγ1 . . . dγ`,

(8.16)

where

fλ
(
{γ1, . . . , γ`}

)
:=
∏`
i=1 wλ(γi), (8.17)

wλ
(
[x1, . . . , xk]

)
:= λk

∏k
i=1 p(xi, xi+1), with xk+1 = x1, (8.18)

and where, for any bounded measurable h : DA → R,∫
D
h(γ) dγ :=

∑
k≥1

1

k

∫
Rd
· · ·
∫
Rd
h
(
[x1, . . . , xk]

)
dx1 . . . dxk, (8.19)

if the right hand side is well defined. Taking h(γ) = h1(γ)wλ(γ)1{γ∈DA}
for some bounded h1 : DA → R and recalling the assumption Qλ(DA) <
∞, we conclude that (8.19) is well defined for this h and it is bounded by
‖h1‖∞Qλ(DA).

The function e−Qλ(DA)fλ is the density of the Gaussian loop soup at fugacity
λ in the set DA; in particular, if g ≡ 1 we have µλg = 1.

8.1.1 Finite-volume loop soup and spatial permutations

We consider a compact set Λ ⊂ Rd and show that the Gaussian loop soup
in Λ conditioned to have n points has the same law as the canonical spatial
random permutation with n points. We then introduce the grand canon-
ical spatial random permutation in Λ and show that it coincides with the
Gaussian loop soup in Λ.
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Canonical measure Recall the definition (8.3) of the canonical measure
GΛ,n and denote the space of loop-soup configurations contained in Λ with
exactly n points, by

DΛ,n :=
{

Γ ∈ DΛ :
∑
γ∈Γ |{γ}| = n

}
, (8.20)

where |{γ}| is the number of points in the support of γ.

The Gaussian loop soup restricted to loops contained in Λ is denoted by

ΓΛ,λ := Γλ ∩ DΛ, µΛ,λ := Law of ΓΛ,λ. (8.21)

We now show that µΛ,λ conditioned to have n points in Λ equals the canonical
measure GΛ,n defined in (8.3).

Proposition 8.3 (Conditioned loop soup and canonical measure). Let λ, d
satisfy (8.8). Then,

µΛ,λ( · |DΛ,n) = GΛ,ng (8.22)

Proof. Since there is a bijection between the supports of these probability
measures, it suffices to verify that the weights assigned by their densities to
any given configuration satisfy a fixed ratio. Let (X, σ) be a spatial permu-
tation such that X ⊂ Λ and |X| = n. Let Γ be the cycle decomposition of
(X, σ); clearly Γ ∈ DΛ,n. Then, by the definition of Poisson process, the loop
soup conditioned density of Γ ∈ DΛ,n is

fλ(Γ|DΛ,n) =
e−Qλ(DΛ)

µλ(DΛ,n)

∏
γ∈Γ

wλ(γ) =
λne−Qλ(DΛ)

µλ(DΛ,n)

∏
γ∈Γ

w1(γ), (8.23)

where wλ was defined in (8.18).

On the other hand, the density of the canonical measure GΛ,n can be written
as a function of the cycle decomposition of σ by

1

ZΛ,n
fΛ,n(X, σ) =

1

ZΛ,n
e−αH(X,σ) =

1

ZΛ,n

∏
γ∈(X,σ)

w1(γ).

Grand-canonical measure Denote

λ̃ := (α/π)d/2λ. (8.24)

The grand-canonical spatial random permutation at fugacity λ ≤ 1 associ-
ated to the canonical density (8.3) is defined by

GΛ,λ g :=
1

ZΛ,λ

∑
n≥0

λ̃n

n!

∑
σ∈Sn

∫
Λn
g(x, σ)e−αH(x,σ)dx, (8.25)
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where x = (x1, . . . , xn), H(x, σ) :=
∑n
i=1 ‖xi − xσ(i)‖2, and

ZΛ,λ :=
∑
n≥0

λ̃n

n!

∑
σ∈Sn

∫
Λn
e−αH(x,σ)dx. (8.26)

In terms of the canonical measures, we have

GΛ,λ g =
1

ZΛ,λ

∑
n≥0

λ̃n ZΛ,n GΛ,ng, (8.27)

ZΛ,λ =
∑
n≥0

λ̃n ZΛ,n. (8.28)

In particular, if we take gΛ,n(x, σ) := 1{x∈Λn}, that is, the indicator function
that the total number of points is n, we get

GΛ,λgΛ,n =
λ̃n ZΛ,n

ZΛ,λ
. (8.29)

Compute

µΛ,λgΛ,n =

∫
DΛ

µλ(dΓ)gΛ,n(Γ)

= P (
∑
k k ξk = n),

=
1

n!

∑
σ∈Sn

∏
γ∈σ

λΛ,|γ|

=
e−Qλ(DΛ)

n!

∑
P∈Pn

∏
I∈P

λ|I| (8.30)

where ξk = number of loops of size k in Λ. ξk are independent Poisson
random variables with mean

λΛ,k :=
λ̃k

k

∫
Λ
. . .
∫

Λ
e−H([x1,...,xk]) dx1 . . . dxk. (8.31)

Proposition 8.4 (Loop soup and grand canonical measure). Let λ and
d satisfy (8.8), the critical or subcritical region. The Gaussian loop soup
restricted to Λ defined in (8.21) and the grand-canonical measure (8.25) are
equivalent:

µΛ,λ = GΛ,λ. (8.32)

Proof. We look at both measures as point processes in DA. To prove the
proposition it suffices to show that the measures have the same Laplace
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functionals. Given ψ : DΛ → R+, define g : DΛ → R as

g(Γ) := exp
(
−
∑
γ∈Γψ(γ)

)
.

By Campbell’s theorem,

µΛ,λg =

∫
DΛ

µλ(dΓ)e−
∑
γ∈Γ ψ(γ) = exp

(∫
DΛ

(e−ψ(γ) − 1)Qλ(dγ)
)

= e−Qλ(DΛ) exp
(∑
k≥1

1

k!
ak

)
,

where, using the definition of Qλ,

ak := λ̃k(k − 1)!

∫
Λk
dx1 . . . dxk e

−αH([x1,...,xk]) e−ψ([x1,...,xk])

= λ̃k
∑
γ∈Ck

∫
Λk
dx1 . . . dxk e

−αH(x,γ) e−ψ(x,γ)

where Ck is the set of cycles of size k with elements {1, . . . , k}, x = (x1, . . . , xk),
and (x, γ) := [x1, xγ(1), . . . , xγk−1(1)]; notice that Ck has cardinality (k− 1)!.
On the other hand, by Lemma 8.5 below we can write

µΛ,λg = e−Qλ(DΛ)
∑
n≥0

1

n!

∑
P∈Pn

∏
I∈P

a|I|

= e−Qλ(DΛ)
∑
n≥0

λ̃n

n!

∑
P∈Pn

∏
I∈P

∑
γ∈C|I|

∫
Λ|I|

dx1 . . . dx|I|

× e−αH([x1,...,x|I|]) e−ψ([x1,...,x|I|])

= e−Qλ(DΛ)
∑
n≥0

λ̃n

n!

∑
σ∈Sn

∏
γ∈σ

∫
Λ|γ|

dx1 . . . dx|γ| e
−αH(x,γ)e−ψ(x,γ)

= e−Qλ(DΛ)
∑
n≥0

λ̃n

n!

∑
σ∈Sn

∫
Λn
dx1 . . . dxn e

−αH(x,σ)
∏
γ∈σ

e−ψ((xi:i∈{γ}),γ)

= GΛ,λg,

where (x, σ) is the spatial permutation that maps xi to xσ(i) and {γ} is the
set of indices that appear in the cycle γ.

Lemma 8.5 (Combinatorial lemma). Let (an)n≥1 ∈ CN be such that∑
n≥1

1

n!
|an| <∞.
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Then

exp
(∑
n≥1

1

n!
an

)
= 1 +

∑
n≥1

1

n!

∑
P∈Pn

∏
I∈P

a|I|, (8.33)

where Pn is the set of partitions of {1, . . . , n} into non-empty sets,

Pn =
{
P partition of {1, . . . , n} : ∅ /∈ P

}
, (8.34)

and |I| stands for the cardinality of the set I.

Proof. By the series expansion of the exponential function

exp
(∑
n≥1

1

n!
an

)
=
∑
j≥0

1

j!

(∑
`≥1

1

`!
al

)j
= 1 +

∑
j≥1

1

j!

∑
i1,...,ij
i`≥1

ai1
i1!

. . .
aij
ij !

= 1 +
∑
j≥1

1

j!

∑
n≥1

∑
i1+···+ij=n

i`≥1

ai1
i1!

. . .
aij
ij !

= 1 +
∑
j≥1

1

j!

∑
n≥1

1

n!

∑
i1+···+ij=n

i`≥1

(
n

i1 . . . ij

)
ai1 . . . aij

= 1 +
∑
n≥1

1

n!

∑
j≥1

1

j!

∑
i1+···+ij=n

i`≥1

(
n

i1 . . . ij

)
ai1 . . . aij

= 1 +
∑
n≥1

1

n!

∑
j≥1

∑
P={I1,...,Ij}∈Pn

a|I1| . . . a|Ij |

= 1 +
∑
n≥1

1

n!

∑
P∈Pn

∏
I∈P

a|I|.

The change of the order of summation in the fifth line above is justified by
the absolute convergence of

∑
n≥1

1
n! an.

8.1.2 Point correlations of the loop soup

Point correlations The n-point correlations of a finite point process X
defined on X with density f with respect to a Poisson process of rate 1 is

ϕ(x1, . . . , xn) := E(f(X ∪ {x1, . . . , xn})) (8.35)
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for any n and pairwise different x1, . . . , xn in X. Intuitively, this is the limit,
as ε→ 0 of the probability to observe one point in each ball B(xi, ε), divided
by |B(xi, ε)|n. For pairwise disjoint Ai ⊂ X, we have

E(nA1(X) . . . nAn(X)) =

∫
A1

· · ·
∫
An

ϕ(x1, . . . , xn) dx1 . . . dxn. (8.36)

where nA(X) is the number of points in A ∩ X.

Point correlations of the loop soup We will compute the n-point cor-
relations of the point-marginal of the loop soup. Define

Kλ(x, y) :=
∑
k≥1

( α
πk

)d/2
λk e−

α
k ‖x−y‖

2

. (8.37)

and denote the number of points in A of a loop soup configuration Γ, by

nA(Γ) =
∑
γ∈Γ

nA({γ}), (8.38)

where recall {γ} is the set of points in the support of γ.

Proposition 8.6 (Point correlations of the loop soup). Let Γλ be the loop
soup defined in (8.12) and (X, σ) the corresponding spatial permutation, as
defined in (8.4). The n-point correlation density of X is given by

ϕλ(x1, . . . , xn) = Perm
(
Kλ(xi, xj)

)n
i, j=1

, (8.39)

where Perm(K) is the permanent of the matrix K ∈ Rn×n.

Sketch of the proof. We compute the 3-point correlation density. To simplify
notation, denote µ = µλ, Q = Qλ and Kxy = Kλ(x, y). Given pairwise
disjoint bounded Borel sets A,B,C ⊂ Rd, the third moment measure for the
point marginal νλ over A×B × C is given by∫

nA(Γ)nB(Γ)nC(Γ) µ(dΓ) (8.40)

=

∫ ∑
γ∈Γ nA(γ)

∑
γ′∈Γ nB(γ′)

∑
γ′′∈Γ nC(γ′′)µ(dΓ)

=

∫ (∑
γ∈Γ nA(γ)nB(γ)nC(γ)

+
∑
γ∈Γ nA(γ)

∑
γ′∈Γ, γ′ 6=γ nB(γ′)nC(γ′)

+
∑
γ∈Γ nB(γ)

∑
γ′∈Γ, γ′ 6=γ nA(γ′)nC(γ′)
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+
∑
γ∈Γ nC(γ)

∑
γ′∈Γ, γ′ 6=γ nA(γ′)nB(γ′)

+
∑
γ∈Γ nA(γ)

∑
γ′∈Γ, γ′ 6=γ nB(γ′)

∑
γ′′∈Γ\{γ,γ′} nC(γ′′)

)
µ(dΓ)

= Q(nA nB nC) +Q(nA)Q(nB nC) (8.41)

+Q(nB)Q(nA nC) +Q(nC)Q(nA nB) +Q(nA)Q(nB)Q(nC).

To get identity (8.41) we use that if µ is a Poisson process of loops, then

(a) the expectation of the product of functions of different loops factorize
(Theorem 3.2 in [39]), and

(b) by Campbell’s theorem,
∫
D
∑
γ∈Γ g(γ)µ(dΓ) =

∫
D g(γ)Q(dγ) =: Q(g).

Define

〈a1 . . . ak〉 :=
{
γ ∈ D : γ goes through a1, . . . , ak in this order

}
(8.42)

and compute

Q(nA nB nC) =

∫ ∑
a∈γ1A(a)

∑
b∈γ1B(b)

∑
c∈γ1C(c)Q(dγ) (8.43)

=

∫ ∑
{a,b,c}⊂{γ}
a∈A,b∈B,c∈C

(
1〈abc〉(γ) + 1〈acb〉(γ)

)
Q(dγ) (8.44)

=

∫
A

∫
B

∫
C

(KabKbcKca +KacKcbKba) dc db da, (8.45)

where (8.44) follows from partitioning the set of cycles that go through a, b, c
according to the order in which they visit the points, and (8.45) follows from
the argument in the proof of Proposition 8.1.

Using the same argument to compute the other terms in (8.41), we conclude
that the third moment measure (8.40) is absolutely continuous with respect
to Lebesgue measure in (Rd)3 with Radon-Nikodym derivative

ϕλ(x, y, z) = KxxKyyKzz +KxxKyzKzy +KxyKyxKzz

+KxyKyzKzx +KxzKyxKzy +KxzKyyKzx,

which proves (8.39) for n = 3; see Fig. 3. We leave the proof of the general
case to the reader.
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KxxKyyKzz

KxzKyyKzxKxzKyxKzyKxyKyzKzx

KxyKyxKzzKxxKyzKzy

Figure 3: Gaussian loop soup 3-point correlations. A directed lace between
two points means that the loop goes through the points in the indicated
order. Point x is blue, y is red and z is green.

8.2 Gaussian interlacements

In this subsection we consider d ≥ 3. The space of doubly infinite trajectories
of a walk in Rd is defined by

W :=
{
ω : Z→ Rd, lim

n→±∞
‖ω(n)‖ =∞

}
Define Xn(ω) := ω(n), the position of the walk at time n and denote P x

the distribution of a double infinite random walk with Gaussian increments,
starting at x. We have P x(X0 = x) = 1 and, under P x, Xn −Xn−1 are iid
centered Normal random variables with covariance matrix 1

2α Id.

Intensity via capacity (Sznitman) Define the entrance time of ω in a
compact set A by:

TA(ω) := inf
{
n ∈ Z, Xn(ω) ∈ A

}
∈ (−∞,∞].

For a test function g : W→ R, define

Qcap
A g :=

∫
A

Ex
[
g 1{TA=0}

]
dx.

The measure eA(x) := P x[TA = 0] is called equilibrium measure and
∫
A
eA(x) dx

is called Capacity of A.
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Intensity via visit debiasing Denote the number of visits to A by

nA(ω) :=
∑
n∈Z

1A(Xn(ω))

Define:

Qunif
A g :=

∫
A

Ex
[
g

nA

]
dx.

Under this measure, the weight of a trajectory intersectig A is inversely
proportional to the number of visits to A.

Equivalence Define the time shift θ on W by [θω](k) := ω(k+1); the time
shift acts on functions by (θg)(ω) := g(θω). Since the Lebesgue measure is
reversible for the random walk, we have∫

Rd
Ex[g] dx =

∫
Rd
Ex[θig] dx, for any i ∈ Z, (8.46)

for any bounded measurable test function g : W→ R.

Proposition 8.7 (Equivalence between Qunif
A and Qcap

A ). For any bounded
set A ⊂ Rd and measurable bounded function g : W → R invariant under
time shifts, g = θg, we have

Qunif
A g = Qcap

A g. (8.47)

Proof. Write

Qunif
A g =

∫
A

dxEx

 g

nA

∑
i≤0

1{TA=i}


=
∑
i≤0

∫
Rd
dxEx

[
1A(X0)1{TA=i}

g

nA

]
by Fubini

=
∑
i≥0

∫
Rd
dxEx

[
1A(Xi)1{TA=0} θ

i
( g

nA

)]
by (8.46)

=

∫
A

dxEx

1{TA=0}
g

nA

∑
i≥0

1A(Xi)

 since θi
( g

nA

)
=

g

nA

=

∫
A

dxEx
[
1{TA=0} g

]
= Qcap

A g.
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We also have that the measures Qcap
A and Qunif

A are finite:

Qunif
A (W) = Qcap

A (W) = cap(A) ≤ |A|. (8.48)

Lemma 8.8 (Compatibility and additivity). Let A ⊂ B be bounded sets of
Rd, and let g be a test function that is invariant under time shifts, g = θg.
Then

Qcap
B g1{TA<∞} = Qcap

A g (compatibility) (8.49)

Qcap
B g = Qcap

A g +Qcap
B\A g1{TA=∞} (additivity), (8.50)

The same holds for Qunif.

Proof. Writing 1{TA<∞} =
∑
i∈Z 1{TA=i} we have

Qcap
B g1{TA<∞} =

∑
i≥0

∫
dxEx

[
1{TB=0}1{TA=i} g

]
=
∑
i≥0

∫
dxEx

[
θi
(
1{TB=−i}1{TA=0} g

)]
=
∑
j≤0

∫
dxEx

[
1{TB=j}1{TA=0} g

]
=

∫
dxEx

[
1{TA=0} g

∑
i≤0

1{TB=i}
]

= Qcap
A g,

since 1{TA=0}
∑
i≤0 1{TB=i} = 1{TA=0}. This proves (8.49). To get (8.50)

write

Qcap
B g = Qcap

B g(1{TA<∞} + 1{TA=∞})

= Qcap
A g +Qcap

B g1{TA=∞} = Qcap
A g +Qcap

B\Ag1{TA=∞}.

Since g1{TA<∞} = θ(g1{TA<∞}), g = θg and g1{TA=∞} = θ(g1{TA=∞}),

Proposition 8.7 implies that (8.49) and (8.50) hold for Qunif as well.

Consider the equivalence relation ∼ defined by ω ∼ θω and let

W̃ := W/ ∼ (8.51)

be the space of trajectories modulo time shift and denote π : W → W̃, the
projection. Given A ⊂ Rd let

WA := {ω ∈W : TA(ω) <∞}, trajectories intersecting A
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W̃A := π(WA), classes of trajectories intersecting A

If g : W → R is shift invariant then it can be extended to g̃ : W̃ → R by
g(ω̃) = g(ω), for any choice of representative ω ∈ π−1(ω̃). Let π∗Q

cap
A and

π∗Q
unif
A denote the push-forward measures, defined by

(π∗Q
cap
A )g̃ := Qcap

A (g̃ ◦ π). (8.52)

Proposition 8.9 (Infinite volume mean measure for interlacements). There

exists a unique σ-finite measure Qri on W̃ such that for each bounded set
A ⊂ Rd

1W̃A
Qri = π∗Q

cap
A = π∗Q

unif
A . (8.53)

Proof. Let g̃ : W̃→ R and define g : W→ R by g = g̃ ◦ π. Then θg = g and

π∗Q
cap
A g̃ = Qcap

A g̃ ◦ π = Qcap
A g = Qunif

A g = Qunif
A g̃ ◦ π = π∗Q

unif
A g̃,

by Proposition 8.7. This proves the second equality in (8.53).

Let {An}n≥1 be an increasing sequence of bounded Borel sets in Rd such

that An ↗n→∞ Rd. Then W̃ =
⋃
n≥1 W̃An and uniqueness of the measure

satisfying (8.53) follows. Define Qri on W̃An by

1W̃An
Qri := π∗Q

cap
An
. (8.54)

Let A be a bounded set and take n sufficiently large such that An ⊃ A.
Then

1W̃A
1W̃An

(
π∗Q

cap
An

)
= 1W̃A

(
π∗Q

cap
An

)
= π∗1WA

Qcap
An

= π∗Q
cap
A , (8.55)

where the last identity follows from (8.49). When A = Am for some m < n,
(8.55) proves that the definition (8.54) is consistent and that the measure

Qri defined in (8.54) satisfies (8.53). By (8.53), Qri(W̃An) = Qcap
An

(W) =
cap(An) <∞, which proves the σ-finite property.

Gaussian interlacements Let d ≥ 3 and β > 0. The Gaussian random
interlacements process at point density ρ is

Γri
ρ := Poisson process on W̃ with intensity ρQri,

µri
ρ := Law of Γri

ρ .
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This is the discrete counterpart of Sznitman [46] Brownian interlacements.
In fact, if one take a Brownian trajectory and look at integer times, one
obtains a Gaussian random walk trajectory.

Construction of Gaussian interlacements at density ρ

1. Sample a homogeneous Poisson point process X0 on Rd of intensity ρ.

2. Take a bounded box Λ

3. To each point x ∈ X0 ∩Λ sample a double-infinity Gaussian walk with
law P x.

4. Accept the walk with probability 1 over number of visits to Λ.

4’ (Alternative to item 4.) Accept the walk if TΛ(ω) = 0.

5. The accepted walks will be a sample of the random interlacement in-
tersecting Λ.

6. To sample in Rd, consider a partition (Λj)j≥1 of Rd with Λj bounded.

7. Perform the procedure (1) to (5) in each Λ1,Λ2, . . . successively.

8. Reject walks with starting point in Λj that have points in previous
visited boxes Λ1, . . . ,Λj−1.

8.2.1 Point marginal of Gaussian interlacements

Correlations

νri
ρ := Point marginal of Gaussian interlacements µri

ρ

Correlations:

ϕri
ρ (x1, . . . , xn) =

∑
P∈Pn

∏
I∈P

∑
σ∈SI

Vρ(xσ(i1), . . . , xσ(i|I|)). (8.56)
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Pn := partitions of {1, . . . , n} with nonempty sets,
SI := permutations of I,
(i1, . . . , i|I|) arbitrary order of I and

Vρ(x1, . . . , x`) := ρKx1,x2
. . .Kx`−1,x`

(Here λ = 1 and Kxy = K1(x, y))

ϕri
ρ (x, y, z) = ρ3 + 2ρ2Kxy + 2ρ2Kyz + 2ρ2Kxz

+2ρKxyKyz + 2ρKxzKzy + 2ρKzxKxy.

ρ3

2ρKxzKzy2ρKxyKyz

2ρ2Kxz2ρ2Kyz2ρ2Kxy

2ρKzxKxy

8.3 Infinite volume spatial Gaussian permutation

Let ρ > 0 and Γλ(ρ∧ρc), Γri
(ρ−ρc)+ be independent realizations of the loop

soup and Gaussian interlacements, respectively. Define

(X, σ)ρ := Γλ(ρ∧ρc) ∪ Γri
(ρ−ρc)+

A superposition of indepen-
dent realizations of the Gaus-
sian loup soup at density
min{ρ, ρc} and Gaussian inter-
lacement at density (ρ− ρc)+.
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8.3.1 Markov property

Λ ⊂ Rd and a spatial permutation Γ = (Y, κ) ∈ X ,

IΛY := Y ∩ Λ, red points

OΛY := Y ∩ Λc, purple and yellow points

UΛY := {u ∈ Y ∩ Λc : κ(u) ∈ Λ}, yellow

VΛY := {v ∈ Y ∩ Λc : κ−1(v) ∈ Λ}, yellow

and the maps

IΛκ : IΛY ∪ UΛY → IΛY ∪ VΛY, IΛκ(x) = κ(x) red arrows,

OΛκ : OΛY \ UΛY → OΛY \ VΛY, OΛκ(x) = κ(x) purple arrows.

Define the inside and outside projections (with respect to Λ) by

IΛ(Y, κ) := (IΛY, IΛκ), OΛ(Y, κ) := (OΛY, OΛκ).

v
u

v

v

u

u

v

Λ

u

u

v

Decomposition of a loop
soup intersecting Λ.

Inside = red
Outside = purple + yellow

Proposition 8.10 (Markov property). The Gaussian random permutation
µρ is Markov:

µρ
(
dIΛ(Γ)

∣∣OΛ(Γ) occurs outside Λ
)

= µρ
(
dIΛ(Γ)

∣∣ (UΛ, VΛ

)
occur outside Λ).

Proof. We start with the subcritical and critical case; that is, with the loop
soup. Conditioning on purple and yellow, the law of red points and arrows
depends only on the labeled yellow points. Conditioned on labeled yellow
points, purple points and arrows are independent of red points and arrows.

Recall the notation DΛ := {γ ∈ D : {γ} ⊂ Λ}, and denote D∂Λ :=
(
DΛ ∪

DΛc
)c

. Note that the restricted Gaussian loop soups

Γλ ∩DΛ (loops contained in Λ),

130



Γλ ∩DΛc (loops contained in Λc), (8.57)

Γλ ∩D∂Λ (loops intersecting Λ and Λc)

are independent Poisson processes with intensity measures Qλ1DΛ
, Qλ1DΛc

,
Qλ1D∂Λ

, respectively, and form a partition of Γλ.

Due to the independence of the partition (8.57), the inside and outside com-
ponents of Γλ are partitioned into independent pieces as follows,

IΛ(Γλ) =
(
Γλ ∩ DΛ

)
∪̇ ∂IΛ(Γλ), (8.58)

OΛ(Γλ) =
(
Γλ ∩ DΛc

)
∪̇ ∂OΛ(Γλ), (8.59)

where

∂IΛ(Γ) :=
{
η = (u, x1, . . . , x`(η), v) :

u ∈ UΛ(Γ), xi = κi(u) ∈ Λ, v = κ`(η)+1(u) ∈ VΛ(Γ)}, (8.60)

∂OΛ(Γ) :=
{
η′ = (v, y1, . . . , y`(η′), u) :

v ∈ VΛ(Γ), yi = κi(v) ∈ Λc, u = κ`(η
′)+1(v) ∈ UΛ(Γ)}, (8.61)

where `(η) = min{` ≥ 1 : κ`+1(u) ∈ VΛ(Γ)} and `(η′) = min{` ≥ 0 :
κ`+1(v) ∈ UΛ(Γ)}. These numbers count the number of points visited by
the associated path, excluding the endpoints u and v.

In the figure, an element of ∂IΛ(Γ) is given by a red path linking two yellow
points with labels u and v respectively, while an element of ∂OΛ(Γ) is a
purple path that links two yellow points v and u. Each path in the inside
boundary ∂IΛ(Γ) contains at least one point in Λ, so that `(η) ≥ 1, while the
outside boundary ∂OΛ(Γ) might contain a path (v, u) with v ∈ VΛ , u ∈ UΛ;
`(η′) = 0 in this case. There is no path when u = v ∈ UΛ ∩ VΛ.

Given η = (u, x1, . . . , x`, v) ∈ ∂IΛ(Γ) and η′ = (v, y1, . . . , y`, u) ∈ ∂OΛ(Γ),
consider the weights

ω(η) := p(u, x1) p(x`, v)

`−1∏
i=1

p(xi, xi+1) ` ≥ 1, (8.62)

ω(η′) := p(v, y1) p(y`, u)

`−1∏
i=1

p(yi, yi+1) ` ≥ 1, (8.63)

ω(v, u) := p(v, u) ` = 0, (8.64)

where p the Brownian transition density at time 2
α . By (8.18), the weight of

a cycle γ = [x0, . . . , xn−1] is given by

ωλ(γ) = λn
n−1∏
i=0

p(xi, xi+1), with xn = x0. (8.65)
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If γ intersects both Λ and Λc, this weight factorizes as

ωλ(γ) = λn
∏

η∈∂IΛ(γ)

ω(η)
∏

η′∈∂OΛ(γ)

ω(η′). (8.66)

Replacing (8.66) in (8.17) we obtain

fλ(Γ ∩ ∂DΛ) = e−Qλ(∂DΛ) λ|UΛ(Γ)∪VΛ(Γ)|∏
γ∈Γ∩∂DΛ

[ ∏
η∈∂IΛ(γ)

ω(η)λ`(η)
∏

η′∈∂OΛ(γ)

ω(η′)λ`(η
′)
]

= e−Qλ(∂DΛ) λ|UΛ(Γ)∪VΛ(Γ)|∏
η∈∂IΛ(Γ)

λ`(η)ω(η)
∏

η′∈∂OΛ(Γ)

λ`(η
′)ω(η′) . (8.67)

In view of the partition into independent processes (8.57) and the represen-
tation (8.67) above, we conclude that

µρ
(
dIΛ(Γ)

∣∣OΛ(Γ)
)

=
1

Z
f lsλ (Γ ∩ DΛ) dx1 . . . dx|Y∩Λ|∏
η∈∂IΛ(Γ)

λ`(η)ω(η) dxη1 . . . dx
η
`(η), (8.68)

where Z is a normalizing constant Z
(
α, λ,Λ, UΛ(Γ), VΛ(Γ)

)
. Identity (8.68)

above implies that the conditioned measure on the left only depends on
the sets UΛ(Γ) and VΛ(Γ), proving the Markov property in the critical and
subcritical cases ρ ≤ ρc.

Now we consider the supercritical case. Cutting the part of the infinite
trajectories that are outside Λ and not directly connected to Λ, we can
proceeds in the same way as in the loop-soup.

vu

v

v

u

u

v

Λ

u

u

v

vu

t

v

u

s

v
u

u

v

Since the fugacity λ = 1, the pieces η inside Λ have the same law for both
loops and infinite trajectories.
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8.3.2 Gibbs property

Define Λ-compatibility between infinite volume permutations by

(X, σ) ∼Λ (Y, κ)

if and only if OΛ(X, σ) = OΛ(Y, κ), see §8.3.1 for the definition of OΛ.

v
u

v

v

u

u

v

Λ

u

u

v

Two spatial permutations are
Λ-compatible if they have
same yellow points and purple
points and arrows.

Conditioned Hamiltonian: For (X, σ) ∼Λ (Y, κ)

HΛ((X, σ)|(Y, κ)) :=
∑

x∈[X∩Λ]∪[κ−1(Y∩Λ)\Λ]

‖x− σ(x)‖2.

Fix yellow and purple and sum over red points and arrows.

Specifications GΛ,λ(·|(Y, κ)) := law of red points and arrows.

Specification: measure GΛ,λ(·|(Y, κ)) with density

fΛ,λ((X, σ)|(Y, κ)) :=
1

ZΛ,λ(Y, κ)
λ|X∩Λ| exp

(
− αHΛ((X, σ)|(Y, κ))

)
,

where

ZΛ,λ(Y, κ) :=
∑

n≥|κ(Y∩Λ)∩Λc)|

λn

n!

∫
Λn

1{X = {x1, . . . , xn} ∪ [Y \ Λ]}

×
∑

σ:(X,σ)∼Λ(Y,κ)

exp
(
−HΛ((X, σ)|(Y, κ))

)
dx1, . . . dxn.

Denote GΛ,λ(·|(Y, κ)) the measure with density fΛ,λ((X, σ)|(Y, κ)). That is,
for bounded measurable g : (X, σ) 7→ g(X, σ):

GΛ,λ(g|(Y, κ)) (8.69)
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:=
∑

n≥|κ(Y∩Λ)∩Λc)|

λn

n!

∫
Λn

1{X = {x1, . . . , xn} ∪ [Y \ Λ]}

×
∑

σ:(X,σ)∼Λ(Y,κ)

g(X, σ)fΛ,λ((X, σ)|(Y, κ))dx1, . . . dxn.

Theorem 8.11 (Gaussian random permutation on Rd is Gibbs). For d ≥ 3
and λ ≤ 1 the loop soup measure µλ is Gibbs for the specifications (GΛ,λ :
Λ compact):

µλg =

∫
dµλ(Y, κ)GΛ,λ(g|(Y, κ)) DLR equations

For all ρ ≥ ρc the measure

µ1 ∗ µri
ρ−ρc is Gibbs for the specifications (GΛ,1 : Λ compact).

Corollary 8.12 (Point and permutation marginals). Point and permutation
marginals can be computed explicitely.

8.3.3 Thermodynamic limit of Point and permutation marginals

Theorem 8.13 (Thermodynamic limit of point marginal). Fix density ρ >
0.

Gpoint
Λ,|Λ|ρ := law of point-marginal with |Λ|ρ points.

Subcritical ρ ≤ ρc or d ≤ 2 Fichtner 1991; Tamura-Ito 2006.

Gpoint
Λ,|Λ|ρ ⇒ νTI

ρ as Λ↗ Rd.

Supercritical ρ > ρc and d ≥ 3 Tamura-Ito 2007.

Gpoint
Λ,|Λ|ρ ⇒ νpointρ = νTI

ρc ∗ ν
∞
ρ−ρc .

Corollary 8.14 (Point marginal of Gaussian random permutation coincides
with thermodynamic limit). The Point marginal of Gaussian random per-
mutation coincide with thermodynamic limit:

νTI
ρ = νλ(ρ), point marginal of loop soup at fugacity λ(ρ).

ν∞ρ = νri
ρ , point marginal of Gaussian interlacements at ρ.
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Partial “Thermodynamic limit” of permutation marginal

Gpermut
Λ,|Λ|ρ := σ-marginal of GΛ,|Λ|ρ

Gpermut
Λ,ρ ⇒ νpermut

ρ for cycle-size distribution.

Macroscopic cycles: cycles with size bigger than ε|Λ|.

Subcritical case. ρ ≤ ρc or d = 1, 2

The expected fraction of points in macroscopic cycles is zero. BU 2011

Supercritical case. d ≥ 3 and ρ > ρc

(a) expected fraction of points in macroscopic cycles is ρ−ρc
ρ .

(b) Rescaled macroscopic cycles have random lenght:
Benfatto, Cassandro, Merola Presutti 2005.

Poisson-Dirichlet distribution (as uniform permutations): Betz-Ueltschi 2011.

Current problems Thermodynamic limit of canonical measure. That is,
the Gaussian random permutation in a box Λ should converge to the infinite
volume GRP constructed here.

Extensions: Poisson process on Zd

Other interactions besides Gaussian.

Quantum case, when the Brownian trajectories from x to y interact. (BCMP
2005 treated the mean field case).

9 Factor graphs

A factor graph of a point configuration X is a measurable function which
maps X on a graph G = (X, E) in an equivariant way. This means that

X 7→ (X, E) if and only if γX 7→ (γX, γE),

for any isometry γ. The set of edges E is a subset of {{x, y} : x, y ∈ X}. If
{x, y} ∈ E we say that x and y are neighbors.

A graph is locally finite if all vertex has a finite number of neighbors.

A tree is a graph with no cycles. A tree is one-ended if any pair of infinite
self-avoiding paths coalesce.
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Theorem 9.1 (Tree factors of point processes). Let X be a Poisson process
on Rd. Then there exists a locally finite one-ended tree factor on X.

A weaker version of this theorem was proven by [12], for d = 2 and d = 3 in
a translation equivariant way. Holroyd and Peres [28] proved it in Rd and
Timar [49] for ergodic point processes with an index function.

9.1 Factor trees

FLT approach [12] We describe a translation invariant construction of a
graph with vertices in a Poisson process. When d = 2, 3, the resulting graph
is a one-ended connected tree. When d ≥ 4 the graph will be a forest (union
of disjoint trees).

Let d ≥ 2; and X be a homogeneous Poisson process in Rd with intensity 1.

s = (s1, . . . , sd) ∈ X.

Obstacles: Let u(s) = (s1, . . . , sd−1) and

B(s) = {(u′, sd) : u′ ∈ Rd−1; ‖u′ − u(s)‖d−1 ≤ 1}, B(X) = ∪s∈XB(s).

B(s) is a d − 1 dimensional disc of radious 1, perpendicular to the axis
{s : u(s) = 0}.

Each point emits a laser ray in the positive dth coordinate. Define the first
time that the ray of s meets an obstacle by

τ(s,X) := inf{t > sd : (u(s), t) ∩B(X) 6= φ}.

Define the mother of s as the center of the obstacle:

α(s) := s′ ∈ X if τ(s,X) = s′d (9.1)

s is a daughter of α(s)

Random directed graph

G := (X, E) with edges E = {(s, α(s)) : s ∈ X}.

Ancestors α0(s) = s and iteratively, for n ≥ 1, αn(s) = α(αn−1(s)) the
(n+ 1)th grand mother of s.

D1(s) := {s′ ∈ X : α(s′) = s},
Dn(s) := {s′ ∈ X : α(s′) = s′′, for some s′′ ∈ Dn−1(s)},
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D(s) :=
⋃
n≥0

Dn(s),

The daughters, the nth generation of descendents and the branch of s.

Let Go be the graph obtained from Xo = X ∪ {0}; it is distributed with the
Palm measure of the law of X.

Theorem 9.2. For G and Go it holds a.s.:

(a) G is well defined.

(b) In d = 2, 3, G is a one-ended locally finite tree.

(c) In d ≥ 4, G is a forest of one-ended locally finite trees.

(d) All branches of G are finite.

(e) All vertex has a mother.

(f) Each vertex has an ancestor with a younger sister.

Sketch proof. (a) it suffices to see that for almost all realizations of X and
Xo each point has a unique mother.

(b) Coalescing random walks in dimension 1 and 2. Recurrence.

(c) Coalescing random walks in dimension d ≥ 3. Transcience.

(d) Exercise. There is a proof with a particle system. Look for a proof with
the mass transport principle.

(e) (f) Exercise.

Timar Approach [49] Consider a isometry invariant ergodic point pro-
cess X on Rd with finite intensity and with an index function.

Isometry is a map that preserves distance.

A function f : {(s,X) ∈ Rd × X : s ∈ X} → R is isometry-equivariant if
f(γ(s), γX) = f(s,X) for any isometry γ : Rd → Rd (translations, rotations,
reflections, etc).

An index function is a one-to-one isometry-equivariant function

i : {(s,X) ∈ Rd ×X : s ∈ X} → R.

For instance, size of the Voronoi cell, the sum of the distance to the Delaunay
neighbors.
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In a non-equidistant process, the distance between any two points is different.
For those processes there are many index functions.

Theorem 9.3 (Timar [49]). Let X be a isometry invariant point process with
an index function. Then there exists a locally finite one-ended tree factor on
X.

The mass transport principle Call a measure µ on Rd ×Rd diagonally
invariant if for any isometry γ : Rd → Rd

µ(γA× γB) = µ(A×B)

for any measurable sets A,B ⊂ Rd.

A Borel measure is a sigma finite measure defined in the Borel sigma algebra
(sigma finite means that there is a measurable partition of the space with
finite measure parts). ` is the Lebesgue measure.

Lemma 9.4 (Mass transport principle). Let µ be a nonnegative, diagonally
invariant Borel measure on Rd×Rd. Suppose that µ(A×Rd) <∞ for some
nonempty open A ⊂ Rd. Then there is a constant c such that µ(B × Rd) =
c `(B). Moreover,

µ(B × Rd) = µ(Rd ×B),

for all Borel B ⊂ Rd.

Proof. The Borel measure ν1 := µ(·×Rd) on Rd is invariant under isometries
and since ν1(A) <∞, it must be sigma finite. Hence ν1 is a multiple of the
Lebesgue measure: ν1 = c` for some constant c.

Take b > 0 and let B = [0, b)d; let Bz = B + bz, where z is a d-dimensional
integer. Then

ν1(B) = µ(B × Rd) =
∑
z

µ(B ×Bz) (9.2)

=
∑
z

µ(B−z ×B) = µ(Rd ×B) =: ν2(B) (9.3)

Since the Borel measures ν1 and ν2 on Rd coincide in arbitrary hypercubes,
they must be the same measure.

Corollary 9.5 (Density version of mass transport). Let µ be a nonnegative,
diagonally invariant Borel measure on Rd × Rd and assume µ is absolutely
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continuous with respect to Lebesgue measure. Let fµ, g1, g2 be the Radon-
Nikodym derivative of µ and the marginals of µ, respectively:

µ(A×A′) =

∫
A

∫
A′
fµ(x, y) dx dy, (9.4)

g1(y) :=

∫
Rd
fµ(x, y) dx g2(y) =

∫
Rd
fµ(y, x) dx (9.5)

Then g1(y) = g2(y) = c for almost every y, with the constant c as in the
previous lemma.

Proof. The Lemma says that for all Borel set A∫
A

g1(y)dy =

∫
A

g2(y)dy =

∫
A

c dy.

But if the integrals are equal on every Borel set then the three functions are
equal almost everywhere.

Lemma 9.6 (Point process mass transport). Let T : Rd×Rd×X → R+ be
a nonnegative, measurable “mass transport function”, such that T (x, y,X) =
T (γx, γy, γX) for any isometry γ. Define

f(x, y) := ET (x, y,X)

and assume that
∫
A

(
∫
Rd f(x, y) dx) dy <∞ for some open A ⊂ Rd. Then∫

Rd
f(x, y) dx =

∫
Rd
f(y, x) dx, a.s.

T (x, y,X) is the amount of mass sent from x to y if the configuration is X.
Then

∫
Rd f(x, y) dx and

∫
Rd f(y, x) dx are the expected amount of mass sent

into or sent out of y, respectively.

Proof. Let µ be the Borel measure on Rd × Rd determined by the measure
on products of Borel sets B,B′ by

µ(B ×B′) := E
∫
B

∫
B′
T (x, y,X) dx dy

By definition both µ and f are isometry-invariant. The function f is the
Radon-Nikodym derivative of µ:∫

B

∫
B′
f(x, y) dx dy =

∫
B

∫
B′

ET (x, y,X) dx dy = µ(B ×B′),

by Fubini as the functions are nonnegative. By hypothesis there is an open
set A with µ(A × Rd) < ∞. Then Lemma 9.4 and Corollary 9.5 hold and,
in particular, fµ = f gives

∫
Rd f(x, y) dx =

∫
Rd f(y, x) dx a.s..
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Clumping A particion of a set is associated to an equivalence relation
such that each set in the partition is a class of equivalence for the relation.

A locally finite clumping is a sequence of coarser partitions of X, defined on
X in an isometry-equivariant way, so that in every partition all the classes
are finite.

A partition P of X is coarser than a partition P ′ if each element of P is the
union of elements of P ′.

An element of a partition is called a clump. A clumping is connected if any
two vertices belong to the same clump for some partition (and hence all but
finitely many of them).

Proposition 9.7 (Clumping and one-ended tree). If X has a connected
locally finite clumping, then X has a locally finite tree with one end.

Proof. Start with the first partition. Connect every vertex to the vertex of
the highest index in its clump to get a forest in each clump of the second
partition.

For each tree in this forest, connect the vertex of highest index in the tree to
the vertex of highest index in the whole clump to get a tree in each clump
of the second partition and a forest in each clump or the third particion.

Continue the process this way.

Tree. The graph we get is clearly a forest, constructed in an isometry-
equivariant way. It is also a tree, by connectedness of the clumping.

One end. The only path starting from a vertex v to infinity is the one that
goes through the vertices of greatest index in each clump which contains v.
Since the clmping is connected, any two points belong to the same clump,
eventually. This means they share the path to infinity from this moment.

Locally finite. Otherwise, define a mass transport so that each vertex v sends
1 mass to its neighbour that is on the path connecting v to infinity. The mass
sent out is 1 for each point, and so, by the finite intensity of X, it is finite for
a fixed unit cube K. If there are vertices of infinite degree in a configuration,
they receive infinite mass. If there are such vertices with positive probability,
then the event that K contains a vertex of infinite degree also has positive
probability. Hence the expected mass received by K is infinite, giving a
contradiction.

Construction of a clumping Let i be the index function of the point
process X.
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Lemma 9.8 (Uniform index function). If the point process X has an index
function j, then there is an index function s 7→ i(s) ∈ [0, 1] such that in the

Palm version of X, i(0) has uniform distribution: P̂(i(0) ∈ [0, a]) = a.

Proof. Let j be an index function of X and F : R → [0, 1] be the function
defined by

F (r) = lim
Λ↗Rd

#{s ∈ X ∩ Λ : j(s) ≤ r}
`(Λ)

The limit exists by ergodicity of the process. By definition of index function,
F is continuous. Let F−1(u) = sup{r : F (r) = u}. Since there are no points
with indexes in the regions where F is constant, we can substitute j by
i = F (j). The function i so defined is an index function and belongs to
[0, 1]. Furthermore, the marginal distribution of the index function of the
origin (in the Palm version of X) is the uniform distribution in [0, 1].

A subset of the vertex set of a graph G is called independent, if no two of its
elements are adjacent.

Lemma 9.9 (Independent vertex sets). Let X be a point process and G be
a locally finite graph on the vertex set X, defined in an isometry-equivariant
way. Then, there is Y ⊂ X, defined in an equivariant way such that Y is an
independent set of G.

Proof. Let i be a uniform index function; it exists by Lemma 9.8. Let

Y := {v ∈ X : i(v) < i(w), for all w neighbor of v}.

By construction, Y is an independent set.

Proposition 9.10 (Independent set with minimal distances 2k). For all k,
there is a nonempty subset Vk ⊂ X, chosen in an equivariant way, such that
the distance between any two vertices in Vk is at least 2k.

Proof. Connect two points of X if their distance is less than 2k and apply
Lemma 9.9.

Voronoi cells Define the Voronoi cell of a point s ∈ X as the set of sites
in Rd closer to s than to any other point of X:

V (s) = {x ∈ Rd : |x− s| ≤ |x− s′| for all s′ ∈ X \ {s}}
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Lemma 9.11 (Voronoi cells are bounded). For an isometry invariant point
process, the volume of the Voronoi cell containing some fixed point x in Rd
is a.s. finite. As a consequence every Voronoi cell is bounded a.s.

Proof. By contradiction. Define a mass-transport function T (x, y,X) to be
1 if x and y are in the same Voronoi cell (say, the one corresponding to an
X-point s) and if y is in the ball of volume 1 around s:

T (x, y,X) = 1{x ∈ Vy, y ∈ By} = 1{y ∈ Vx, y ∈ By}

where Vy is the Voronoi cell containing y and By is the intersection of Vy
and the ball of volume 1 around s.

Defining f(x, y) := ET (x, y,X), we have
∫
Rd f(x, y) dy ≤ 1. This implies

also that the assumption of Lemma 9.6 holds. However, if the volume of the
Voronoi cell containing x is infinite with positive probability then∫

f(y, x) dy = E
∫
Rd

1{y ∈ Vx}1{x ∈ Bx}dy

= E
(
1{x ∈ Bx}

∫
Rd

1{y ∈ Vx}dy
)

= E
(
1{x ∈ Bx}`(Vx)

)
(9.6)

This contradicts Lemma 9.6.

A Voronoi cell is a convex polyhedron. Lemma 9.12 below shows that in
convex polyhedrons, the surface area is bounded by a constant times the
volume. Convex polyhedrons with finite surface area are bounded.

Lemma 9.12 (Surface area and volume of convex polyhedrons). Let K ⊂ Rd
be a convex polyhedron that contains a ball of radius r. Then the volume of
K divided by the surface area of K is at least c r, where c > 0 is a constant
depending only on d.

Proof. Connect the center P of the ball to each vertex, thus subdividing the
polygon to “pyramids”, whose apices are P . The altitudes of the pyramids
from P are at least r by the hypothesis, and this gives the claim. This is
because the area of the bases sum up to the surface area, and the volume of
the pyramids to the volume of K.

Lemma 9.13. Let O be a fixed point of Rd. Suppose there is an equivariant
measurable partition P(X) = P of Rd such that all the parts are bounded with
probability 1, and suppose that for each part P in P a measurable subset of it
is given by a measurable mapping φ = φ(P, P ). Suppose that (P, φ(P, .)) is
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invariant under isometries of Rd. Assume further, that for each P ∈ P(X),
Vol(φ(P, P ))/Vol(P ) ≤ p. Then the probability that O lies in ∪P∈Pφ(P, P )
is at most p.

Proof. Define T (x, y,X) to be 1/`(P ) (> 0) if y is in P ∈ P and x is
in φ(P, P ). Let T (x, y,X) be 0 otherwise. Denote, as usual, f(x, y) :=
ET (x, y,X). The expected mass sent out from O is∫

Rd
f(O, y) dy = E

∫
dy
∑
P∈P

1

`(P )
1{O ∈ φ(P, P ), y ∈ P}

= E
∑
P∈P

1{O ∈ φ(P, P )} 1

`(P )

∫
dy1{y ∈ P}

= E
∑
P∈P

1{O ∈ φ(P, P )}

= E1{O ∈ ∪P∈Pφ(P, P )}
= P(O ∈ ∪P∈Pφ(P, P ) (9.7)

The expected mass coming into O is∫
Rd
f(y,O) dy = E

∫
dy
∑
P∈P

1

`(P )
1{y ∈ φ(P, P ), O ∈ P}

= E
∑
P∈P

1{O ∈ P} `(φ(P, P ))

`(P )

≤ pE
∑
P∈P

1{O ∈ P}

= p. (9.8)

So by the mass transport principle, P[O ∈ ∪P∈Pφ(P, P )] ≤ p.

Hence, there is a sequence Yk ⊂ X, constructed in an equivariant way, such
that the minimal distance between any two points of Yk is at least 2k.

Let Bk be the union of the boundaries of the Voronoi cells on Yk. Those
cells are a.s. bounded.

Define a partition Pk of X by saying that x, y ∈ X are in the same clump
of Pk iff they are in the same component of Rd \ ∪∞i=kBi. This clumping is
locally finite with probability 1 by finite intensity and the fact that the cells
defining Pi are bounded a.s.

Otherwise define a mass transport so that every vertex in an infinite clump
sends one mass to the element of Yi whose cell contains infinitely many
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components, where i is chosen to be minimal. The expected mass sent out
is 1, but the expected received is infinity, by the indirect assumption.

Proposition 9.14 (Connected locally finite clumping). The Pk define a
connected, locally finite clumping on X.

Proof. We have to prove that the clumping is connected. That is, any fixed
ball Q in Rd is intersected by only a finite number of the Bk’s almost always,
and so any two X-points inside Q are in the same clump of Pk, if k is large
enough.

Denote by δ the diameter of Q. Now let Nk be the set of points in Rd of
distance less than δ from Bk, the union of the thickened boundaries of the
Voronoi cells of Yk.

The volume of the thickened boundary of a cell is bounded from above by a
times the surface area of the cell, where a(δ) is a constant.

It can be proven that there exists a constant c such that for every Voronoi
cell V of Yk,

Volume(V ) ≥ c 2k Volume(Nk ∩ V ).

Q is intersected by Bk only if Nk contains the center O of Q. So it suffices to
prove that for any fixed point O, the expected number of Nk’s that contain
O is finite.

In Lemma 9.13, put P to be the Voronoi cells on Yk (k fixed), and φ(P )
to be the intersection of the Voronoi cell P with the thickened boundary.
The lemma combined with Lemma 9.12 says that the probability that O is
contained inNk is at most 2−k/c and the expected number ofNk’s containing
O is at most 1/c, and we are done.

Proof of Theorem 9.3. Proposition 9.7 says that if X has a locally finite con-
nected clumping, then there is a locally finite tree with one-end. Proposition
9.14 guarantees the existence of a locally finite connected clumping.

9.2 Two ended path factor

A two ended path is a directed graph isomorphic to the directed graph
(Z, E1), where E1 = {(x, x+ 1) : x ∈ Z}.

Theorem 9.15 (Two-ended path factor). If X has a one ended tree factor,
then X has a two-ended path factor.
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Points in the tree as mothers, daughters and sisters

age order among sisters determined by the lexicographic order.

If the point X0 = 0 ∈ Xo has a daughter, let X1 be the eldest daughter

If it does not have a daughter but has a younger sister, let X1 be the eldest
among its older sisters.

If it does not have a daughter and not a younger sister, move down the tree
until you hit the first point that has a younger sister and let X1 be the eldest
among its younger sisters.

The chosen point X1 is the successor of x. Iteratively X2, . . .

Inverse:

If the point X0 = 0 ∈ Xo has no older sister, choose the mother.

If the point at the origin has an older sister, move to the youngest among
its older sisters and then move from her up the tree choosing the younger
daughter in each step until you come to a point with no daughter; choose
that point.

The chosen point X−1 is the predecessor of X0. Iteratively X−2, . . .

Succession lines

Let s, s′ vertices of a tree. succession line from s to s′ if there exists a finite
sequence of vertices s = s0, . . . , sk = s′ such that s`−1 is successor of s` for
` = 1, . . . , k.

infinite succession line if all vertex has a predecessor and a successor and

unique infinite succession line if furthermore for all couple of vertices s, s′

there is a succession line either from s to s′ or from s′ to s.

A tree G has a unique connected component, finite branches and all vertex
has a mother and an ancestor with a younger sister if and only if G has a
(translation invariant) unique infinite succession line.

10 Spanning trees

This section is based on the lecture notes of Wigderson [50] and the book of
Lyons and Peres [37].

Consider a finite graph G = (V,E). A tree is a connected graph with no
cycles. A spanning tree of G is a tree T = (V,E′) of G with E′ ⊂ E. That
is a tree with all vertices and edges contained in the set of edges of sfG.
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10.1 Wilson Algorithm

We introduce now a method to sample a uniform spanning tree of G. Uniform
means that it is chosen uniformly among all possible spanning trees.

A walk is a sequence of vertices W = v0, v1, . . . , vn such that vi is neighbor
of vi+1.

Given a walk W = v0, v1, . . . , vn, the loop-erased walk LW is the walk
obtained by erasing all the cycles of W . More precisely, if W has no cycles,
do nothing; otherwise, let j be the smallest index such that vj = vi for some
i < j. Then, delete vi, vi+1, . . . , vj−1; and iterate this process to obtain a
walk LW with no loops.

A rooted tree is a tree T together with a specified vertex r (called the root).
We orient all the edges of T towards r.

Wilson algorithm Given a connected graph G and a vertex r, define a
growing sequence of rooted trees Ti, by defining T0 = {r} and if Ti−1 is a
spanning tree of G, stop. Otherwise, pick an arbitrary vertex v not contained
in Ti−1 and start a simple random walk W at v until it hit a vertex in Ti−1.
LW is then a loopless path from v to Ti−1.

Define Ti := Ti−1 ∪ LW .

Each step will take finite time a.s., since G is finite, and each Ti is a tree,
since we are adding a pendent loopless path to the previous tree at each
step.

The algorithm finishes after all vertices have been incorporated. So we get
a (rooted) spanning tree at the end of the process.

Proposition 10.1. Wilson’s Algorithm produces a uniformly random rooted
spanning tree (T, r). The marginal distribution of T is a uniformly random
spanning tree of V .

To prove this result we need another construction of Wilson algorithm.

Stack construction of Wilson algorithm For each non-root vertex
v, consider an infinite sequence of independent random variables Sv :=
(Sv(i))i≥1, where each Sv(i) is uniformly distributed on the neighbors of
v. Denote S := (Sv)v∈V \{r}, and assume that the members of S are mutu-
ally independent.

Use S to perform Wilson algorithm as follows. The first time v is visited
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by a walk, use Sv(1) to simulate the next jump of the walk. The second
time v is visited, use Sv(2), and so on. Since each time that v is visited,
we use a fresh random variable to decide the jump, the tree obtained with
this algorithm has the same distribution as the one obtained with Wilson
algorithm. We denote the resulting tree T(S).

Place the random variables Sv(i) in a stack below each vertex v. The top of
the stack at v shows one of its neighbors; we can think of an arrow from v
to its neighbor Sv(i). That is, the top of the stack at all vertices induces a
directed graph. If this directed graph has no cycles, we stop the process.

Otherwise, pick one of the cycles and “pop” it from the stack. That is,
eliminate the top element Sv(i) of the stack for each vertex v in this cycle
and uncover the next move of the stack, Sv(i+ 1). This gives a new directed
graph. Repeat this process.

A possible configuration of the top of the stack after an iteration shows
directed edges (v, Sv(i)); we wan to to keep track of the color (height) i of
the arrow, so that we look at the top-stack configuration (v, Sv(i), i). Then
by a colored cycle, we just mean a cycle in one of these directed graphs,
together with the marking of which level in the stack each of its edges came
from.

Lemma 10.2. In the above process, it doesn’t matter what order we pop
the cycles in. More formally, suppose each vertex comes with an (arbitrary)
infinite stack, and we perform the above process. Then one of the following
two cases occurs:

1. Any order of popping will never terminate (i.e. infinitely many cycles
will be popped).

2. In any order of popping, the same set of colored cycles will be popped.

Proof. Suppose that C is any colored cycle that can be popped at some point
in some popping order. That means that there is a sequence of colored cycles
C1, . . . , Ck = C such that we can pop the cycles in that order. Let C ′ 6= C1

be any other cycle that can be popped at the beginning. Then we will show
that either C ′ = C or else C can still be popped via a sequence that begins
with C ′ . This suffices, since it implies that any alternative choice of popping
sequence either preserves the infinite number of poppings or preserves the
(finite) set of cycles to be popped.

If C ′ is vertex-disjoint from C1 ∪ · · · ∪ Ck , then popping it first will not
affect any of the stacks in the sequence C1, . . . , Ck , so we will still be able
to pop that sequence. Therefore, let 1 ≤ m ≤ k be the first index for which
C ′ ∩ Cm 6= ∅. Let x be some vertex shared by C ′ and Cm . Then since C ′
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can be popped at the first stage, all its edges must have color 1. Since x was
not in the sequence C1, . . . , Cm−1 , and since Cm can be popped after all
of those, the color on the edge leaving x in Cm must also be 1, since x was
never popped. Thus, the successor of x in Cm is the same as its successor
in C ′. Applying this same argument to the successor of x, and then to its
successor, and so on, implies that C ′ = Cm. But then Cm is vertex-disjoint
from C1, . . . , Cm−1 , so either C ′ = C or else we can pop these cycles in the
order Cm, C1, . . . , Cm−1, Cm+1, . . . , Ck.

Proof of Proposition 10.1. The construction of T(S) corresponds to a method
for popping the stacks in some order (namely loop-erasing the random walks).
So Wilson’s Algorithm will produce the same spanning tree distribution as
any other method of popping the stacks, since we just proved that the specific
method doesn’t matter.

Since Wilson’s Algorithm terminates in finite time a.s., we see that we only
need to pop finitely many cycles. Thus, we can think of our collection of
stacks as a union of finitely many colored cyclesO sitting on top of a spanning
tree T , and below it, all the unused Sv(i) realizations, which we’ll never see
since we terminate the process once we hit T .

So, we have the map S 7→ (O, T ) and that T is obtained at a “hitting time”
for the popping cycle dynamics. So that T is independent of O. Since any
T is equally likely, the distribution of the final spanning tree is uniform.

For any given root r, (T (S), r) has distribution

1

Z

∏
v 6=r

1

degr(v)
1{G(s) is a tree with root r}

where s is a realization of (Sv(1))v∈V , G(s) is the graph obtained with the
arrows s and Z is normalization (sum over s of the above product).

Hence, to get a uniform tree, we need to weight the r’s with its degree.
Check.

Uniform spanning trees in Zd See Pemantle [40].

10.2 Minimal Euclidean spanning trees

Let X be a homogeneous Poisson process in Rd with intensity 1.

Let Λ be a finite box and consider the set of points V = X ∩ Λ.
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Let (V,E) be a graph. The cost of the graph is

cost(V,E) =
∑
e∈E
‖e‖. (10.1)

where ‖(x, y)‖ is the length of x− y. The Euclidean minimal spanning tree
of V is a spanning tree T = (V,E) where

cost(V,E) = min
E′∈E

cost(V,E′) (10.2)

where E ′ is the set of edge configurations E′ satisfying (V,E′) is a spanning
tree of V .

References Aldous Steele [1], Alexander [2].

Kesten Lee algorithm for MST for weighted graphs From [30] [7].
This algorithm is also called Add and delete algorithm. It is an iterative
algorithm for constructing an MST on a connected graph starting from an
MST on a connected subgraph. It can be applied to the EMST of Poisson
process with weight w(e) = ‖e‖.

(i) Addition of an edge: Suppose G1 = (V,E1, w) is a finite connected
weighted graph and G0 = (V,E0, w) is a connected subgraph of G1 such
that E1 = E0 ∪ e0, that is, G1 has the same vertex set and one extra edge
e0. Suppose T0 is an MST on G0 . Consider the graph T0 ∪ e0, that is, add
the edge e0 to T0. Then T0 ∪ e0 has a unique cycle C. Let e be an edge in
C such that w(e) = maxe′∈C w(e′), and set T1 = T0 ∪ e0 \ e. Thus, we are
removing an edge in C that has the maximal edge-weight in C.

(ii) Addition of a vertex: Suppose G1 = (V1, E1, w) is a finite connected
weighted graph and G0 = (V0, E0, w) is a connected subgraph of G1 such
that V1 = V0 ∪ v0 and E1 = E0 ∪ e0. Thus G1 has one extra vertex v0 and
one extra edge e0. Since G1 is connected, v0 is necessarily an endpoint of
e0. Suppose T0 is an MST on G0. Set T1 = T0 ∪ e0.

Proposition 10.3. (Proposition 2). The tree T1 constructed in (i) or (ii)
is an MST on G1 .

We can start from an MST on a connected graph and use the add and delete
algorithm inductively to construct an MST on any larger finite connected
graph.

Kruskal’s greedy algorithm For the Poisson process X∩Λ. See Aldous
and Steele [1].
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1. Start at a point x0 ∈ V .

2. Pick the closest point to the origin, call it x1 and connect it with the
edge e1 = (x0, x1). Denote (X1, E1) := ({x0, x1}, (x0, x1)).

3. For k < n proceed iteratively.

Let xk+1 be the point in X \ Xk closest to Xk. Let yk be the point in
Xk realizing the minimal distance to xk+1. Let ek+1 := (yk, xk+1) and

Xk+1 = Xk ∪ {xk+1} Ek+1 = Ek ∪ {ek+1}. (10.3)

Denote En := {e1, . . . , en} the set of edges identified by the algorithm. The
graph (Xn, En) is a MST denoted Tn of Xn.

For x ∈ X, denote Tn(x,X) the tree obtained when the initial point is x
instead of the origin.

Let T(x,X) := ∪nTn(x,X).

Lemma 10.4 (Aldous and Steele [1]). Let G = G(X) be the graph with
vertices X defined by taking (x, y) as an edge in G if (x, y) is an edge in either
T(x,X) or in T(y,X). Then the graph G is a forest and each component of
G is an infinite tree.

Aldous and Steele: “It is natural to conjecture that G is in fact a.s. a tree,
but this seems to be related to deep issues in continuum percolation.”

10.3 Spanning trees and Delaunay triangulations

Under construction.

Based on the book Computational Geometry [29].

Lemma 10.5. The Euclidean Minimum Spanning Tree does not have cycles
(it really is a tree)

Proof. Suppose G is the shortest connected graph and it has a cycle. Re-
moving one edge from the cycle makes a new graph G0 that is still connected
but which is shorter. Contradiction

Lemma 10.6. Every edge of the Euclidean Minimum Spanning Tree is an
edge in the Delaunay graph
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Proof. Suppose T is an EMST with an edge e = pq that is not Delaunay
Consider the circle C that has e as its diameter. Since e is not Delaunay, C
must contain another point r in P (different from p and q)

Either the path in T from r to p passes through q, or vice versa. The cases
are symmetric, so we can assume the former case

Pictures from [29]
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11 Exercises

1 Poisson random variables

Una variable aleatoria X es Poisson(µ) si P (X = k) = e−µµk/k!, para k ≥ 0
entero.

1. Demuestre que si X es Poisson(µ), entonces EX = µ, E(X2−µ) = µ.

2. Calcule la función generadora de momentos E(zX) para 0 < z < 1.

3. Calcule E(X!) para µ < 1.

4. Calcule dP (X=k)
dµ y

d
∑n
k=0 P (X=k)

dµ .

5. Sea X ∼ Poisson(µ) e Y ∼ Poisson(λ), independientes. Calcule la
distribución de X + Y .

6. Teorema de sumas numerables. Sean µ1, µ2, . . . una sucesión de parámetros
positivos y X1, X2, . . . variables independientes con Xi ∼ Poisson(µi).
Demuestre que si σ =

∑
i µi <∞, entonces

S :=

∞∑
i=1

Xi (11.1)

converge casi seguramente a S y S es una variable Poisson(σ).

Si σ =∞, entonces Sn converge a ∞ casi seguramente.

7. En las condiciones del teorema anterior, demuestre que si k1+· · ·+kn =
k (todos no negativos), entonces

P (X1 = k1, . . . , Xn = kn |Sn = k) =
k!

k1! . . . kn!

(µ1

µ

)k1
. . .
(µn
µ

)kn
(11.2)

donde µ := µ1+· · ·+µn. Es decir, distribución Multinomial(k; µ1

µ , . . . ,
µn
µ ).

8. Rećıproca. Supongamos que (Xk,1, . . . , Xk,n) ∼Multinomial(k; p1, . . . , pn)
y K ∼ Poisson(λ). Entonces

XK,1, . . . , XK,n son variables independientes con XK,i ∼ Poisson(λpi).
(11.3)

9. Prove the Disjointness Lemma. Let S1 and S2 independent Poisson
processes on R and A measurable with µ1(A) and µ2(A) finite. Then
P (S1 ∩ S2 ∩A = ∅) = 1.
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2 Poisson processes

1. Construct a homogeneous Poisson process in Rd with intensity λ ∈ R+

as a union of Poisson processes on Bi, a partition of Rd with |Bi| <∞.

2. Let µ be a mean measure on Rd with intensity λ(x) and Ŝ be a homo-
geneous Poisson process of intensity 1 on Rd × R+. Define

S = {x ∈ Rd : (x, y) ∈ Ŝ, 0 ≤ y ≤ λ(x)} (11.4)

Prove that S is a Poisson process on Rd with intensity λ(·).

3. Prove the restriction theorem: Let S be a Poisson process on the space
R with mean measure µ and B ⊂ R. Then SB := S ∩ B is a Poisson
Process with mean measure µB(A) = µ(A ∩B).

4. Prove the mapping theorem: Let S be a Poisson process on the space
R with mean measure µ. Let f : R → T be a measurable function
such that

µ∗(B) := µ(f−1(B)) (11.5)

has no atoms. Then S∗ := f(S) is a Poisson process on T with mean
measure µ∗.

5. Let S be homogeneous Poisson process with mean measure µ(A) = |A|.
λ : R→ R+ a positive intensity. Take M(x) =

∫ x
0
λ(y)dy. Show that

S∗ = M−1(S) is a Poisson process with intensity λ.

6. Let S be a PP with constant intensity λ on R2. Let

f(x, y) = ((x2 + y2)1/2, tan−1(y/x)), (11.6)

Prove that S∗ = {f(s) : s ∈ S} is a Poisson process on {(r, θ) : r >
0, 0 ≤ θ < 2π} with intensity λ∗(r, θ) = λr.

7. Sea S un proceso de Poisson de intensidad constante λ en R2. Numere
los puntos de S por orden de distancia al oŕıgen. Calcule la distribución
conjunta de (Y1, Y2), donde Yi = distancia del i-ésimo punto.

8. Assume Campbell formula holds for positive f . Prove it for all f by
decomposing f = f+ − f−.
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9. Let S be a Poisson process in Rd with intensity λ(·). Let (Xs : s ∈ S)
be a sequence of iid random variables. Show that the process

S̃ := {s+Xs : s ∈ S} (11.7)

is a Poisson process with absolutely continuous measure µ̃. Compute
the intensity of µ̃.

Show that if λ(x) ≡ λ, then S̃
D
= S.

10. Let (Xi : i ∈ Zd) be a family of iid random variables with distribution
N (0, σ2I), where I is the identity matrix. Let

Sσ := {i+Xi : i ∈ Zd} (11.8)

Prove that as σ →∞, Sσ converges to a homogeneous Poisson process
with intensity 1.

3 Poisson processes on R

1. Let S = {Xi : i ∈ Z} be a homogeneous Poisson process in R with

· · · < X−2 < X−1 < X0 < 0 < X1 < X2 < . . . (11.9)

Show that (X1, X2, . . . ) has the same distribution as (−X0,−X−1, . . . )
and that the two processes are independent.

2. Let S be a homogeneous Poisson process on Rd. Show that

lim
|B|↗∞

N(B)

|B|
= λ. a.s. (11.10)

3. Give a recipy to simulate a homogeneous Poisson process on R with
rate λ, having as input a sequence of iid Uniform[0, 1] random variables.

4. Give a recipy to simulate a non-homogeneous Poisson process on R
with rate (λ(t))t∈R, having as input a sequence of iid Uniform[0, 1]
random variables.

5. Prove that for a PP(λ), Xn has law Gamma(n, λ).

6. Let λ(t) = λ
∑
m∈Z 1{2m ≤ t < 2m + 1}. Choose a point X at

random in [−T, T ] and consider the interval [X,X + 1]. Compute the
asymptotic probability that [X,X + 1] contains n points, as T →∞.
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7. Points of a PP(λ) are distributed in a connected Borel subset of R2

with infinite area. Start from an arbitrary origin in the region and
search the region in increasing concentric circles. Let Ak be the area
searched before encountering the k-th point. Prove that A1, A2 −A1,
A3−A1,. . . are iid exponential(λ) random variables. Generalize to Rd.

8. Let λ < 1 and consider the independent processes A a PP(λ) and S a
PP(1). Let W : R→ Z and Q : R→ Z≥0 be defined by

W (t)−W (r) =
∑
a∈A

1{r < a ≤ t} −
∑
s∈S

1{r < s ≤ t} (11.11)

Q(t) = W (t)−min
r<t

W (r). (11.12)

Define

D := {s ∈ S : Q(s−) > 0}. (11.13)

A arrivals. S services, D departures. Q is a stationary M/M/1 queue.
Show that D is a PP(λ).

9. Denote πk(µ) := e−µµk

k! . Prove that

n∑
k=0

πk(µ) = 1−
∫ µ

0

πn(λ)dλ. (11.14)

10. Let (Xi)i∈Z be a Poisson process with rate λ in R. Use (11.14) to
show that P (Xn ≤ x) =

∫ x
0
λπn−1(λu)du. Conclude that Xn is a

Gamma(n, λ) random variable.

4 Marked Processes and LLN

1. Prove Slivnyak-Mecke Theorem: Let S be a Poisson process with in-
tensity λ(·) on R = Rd. Let h : (x1, . . . , xn;S) 7→ h(x1, . . . , xn;S) ∈ R,
where X is a denumerable set of R. Then

E
( ∑
s1,...,sn∈S

h(s1, . . . , sn;S \ {s1, . . . , sn})
)

(11.15)

=

∫
R

· · ·
∫
R

Eh(x1, . . . , xn;S)λ(x1) . . . λ(xn) dx1 . . . dxn.

where the sum is over distinct s1, . . . , sn. See Moeller-Waagpetersen,
Theorem 3.3.

159



2. Show the strong law of large numbers for the empirical process of
an inhomogeneous Poisson process. Sε is family of Poisson processes
with mean measure ε−1µ, and denote Nε its counting measure. The
empirical measure of a Borel set A is the random variable

πε(A) := εNε(A). (11.16)

Show that

lim
ε→0

πε(A) = µ(A). a.s. (11.17)

3. Show the coloring theorem.

4. Show that if the probability that if the arrivals to a testing facility
is Poisson(λ) and the probability that each arriving person will be
positive with probability α. What is the probability that there are 3
positive between the 5 first arrivals. What is the expected time until
the arrival of the 4th positive tested person.

5. Under the conditions of the Marking Theorem. If µ(R) < ∞, the
points {ms : s ∈ S} form a Poisson process on M with mean measure
µm given by

µm(B) :=

∫
R

∫
B

µ(dx) p(x, dm), B ⊂M. (11.18)

6. Under the conditions of the Marking Theorem. If m takes countable
values denoted 1, 2, . . . , the point process Si with i-marks is PP(µi),
where

µi(A) =

∫
A

µ(dx) p(x, {mi}) (11.19)

and S1, S2, . . . are independent. Notice that the color distribution may
depend on the position of the point x.

7. Optative. Prove the Boolean percolation theorem.

8. Ideal gas invariance. Show that if f(q, v) = λ f2(v) such that
∫
|v|2f2(v)dv <

∞, then

S is a PP(F ) if and only if TtS is a PP(F ). (11.20)

This is a process with homogeneous spatial intensity λ and with inde-
pendent speeds, satisfying a second moment condition.
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5 Cox processes

1. Compute the mean, variance and covariances of the Gravitational field
of a Galaxy with density λ(x) and mass density ρ(x,m) satisfying∫

R3

mλ(x)ρ(x,m)dx dm <∞.

2. Let S be a Cox process in Rd with random mean measure Λ(x)dx,
where Λ(x) ≡ L and L is a random variable on R+ with distribution
f(`) d`. Compute the correlations φ(x, y) for distinct points x, y ∈ Rd.
The definition of φ is given by: for disjoint bounded A,B ⊂ Rd, we
can express E(N(A)N(B)) =

∫
A

∫
B
φ(x, y)dx dy.

3. Compute the n-point correlations of the Neyman-Scott process.

4. Matern cluster process. Compute the correlation functions for the
Neyman-Scott process with kernel k(x) = 1{‖x‖ ≤ r}/|B(0, r)|; that
is, uniform in the ball B(0, r). Compute the density λ of the process
and the 2-point correlations.

5. Thomas cluster process. Compute the correlation functions for the
Neyman-Scott process with kernel k(x) = exp{−‖x‖2/2w2} (2πw2)d/2;
that is, Normal(0, w2I). Compute the density λ of the process and the
2-point correlations.

6 Percolation and stochastic domination

1. Theorem percolation phase transition. Prove that θ(z, p;Rd) is increas-
ing as function of z and p(·).

2. Theorem percolation phase transition. Prove that θ(z, p;Rd) = 0 when
z
∫
p(x)dx is sufficiently small. Use a branching argument. Notice that

the argument of Grimmett for discrete percolation using self avoiding
walks does not work here. Why?

3. Stochastic domination. Let X,Y be random variables taking values in
R. Prove that X is stochastically dominated by Y if and only if for all
nondecreasing f : R→ R we have

Ef(X) ≤ Ef(Y ). (11.21)

4. Show that the Papangelou conditional intensity is λ(x) for a Poisson
process of intensity λ(·) in Rd.
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5. Compute the Papangelou conditional intensity for a Cox process in Rd.

6. Show that if Xi are Poisson processes with intensities zi, z1 ≤ z2, then
X1 is stochastically dominated by X2.

7. Show that in the Ising model, the measure GΛ(·|ξΛc) has Papangelou
intensity

γ(x|X+, X−) =

{
z exp[−

∑
y∈X− J(x− y)] if x ∈ Λ+

z exp[−
∑
y∈X+ J(x− y)] if x ∈ Λ−

}
≤ z.

8. Use Holley Preston inequality to show that the Ising model measure
GΛ is stochastically dominated by a Poisson process.

9. Show that if P is a limit of GΛ(·|ξΛc), as Λ ↗ Rd, then P a Gibbs
measure for those specifications. Hint: Use (4.32).

10. Let πz be a Poisson process with constant intensity z and πzΛ be
the superposition of πz and πzΛ, a Poisson process with rate z in Λ.
Show that πzΛ is a Poisson process with non-homogeneous intensity
zΛ(x) = z(1 + 1{x ∈ Λ}) and the following identity holds:

πzΛ(dY ) =
1

Z
2#YΛπz(dY ) (11.22)

where Z is the normalization.

7 Jump Markov processes

1. Show that for the counting measure N(t) of a one-dimensional homo-
geneous Poisson process satisfies P (N(t+ h)−N(t) ≥ 2) = o(h).

2. Fila con un servidor y espacio limitado de espera. Construya un pro-
ceso Markoviano de saltos Xt en X = {0, 1, 2}, donde Xt es el número
de clientes en el sistema en el instante t. Los clientes llegan a tasa λ y
los servicios son exponenciales a tasa µ. Los clientes que llegan cuando
el sistema está saturado con dos clientes, se retiran. Las tasas son:

q(0, 1) = q(1, 2) = λ (11.23)

q(1, 0) = µ; q(2, 1) = 2µ (11.24)

q(x, y) = 0, en los otros casos. (11.25)

3. La fila M/M/1 es el proceso Xt en {0, 1, 2, . . . } con tasas λ, µ ∈ R≥0

dadas para x ≥ 0 por

q(x, x+ 1) = λ, (11.26)
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q(x+ 1, x) = µ. (11.27)

Construya el proceso usando dos procesos de Poisson homogeneos in-
dependientes A y S, de intensidades λ y µ, respectivamente.

4. * Demuestre las ecuaciones de Kolmogorov.

5. De condiciones en λ y µ para que la fila M/M/1 tenga una medida
invariante. Calcule esa medida.

6. Demuestre el Teorema 2.4.

7. * Demuestre que el proceso Zt definido en (2.34) es de Markov con
matriz Q. Demuestre que es estacionario.

8. Calcule la distribución de Zτ(t). Demuestre que si τ(t) 6= τ(t′), en-
tonces Zτ(t) y Zτ(t′) son independientes.

9. Demuestre que si s < τ(t), entonces Xx
t = Zt para todo x.

10. Demuestre el teorema de convergencia al equilibrio 2.6 en el caso que
γ(Q) > 0 (recurrencia de Harris).

11. Demuestre el corolario 2.8.

12. * Simule manualmente el proceso Zt para la matriz (2.35). Para un t
dado, diga el valor de τ(t) y u(t).

8 Birth death evolution of point processes

1. Show that the process X̃t is a Poisson process of intensity w. Complete
the details in the proof of Proposition 5.1 and extend the proof to all
t ∈ R.

2. Prove that the operator L̃ defined in (5.5) satisfies the Kolmogorov
equations (5.6) for the semigroup (5.4).

3. * For each bounded box Λ ⊂ X, find random times {τj(C) ∈ R : j ∈ Z},
such that

(a) τj → ±∞ for j → ±∞ and

(b) There is no C ∈ CΛ alive at time τj , for all j ∈ Z.

4. * Show that the Papangelou intensity of µΛ defined in (5.12) is given
by

γΛ(x|X) = w(x) 1{X ∪ {x} ∈ AΛ}, x ∈ Λ. (11.28)
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5. Show that the process (XΛ
t )t≥0 defined in (5.16) is Markov with gen-

erator (5.17).

6. Prove Lemma 5.10.

7. Prove Theorem 5.6 using Theorem 5.11.

9 Ideal gas and hard rods

1. * Find a locally finite configuration X such that TtX is not locally finite,
for some t.

2. Show that Tt conserves F .

3. Assume X is a random point process on X . If X has mean measure F
with density f ∈ F , then TtX has mean measure F ◦ T−1 with density
Ttf .

4. * Assume the conditions of Lemma 6.17. Show that∫
ϕh =

∫∫∫
`ϕ(Df,0(q), v, `) f(q, v, `) dqdvd` (11.29)

10 Poisson line process

1. Prove that the uniform Poisson line process in R2 is translation, rota-
tion and reflection invariant.

2. Prove that the distribution of angles of the lines of L crossing the line
(p0, θ) is given by (7.7). Complete the details of Lemma 7.2.

3. * Find the distribution of an ideal gas Poisson process X such that the
map (q, v, l) 7→ ` = (q + vt)t∈R producs an isometry invariant Poisson
line process L.

4. Given a convex set D ⊂ R2 give an expression for the set φ(L(D)),
where φ(`) = (p, α) and L(D) is the set of lines intersecting D.

5. Prove the perimeter Lemma.

6. * Compute the distribution of the number of lines that cross B(0, r).

7. * Compute the distribution of the number of lines that cross a square.

8. Compute the distribution of the number of lines that cross a convex
set.
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9. How would you define a Poisson process of planes in R3?

10. How would you define a Poisson process of lines in R3?

11 Bose

1. Give an algorithm to simulate a Gaussian loop γ of length 3 and law

Qλ(d[x1, . . . , xk]) := λk

k

(
α
π

)kd/2
e−α

∑k
i=1 ‖xi−γ(xi)‖2 dx1 . . . dxk.

with x1 = origin.

2. Choose a density ρ > 0 and simulate a loop soup in dimension d = 2,
intersecting a bounded box Λ ⊂ R2, at point density ρ.

3. Prove that Qλ(nA nB) =
∫
A

∫
B
KabKba da db. See Proposition 8.6.

4. Prove that for any test function g : W → R invariant by time shifts
(θg = g) we have

∫
Rd E

xg dx =
∫
Rd E

x[θg] dx.

5. Simulate a sample of the random Gaussian interlacements intersecting
a box Λ.

12 Factor graphs

1. Show that for an isometry invariant point process, the volume of the
Voronoi cell containing some fixed point x in Rd is a.s. finite.

13 Spanning trees

1. Perfom a simulation of Wilson algorithm for a graph of 6 points.

2. Perform the stack construction for the same tree of the previous exer-
cise. Show in the example that the loop popping pops the same colored
loops for any order of popping.

3. Prove that O is independent of T in the proof of Proposition 10.1.

4. Prove that Kruskal algorithm produce a minimal spanning tree in the
set of points X ∩ Λ.
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