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Examples

A point process is a random countable subset S of a measurable space R.

Times of arrival of a bus. R

Location of earthquakes during last year. S1 (sphere).

Zd is a point process on Rd.

{x+ Yx : x ∈ Zd, Yx iid in Rd}.

{x ∈ Zd : Yx = 1, Yx iid in {0, 1}} Binomial or Bernoulli process.

Point processes

From the book Poisson processes by J.F.C. Kingman. Oxford Studies in Probability. Claredon Press.
1993, Reprinted 2002.

We consider a space R and a subset of P(R) of measurable sets, satisfying

1) empty set is measurable.

2) complement of measurable set is measurable

3) countable union of measurable sets is measurable

This is a σ-field or σ-algebra.

We want that for a point process S and for all measurable A ⊂ R,

NS(A) :=
∑
s∈S

1{s ∈ A} (1)

is a random variable and want that the points in R are measurable. We ask that the diagonal {(x, y) ∈
R×R : x = y} is measurable. This implies {x} is measurable for all x ∈ R.

We can think NS as a random counting measure on R.

Usually R = Rd and the σ-algebra as the Borel sets. The diagonal in Rd×Rd is closed, so measurable.
Later we consider Poisson processes of straight lines and of trajectories of random walks.

A point process is a random countable subset S of R.

1 Poisson process

Want a point process S such that for N = NS :

(1) for disjoint A1, A2, . . . , An we have N(Ai) are independent.

(2) N(A) ∼ Poisson(µ(A)) where µ : A 7→ µ(A) satisfying 0 ≤ µ(A) ≤ ∞ is a measure on R called
mean measure.

If N satisfies (1) and (2) we have

EN(A) = µ(A) (2)

and if Ai is a partition of A with µ(Ai) <∞, then∑
i

N(Ai) = N(A) (3)
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and ∑
i

EN(Ai) = EN(A), that is,
∑
i

µ(Ai) = µ(A) (4)

so that µ is a measure on R.

Joint distribution of N(Ai) : i = 1, . . . , n: Consider the family

{B = A∗1 ∩ · · · ∩A∗i : A∗i ∈ {A,Ac}} (5)

Sets in this family are disjoint. Denote B1, . . . , B2n the elements of that set. Then,

Aj = ∪i∈γjBi (6)

and

N(Aj) =
∑
i∈γj

N(Bi) (7)

By (2) N(Bi) are Poisson(µ(Bi)) and since Bi are disjoint, by (1), Bi are independent. So we can write
the joint distribution of Ai:

(N(A1), . . . , N(An)) = (
∑
i∈γ1

N(B1), . . . ,
∑
i∈γn

N(Bn)). (8)

For instance, for n = 2, we want the joint distribution of (A1, A2):

B1 = A1 ∩A2, B2 = A1 ∩Ac2, B3 = Ac1 ∩A2, B3 = Ac1 ∩Ac2

and

A1 = B1 ∪B2, A2 = B1 ∪B3. (9)

The expectation of the product is given by

E(N(A1)N(A2)) = · · · = µ(A1)µ(A2) + µ(A1 ∩A2). (10)

And the covariance is given by

E(N(A1)N(A2))− EN(A1)EN(A2) = µ(A1 ∩A2). (11)

Exercise. Show that for a Poisson process the mean measure µ must be nonatomic: µ({x}) = 0 for
all x.

Intensity. If µ is absolutely continuous with respect to Lebesgue,

µ(A) =

∫
A

λ(x)dx (12)

where dx = dx1 . . . dxn. λ : Rd → R+ is called the intensity measure.

If λ is continuous at x and A 3 x,

µ(A) ≈ λ(x)|A| (13)

When λ(x) ≡ λ ∈ R+, we say that the Poisson process is homogeneous.

Superposition Theorem

Theorem 1.1 (Superposition of Poisson processes).

Let S1, S2, . . . be Poisson processes with mean measures µ1, µ2, . . . respectively. Then S := ∪nSn is
a Poisson process with mean measure µ :=

∑
n µn.

2



Proof. Let Nn(A) := number of points in A for the Poisson process Sn (with intensity µn). Then, by the
countably additivity theorem,

N(A) =
∑
n

Nn(A) (14)

has distribution Poisson(
∑
n µn). If µn(A) =∞ for some n, then Nn(A) = N(A) =∞.

To show independence of N(Ai) for disjoint Ai, it suffices to observe that de double array of variables
Nn(Ai) arfe independent.

Theorem 1.2 (Restriction Theorem). Let S be a Poisson process on the space R with mean measure µ
and B ⊂ R. Then SB := S ∩B is a Poisson Process with mean measure µB(A) = µ(A ∩B).

Proof. Exercise.

Theorem 1.3 (Mapping). Let S be a Poisson process on the space R with mean measure µ. Let f : R→ T
be a measurable function such that

µ∗(B) := µ(f−1(B)) (15)

has no atoms. Then S∗ := f(S) is a Poisson process on T with mean measure µ∗.

Proof. Exercise.

Example. S homogeneous Poisson process with mean measure µ(A) = |A|. λ : R→ R+ an intensity.
Take f = λ−1. Then

S∗ = f(S) is a Poisson process with intensity λ. (16)

Projection of Poisson process Let µ be a mean measure on Rd with intensity λ(x) and Ŝ be a
homogeneous Poisson process of intensity 1 on Rd × R+. Define

S = {x ∈ Rd : (x, y) ∈ Ŝ, 0 ≤ y ≤ λ(x)} (17)

Then S is a Poisson process on Rd with intensity λ(·).

Proof. For bounded A ⊂ Rd, let

Â = {(x, y) ∈ Rd × R+ : 0 ≤ y ≤ λ̃(x)}.

Then

N(A) = N̂(Â) (18)

Easy to check the properties now. Have to use the disjointness lemma.

Polar coordinates Let S be a PP with constant intensity λ on R2. Let

f(x, y) = ((x2 + y2)1/2, tan−1(y/x)), (19)

and

µ∗(B) =

∫ ∫
f−1(B)

λdxdu =

∫ ∫
B

λ r dr dθ. (20)

Then (r, θ) form a Poisson process in the strip {(r, θ) : r > 0, 0 ≤ θ < 2π} with rate function λ∗(r, θ) = λr.
The r-projection gives a Poisson process S1 in R with intensity

λ1(r) =

∫ 2π

0

λ∗(r, θ)dθ = 2πλr. (21)
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1.1 The Bernoulli process

Let S be a Poisson process with measure µ on R and condition S to have n points. What is the distribution
of those points? Let A1, . . . , An be disjoint subsets of R, then

P (NS(A1) = n1, . . . , NS(Ak) = nk |NS(R) = n)

=

∏k
j=1 e

−µ(Aj)(µ(Aj))
nj (nj !)

−1

e−µ(R)(µ(R))n(n!)−1

=
n!

n1! . . . nk!

(µ(A0)

µ(R)

)n0

. . .
(µ(Ak)

µ(R)

)nk
where n0 = n− (n1 + · · ·+ nk) and A0 = R \ (A1 ∪ · · · ∪Ak).

Definition 1.4. A random process S on R with n points and such that

P (NS(A1) = n1, . . . , NS(Ak) = nk) =
n!

n1! . . . nk!

(
µ(A0)
µ(R)

)n0

. . .
(
µ(Ak)
µ(R)

)nk
.

is called Bernoulli process with parameters n and p(A) = µ(A)
µ(R) .

Notice that p is a probability on R.

Construction of a Bernoulli process. Take X1, . . . , Xn iid random variables with values on R and
distribution p:

P (Xi ∈ A) = p(A).

Then S := {X1, . . . , Xn} (as a set) is a Bernoulli process with counting measure

NS(A) =

n∑
i=1

1{Xi ∈ A}. (22)

Existence theorem Let µ be a non-atomic measure on R that can be decomposed as

µ =
∑
n

µn (23)

where µn(R) <∞ for all n. Define Nn and Xn,j , j ≥ 1 independent random variables with

Nn ∼ Poisson(µn(R)), Xn,j ∼ pn (24)

where pn(A) = µn(A)
µn(R) .

Theorem 1.5 (Existence Theorem). The process

S := ∪n{Xn,1, . . . , Xn,Nn}

is a Poisson process with mean measure µ.

Proof. First we prove that the process Sn := {Xn,1, . . . , Xn,Nn} is a Poisson process; this is a random
number of points on R with distribution pn. Observe that, given Nn = m, the process is Bernoulli:

P (Nn(A1) = m1, . . . , Nn(Ak) = mk |Nn = m)

=
m!

m0! . . .mk!

(
µn(A0)
µn(R)

)m0

. . .
(
µn(Ak)
µn(R)

)mk
. (25)

where m0 = m− (m1 + · · ·+mk) and A0 = R \ (A1 ∪ · · · ∪Ak). Multiplying both terms by P (Nn(R) =
m) = e−µn(R)(µn(R))m/m! and summing over m, we get

P (Nn(A1) = m1, . . . , Nn(Ak) = mk)
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=
∑
m≥0

e−µn(R)(µn(R))m

m!

m!

m0! . . .mk!

(
µn(A0)
µn(R)

)m0

. . .
(
µn(Ak)
µn(R)

)mk
=
∑
m≥0

e−µn(A0)(µn(A0))m0

m0!
e−µn(A1)(µn(A1))m1

m1! . . . e
−µn(Ak)(µn(Ak))mk

mk!

= e−µn(A1)(µn(A1))m1

m1! . . . e
−µn(Ak)(µn(Ak))mk

mk!

Hence, the process Sn := {Xn,1, . . . , Xn,Nn} is a Poisson process. Since Sn are independent, the super-
position Theorem implies that S is a Poisson process with mean measure µ.

1.2 Campbell Theorem

Want to study variables of the form

Σ :=
∑
s∈S

f(s) (26)

Examples. (a) Radioactiviry. Suppose each point of S ⊂ R produces an effect that decays exponentially.
The cumulated effect for a site x ∈ R can be computed with Σ with the function fx(s) = exp(x− s)1{s <
x}.

(b) The gravitational field in R3: assuming all stars s ∈ S have the same mass, fx(s) = 1
‖x−s‖ .

Theorem 1.6 (Campbell Theorem). Let S be a Poisson process on R with mean measure µ. Let
f : R→ R be measurable. Then, the sum

Σ :=
∑
s∈S

f(s) (27)

is absolutely convergent with probability one if and only if∫
R

min(|f(x)|, 1)µ(dx) <∞. (28)

Under this condition,

E(eθΣ) = exp
{∫

R

(
eθf(x) − 1

)
µ(dx)

}
. (29)

for any θ complex when the integral on the right converges or for purely imaginary θ. Moreover,

EΣ =

∫
R

f(x)µ(dx) (30)

meaning that the expectation exists if and only if the integral converges, in which case they are equal. If
(30) converges, then

V Σ =

∫
R

(f(x))2µ(dx). (31)

where V is variance.

Proof. We prove first for simple functions, that is, a function that takes only a finite number of values
and vanishes outside a set of finite µ measure. Let A1, . . . , Ak be disjoint measurable subsets of R with
mj := µ(Aj) < ∞ and let f(x) = aj for x ∈ Aj , with f(x) = 0 if x /∈ ∪jAj . We have then that
Nj := NS(Aj) are independent with law Poisson(mj) and

Σ =
∑
x∈S

f(x) =
∑
j

ajNj . (32)

Since we know the characteristic function of the Poisson random variable, for real or complex θ we have

EeθΣ = Eeθ
∑
j ajNj =

∏
j

EeθajNj (independence of PP)
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=
∏
j

exp
(
e(θaj−1)mj

)
(characteristic of Poisson rv)

= exp
(∑

j

∫
Aj

(eθf(x) − 1)µ(dx)
)

= exp
(∫

R

(eθf(x) − 1)µ(dx)
)

(33)

If f(x) ≥ 0, it is better to consider θ = −u for real u ≥ 0. In this case,

Ee−uΣ = exp
(∫

R

(e−uf(x) − 1)µ(dx)
)

We know that any non-negative function f can be expressed as the limit f = limj fj where fj is an
increasing family of simple functions, that is, fi ≤ fi+1. Taking θ = −u for real u ≥ 0, and setting
Σj =

∑
s∈S fj(s), we have

E(e−uΣ) = lim
j
E(e−uΣj )

= lim
j

exp
(∫

R

(e−ufj(x) − 1)µ(dx)
)

)

= exp
(∫

R

(e−uf(x) − 1)µ(dx)
)
. (34)

by monotone convergence theorem. Under condition (28) the integral above converges and goes to zero as
u→ 0. This implies Σ is a random variable; otherwise, if Σ =∞ with positive probability, E(e−uΣ) ≡ 1.

Expanding (33) and denoting µf :=
∫
f(x)µ(dx), we get∫

R

(eθf(x) − 1)µ(dx) = θµf +
θ2

2!
µf2 + . . .

taking the exponential of both sides and expanding again,

exp(

∫
R

(eθf(x) − 1)µ(dx)) = 1 + θµf +
θ2

2!
((µf)2 + µf2) + . . . (35)

On the other hand,

EeθΣ = 1 + θEΣ +
θ2

2!
EΣ2 + . . . (36)

We conclude then

EΣ = µf, V Σ = µf2. (37)

This proves the formula for positive f . We leave as an exercise to prove for all f .

1.3 Slivnyak-Mecke Theorem

Theorem 1.7 (Slivnyak-Mecke). Let S be a Poisson process with intensity λ(·) on R = Rd. Let h :
(x1, . . . , xn;X) 7→ h(x1, . . . , xn;X) ∈ R, where X is a denumerable set of R. Then

E
( ∑
s1,...,sn∈S

h(s1, . . . , sn;S \ {s1, . . . , sn})
)

=

∫
R

· · ·
∫
R

Eh(x1, . . . , xn;S)λ(x1) . . . λ(xn) dx1 . . . dxn.

where the sum is over distinct s1, . . . , sn.

See Møller-Waagpetersen [17], Theorem 3.3. for a proof.
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1.4 The characteristic functional

Taking Campbell formula for f ≥ 0 and θ = −1 we get

Ee−Σf = exp
{
−
∫
R

(1− e−f(x))µ(dx)
}

(38)

where Σf :=
∑
s∈S f(s).

Proposition 1.8 (Characterizing functional characterizes process). If S satisfies (38) for f non-negative
and simple, then S is a Poisson process.

Proof. Let A1, . . . , Ak disjoint with mi := µ(Ai) < ∞. Let f(s) =
∑
i ai1{s ∈ Ai}. Then Σf =∑

j ajN(Aj) and

Ee−Σf = exp
{
−

k∑
j=1

(1− e−aj )mj

}
(39)

Hence, taking zj := e−aj we have

E(z
N(A1)
1 . . . z

N(Ak)
k ) =

∏
j

emj(zj−1). (40)

but this is the product of the moment generation functions of Poisson(mj) random variables calculated
at arbitray points zj ∈ (0, 1). This implies that N(Aj) are independent Poisson(mj) random variables,
which in turn implies S is a PP(µ).

1.5 Avoidance functions characterize point processes

Given a point process S define the avoidance function α : F → [0, 1] by

α(A) := P (S ∩A = ∅) (41)

Clearly, if S is a PP(µ), we have α(A) = e−µ(A). Avoidance function are sometimes called void probabil-
ities.

For any a ≤ b ∈ Rd, define the rectangle (a, b] ⊂ Rd by

(a, b] := {(x1, . . . , xd) ∈ Rd : ai < xi ≤ bi, for all i}

Theorem 1.9 (Rényi Theorem). Let µ be a non-atomic measure on Rd with µ(A) <∞ if A is bounded.
Let S be a point process on Rd such that for any finite union of rectangles A,

P (S ∩A = ∅) = e−µ(A) (42)

Then S is a Poisson process with mean measure µ.

Two ways of using the theorem. (1) if one knows that for finite union of rectangles A, NS(A) is
Poisson(µ(A)), we have (42) and the theorem implies S is PP(µ). Notice that here we have not assumed
independence.

(2) if one knows that α(A) > 0 for bounded A and we know that {S ∩ A = ∅} and {S ∩ B = ∅} are
independent for disjoint A,B, then

α(A ∪B) = P ({S ∩A = ∅} ∩ {S ∩B = ∅}) = α(A)α(B) (43)

so that µ(A) := − logα(A) is finitely additive and non-atomic and the Theorem implies that S is a
Poisson process with mean measure µ. Here we have not assumed Poisson distribution for N(A).

Sketch proof. A k-cube is a cube with ai = zi2
−k, bi = (zi + 1)2−k for integers zi. For each k, k-cubes

are a partition of Rd. For k-cubes C1, . . . , Cn we have

P (∩r{S ∩ Cr = ∅}) = P (S ∩ ∪rCr = ∅)
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= e−µ(∪rCr) by hipothesis

= e−
∑
r µ(Cr) (Cr disjoint and µ measure)

=
∏
r

e−µ(Cr). (44)

Let G be open bounded set and

Nk(G) := #{k-cubes C contained in G with S ∩ Cr 6= ∅}

=
∑
C⊂G

(1− 1{S ∩ C = ∅}) (45)

where the sum is over k-cubes. We have

N(G) = lim
k
Nk(G) (46)

By (44), the events {S ∩ Cr = ∅} are independent, hence the generating function of the variable Nk(G)
is product of generating functions of Bernoulli:

E(zNk(G)) =
∏
C⊂G

(e−µ(C) + (1− e−µ(C)) z)

in |z| < 1, where the product is over k-cubes. Last expression equals

=
∏
C⊂G

(z + (1− z)e−µ(C)) ≈
∏
C⊂G

e−(1−z)µ(C)

= e−(1−z)
∑
C µ(C) = e−(1−z)µ(G) (47)

where the ≈ is a bit technical, see Kingman. It is motivated by the expansion of the exponentials:

z + (1− z)e−µ = z + (1− z)(1− µ+ µ2/2 + . . . )

= 1− (1− z)µ+ (1− z)µ2/2 + . . .

e−(1−z)µ = 1− (1− z)µ+ ((1− z)µ)2/2 + . . . (48)

Identity (47) shows that N(G) is a Poisson(µ(G)) random variable. The same argument works to show
independence of N(G1), . . . , N(Gk) for mutually disjoint G1, . . . , Gk. This shows that S is Poisson process
with mean measure µ.

An alternative proof can be obtained via coupling. See Section 5 of Chapter 1 of Thorisson.

Coupling Let U Uniform[0, 1],

X = 1{U ≥ e−µ} (49)

Y =
∑
j≥0

j1{U ∈ Ij}, where Ij = e−µ
[µj
j!
,
µj+1

(j + 1)!

)
(50)

This is a coupling between those variables. That is, a vector (X,Y ) defined in the space where U is
defined and with marginals

X ∼ Bernoulli(e−µ) and Y ∼ Poisson(µ).

We have

P (X = 0) = P (Y = 0) = P (U ≤ e−µ)

P (X = 1) = P (U ∈ I1 ∪ I2 ∪ I3 ∪ . . . )
P (Y = 1) = P (U ∈ I1) (51)

Hence

P (X 6= Y ) = P (U ∈ I2 ∪ I3 ∪ . . . ) ≤
µ2

2
. (52)
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Proof of Nk(G) converges to Poisson(µ(G)) via coupling.

For each k-cube C define

XC := 1{NS(C) 6= 0} and YC ∼Poisson(µ(C)).

X :=
∑
C

XC , Y :=
∑
C

YC (53)

where the sum is over k-cubes. By the coupling,

P (X 6= Y ) ≤
∑
C⊂G

P (XC 6= YC) ≤ 1

2

∑
C

µ(C)2 (54)

If µ(C) =
∫
C⊂G λ(x)dx y λ(x) ≤M , using |C| = 2−dk∑

C⊂G
µ(C)2 ≤M2

∑
C⊂G

|C|2 = M2 |G| 2−dk, (55)

where the sum is over k-cubes. This implies P (X 6= Y, i.v.) = 0.

2 Poisson processes on R

S process on R with mean measure µ(A) = λ|A|. Homogeneous Poisson process with rate λ. In d = 1
the intensity is called rate. We enumerate the points of S as follows: S = {Xi : i ∈ Z} with

. . . < X−2 < X−1 < X0 < 0 < X1 < X2 < . . . (56)

Xi are random variables, depending on N . For instance,

{Xn ≤ x} = {N(0, x) ≥ n}. (57)

Notice that (X1, X2, . . . ) has the same law as (−X0,−X−1, . . . ).

Theorem 2.1 (Interval theorem). Let S = {Xi : i ∈ Z} be a PP(λ). The random variables Y1 = X1,
Yn = Xn −Xn−1 are independent with exponential(λ) distribution.

Proof. Consider the process

S′ := {X2 −X1, X3 −X1, X4 −X1, . . . } (58)

We want to show that X1 is independent of S′ and that S′ is PP(λ). It suffices to show that for some f ,
the characteristic functionals

Σ =
∑
n≥2

f(Xn), Σ′ =
∑
n≥2

f(Xn −X1) (59)

have the same distribution.

Denote ξk = 2−kd2kX1e the least integer multiple of 2−k greater than X1. Then ξk is a random
variable converging to X1: ξk ↘k X1. We have

Σ′ = lim
k

Σk, Σk :=
∑
n≥2

f(Xn − ξk), (60)

Now for any z, x,

P (Σk ≤ z, X1 ≤ x) =
∑
`

P (Σk ≤ z, X1 ≤ x, ξk = l2−k). (61)

When ξk = 2−k, the points Xn in (le−k,∞) form a Poisson process and are independent of {X1 < l2−k}.
Hence

Σk =
∑
n≥2

f(Xn − l2−k) has the same law as Σ (62)
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and

P (Σk ≤ z, X1 ≤ x, ξk = l2−k) = P (Σ ≤ z)P (X1 ≤ x, ξk = l2−k) (63)

Substituting in (63),

P (Σk ≤ z, X1 ≤ x) = P (Σ ≤ z)P (X1 ≤ x) = P (Σ ≤ z)P (N(0, x] ≥ 1) (64)

Letting k →∞, Σk converges almost surely to Σ′ and we are done.

Applying induction, we prove that Y1, . . . , Ym are independent and independent of Sm = {Xm+1 −
Xm, Xm+2 −Xm, . . . }.

Waiting time paradox We saw that Xi+1 −Xi, i ≥ 1 are iid exponential (λ). However X1 −X0 has
distribution Gamma(2, λ). The density function of X1 −X0 is g2(x) = λxg(x), where g is the density of
the “typical” interval. This is a general result for stationary point processes.

2.1 Law of large numbers

From the interval theorem, the distribution ofXn is Gamma(n, λ); indeed it is the sum of n exponential(λ):

Xn = Y1 + · · ·+ Yn. (65)

Yj iid exponential(λ).

Theorem 2.2 (law of large numbers).

lim
n→∞

Xn

n
=

1

λ
. (66)

Proof. EYn = 1
λ and V Yn = 1

λ2 , hence by the lln for iid with finite mean and variance, we get (66).

As a corollary we get a lln for N(0, t]. Since

N(0, t]→t ∞, (67)

it follows that

lim
t

XN(0,t]

N(0, t]
=

1

λ
. (68)

and since

XN(0,t] ≤ t < XN(0,t]+1 (69)

we get

lim
t

t

N(0, t]
=

1

λ
. (70)

We conclude

lim
t

N(0, t]

t
= λ. a.s. (71)

We give another proof of (71) without using the interval theorem.

Theorem 2.3. Let S be a PP(λ) on (0,∞). Then

lim
t

N(0, t]

t
= λ. a.s. (72)
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Proof. First proof. Using Chevichev:

P (|1
t
N(0, t]− λt| > ε) ≤ λ

ε2t
(73)

taking tk = k2: ∑
k

P (| 1

k2
N(0, k2]− λt| > ε) ≤

∑
k

λ

ε2k2
<∞ (74)

Hence, by Borel Cantelli,

lim
k

1

k2
N(0, k2] = λ, a.s. (75)

Taking k = k(t) = b
√
tc,

N(0, k2] ≤ N(0, t] ≤ N(0, (k + 1)2] (76)

which dividing by (k + 1)2 > t ≥ k2 implies

N(0, k2]

(k + 1)2
≤ N(0, t]

t
≤ N(0, (k + 1)2]

k2
(77)

Since k2/(k + 1)2 converges to 1, we get the result.

Second proof. It suffices to see that Nk := N(k, k + 1] are iid and that

N(0, t] =

btc∑
i=0

Nk +N(btc, t− btc] (78)

and use the lln for iid.

This extends to Poisson processes in general spaces. For instance, for homogeneous Poisson processes
in Rd, we can use the same proof to show that if B(0, k) is the ball of center at the origin and radious k,
we have

lim
k→∞

N(B(0, k))

|B(0, k)|
= λ. (79)

2.2 Non homogeneous processes in R

Let S be a PP(µ) in R and define M(0) = 0 and for r < t,

M(t)−M(r) = µ(r, t]. (80)

µ is non-atomic if and only if M is continuous. We have seen that

S̃ := {M(s) : s ∈ S} (81)

is a homogeneous PP(1) on the interval (M(−∞),M(∞)).

Notice that the inter-point distances Xk+1 −Xk are not independent.

Let S2 be a homogeneous PP(λ) in R2 and let S = {‖s‖ : s ∈ S2} ⊂ R+, the set of distances to the
origin of the points in S2. Then S is a Poisson process of density λ(x) = 2πλx, so that

M(x) = πλx2. (82)

and S̃ = M(S) is a Poisson process of rate 1 on R+. So that if S = {X1, X2, . . . } with Xi < Xi+1, then
S̃ = {X̃1, X̃2, . . . } with X̃i = πλX2

i is a PP(1).
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Export law of large numbers Let S = {Xi : i ∈ Z} be a non-homogeneous process with cu-
mulated density M(x). We know that S̃ = {M(Xi) : i ∈ Z} is a homogeneous Poisson Process in
(−M(−∞),M(∞)) and that if M(∞) =∞, then

lim
n

X̃n

n
= 1; lim

t

Ñ(0, t]

t
= 1 (83)

Using

Ñ(0,M(t)] = N(0, t] (84)

we get

1 = lim
t

Ñ(0,M(t)]

M(t)
= lim

t

N(0, t]

M(t)
(85)

3 Marked Poisson processes

Theorem 3.1 (Coloring Theorem). Let S be a PP(µ). To each point of S give a color chosen randomly
between colors {1, . . . , k} with probability pi to choose color i. Let Si be the set of points with color i.
Then S1, . . . , Sk are independent Poisson processes with mean measure µi := piµ, respectively.

Proof. Exercise. It comes from the conditional distribution of colors given N(A) = n.

In general. Let S be a PP(µ) in R and for some space M , let (ms, s ∈ S) be a family of independent
random variables in M satisfying that ms may depend on s but it is independent of S \ {s}. Consider
the random set

S∗ = {(s,ms) : s ∈ S} (86)

To construct S∗ we start with S and then we have a family of distributions p(x, ·) on M , so that for each
s ∈ S we choose ms independently of S \ s with law p(s, ·).
Theorem 3.2 (Marking theorem). S∗ is a Poisson process on S ×M with mean measure

µ∗(C) =

∫ ∫
C

µ(dx) p(x,dm), C ⊂ S ×M. (87)

Proof. Characteristic functional. f : S ×M → R. Σ∗ :=
∑

(s,ms)∈S∗ f(s,ms).

E(e−Σ∗ |S) =
∏
s∈S

E(e−f(s,ms)|S)

=
∏
s∈S

∫
M

e−f(s,m) p(s, dm)

Call f∗ := − log
∫
M
e−f(s,m) p(s, dm) and use Campbell formula to get

E(e−Σ∗) = exp
(
−
∫
R

(1− e−f
∗
)dµ
)

= exp
(
−
∫
R

∫
M

(1− e−f(x,m))µ(dx) p(x, dm)
)

= exp
(
−
∫
R×M

(1− e−f )dµ∗
)
.

Corollaries:

The points {ms : s ∈ S} form a Poisson process on M with mean measure µm given by

µm(B) :=

∫
R

∫
B

µ(dx) p(x, dm), B ⊂M. (88)

If m takes only k values, the point process Si with i-marks is PP(µi), where

µi(A) =

∫
A

µ(dx) p(x, {mi}) (89)

and Si are independent. This allow the color distribution to depend on the position of the point x.
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Rain It rains over R = R2. Drops are in the space-time R×M , where M = R+ corresponds to the time
(= distance) a given drop will touch the pavement R. The point process S∗ is a Poisson process with
mean measure λdxdt. The points ((s, ts) ∈ S∗ : ts ≤ t) form a Poisson process St with mean measure
λtdx, if the rain is uniform.

Wetting. Each fallen drop s has a random radious rs ≥ 0 and we consider the Poisson process with
points (s, ts, rs); that is, the marks have 2 coordinates.

A typical problem in percolation is to give a distribution to rs with some finite mean ρ and compute
the probability of wetting in function of λ, t and ρ. Here wetting is the set of configurations defined by
“the origin belongs to an infinite connected wet component”.

Theorem 3.3 (Boolean percolation; Penrose, Peter Hall, Georgii). For fixed ρ, there are 0 < λ1 ≤ λ2 <
∞ such that

P (wetting) > 0 if λ > λ2,

P (wetting) = 0 if λ < λ1. (90)

Galaxies Galaxies are points of a Poisson process S with masses ms with density ρ(s,m) in m > 0.
S∗ = {(s,ms)} is a Poisson process with density

λ∗(x,m) = λ(x)ρ(x,m). (91)

The above means µ∗(d(x,m)) = λ(x) dx ρ(x,m) dm.

The gravitatory field of a the origin 0 ∈ R3 is the vector (F1, F2, F3) given by

Fj =
∑
x∈S

Gmssj
(s2

1 + s2
2 + s2

3)3/2
(92)

where G is the gravitational constant. The characteristic functional of S∗ applied to t1F1 + t2F2 + t3F3

gives

E(eit1F1+it2F2+it3F3) = exp
(∫ 3

R

∫ ∞
0

(eiGmt·ψ(x) − 1)λ(x)ρ(x,m) dx, dm
)

(93)

where

ψj(x) = (x2
1 + x2

2 + x2
3)−3/2xj (94)

and t · ψ is the scalar product. This holds if (by Campbell Theorem)∫ 3

R

m|ψ(x)|λ(x) ρ(x,m) dx, dm <∞ (95)

If we denote the expected mass of a galaxy at x by

m̄(x) :=

∫
mρ(x,m)dm (96)

(95) is equivalent to ∫ 3

R

m|ψ(x)|λ(x)

x2
1 + x2

2 + x2
3

dx <∞ (97)

Under (96) we would have the joint distribution of F1, F2, F3.

The problem is that in an uniform universe, where m̄(x) and λ(x) are constant, then (97) does not
hold.

4 Cox Processes

A Cox process is a “Poisson process with a random mean measure µ”.
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Assume µ is random in the space of mean measures. For instance,

µ(A) =

∫
A

Λ(x)dx. (98)

Λ(·) is a random density. Example: P (Λ(·) = λi) = pi (a random constant density).

Cox process is a process that conditioned to Λ = λ is a Poisson process with density λ:

P (S ∩A = ∅|Λ = λ) = e−
∫
A
λ(x)dx. (99)

Compute the second moment:

E(N(A))2 = E[E(N(A)2|µ)]

= E(µ(A) + µ(A)2)

= Eµ(A) + (Eµ(A))2 + Var(µ(A)) (100)

so that Var(N(A)) ≥ EN(A). The identity only holds if µ(A) concentrates on a point (degenerate). Cox
processes are “over dispersed”. N(A) has greater variance than a Poisson random variable with the same
mean.

Void probabilities, characteristic functional, correlations The void probabilities of a Cox process
are given by

α(A) = P (S ∩A = ∅)
= E[P (S ∩A = ∅|Λ)]

= E exp
(
−
∫
A

Λ(x)dx
)

(101)

this is the expectation of a function of the random density Λ.

The generating functional is given by

E−Σf = E exp
(
−
∫
R

(1− e−f(x))Λ(x)dx
)

(102)

The intensity function is given by

ρ(x) = EΛ(x). (103)

and the n-point correlation function for distinct x1, . . . , xn:

ψ(x1, . . . , xn) = E(Λ(x1) . . .Λ(xn)) (104)

so that, for mutually disjoint A1, . . . , An

E(N(A1) . . . N(An)) = E
(∫

A1

· · ·
∫
An

Λ(x1) . . .Λ(xn) dx1 . . . dxn

)
. (105)

Ecology The members of a population form a non-homogeneous PP(λ(·)) denoted S. If we consider λ
as a realization of a random density Λ, we have a Cox process.

For instance, take φ(x) as the mean number of daughters of an individual at site x and g(x, ·), the
density of the continuous distribution of the position of each daughter.

The daughters of a plant at x are a Poisson process Sx with intensity λx(y) = φ(x)g(x, y − x).

Given S, the superposition theorem says that the set of daughters S′ is a Poisson process of rate
λ′(y) =

∑
s∈S φ(s) g(s, y − s).

When φ and g are independent of x, the set of daughters is a Cox process with random intensity

Λ′S(x) = φ
∑
s∈S

g(x− s) (106)

Exercise. Show that if EΛ(x) = λ, then EΛ′(x) = λφ. In particular, if φ = 1 we have the same density
in each generation.
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Neyman-Scott processes These are special cases of the ecology models of previous paragraph.

Let C be a stationary Poisson Process on Rd with intensity κ > 0. Conditioned on C, let Xc be
independent Poisson processes on Rd with intensity function

ρc(x) = αk(x− c)

where the kernel k(·) is a density function; that is, k(x) ≥ 0 and
∫
k = 1.

Then X = ∪c∈CXc is a Neyman-Scott process with cluster centres C and clusters Xc. More general
Neyman-Scott processes do not ask C to be Poisson.

X is a Cox process with (random) intensity

Λ(x) =
∑
c∈C

αk(x− c). (107)

5 Stochastic geometry

5.1 Line processes

R set of infinite, undirected straight lines in R2. A countable random subset of R is called line process.
If it is a Poisson process, it will be called Poisson line process.

We need a mean measure µ on R.

For each line ` there is a unique line `⊥ containing the origin perpendicular to `. Let L := ` ∩ `⊥ the
intersection point of these lines. Let p be the distance ‖L‖Sign(L2), using the notation L = (L1, L2). Let
θ be the angle that `⊥ makes with the positive x-axis, 0 ≤ θ < π.

Any measure on R induces a measure on

R̃ := {(p, θ) : −∞ < p <∞, 0 ≤ θ < π} (108)

and vice-versa. We do not distinguish these two measures, called µ.

If B(0, r) = {(x, y) : x2 + y2 ≤ r}, then ` intersects B(0, r) iff |p| ≤ r. A locally finite set Ã ⊂ R̃ maps
into a subset A ⊂ R which is “locally finite” in the sense that only a finite number of lines in Ã intersect
any bounded set. The existence theorem shows that there is a Poisson process with mean measure µ on
R and R̃.

5.2 Uniform Poisson line process

Approach and pictures taken from slides Poisson line process, by Cristian Lentuejuol, see also [13].

When µλ is Lebesgue measure on R̃ of constant intensity λ, the corresponding Poisson process is
called uniform Poisson line process with intensity λ.

Line parametrization

Equation of a line:

x cosα+ y sinα = p (109)

Poisson line process:
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A Poisson line process with intensity λ is parametrized by a Poisson point process with intensity λ on
[0, π)× R.

The number of lines hitting the disk B(0, r) follows a Poisson distribution with mean λ × π × 2r =
λPerimeter(B(0, r)):

Distribution of lines hitting a convex domain Each Poisson line hitting a convex domain D ⊂ R2

comes from a point uniformly located on a set D̃ ⊂ R̃.

The mean number of lines crossing a convex is∫ π

0

w(α)dα = Perimeter(D), (110)

see Chapter 3 in Santalo [18]. Exercise: find an elementary proof of this fact.

The direction of a line hitting D is not uniform. The rate of a line crossing D with angle α is the
diameter of D w(α) in the direction α, see figure. Hence, the probability density for a line of angle α hit
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D is

f(α) =
w(α)∫ π

0
w(α)dα

=
w(α)

Perimeter(D)
(111)

Uniform line hitting a convex domain. Let D′ ⊂ D convex domains. Then, given that a line crossed
D, the conditional probability thatit also crossed D′ is given by

P (` ∩D′ 6= ∅ | ` ∩D 6= ∅) =
Perimeter(D′)

Perimeter(D)
(112)

Directions of Poisson lines hitting a fixed line

Even if the Poisson line network is isotropic, the distribution of the angles between Poisson lines and
a fixed line is not uniform on [0, π).

The directions of the Poisson lines hitting L0 has distribution

` sin(|α0 − α|∫ π
0
` sin(|α0 − α|

=
sin(|α0 − α|

2
, 0 < α < π (113)

Exercise. Show that the uniform Poisson line process in R2 is translation, rotation and reflection
invariant.

Alternative construction Consider a Poisson process S̃ in R2× [0, 1]× [0, π) with Lebesgue intensity

dxdudθ (114)

This is a marked Poisson process in R2 with two marks, a uniform random variable in [0, 1) and a uniform
random variable in [0, π): s̃ ∈ S̃ has 3 components:

s̃ = (s(s̃), u(s̃), θ(s̃)) ∈ R2 × [0, 1]× [0, π).

Let A = {A1, A2, . . . } be a partition of R2 with bounded elements. Let RA be the set of lines that
intersect A.

Let `(s̃) be the line containing the point s(s̃) with angle θ(s̃) with the positive x-axis. Let |` ∩A| be
the length of the intersection of ` and A. Define

SA :=
{
`(s̃) : s(s̃) ∈ A, u(s̃) ≤ |`(s̃) ∩A|−1, s̃ ∈ S̃

}
(115)
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Define

S := ∪k≥1

[
SAk \ (RA1 ∪ · · · ∪RAk−1

)
]
. (116)

Conjecture 5.1 (Line process via size debiasing). The process S defined in (116) is the uniform Poisson
line process.

Proof. Under consideration.

More on line processes in Stoyan, Kendall and Mecke [4].

6 Gibbsian point processes

This section is based on the paper [11] by Georgii.

6.1 Discrete setting

The set of spin configurations is ξ = (ξi)i∈Zd , where ξi belongs to a finite set S. Ω = SZd is the
configuration space, provided of the product topology and the Borel sigma-algebra F . We are interested
in probability measures on the space (Ω,F). Lattice systems. For ξ ∈ Ω and Λ ⊂ Zd denote ξΛ = (ξi)i∈Λ;
same notation as the projection of Ω on SΛ.

Specifications Prescribe the probability of a finite set of spins when the other spins are fixed. That
is, we look for probability measures P on (Ω,F) with conditional probabilities

GΛ(ξΛ|ξΛc) (117)

for finite Λ.

Examples: 1) Markovian case. (117) depends only on the spins in the boundary of Λ defined by
∂Λ := {i /∈ Λ : |i− j| = 1 for some j ∈ Λ}, that is,

GΛ(ξΛ|ξΛc) = GΛ(ξΛ|ξ∂Λ) (118)

2) Gibbsian case. Hamiltonian HΛ and Boltzmann-Gibbs formula

GΛ(ξΛ|ξΛc) = Z−1
Λ|ξΛc exp[−HΛ(ξ)], (119)

where Z−1
Λ|ξΛc =

∑
ξ′:ξ′Λ=ξΛ

exp[−HΛ(ξ′)]. (119) are the DLR equations.

See the book of Georgii [10] for a exhaustive account of this matter

Definition 6.1 (Gibbs measures). A probability measure P on (Ω,F) is a Gibbs measure for G =
(GΛ)Λfinite if

P (ξΛ occurs in Λ | ξΛc occurs off Λ) = GΛ(ξΛ|ξΛc) (120)

for P -almost all ξ and all finite Λ ⊂ Zd.

Gibbs measures do not exist automatically. However, in the present case of a finite state space S,
Gibbs measures do exist whenever G is Markovian in the sense of (2), or almost Markovian in the sense
that the conditional probabilities (1) are continuous functions of the outer configuration ξΛc . In this case
one can show that any weak limit of GΛ(·|ξΛc) for fixed ξ Λ↗ Zd is a Gibbs measure.

A basic observation is that the Gibbs measures for a given consistent family G of conditional proba-
bilities form a convex set G. Therefore one is interested in its extremal points, which are characterized
in the next theorem.

Let FΛ be the sigma algebra generated by
{
{ξi = ki} : i ∈ Λ, ki ∈ S

}
and T := ∩Λ:|Λ|<∞FΛc , the tail

sigma algebra –generated by sets not depending on the values of any finite set of spins.
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Theorem 6.2 (Extremal Gibbs measures). The following statements hold:

(a) A Gibbs measure P ∈ G is extremal in G if and only if P is trivial on T , i.e., if and only if any
tail measurable real function is P -almost surely constant.

(b) Distinct extremal Gibbs measures are mutually singular on T .

(c) Any non-extremal Gibbs measure is the barycenter of a unique probability weight on the set of
extremal Gibbs measures. (Convex combination of extremal measures).

A proof can be found in Georgii [10], Theorems (7.7) and (7.26).

(a) means that the extremal Gibbs measures are macroscopically deterministic: on the macroscopic
level all randomness disappears, and an experimenter will get non-fluctuating measurements of macro-
scopic quantities like magnetization or energy per lattice site.

(b) asserts that distinct extremal Gibbs measures show different macroscopic behavior. So, they can
be distinguished by looking at typical realizations of the spin configuration through macroscopic glasses.

(c) implies that any realization which is typical for a non-extremal Gibbs measure is in fact typical for
a suitable extremal Gibbs measure. In physical terms: any configuration which can be seen in nature is
governed by an extremal Gibbs measure, and the non-extremal Gibbs measures can only be interpreted
in a Bayesian way as measures describing the uncertainty of the experimenter. These observations lead
us to the following definition.

Definition 6.3 (Phase transition). Any extremal Gibbs measure is called a phase of the corresponding
physical system. If distinct phases exist, one says that a phase transition occurs.

So, in terms of this definition the existence of phase transition is equivalent to the nonuniqueness of
the Gibbs measure.

One mechanism related to phase transition is the formation of infinite clusters in suitably defined
random graphs. Such infinite clusters serve as a link between the local and global behavior of spins, and
make visible how the individual spins unite to form a specific collective behavior.

6.1.1 Holley inequality

Suppose the state space S is a subset of R and thus linearly ordered. Then the configuration space Ω has
a natural partial order given by ξ ≤ ξ′ if and only if ξi ≤ ξ′i for all i, and we can speak of increasing real
functions f : Ω→ R.

Let P , P ′ be two probability measures on Ω. We say that P is stochastically smaller than P ′, denoted
P ≤ P ′, if

∫
fdP ≤

∫
fdP ′ for all measurable bounded increasing f on Ω. This is equivalent to have a

coupling P̂ on Ω2 with marginals P and P ′ such that P̂ (ξ ≤ ξ′) = 1.

A sufficient condition for stochastic monotonicity is given in the proposition below. Although this
condition refers to the case of finite products (for which stochastic monotonicity is similarly defined), it
is also useful in the case of infinite product spaces. This is because (by the very definition) the relation
≤ is preserved under weak limits.

Proposition 6.4 (Holley inequality). Let Λ be a finite index set, and µ, µ′ two probability measures on
{0, 1}Λ giving positive weight to each element of {0, 1}Λ. Suppose the single-site conditional probabilities
at any i ∈ Λ satisfy

µ(ξi = 1|ξΛ\{i}) ≤ µ′(ξ′i = 1|ξ′Λ\{i}) for ξ ≤ ξ′,

then µ ≤ µ′.

Proof. Let

p(i, ξΛ\{i}) = µ(ξ(i) = 1|ξΛ\{i} occurs off i) (121)

the conditional probability that the site i takes value 1 given the configuration ξΛ\{i} in the other sites.
Then when ξi = 1 we have

µ(ξ) = p(i, ξΛ\{i})µ(ξΛ\{i}) (122)

µ(ξi) = (1− p(i, ξΛ\{i}))µ(ξΛ\{i}) (123)
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where (ξi)j = ξj if j 6= i; (ξi)i = 1− ξi, a configuration differing from ξ only at site i. In the above case
(ξi)i = 0.

Define analogously p′(i, ξΛ\{i}). By hypothesis, we have

p(i, ξΛ\{i}) ≤ p(i, ξ′Λ\{i}) whenever ξ ≤ ξ′. (124)

Consider a pure jump Markov process ξ(t) on {0, 1}Λ with the following evolution. At rate 1 each
site i is updated with a Bernoulli distribution with parameter p(i, ξΛ\{i}(t−)).

The positive entries of the matrix are

Q(ξ, ξi) =

{
p(i, ξΛ\{i}) if ξi = 0

1− p(i, ξΛ\{i}) if ξi = 1
(125)

The measure µ is reversible for the process ξ(t). Indeed, (122)-(123) imply

µ(ξ)Q(ξ, ξi) = µ(ξi)Q(ξi, ξ). (126)

Let Pt(ξ, ζ) = P (ξ(t) = ζ|ξ(0) = ξ) the semigroup associated to Q. Then, the ergodic theorem for finite
jump Markov processes says

lim
t→∞

Pt(ξ, ζ) = µ(ζ). (127)

Let N = (Ni : i ∈ Λ) be a collection of independent marked Poisson processes in R× [0, 1] with intensity
dt du.

We construct the process as a function ofN , ξ(t) = (ξ(t))t≥0[N ], as follows. Fix an initial configuration
ξ(0) and assume we know ξ(s) up to time t− and (t, u) ∈ Ni. Then at time t update ξi as follows:

ξi(t) = 1{u ≤ p(i, ξΛ\{i}(t−))} (128)

The updating does not depend on the value of ξi(t−). The process so defined has transition matrix Q.
Indeed if ξi = 1 we have

P (ξ(t+ δ) = ξi|ξ(t) = ξ)

= P
(
Ni ∩ ([t, t+ δ)×

[
p(i, ξΛ\{i}(t)), 1

)
= 1
)

+ P (other things)

= δ(1− p(i, ξΛ\{i})) + o(δ). (129)

and analogously when ξi = 0,

P (ξ(t+ δ) = ξi|ξ(t) = ξ) = δp(i, ξΛ\{i}) + o(δ). (130)

Define Q′ and P ′t analogously with µ′.

Take ξ(0) ≤ ξ′(0) and consider the coupling(
(ξ(t))t≥0[N ], (ξ′(t))t≥0[N ]

)
(131)

Both marginals use the same marked Poisson processes N .

If (t, u) ∈ Ni and the configurations are ordered at time t−, we have

ξi(t) = 1{u ≤ p(i, ξΛ\{i}(t−))} ≤ 1{u ≤ p(i, ξ′Λ\{i}(t−))} = ξ′i(t)

where the inequality comes from (124). Hence, ξ ≤ ξ′ implies (ξ(t))t≥0[N ] ≤ (ξ′(t))t≥0[N ] for all t. In
turn, this implies that their distributions satisfy Pt(ξ, ·) ≤ P ′t (ξ′, ·). Use (127) to conclude that µ ≤ µ′.

6.1.2 Bernoulli percolation

Consider Zd, d ≥ 2 as a graph with vertex set Zd and edge set E(Zd) = {e = {i, j} ⊂ Zd : |i− j| = 1}.

Parameters 0 ≤ ps, pb ≤ 1, site and bond probabilities.

Random subgraph Γ = (X,E) of (Zd, E(Zd)), where X = {i ∈ Zd : ξi = 1} , E = {e ∈ E(X) : ηe = 1}
, where E(X) = {e ∈ E(Zd) : e ⊂ X} is the set of edges between the sites of X, and (ξi : i ∈ Zd),
(ηe : e ∈ E(Zd)) are independent Bernoulli variables with P (ξi = 1) = ps, P (ηe = 1) = pb.
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This is Bernoulli mixed site-bond percolation. Setting pb = 1 we obtain pure site percolation, and
ps = 1 corresponds to pure bond percolation.

Let {0 ↔ ∞} denote the event that Γ contains an infinite path starting from 0, and θ(ps, pb;Zd) =
P (0↔∞) be its probability.

By Kolmogorov’s zero-one law, we have θ(ps, pb;Zd) > 0 if and only if Γ contains an infinite connected
component –called cluster– with probability 1. In this case one says that percolation occurs.

The following proposition asserts that this happens in a non-trivial region of the parameter square,
which is separated by the so-called critical line from the region where all clusters of Γ are almost surely
finite. The change of behavior at the critical line is the simplest example of a critical phenomenon.

Proposition 6.5 (Bernoulli percolation). The function θ(ps, pb;Zd) is increasing in ps, pb and d. More-
over,

(1) θ(ps, pb;Zd) = 0 when pspb is small enough;

(2) θ(ps, pb;Zd) > 0 when d ≥ 2 and pspb is sufficiently close to 1.

Proof. The monotonicity in ps and pb follows from coupling by defining the ηe(Ue) = 1{Ue ≤ pb} and
ηx(Ux) = 1{Ux ≤ ps}, where Ue Ux are iid Uniform[0, 1] or using Holley inequality; the monotonicity in d
follows by noticing that an infinite percolation cluster in Z2 is contained in an infinite percolation cluster
in Zd for d ≥ 3.

The following arguments are taken from Grimmett [12].

(1) A self avoiding walk (SAW) is a path that visit no vertex more than once. Let σn be the number
of SAW starting at the origin with length n. Let Nn be the set of those walks having all edges and sites
open (open SAW). Then

θ = P (Nn ≥ 1 for all n ≥ 1).

This is because the cluster of the origing has infinitely many points if and only if there are open SAW
starting at the origin of all lenghts. The above expresion equals

lim
n→∞

P (Nn ≥ 1)

Now
P (Nn ≥ 1) ≤ ENn = (pspb)

nσn

An upperbound for σn is
σn ≤ (2d)(2d− 1)n−1, n ≥ 1

because the first step of a SAW can be performed in 2d different ways and each subsequent step can be
performed at most in 2d− 1 different ways (since the walk is self avoiding, it cannot come back).

Hence
θ ≤ lim

n→∞
(2d)(2d− 1)n−1(pspb)

n

But this is 0 if pspb < (2d− 1)−1. This gives

pspb <
1

2d− 1
implies θ = 0.

(2) Planar duality. Given the graph Z2 with edges E(Z2), construct a dual graph Γ∗ = (V ∗, E(V ∗)
with vertices V ∗ = Z2 + ( 1

2 ,
1
2 ) and edges E(V ∗) = {{x, y} ⊂ V ∗ : |x − y| = 1}. This is the graph

Γ = (Z2, E(Z2)) translated by ( 1
2 ,

1
2 ). See Fig. 1
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Figure 1: The dual graph.

Each edge e = {x, y} of the graph Γ is crossed by an edge e∗ of the dual graph Γ∗. We construct a
percolation model in Γ∗ by declaring

e∗ open if and only if e = {x, y} open and x open.

The Peierls argument dominates the probability of {0 6↔ ∞} by the probability of the existence of a
closed circuit in the dual graph containing the origin. In fact, if there exists a closed circuit in the dual
graph containing the origin, there cannot be an infinite open path containing the origin, that is,

{0 6↔ ∞} ⊂ {there is a closed circuit of the dual graph Γ∗}.

Let Mn be the number of closed circuits of the dual graph of lenght n sorrounding the origin. Then

1− θ = P (0 6↔ ∞) = P
(∑
n≥4

Mn ≥ 1)
)
≤ E

(∑
n≥4

Mn

)
,

where we used that the shorter circuit sorrounding the origin has lenght 4. The above expression equals∑
n≥4

EMn ≤
∑
n≥4

(n4n)(1− pspb)n

In fact, the number of circuits of lenght n sorrounding the origin in the dual graph must cross in at
least one point the semiline [0,∞). The leftmost point the circuit intersects this semiline can take at
most n values: { 1

2 ,
3
2 , . . . , n+ 1

2}. Starting the circuit from this point, at each step it can take at most 4
different values. Hence the the number of circuits of lenght n sorrounding the origin in the dual graph is
dominated by n4n. This circuit is closed if all bonds are closed, hence the probability that it is closed is
dominated by (1− pspb)n. It is possible to take ε > 0 such that∑

n≥4

nεn < 1

Then pspb ≥ 1− ε implies θ > 0.

6.2 Continuum percolation

Poisson points connected by Bernoulli edges.

Let X = countable subsets X of Rd.

σ-algebra generated by the counting variables N(B) := #(X ∩ B) for bounded Borel sets B ⊂ Rd;
(XΛ := X ∩ Λ).

E = locally finite subsets of E(Rd) = {{x, y} ⊂ Rd : x 6= y}.
E = possible edge configurations with an analogous σ-algebra.
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For X ∈ X let E(X) = {e ∈ E(Rd) : e ⊂ X} = possible edges between the points of X, and
E(X) = {E ∈ E : E ⊂ E(X)} = edge configurations between the points of X.

Random graph Γ = (X,E) in Rd as follows.

• Pick a random point configuration X ∈ X according to the Poisson point process πz on Rd with
intensity z > 0.

• For given X ∈ X, pick a random edge configuration E ∈ E(X) according to the Bernoulli measure
µpX on EX for which the events {E 3 e}, e = {x, y} ∈ E(X), are independent with probability µpX(E 3
e) = p(x− y); here p : Rd → [0, 1] is a given even measurable function.

The distribution of the random graph Γ on X × E is

P z,p(dX, dE) = πz(dX)µpX(dE) (132)

It is called the Poisson random-edge model, or Poisson random-connection model, Penrose
(1991) Meester and Roy (1996).

Boolean model: p(x− y) = 1{|x− y| ≤ 2r} for some r > 0.

x and y are connected if and only if B(x, r) and B(x, r) overlap. Same as random set Ξ = ∪x∈XB(x, r),
for random X with distribution πz.

Percolation probability of a typical point: Writing x↔∞ when x belongs to an infinite cluster
of Γ = (X,E),

θ(z, p;Rd) =

∫
#{x ∈ XΛ : x↔∞}

|Λ|
P z,p(dX, dE)

for an arbitrary bounded box Λ with volume |Λ|. By translation invariance, θ(z, p;Rd) does not depend
on Λ. In terms of the Palm measure, θ(z, p;Rd) = P̂ z,p(0↔∞) .

Theorem [Penrose, 1991] θ(z, p;Rd) is increasing as function of z and p(·). Moreover, θ(z, p;Rd) = 0
when z

∫
p(x)dx is sufficiently small, while θ(z, p;Rd) > 0 when z

∫
p(x)dx is large enough.

Sketch proof. The monotonicity follows from an obvious stochastic comparison argument. Since z
∫
p(x)dx

is the expected number of edges emanating from a given point, a branching argument shows that
θ(z, p;Rd) = 0 when z

∫
p(x)dx < 1.

It remains to show that θ(z, p;Rd) > 0 when z
∫
p(x)dx is large enough. For simplicity assume∫

p(x)dx = 1 and p(x − y) ≥ δ > 0 whenever |x − y| ≤ 2r. The following is taken from Georgii and
Haggstrom (1996).

Divide Rd into cubic cells ∆(i), i ∈ Zd, with diameter at most r an pick a sufficiently large number n.

• Call a cell ∆(i) good if it contains at least n points which form a connected set relative to the edges
of Γ in between them. This does not depend on the other cells and

P (∆(i) is good) ≥ πz(Ni ≥ n)[1− (n− 1)(1− δ2)n−2] =: ps (133)

where Ni is the number of points in ∆(i), and the second term is an estimate for the probability that one
of the n points is not connected to the first point by a sequence of two edges. ps is arbitrarily close
to 1 when n and z are large enough.

• Call two adjacent cells ∆(i),∆(j) linked if there exists an edge from some point in ∆(i) to some
point in ∆(j). Conditionally on the event that ∆(i) and ∆(j) are good, this has probability at least

1− (1− δ)n2

=: pb, which is also close to 1 when n is large enough.

We have a site-bond percolation model in Zd with ps and pb coupled to our original continuum
percolation model with parameters z and p.

{there exists an infinite cluster of linked good cells}
⊂ {there exists an infinite cluster in the Poisson random-edge model}.

Hence

θ(z, p;Rd) ≥ n

|∆(0)|
θ(ps, pb;Zd) (134)
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where θ(ps, pb;Zd) is the probability that the origin is connected to infinity in the discrete model. The
right hand side dominates from below the average number of points of X in ∆(0) connected to infinity
divided by the volume of ∆(0).

Hence θ(z, p;Rd) > 0 when z is large enough.

Stochastic comparison Refer to §6.1.1 for the definition of stochastic domination.

A simple point process P on a bounded Borel subset Λ of Rd (a probability measure on XΛ = {X ∈
X : X ⊂ Λ}) has Papangelou (conditional) intensity γ : Λ× XΛ → [0,∞[ if P satisfies∫

P (dX)
∑
x∈X

f(x,X \ {x}) =

∫
dx

∫
P (dX)γ(x|X)f(x,X)

for any measurable function f : Λ× XΛ → [0,∞[.

γ(x|X)dx “conditional probability” for the existence of a particle in dx when the remaining configu-
ration is X.

The Poisson process πzΛ on Λ has Papangelou intensity γ(x|X) = z.

Holley Preston inequality Consider the partial order induced by the inclusion relation on XΛ.

Proposition 6.6 (Holley-Preston inequality). Let Λ ⊂ Rd be a bounded Borel set and µ, µ′ two probability
measures on XΛ with Papangelou intensities γ resp. γ′. Suppose γ(x|X) ≤ γ′(x|X ′) whenever X ⊂ X ′

and x /∈ X ′ \X. Then µ ≤ µ′.

Proof postponed to the next section.

6.3 The continuum Ising model

Point particles in Rd of two different types, plus and minus.

A configuration is a pair ξ = (X+, X−).

Configuration space: Ω = X2.

Repulsive interspecies interaction pair potential of finite range, given by an even function J : Rd →
[0,∞] with bounded support.

The Hamiltonian in a bounded Borel set Λ ⊂ Rd of a configuration ξ = (X+, X−) is given by

HΛ(ξ) :=
∑

x∈X+,y∈X−:{x,y}∩Λ6=∅

J(x− y). (135)

Example: classical Widom-Rowlinson model (1970) with a hard-core interspecies repulsion: J(x−y) =∞
when |x− y| ≤ 2r and J(x− y) = 0 otherwise.

Assumption:

There exist δ, r > 0 such that J(x− y) ≥ δ if |x− y| ≤ 2r. (136)

Gibbs distribution in Λ with activity z > 0 and boundary condition ξΛc = (X+
Λc , X

−
Λc) ∈ X2

Λc is

GΛ(dξΛ|ξΛc) = Z−1
Λ|ξΛc exp[−HΛ(ξ)]πzΛ(dX+

Λ )πzΛ(dX−Λ )

Def. Gibbs measures G = G(z) are the measures having GΛ as conditional probabilities, for all Λ
bounded Borel set in Rd.

Existence of Gibbs measures. GΛ(·|ξΛc) has Papangelou intensity

γ(x|X+, X−) =

{
z exp[−

∑
y∈X− J(x− y)] if x ∈ Λ+

z exp[−
∑
y∈X+ J(x− y)] if x ∈ Λ−

}
≤ z.

Holley-Preston implies that GΛ(·|ξΛc) ≤ πzΛ × πzΛ. Compactness theorems for point processes show that
for each ξ ∈ X2, GΛ(·|ξΛc) has an accumulation point P as Λ↗ Rd.

It is easy to see that P ∈ G.
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Uniqueness and phase transition We will show that the Gibbs measure is unique when z is small,
whereas a phase transition (non-uniqueness) occurs when z is large.

It remains open problem whether there is a sharp activity threshold separating intervals of unique-
ness and non-uniqueness. That is, a zc such that for z > zc there are more than one extremal Gibbs
measure and for z < zc there is only one Gibbs measure.

Proposition For the continuum Ising model we have #G(z) = 1 when z is sufficiently small.

Proof. Let P , P ′ ∈ G(z). We will show that P = P ′ when z is small enough.

Let R be the range of J , i.e., J(x) = 0 when |x| > R.

Divide Rd into cubic cells ∆(i), i ∈ Zd, of linear size R.

Let p∗c be the Bernoulli site percolation threshold of the graph with vertex set Zd and edges between
all points having distance 1 in the max-norm.

Consider the Poisson measure Qz = πz × πz on Ω = X2.

Let ξ ,ξ′ be two independent realizations of Qz, and suppose z is so small that Qz × Qz(Ni + N ′i ≥
1) < p∗c , where Ni and N ′i are the numbers of particles (plus or minus) in ξ∩∆(i), respectively ξ′∩∆(i).

Then for any finite union Λ of cells we have Qz ×Qz(Λ ≥1←→∞) = 0, where {Λ ≥1←→∞} denotes the
event that a cell in Λ belongs to an infinite connected set of cells ∆(i) containing at least one particle in
either ξ or ξ′.

Holley-Preston imply that P × P ′ ≤ Qz ×Qz. Hence P × P ′(Λ ≥1←→∞) = 0.

In other words, given two independent realizations ξ and ξ′ of P and P ′ there exists a random
corridor of width R around Λ which is completely free of particles.

Given ∆ ⊃ Λ, denote KΛ(∆) the set of (ξ, ξ′) such that “there is an empty corridor of width R in ∆
around Λ and there is no ∆′ ⊂ ∆ with this property”.

Now, suppose that for any local set B depending on Λ and boundary conditions ξ and ξ′, we have

G∆ ×G∆(B × X ∩KΛ(∆)|(ξ, ξ′)∆c)

= G∆ ×G∆(X×B ∩KΛ(∆)|(ξ, ξ′)∆c) (137)

then, integrate with respect to P × P ′ to obtain

(P × P ′)(B × X ∩KΛ(∆)) = (P × P ′)(X×B ∩KΛ(∆)) (138)

Summing over all choices of KΛ(∆), we get P (B) = P ′(B), for any bounded measurable B in Ω. This
implies P = P ′.

It remains to show (137).

If ∆ does not contain a corridor of width R around Λ free of ξ and ξ′ particles, then both sides of
(137) are 0.

If ∆ does contain such corridor, the boundary conditions (ξ, ξ′)∆c have the same effect as the empty
boundary conditions. Hence, we can replace ξ and ξ′ by empty configurations. Since the event KΛ(∆)
and the specifications (G∆×G∆)(·|∅×∅)are invariant under the map (ξ, ξ′)→ (ξ′, ξ), the equation (137)
holds.

Existence of phase transition Follows from percolation in a suitable random-cluster model.

Gibbs distribution with + boundary conditions.

G+
Λ =

∫
πzΛc(dY

+
Λc)GΛ(·|Y +

Λc , ∅) (139)

This is the specificarion with a Poisson boundary condition of plus-particles and no minus-particle off Λ.

Random-cluster model: Fix the activity z. Define the probability measure χzΛ on X×E describing
random graphs (Y,E) in Rd:

χzΛ(dY, dE) = Z−1
Λ|YΛc

2k(Y,E) πz(dY )µp,ΛY (dE).
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where k(Y,E) is the number of clusters of the graph (Y,E);

ZΛ|YΛc
:=

∫
2k(Y,E) πz(dYΛ)µp,ΛY (dE).

is the normalization factor and µp,ΛY is the probability measure on E for which the edges e = {x, y} ⊂ Y
are drawn independently with probability

p(x− y) =

{
1− e−J(x−y) if e = {x, y} 6⊂ YΛc

1 otherwise.
(140)

χΛ is called the continuum random-cluster distribution in Λ with connection probability function p
and wired boundary condition. This means that all points connected to YΛc belong to the same cluster.

If we eliminate the factor 2k(Y,E) we have just the continuum percolation model with a unique cluster
containing YΛc .

In the Widom-Rowlinson case of a hard-core interspecies repulsion the randomness of the edges
disappears, indeed, if for x, y ∈ Y ,we have ‖x − y‖ < r then {x, y} ∈ E. In this case χzΛ describes a
dependent Boolean percolation model. The dependency comes from the factor 2k(Y,E).

Coupling between the random-cluster model and the continuum Ising model Let PΛ be the
product distribution on X× X× E given by

PΛ(dX+, dX−, dE) = πz(dX+)πzΛ(dX−)µp,ΛX+∪X−(dE)

with p given by (140) with Y = X+ ∪X−.

Define the set of configurations with no connections between particles of different sign:

AΛ := {(X+, X−, E) ∈ X× X× E : E ∈ E(X+ ∪X−)

and E 63 {x, y} for x ∈ X+, y ∈ X−}

Define QΛ as the conditioned measure
QΛ = PΛ(·|AΛ)

Proposition 6.7. For any bounded box Λ in Rd, let (X+, X−, E) be distributed with QΛ. Then

1. The (X+, X−) marginal of QΛ has distribution G+
Λ .

2. The random graph (X+ ∪X−, E) has distribution χzΛ.

3. The conditioned law of (X+ ∪X−, E) given ξ = (X+, X−) is the following. Independently for all
e = {x, y} ∈ E(Y ) let e ∈ E with probability

pΛ,X+,X−(e) =

 1− e−J(x−y) if e ⊂ X+ or e ⊂ X− and e ∩ Λ 6= ∅
1 if e ⊂ Λc,
0 otherwise.

4. The conditional distribution of (X+, X−) given (Y,E), denoted QΛ(dX+,dX−|(Y,E)), is the fol-
lowing. For each finite cluster C of (Y,E) let C ⊂ X+ or C ⊂ X− according to independent flips
of a fair coin; the unique infinite cluster of (Y,E) containing YΛc is included into X+.

Proof. 1.

QΛ(dX+, dX−)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∫
E:(X+,X−,E)∈AΛ

µp,ΛX+∪X−(dE)

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∏
x∈X+,y∈X−

(1− pΛ({x, y}))

=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−)

∏
x∈X+,y∈X−

exp(−J(x− y))
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=
1

PΛ(AΛ)
πz(dX+)πzΛ(dX−) exp(−HΛ(X+, X−))

= G+
Λ(X+, X−) (141)

2. Let f : X× E be a test function. Then∫
X×E

f(X+ ∪X−, E)QΛ(dX+, dX−, dE)

=
1

PΛ(AΛ)

∫
AΛ

f(X+ ∪X−, E)πz(dX+)πzΛ(dX−)µp,ΛX+∪X−(dE)

=
1

PΛ(AΛ)

∫
X×E

f(Y,E)

×
( ∑

(X+,X−):X+∪X−=Y

(X+,X−,E)∈AΛ

PΛ((X+, X−, E) ∈ AΛ|(Y,E))
)
πzΛ(dY )µp,ΛY (dE)

where πzΛ is a PP in Rd with intensity zΛ(x) = z(1+1{x ∈ Λ}). Observe that πzΛ(dY ) = 1
Z 2#YΛπz(dY ),

where Z is the normalization.

=
1

ZPΛ(AΛ)

∫
X×E
f(Y,E) 2#Y

( ∑
(X+,X−):X+∪X−=Y

(X+,X−,E)∈AΛ

(
1
2

)#Y )
πz(dY )µp,ΛY (dE)

where we used that the probability that a set of points Y gets partitioned into fixed X+ and X− is 2−#Y ,
because each point has probability 1/2 to belong X+ (or to X−).

Using that the cardinality of {(X+, X−, E) ∈ AΛ : X+ ∪X− = Y } is 2k(Y,E), we get:

=
1

ZPΛ(AΛ)

∫
X×E

f(Y,E) 2k(Y,E) πz(dY )µp,ΛY (dE)

=

∫
f(Y,E)χzΛ(dY, dE). (142)

The normalization comes for free because we started with a probability.

3. Fix E and denote p(x, y) = QΛ({x, y} ∈ E|X+, X−). Since (X+, X−, E) ∈ AΛ, we have that
p(x, y) = 0 if x ∈ X+ and y ∈ X−, so that E does not contain vertices with different sign. The other edges
intersecting Λ may take any value while those contained in Λc must be 1. Hence p(x, y) = pΛ,X+,X−(x, y)
and

QΛ((X+ ∪X−, E) |X+, X−) =
∏

{x,y}∈E

p(x, y) (143)

4.

QΛ(X+, X− | (Y,E)) =
∏

C cluster of (Y,E)

1

2
=
(1

2

)k(Y,E)

.

Percolation and phase transition

The random-cluster representation gives the following key identity: For any finite box ∆ ⊂ Λ,∫
[#X+

∆ −#X−∆ ]G+
Λ(dX+, dX−) =

∫
#{x ∈ Y∆ : x↔ YΛc}χΛ(dY, dE);

where x↔ YΛc means that x is connected to a point of YΛc in the graph (Y,E). This is because the finite
clusters have the same probability to belong to X+ and to X− and the points connected to the infinite
cluster belong to X+.

The difference between the mean number of plus- and minus-particles in ∆ corresponds to
the percolation probability in χΛ.
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The percolation probability in χΛ is positive for large z.

Denote νΛ the point marginal distribution of χΛ. It satisfies

νΛf :=

∫
f(Y )χΛ(dY, dE), (144)

for test functions f : X→ R.

Then, item 4 of Proposition 6.7 implies

χΛ(dY, dE) = νΛ(dY )ϕΛ,Y (dE)

with

ϕΛ,Y (dE) =
1

ZΛ
2k(E)µp,ΛY (dE)

Proposition 6.8 (Edge domination). ϕΛ,Y is stochastically larger than the Bernoulli edge measure µp̃Y
for which edges are drawn independently between points x, y ∈ Y with probability

p̃(x− y) =
1− e−δ

(1− e−δ) + 2e−δ
, for |x− y| ≤ 2r, (145)

and with probability 0 otherwise, where δ and r are as in assumption (136).

Proof. We fix Y ∼ ν and consider edges distributed with µ(dE) := ϕΛ,Y (dE) on one hand and with

µ′(dE)µp̃Y on the other hand. In order to apply Holley inequality compute

p(e) := µ(η(e) = 1|ηE(Y )\{e})

=
p(x, y)2k(Y,E(η1))µpY (ηE(Y )\{x,y})[

p(x, y)2k(Y,E(η1)) + (1− p(x, y))2k(Y,E(η0))
]
µpY (ηE(Y )\{x,y})

where E(η) = {e ∈ E(Y ) : η(e) = 1} and

η1({x, y}) = 1 and η1(e) = η(e) for e 6= {x, y},
η0({x, y}) = 0 and η0(e) = η(e) for e 6= {x, y} (146)

The numerator is the probability under µpY of the configuration ηE(Y )\{e} off e and η(e) = 1. In the
denominator we have the marginal distribution of ηE(Y )\{e} under the same measure.

We have

k(Y,E(η0)) ≤ k(Y,E(η1)) + 1, (147)

because connecting x and y decreases at most by one the number of clusters. Hence,

p(x, y) ≥ p(x, y)

p(x, y) + 2(1− p(x, y))
≥ 1− e−δ

(1− e−δ) + 2e−δ
= p̃(x, y).

if |x− y| > 2r, by hypothesis. Apply Holley inequality to conclude.

Proposition 6.9 (Point domination). There exists α > 0 such that the point marginal νΛ of χΛ dominates
a Poisson process of rate αz:

ν ≥ παz. (148)

Proof. The point marginal νΛ has Papangelou intensity

γ(x|Y ) =

z

∫
2k(Y ∪x,E)φΛ,Y ∪x(dE)∫

2k(Y,E)φΛ,Y (dE)

.

To get a lower estimate for γ(x|Y ) one has to compare the effect on the number of clusters in (Y,E) when
a particle at x and corresponding edges are added. In principle, this procedure could connect a large
number of distinct clusters lying close to x, so that k(Y ∪ x, ·) was much smaller than k(Y, ·). However,
one can show that this occurs only with small probability, so that

γ(x|Y ) ≥ αz for some α > 0.
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Conclusion: The previous propositions imply that χΛ is stochastically larger than the Poisson
random-edge measure Pαz,p̃ defined in (11).

Hence, ∫
#{x ∈ Y∆ : x↔ YΛc}χΛ(dY, dE) ≥ `(∆) θ(αz, p̃;Rd)

Finally, since G+
Λ ≤ πz×πz by (17), the Gibbs distributions G+

Λ have a cluster point P+ ∈ G(z), a Gibbs
measure satisfying ∫

[#X+
∆ −#X−∆ ]P+(dX+, dX−) ≥ θ(αz, p̃;Rd).

By spatial averaging one can achieve that P+ is in addition translation invariant. Together with the
continuum percolation Theorem, saying θ(z, p;Rd) > 0 for sufficiently large zp, this leads to the following
theorem.

Theorem For the continuum Ising model on Rd, d ≥ 2, with Hamiltonian (135) and sufficiently large
activity z there exist two translation invariant Gibbs measures P+ and P− having a majority of plus-
resp. minus-particles and related to each other by the plus-minus interchange.

This result is due to Georgii and Haggstrom (1996). In the special case of the Widom-Rowlinson
model it has been derived independently in the same way by Chayes, Chayes, and Kotecky (1995). The
first proof of phase transition in the Widom-Rowlinson model was found by Ruelle in 1971, and for a soft
but strong repulsion by Lebowitz and Lieb in 1972. Gruber and Griffiths (1986) used a direct comparison
with the lattice Ising model in the case of a species-independent background hard core.

As a matter of fact, one can make further use of stochastic monotonicity. (In contrast to the preceding
theorem, this only works in the present case of two particle types.) Introduce a partial order ‘≤ ’ on
Ω = X2 by writing (X+, X−) ≤ (Y +, Y −) when X+ ⊂ Y + and X− ⊃ Y −. (21). A straightforward
extension of Holley-Preston then shows that the measures G+

Λ decrease stochastically relative to this
order when Λ increases. (This can be also deduced from the couplings obtained by perfect simulation,
see the paper of Georgii, Section 4.4.) It follows that P+ is in fact the limit of these measures, and is
in particular translation invariant. Moreover, one can see that P+ is stochastically maximal in G in this
order.

Corollary For the continuum Ising model with any activity z > 0, a phase transition occurs if and
only if ∫

P̂+(dX+, dX−)µp,X+(0
+←→∞) > 0;

here P̂+ is the Palm measure of P+, and the relation 0
+←→ ∞ means that the origin belongs to an

infinite cluster in the graph with vertex set X+ and random edges drawn according to the probability
function p = 1− e−J .

It is not known whether P+ and P− are the only extremal elements of G(z) when d = 2, as it is the
case in the lattice Ising model. However, using a technique known in physics as the Mermin–Wagner
theorem one can show the following.

Theorem If J is twice continuously differentiable then each P ∈ G(z) is translation invariant.

A proof can be found in Georgii (1999). The existence of non-translation invariant Gibbs measures
in dimensions d ≥ 3 is an open problem.

7 Perfect simulation of Markov jump processes

Cadenas de Markov a tiempo continuo

Vamos a considerar procesos Markovianos de salto en un conjunto finito S con tiempo t ∈ R+. Decimos
que un proceso Xt es un proceso Markoviano de saltos si

P (Xt+h = y |Xt = x, Xs = xs, 0 ≤ s < t) = h q(x, y) + o(h). (149)

q(x, y) es la tasa de salto de x a y 6= x.
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Ejemplo, proceso de Poisson S de intensidad λ induce un proceso Markoviano de salto. Defina
N(t) := S ∩ [o, t].

P (N(t+ h) = x+ 1)|N(t) = x) = P (N(t, t+ h] = 1)

= λh e−λh + P (otras cosas) ,

Como el evento “otras cosas” está contenido en el evento “hay 2 o más puntos del proceso de Poisson en
el intervalo de tiempo [t, t + h)” y la probabilidad de ese evento es o(h), tenemos que q(x, x + 1) = λ y
el resto de las tasas es 0.

Construcción usando procesos de Markov bi-dimensionales Queremos construir un proceso Xt

con tasas q(x, y), es decir, que satisfaga (149). La tasa de salida del estado x se denota

λx =
∑
y

q(x, y),

Consideremos un proceso de Poisson bi-dimensional M(·). Para cada estado x consideramos una partición
del intervalo Ix = [0, λx] en Borelianos B(x, y) de medida q(x, y), y 6= x:

Ix = ∪̇y∈S\{x}B(x, y); B(x, y) ∩B(x, y′) = ∅, for y 6= y′.

|B(x, y)| = q(x, y), x 6= y. (150)

Fijemos Y0 = x0, un estado arbitrario y T0 = 0. Sea T1 la primera coordenada del primer evento del
proceso M(·) en la banda [0,∞)× Ix0

:

T1 = inf{t > 0 : M([0, t]× IY0
) > 0}.

Defina (T1, U1) ∈M , el único punto que realiza el ı́nfimo, con U1 ∈ IY0 . Como (B(Y0, y) : y ∈ S) es una
partición de IY0 , hay un único Y1 ∈ S tal que U1 ∈ B(Y0, Y1).

Iterativamente, asumimos que Tn−1 y Yn−1 están determinados y definimos

Tn = inf{t > Tn−1 : M((IYn−1
× Tn−1, t] > 0}.

Defina (Tn, Un) ∈M , el único punto que realiza el ı́nfimo, con Un ∈ IYn−1 . Como (B(Yn−1, y) : y ∈ S) es
una partición de IYn−1

, hay un único Yn ∈ S tal que Un ∈ B(Yn−1, Yn).

Definition 7.1. Defina
Xt = Yn, si t ∈ [Tn, Tn+1), para t ∈ [0,∞) (151)

Aśı, para cada realización del proceso de Poisson bidimensional M , construimos una realización del
proceso (Xt : t ∈ [0,∞)). Tn es el n-ésimo instante de salto; Yn es el n-ésimo estado visitado por el
proceso.

Proposition 7.2. El proceso (Xt : t ∈ [0, T∞)) definido en (151) satisface (149).

Proof. Por definición,

P(Xt+h = y |Xt = x) (152)

= P
{
M((t, t+ h]×B(x, y)) = 1

}
+ P(otras cosas), (153)

donde el evento {otras cosas} está contenido en el evento

{M((t, t+ h]× [0, λx]) ≥ 2},

el proceso de Poisson M contiene dos o más puntos en el rectángulo [0, λx]× (t, t+ h]. Por definición de
M(·), tenemos

P(M((t, t+ h]× [0, λx]) ≥ 2) = o(h) and (154)

P(M((t, t+ h]×B(x, y) = 1) = hq(x, y) + o(h). (155)

Esto demuestra la proposición.
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Example 7.3. Fila con un servidor y espacio limitado de espera. Espacio de estados G = {0, 1, 2}. Xt

es el número de clientes en el sistema en el instante t. Los clientes llegan a tasa λ y los servicios son
exponenciales a tasa µ. Las tasas son:

q(0, 1) = q(1, 2) = λ (156)

q(1, 0) = µ; q(2, 1) = 2µ (157)

q(x, y) = 0, en los otros casos. (158)

Los intervalos usados en la construcción son los siguientes:

B(0, 1) = B(1, 2) = [0, λ] (159)

B(1, 0) = [λ, λ+ µ]; B(2, 1) = [0, 2µ]. (160)

Todas las tasas están acotadas por max{λ+ µ, 2µ}.

Nacimiento puro Xt en {0, 1, 2, . . . } con tasas

q(x, x+ 1) = λx (161)

q(x, y) = 0, en los otros casos. (162)

La tasa de llegadas en el instante t es proporcional al número de llegadas hasta ese instante. Los intervalos
son

B(x, x+ 1) = [0, λx) (163)

Kolmogorov equations It is useful to use the following matrix notation. Let Q be the matrix with
entries

q(x, y) se x 6= y (164)

q(x, x) = −λx = −
∑
y 6=x

q(x, y). (165)

and Pt be the matrix with entries

pt(x, y) = P(Xt = y |X0 = x).

Con esta notación, las ecuaciones de Chapman-Kolmogorov dicen

Pt+s = PtPs. (166)

for all s, t ≥ 0. To see it compute

pt+s(x, y) = P(Xt+s = y |X0 = x)

=
∑
z

P(Xs = z |X0 = x)P(Xt+s = y |Xs = z)

=
∑
z

ps(x, z)pt(z, y). (167)

This is the (x, z) entry of PtPs.

Proposition 7.4 (Kolmogorov equations). The following identities hold

P ′t = QPt (Kolmogorov Backward equations)

P ′t = PtQ (Kolmogorov Forward equations)

for all t ≥ 0, where P ′t is the matrix having as entries p′t(x, y) the derivatives of the entries of the matrix
Pt.

Proof. Backward equations. Using Chapman-Kolmogorov,

pt+h(x, y)− pt(x, y) =
∑
z

ph(x, z)pt(z, y)− pt(x, y)
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= (ph(x, x)− 1)pt(x, y)) +
∑
z 6=x

ph(x, z)pt(z, y).

Dividing by h and taking h to zero we obtain p′t(x, y) in the left hand side. To compute the right hand
side, observe that

ph(x, x) = 1− λxh+ o(h).

Hence

lim
h

ph(x, x)− 1

h
= −λx = q(x, x).

Analogously, for x 6= y

ph(x, y) = q(x, y)h+ o(h)

and

lim
h

ph(x, y)

h
= q(x, y).

This shows the Kolmogorov Backward equations. The forward equations are proven analogously. To
start, use Chapman-Komogorov to write

pt+h(x, y) =
∑
z

pt(x, z)ph(z, y).

Las ecuaciones backward dicen P ′t = QPt. Si Pt fuera un número, tendŕıamos

Pt = eQt

Formalmente podemos definir la matriz

eQt =
∑
n≥0

(Qt)n

n!
=
∑
n≥0

Qn
tn

n!

y diferenciar para obtener

d

dt
eQt =

∑
n≥1

Qn
tn−1

(n− 1)!
= Q

∑
n≥1

Qn−1 tn−1

(n− 1)!
= QPt

A pesar que en general el producto no es conmutativo, tenemos que QPt = PtQ. Para verlo de otra
manera,

QPt =
∑
n≥0

QQn−1 tn−1

(n− 1)!
=
∑
n≥0

Qn−1 tn−1

(n− 1)!
Q = PtQ.

Invariant measures

Definition 7.5. We say that π is an stationary distribution for (Xt) if∑
x

π(x)pt(x, y) = π(y) Balance equations (168)∑
x

π(x) = 1 (169)

that is, if the distribution of the initial state is given by π, then the distribution of the process at time t
is also given by π for any t ≥ 0.

Theorem 7.6. A distribution π is stationary for a process with rates q(x, y) if and only if∑
x

π(x)q(x, y) = π(y)
∑
z

q(y, z). (170)
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Condition (170) can be interpreted as a flux condition: the entrance rate under π to state y is the
same as the exit rate from y. For this reason the equations (170) are called balance equations.

Proof. Assume π stationary, then (168) read

πPt = π.

Differentiating we get

0 =
∑
x

π(x)p′t(x, y) =
∑
x

π(x)
∑
z

pt(x, z)Q(z, y)

=
∑
z

∑
x

π(x)pt(x, z)Q(z, y) =
∑
z

π(z)Q(z, y)

where we have applied the forward equations. This proves (170). Reciprocally, equations (170) say

πQ = 0.

Applying Kolmogorov backwards equations we get

(πPt)
′ = πP ′t = πQPt = 0;

In other words, if the initial state of a process is chosen accordingly to the law π, the law of the process
at any future time t is still π. This is because P0 is the identity matrix and πP0 = π.

Proceso clima Hay 3 estados: sol, nublado, lluvia. El tiempo que está en sol es exponencial 1/3 de
donde pasa a nublado, queda un tiempo exponencial 1/4 cuando empieza a llover y llueve un tiempo
exponencial 1, cuando vuelve a sol. La matriz de tasas es −1/3 1/3 0

0 −1/4 1/4
1 0 −1


πQ = π equivale a las ecuaciones

− 1
3π(1) +π(3) = 0

1
3π(1) − 1

4π(2) = 0
1
4π(2) −π(3) = 0

La solución es π = ( 3
8 ,

4
8 ,

1
8 ). Podŕıamos haber obtenido esto con procesos de renovación con recompensa.

La fracción de tiempo que estamos en cada estado es el conciente entre el tiempo medio en el estado y el
tiempo medio del ciclo.

Recurrencia de Harris y convergencia exponencial al equilibrio En el siguiente teorema probamos
simultaneamente la existencia y la convergencia a velocidad exponencial bajo una condición que es cono-
cida como recurrencia de Harris. Defina

γ(z) := min
x
Q(x, z), γ(Q) :=

∑
z

γ(z) (171)

Theorem 7.7. Sea Xt un proceso de Markov con tasas Q. Si γ > 0, entonces (Xt) tiene una única
distribución estacionaria π. Además, el proceso converge a π en variación total, a velocidad exponencial
con coeficiente γ:

sup
x

1

2

∑
z

|π(z)− Pt(x, z)| < e−γt.

Proof. Primero vamos a demostrar que si hay una distribución estacionaria π, entonces vale la conver-
gencia en variación total. Después demostraremos la existencia y unicidad de π.

Sin pérdida de generalidad asumimos que el espacio de estados es {1, . . . ,K} ⊂ N, para algún K > 0.

Convergencia. Construiremos dos cadenas con estados iniciales distintos con saltos governados por
los puntos del mismo proceso de Poisson bidimensional M y la misma partición B(x.y), elegida de manera
de controlar el tiempo de encuentro de las marginales.
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Construya una familia de intervalos sucesivos J(z) disjuntos de tamaño

|J(z)| = γ(z).

La longitud del intervalo ∪̇zJ(z) es igual a γ.

A continuación, para cada estado x construya disjuntos sucesivos I(x, z) de tamaño

|I(x, z)| = q(x, z)− γ(z);

localizados a la derecha de los intervalos J(z).

Finalmente defina

B(x, z) = J(z) ∪ I(x, z)

Como B(x, z) tiene medida q(x, z), la construcción de Xt usando el proceso de Poisson bidimensional M
se puede hacer con estas particiones.

Vamos a realizar (Xt, X
′
t) con estado inicial (X0, X

′
0) = (x0, x

′
0) y cada marginal es governada por los

puntos de M y la partición B recién constrúıda.

Si el proceso en el instante t− se encuentra en el estado (x, j) y M contiene al punto (t, u), con u en
el intervalo

∪zJ(z) = [0, γ),

entonces ambos procesos coalescen. Más precisamente, hay tres casos:

(a) u ∈ J(z) para z /∈ {x, x′}, en ese caso ambas marginales saltan a z;

(b) u ∈ J(x), en ese caso la segunda marginal salta a x y la primera marginal se queda en x;

(c) u ∈ J(x′), en ese caso la primera marginal salta a x′ y la segunda marginal se queda en x′.

Esto se puede hacer porque por debajo de γ la partición B(x, z) no depende de x:

B(x, z) ∩ [0, γ) = B(x′, z) ∩ [0, γ), para todo z, x, x′.

El instante de coalescencia se denota τ :

τ = inf{t > 0 : M([0, t]× [0, γ)) > 0}.

Por lo tanto,

t > τ implica Xt = X ′t, (172)

además

τ ∼ Exponencial(γ) : P (τ > t) = e−γt. (173)

Para concluir, escribimos∑
z

|Pt(y, z)− Pt(x, z)| =
∑
z

|P (Xt = z)− P (X ′t = z)|

=
∑
z

|E(1{Xt = z} − 1{X ′t = z})|

≤ E
(∑

z

|1{Xt = z} − 1{X ′t = z}|
)

= 2E1{Xt 6= X ′t} = 2P (Xt 6= X ′t)

≤ 2P (τ > t) = 2e−γt, usando (172) y (173).

Si el estado inicial X ′0 es aleatorio con distribución estacionaria π,∑
z

|π(z)− Pt(x, z)| =
∑
z

∣∣∣∑
y

π(y)Pt(y, z)−
∑
y

π(y)Pt(x, z)
∣∣∣

≤
∑
y

π(y)
∑
z

|Pt(y, z)− Pt(x, z)|

≤
∑
y

π(y)2e−γt = 2e−γt

Esto demuestra la convergencia a velocidad exponencial a la distribución estacionaria, cuando t→∞.

34



Existencia de la distribución estacionaria. Simulación perfecta

Denote Xx
[s,t] el proceso que tiene una condición inicial xs = x en el instante s y utiliza los puntos de

M en la banda [s, t]× [0,∞). Esa construcción es invariante por traslaciones:

(Xx
[s,s+t], t ≥ 0) tiene la misma distribución que (Xx

[0,t], t ≥ 0)

Vamos a sacar el ĺımite cuando s se va a menos infinito. Sea

τ(t) := sup{s < t : M([s, t]× [0, γ)) > 0}

En el instante τ(t), el proceso asume un valor aleatorio Z con distribución

P (Z = z) =
γ(z)

γ

independiente del pasado y desde ah́ı evoluciona de acuerdo a los puntos de M en [τ(t), t]× R+:

Xx
[s,t] = X[τ(t),t] =

∑
z

1{Z = z}Xz
[τ(t),t], para todo x, s ≤ τ(t).

Si definimos

Zt := X[τ(t),t], t ∈ R (174)

tenemos que Zt es Markov con tasas Q y es estacionaria: P (Zt = z) no depende de t. Por lo tanto,
llamando π a la distribución de Zt, vale que π es invariante para Q.

Ejemplo. Estados {1, 2, 3}.

Q =

 −3 1 2
4 −5 1
2 3 −5

 (175)

(γ(z)) = (2, 1, 1) γ = 4.

(J(z)) = ([0, 2), [2, 3), [3, 4))

(Q(i, z)− γ(z)) =

 ∗ 0 1
2 ∗ 0
0 2 ∗



I(i, j) =

 ∗ ∅ [4, 5)
[4, 6) ∗ ∅
∅ [4, 6) ∗


La existencia de una única distribución estacionaria y convergencia bajo la hipótesis de recurren-

cia positiva se demuestra como en el caso discreto. La diferencia es que no existe el problema de la
periodicidad.

Theorem 7.8. Si el proceso Markoviano de salto (Xt) es irreducible y tiene una distribución estacionaria
π, entonces

lim
t
pt(x, y) = π(y).

Proof. Como pt(i, j) > 0, tenemos que para todo h > 0 la cadena discreta con matriz de transición
ph(x, y) es recurrente positiva y aperiódica y tiene distribución estacionaria π. Por lo tanto

lim
n
pnh(i, j) = π(j).
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8 Perfect simulation of low density Gibbsian point processes

This section is based on [7]. Here we propose a perfect simulation algorithm and construction of measures
locally absolutely continuous with respect to a Poisson process. They will be invariant measures of
interacting birth-and-death processes. Perfect samples of finite windows of the infinite-volume measure

Background. Propp and Wilson’s Coupling from the Past (CFTP). Fill’s Interruptible Algorithm see
http://dimacs.rutgers.edu/~dbwilson/exact. Spatial processes: Kendall and Moeller. All the above
apply for finite state space or finite regions (coupling with finite coalescence time)

Basic example: seed + grain exclusion process

Consider a Poisson process S̃ ⊂ Rd × R+ with intensity measure

λ dxh(r) dr; x ∈ Rd, r ∈ R+,

with
∫
h(r)dr = 1. Call µ̃ the law of tS.

If s̃ = (x, r) ∈ S̃, we interpret that there is a seed at s with radious r.

Let γ(x, r) = B(x, r): ball centered at x with radious r.

Let S̃ be the set of seeds plus grains and define the set of configuration without grain intersections

AΛ = {S̃ ⊂ G : γ(x, r) ∩ γ(x′, r′) = ∅, for all (x, r), (x′, r′) ∈ S̃, x, x′ ∈ Λ}.

Let

µΛ := µ̃(·|AΛ) (176)

By Holley-Preston, this measure is dominated by µ̃ (exercise), and hence there is a Gibbs measure for
the specifications induced by µΛ, by taking limit along subsequences.

We want to construct (perfect simulate) a Gibbs measure with respect to the specifications induced
by µΛ.

µ := “µ̃(·|ARd)”.

The right hand side is not really defined.

Usually one does this as a limit of finite-box measures (thermodynamic limit), as we did for the
continuum Ising.

Here we will construct directly an infinite volume configuration coupled with configurations in Λ,
simultaneously for all Λ, and then show that the infinite volume configuration is indeed the almost sure
thermodynamic limit. This will work for low density.

The idea is the basis of MCMC (Markov chain Monte Carlo): find a Markov process in the set of
point configurations having µ as invariant measure and then perfectly simulate this Markov process as
we did with pure jump Markov processes in finite sets.

The Markov process will be a birth and death process of grains, with constant death rate and birth
rate given by the Papangelou intensity induced by µ. This is a somehow local interaction.

We start defining a free birth and death process (that means no interactions).

8.1 Free birth and death spatial process:

Let G be a measurable set and consider an intensity measure w on G.

In the case of seed-grain process, G = {B(x, r) : x ∈ Rd, r ∈ R+} and for γ = B(x, r), we have
w(dγ) = λ dxh(r) dr.

We want a process (ηt)t∈R with

birth rate w(dγ) and

death rate of each γ ∈ ηt: 1.
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Harris graphical construction of the free process

We construct a birth and death point process (ηt)t∈R, where ηt ⊂ G is a countable subset of G for
each t.

Let C be a Poisson process on the space G× R× R+ with intensity

w(dγ) dt e−sds (177)

An element of C is a triplet C = (γ, T, S), with γ ∈ G, T ∈ R, S ∈ R+. We identify the point
C = (γ, T, S) with the space-time cilinder

C = γ × [T, T + S) (abusing notation) (178)

and interpret γ as the basis, T as the birth-time, S as the life-time and T + S as the death-time of a the
basis γ of the cylinder C.

We say that C ∈ C is alive at time t if T ≤ t < T + S. Define the process

η̃t :=
{

Basis(C) : C ∈ C, C alive at t
}

(179)

(this maybe a multiset). Call (η̃t)t∈R the stationary free birth death process.

Semigroup and generator For a function f : G→ R, we define

S̃tf(η) := E(f(η̃t)|η̃0 = η)). (180)

S̃t is a semigroup. Define

Define the generator of the process by

L̃f(η) =
∑
γ∈η

[f(η \ γ)− f(η)] +

∫
G

w(dγ)[f(η ∪ {γ})− f(η)]

It satisfies the Kolmogorov equations

d

dt
S̃tf(η) = L̃S̃tf(η) Backward equations

d

dt
S̃tf(η) = S̃tL̃f(η) Forward equations

Stationary measure: law of η̃t is µ̃ (Poisson).

The process in finite time intervals We define the free process for positive times in [0,∞) with
initial configuration η0 = η ⊂ G by including initial cylinders

Cη
0 =

{(
γ, 0, Sγ) : γ ∈ η

}
where Sγ are independent exp(1) variables. The sets of cylinders of C born at positive times are denoted
by

C+ := {C ∈ C : Birth(C) ≥ 0}

Define
η̃ηt =:

{
Basis(C) : C ∈ C+ ∪C0, C alive at time t

}
Then (η̃ηt )t≥0 has initial configuration η and generator L̃.

8.2 Birth and death spatial process with exclusions:

We now want to construct a birth and death process ηt with rate of birth of γ:

w(dγ)× 1{γ does not intersect present balls}, (181)
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is the Papangelou intensity for µ = µ̃(·|ARd).

Rate of death of γ: 1.

General principle If µ̃ is reversible for the (free) process without exclusions, then µ is reversible for
the process with exclusions.

This is clear for finite systems: If we have a process with rate matrix Q and µ is reversible for Q, that
is,

µ(x)Q(x, y) = µ(y)Q(y, x) (182)

and we construct a new matrix QA where the jumps outside a given set of states A vanish, that is,

QA(x, y) := Q(x, y)1{y /∈ A}, (183)

then the measure µ(·|A) is reversible for QA.

Hence, to simulate a random variable with distribution µ(·|A) one can use the Markov process with
rate matrix QA.

Heat bath dynamics Want to construct ηt ∈ {0, 1}G with generator:

Lf(η) =
∑
γ∈η

[f(η \ γ)− f(η)] +

∫
G

w(dγ)M(γ | η) [f(η ∪ {γ})− f(η)]

where M(γ | η) := 1{γ does not intersects balls in η}; this is the Papangelou intensity of µ.

The measure µ is reversible for this dynamics. The proof is based on the following heuristic micro-
scopics:

= (weight of η ∪ γ)× (rate of η ∪ γ → η)

(weight of η)× (rate of η → η ∪ γ)

which gives

w(η ∪ γ)× 1 = w(η)×M(γ|η)

assuming that η is a Poisson process with intensity w(γ).

Graphical construction. Finite-volume, finite time Consider γ’s contained in finite space-region
Λ and a finite time interval [0, t]

1. Run free process starting from η0.

2. Deaths as before.

3. Assume the first (attempted) birth is by the cylinder (γ, t, s):

• If no intersections then
ηt ← ηt− ∪ γ

• Otherwise
ηt1 ← ηt1−

4. Iterate

In terms of cylinders we can see this as a two-sweep scheme:

first sweep: generate free cylinders born from 0 to t,

second sweep: iteratively erase cylinders (γ, t, s) with M(γ|ηt−) = 0.

K[0,t](Λ, η0) the resultant set of kept cylinders

ηt :=
{

Basis(C) : C ∈ K[0,t](Λ, η0), C alive at t
}
.
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Finite-volume, double infinite time (time-stationary construction)

Random times {τj(C) ∈ R : j ∈ Z}, such that

(a) τj → ±∞ for j → ±∞ and

(b)
(
∪i[Ti, Ti + Si]

)
∩
(
∪j{τj}

)
= ∅.

At each τj no cylinder is alive.

Kept cylinders obtained independently in each [τi, τi+1).

K(Λ) := the (time stationary random) set of kept cylinders.

Law of
ηt =

{
Basis(C) : C ∈ K(Λ), C alive at t

}
is exactly the (unique) invariant measure µΛ.

Infinite-volume construction

The problem here is that there is no first mark in time and there are alive cylinders at all times.

The first generation of ancestors of a cylinder C is defined as the set of cylinders C ′ born before C
and alive at the birth-time of C whose basis intersect the basis of C.

AC
1 : First generation of ancestors of C.

AC
n : n-th generation of ancestors of C := union of first generation of ancestors of the cylinders

belonging to the (n− 1)-th generation of C:

AC
n = ∪C′∈AC

n−1
AC′

1 (184)

Notice that a cylinder C ′ may belong to more than a generation of ancestors of C.

Clan of ancestors of C: AC := ∪n≥1A
C
n

The construction of the set K of kept cylinders works if the clan of ancestors of C is finite. In
this case we can apply the cleaning algorithm as follows. Pick a cylinder C and its clan of ancestors. Use
the exclusion from younger to older cylinders in the clan which cylinders are kept or erased.

Result: K ⊂ C set of kept cylinders; C[0,t] cylinders born in [0, t]; K[0,t] kept cylinders born in [0, t]

Theorem 8.1. (i) If AC ∩C[0,t] is almost surely finite for all C alive at time t, then

ηt =
{

Basis(C) : C ∈ K[0,t](η0), C alive at t
}

has generator L.

(ii) If AC is almost surely finite for all C, then

ηt =
{

Basis(C) : C ∈ K, C alive at t
}
.

is stationary with generator L.

Furthermore, the measure µ given by the (Marginal) law of ηt is the unique stationary measure for
the process.

Conditions allowing such a construction

Theorem 8.2 (Conditions guaranteeing the finiteness of the clan of branching ancestors). Define

α := sup
γ

1

|γ|

∫
G

|θ|1{θ ∩ γ 6= ∅}w(dθ).

(i) If α <∞ then AC ∩C[0,t] is almost surely finite for all C alive at time t.

(ii) If α < 1, then AC is almost surely finite for all C.

Proof. This works by dominating the n-th generation of a fixed cylinder C by a multitype branching
process with mean “size type” α.
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Oriented percolation

The backwards oriented percolation model of cylinders is defined by the oriented bonds C → C ′

if C ′ is an ancestor of C, that is, if the basis of C and C ′ intersect and C ′ is alive when C is born.

Let m(γ, θ) be the mean number of cylinders of basis θ in the first generation of a cylinder of basis γ.
These are cylinders born at negative times −t and have a lifetime at least t, so they survive to intersect
the grain born at time zero. Its average number is, therefore,

m(γ, θ) = w(θ)I(γ, θ)
[∫ 0

−∞
dt

∫ ∞
t

ds e−s
]

= w(θ)I(γ, θ) · 1 . (185)

Define mn(γ, θ) as the mean number of cylinders of basis θ incompatible with a cylinder of basis γ in the
n-th generation of ancestors, mn is the matrix-product of m by itself n times.

We will show that a sufficient condition for absence of oriented percolation is∑
n≥1

∑
θ

mn(γ, θ) <∞, for all γ. (186)

Let q : G → R+ be the area of the grain, and assume infγ q(γ) ≥ 1, (see Lemma 5.15 of Fernández,
Ferrari and Garcia (2001)). Denote

αq := sup
γ

1

q(γ)

∑
θ

q(θ)m(γ, θ), (187)

we have ∑
θ

mn(γ, θ) ≤ αnq q(γ) . (188)

In our case q(γ) is the area of the circle centered at γ.

Domination by branching process We introduce a multitype branching process Bn, in the set of
cylinders, which will dominate An. We look “backwards in time” and let “ancestors” play the role of
“branches”. Births in the original marked Poisson process correspond to dissapearance of branches. We
reserve the words “birth” and “death” for the original forward-time Poisson process.

Proposition 8.3 (Domination by branching). For any given set of cylinders {C1, . . . , Ck}, there exist
independent random sets BCi

1 with the same marginal distribution as ACi
1 , such that

k⋃
i=1

ACi
1 ⊂

k⋃
i=1

BCi
1 . (189)

Proof. Denote C ≺ C ′ if and only if Birth(C) ≤ Birth(C ′).

For a finite set of cylinders {C1, . . . , Ck} such that Ci ≺ Ci+1, i = 1, . . . , k − 1, define

Ã
Cj
1 = A

Cj
1 \

(
j−1⋃
`=1

AC`
1

)
. (190)

This ensures that Ã
Cj
1 are independent sets and

k⋃
i=1

ACi
1 =

k⋃
i=1

ÃCi
1 . (191)

On the other hand, for any C, ÃC
1 is stochastically dominated by AC

1 [that is, there exists a joint

realization (ÃC
1 ,A

C
1 ) such that P(ÃC

1 ⊂ AC
1 ) = 1]. From this observation and (191) we get (189).

The procedure defined by B1 naturally induces a multitype branching process in the space of cylinders.
We define the n-th generation of the branching process by

BC
n = {BC′

1 : C ′ ∈ BC
n−1} (192)
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where for all C ′, BC′

1 has the same distribution as AC′

1 and are independent random sets depending only
on C ′. Inductively,

AC
n ⊂ BC

n . (193)

Indeed,

AC
n =

⋃
C′∈AC

n−1

AC′

1 =
⋃

C′∈AC
n−1

ÃC′

1 (194)

where in the definition of ÃC′

1 we use {C1, . . . , Ck} = ∪n−1
i=0 AC

i . Hence, the inductive hypothesis AC
i ⊂

BC
i , for i = 1, . . . , n− 1, yields (193).

In consistence with our previous notation, we denote

BC =
⋃
n≥0

BC
n ; Bx,t =

⋃
n≥0

Bx,t
n ; BΥ =

⋃
x∈Υ

Bx,0, (195)

the branching clans of C, (x, t) and Υ (at time 0) respectively. By (193),

AC ⊂ BC ; Ax,t ⊂ Bx,t; AΥ ⊂ BΥ. (196)

Definition: the space-witdth is the volume occuppied by the projection of the bases of the cylinders
in the family. The time-lenght is the lenght of the time interval between t and the first birth in the
family of ancestors of (x, t).

We have the following dominations, by (196),

TL (AC) ≤ TL (BC) ; TL (Ax,t) ≤ TL (Bx,t) ; TL (AΥ) ≤ TL (BΥ) , (197)

and similarly for the respective space widths.

Multitype branching of γ’s The (multitype) branching process Bn induces naturally a multitype
branching process in the set of contours. For a cylinder C with basis γ and birth-time 0, define bγn ∈ NG

as the number of cylinders in the nth generation of ancestors of C with basis θ:

bγn(θ) =
∣∣∣{C ′ ∈ BC

n : Basis(C ′) = θ
}∣∣∣ . (198)

This process will be useful in estimating the space properties of the clans of ancestors. We have the
following relationship: ∑

θ

bγn(θ) = |BC
n |. (199)

The process bn is a multitype branching process whose offspring distributions are Poisson with means

m(γ, θ) = 1{γ 6∼ θ} w(θ)

∫ ∞
0

e−tdt

= 1{γ 6∼ θ}
∫ ∞

0

e−tdt

= 1{γ 6∼ θ}w(θ). (200)

To see this, notice that the cylinders C ′ with basis θ that are potential ancestors of C (with basis γ)
form a Poisson process of rate 1{γ 6∼ θ}w(θ). Each of those cylinders is an ancestor of C if its lifetime
is bigger than the difference between the birth-time of C and C ′. The lifetimes of different cylinders are
independent exponentially distributed random variables of rate 1. The probability that the lifetime of
any given cylinder is bigger than t is given by e−t. Hence, the birth-times of the ancestors of C with
basis θ form a (non homogeneous) Poisson process of rate depending on t given by 1{γ 6∼ θ}w(θ) e−t.
The mean number of births is therefore given by (200).

Lemma 8.4. The means (200) satisfy. Here q(γ) = |γ|.∑
θ

mn(γ, θ) ≤
∑
θ

|θ|mn(γ, θ) ≤ |γ|αn, (201)

where α is defined in (187).
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Proof. ∑
θ

|θ|mn(γ, θ)

=
∑

γ1:γ1 6∼γ

w(γ1)
∑

γ2:γ2 6∼γ1

w(γ2)...
∑

θ:θ 6∼γn−1

|θ|w(θ)

= |γ|
∑

γ1:γ1 6∼γ

|γ1|
|γ|

w(γ1)
∑

γ2:γ2 6∼γ1

|γ2|
|γ1|

w(γ2)...
∑

θ:θ 6∼γn−1

|θ|
|γn−1|

wθ

≤ |γ|
(

sup
γ

∑
θ:θ 6∼γ

|θ|
|γ|
w(θ)

)n
. � (202)

This Lemma shows, in particular, that the branching process bn is subcritical if α < 1.

8.3 Continuous-time branching process

Let C be a cylinder with basis γ and birth-time 0. Combing backwards continuously in time the branching
clan BC we define a continuous-time multitype branching process ψγt (θ) = number of contours of type θ
present at time t (of this process) whose initial configuration is δγ . Each C ′ ∈ BC is a branch, that is,
belongs to the first generation of ancestors of a unique cylinder U(C ′) in BC . In the branching process
ψt all the branches (ancestors) of U(C ′) appear simultaneously at the birth of U(C ′), that is when U(C ′)
dissapears if we look backwards in time. Therefore the part of C ′ in the interval [Birth(U(C ′)),Death(C ′)]
is ignored. Formally,

ψγt (θ) =
∣∣∣{C ′ ∈ B̄C : Basis(C ′) = θ,Birth(C ′) < −t < Birth(U(C ′)),Life(C ′) 3 t

}∣∣∣. (203)

In the process ψt, each contour γ lives a mean-one exponential time after which it dies and gives birth
to kθ contours θ, θ ∈ G, with probability

∏
θ

em(γ,θ)m(γ, θ)kθ

kθ!
(204)

for kθ ≥ 0. These are independent Poisson distributions of mean m(γ, θ). The infinitesimal generator of
the process is given by

Lf(ψ) =
∑
γ∈G

ψ(γ)
∑

η∈Y0(γ)

∏
θ:η(θ)≥1

em(γ,θ)m(γ, θ)η(θ)

η(θ)!
[f(ψ + η − δγ)− f(ψ)] (205)

where ψ, η ∈ Y0 = {ψ ∈ NG;
∑
θ ψ(θ) < ∞} and Y0(γ) = {ψ ∈ Y0;ψ(θ) ≥ 1 implies θ 6∼ γ} and

f : Y0 → N.

The branching process ψγt allows us to estimate the time-length of a clan, due to the obvious fact:∑
θ

ψγt (θ) = 0 implies TL (BC) < t . (206)

Let Mt(γ, θ) be the mean number of contours of type θ in ψt and Rt(γ) its sum over θ:

Mt(γ, θ) = Eψγt (θ) ; Rt(γ) =
∑
θ

Mt(γ, θ) . (207)

The bound we need is given in the next Lemma.

Lemma 8.5. The mean number of branches, Rt(γ) satisfies

P
(∑

θ

ψγt (θ) > 0
)
≤ Rt(γ) ≤ |γ| e(α−1)t. (208)
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Proof. The first inequality is immediate because
∑
θ ψ

γ
t (θ) assumes non-negative integer values and Rt(γ)

is its mean value.

To show the second inequality we first use the generator given by (205) to get the Kolmogorov
backwards equations for Rt(γ):

d

dt
Rt(γ) =

∑
γ′

m(γ, γ′)Rt(γ
′)−Rt(γ). (209)

Since R0(γ′) ≡ 1, the solution is

Rt(γ) =
∑
γ′

[
exp[t(m− I)]

]
(γ, γ′) (210)

where m is the matrix with entries m(γ, γ′) and I is the identity matrix. This can be rewritten as

Rt(γ) = e−t
∑
n≥0

tn

n!

∑
γ′

mn(γ, γ′) (211)

≤ e−t
∑
n≥0

tn

n!
|γ|αn , (212)

where the last bound is just the leftmost inequality in (201).

8.4 Time length and space width

We are now ready to provide bounds for the time length and space width of the percolation clan.

Theorem 8.6. If β > β∗ (i.e. α(β) < 1), then

(i) The probability of backward oriented percolation is zero.

(ii) For any positive b,

P
(

TL (Ax,t) > bt
)
≤ α0 e

−(1−α)bt (213)

(iii)

E
(

SW (Ax,t)
)
≤ α0(β)

1− α(β)
(214)

(iv)

E
(

exp[aSW (Ax,t)]
)
≤ α0(β − a)

1− α(β − a)
(215)

(v)

P
(

SW (Ax,t) ≥ `
)
≤ α0(β̃)

1− α(β̃)
e−(β−β̃) ` (216)

for any β̃ ∈ (β∗, β).

Proof (i) We follow an idea of Hall (1985). For each C ∈ C we use the domination (193) and the
identity (199). Therefore, to prove that there is no backward oriented percolation it is enough to prove
that, for fixed γ

P
(∑

θ

bγn(θ) 6= 0 for infinitely many n

)
= 0. (217)

Since bγn(θ) assumes non negative integer values, by Borel-Cantelli Lemma, a sufficient condition for
(217) is ∑

n

∑
θ

mn(γ, θ) <∞. (218)

But this follows from Lemma 8.4.
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(ii) By (206) and (197) for each x ∈ γ and s ≤ t∑
θ

ψγt (θ) = 0 implies TL (Ax,0) ≤ t. (219)

Hence,

P(TL (Ax,0) > t) ≤
∑
γ3x

P(η0(γ) = 1)Rt(γ)

≤
∑
γ3x

w(γ)Rt(γ) ≤ α0 e
−(1−α)t (220)

by the rightmost inequality in (208).

(iii) We find upperbounds for the space diameter of the backwards percolation clan through upper-
bounds for the total number of occupied points by the multitype branching process bn defined by (198).
In fact,

SW (Ax,0) ≤
∑
γ3x

η0(γ)
∑
n

∑
θ

|θ|bγn(θ). (221)

By (??), Eη0(γ) ≤ w(γ), hence by (201)

E
(∑
γ3x

η0(γ)
∑
n

∑
θ

|θ|bγn(θ)
)
≤

∑
γ3x

w(γ)
∑
n

∑
θ

|θ|mn(γ, θ)

≤ α0

∑
n

αn. (222)

(iv) Write

E(eaSW ) =
∑
`

ea` P(SW = `)

≤
∑
`

ea`
∑
k

∑
γ1,...,γk

1
{
|γ1 ∪ · · · ∪ γk| = `

}
× P

(
γ1 3 0,bγ1

1 (γ2) ≥ 1, . . . ,b
γk−1

1 (γk) ≥ 1
)
.

(223)

By the Markovian property of bn we get

P
(
γ1 3 0,bγ1

1 (γ2) ≥ 1, . . . ,b
γk−1

1 (γk) ≥ 1
)

= P(γ1 3 0)P(bγ1

1 (γ2) ≥ 1) · · ·P(b
γk−1

1 (γk) ≥ 1)

≤ 1
{
γ1 3 0, γ1 6∼ γ2, . . . , γk−1 6∼ γk

} k∏
i=1

w(γ)i (224)

Substituting this in (223) and using that

ea` 1
{
|γ1 ∪ · · · ∪ γk| = `

}
≤ 1

{
|γ1 ∪ · · · ∪ γk| = `

}
exp
(
a

k∑
i=1

|γi|
)

(225)

we get

E(eaSW ) ≤
∑
k

∑
γ1,...,γk

1
{
γ1 3 0, γ1 6∼ γ2, . . . , γk−1 6∼ γk

}
exp
(
−(β − a)

k∑
i=1

|γi|
)

=
∑
k

∑
γ13 0

|γ1| e−(β−a)|γ1| 1

|γ1|
∑
γ2 6∼γ1

|γ2|e−(β−a)|γ2| . . .
1

|γk−1|
∑

γk 6∼γk−1

e−(β−a)|γk|

≤ α0(β − a)
∑
k≥0

α(β − a)k. (226)

(v) It suffices to use (iv) and the exponential Chevichev inequality and to notice that a must be less
than β − β∗ to avoid a zero in the denominator of (215).
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Remarks. 1. Part (ii) can in fact be proven by a more elementary argument not requiring the
continuous-time construction of Section 8.3. The argument gives the same rate of decay as in (213) but
a worse leading constant. Let us sketch it.

P
(

TL (Ax,0) > t
)

≤
∑
k

∑
γ1,...,γk

1{γ1 3 0, γ1 6∼ γ2, . . . , γk−1 6∼ γk}P(S1 + · · ·+ Sk > t) (227)

where Si are independent mean one exponentially distributed random variables and independent of
γi. The time Si represents the period between the birth of γi and γi+1. As the sum of independent
exponentials is a gamma distribution with parameters k and 1,

P(S1 + · · ·+ Sk > t) = e−t
k∑
i=0

ti

i!
. (228)

Therefore (227) is bounded by

e−t
∞∑
i=0

ti

i!

∑
k≥i

∑
γ13 0

|γ1|w(γ1)
1

|γ1|
∑
γ2 6∼γ1

|γ2|w(γ2) . . .
1

|γk−1|
∑

γk 6∼γk−1

w(γk)

≤ e−t
∞∑
i=0

ti

i!

∑
k≥i

α0 α
k−1

=
α0

α(1− α)
e−(1−α)t. (229)

2. In Fernández, Ferrari and Garcia (1998) we offered an alternative proof of part (iii), based on a
the computation of the exponential moment of the total population of a subcritical single-type branching
process, which dominates the space width. However this proof works in a smaller range of β.

Perfect simulation of invariant measures of infinite volume exclusion birth-and-death pro-
cesses in finite window Λ:

Two steps

1. Construction of AΛ,0: cylinders alive at time 0 and their clans of ancestors. (Contact process of
cylinders.)

Under our conditions, it contains only a finite number of cylinders.

2. Cleaning algorithm: Decide, using the exclusion rule, from younger to older cylinders which cylin-
ders are kept or erased.

Result: KΛ,0 set of kept cylinders.

Define
η ∩ Λ := {Basis(C) : C ∈ KΛ,0, C alive at time 0}

for γ intersecting Λ.

This configuration has the marginal distribution of the infinite-volume measure µ on the set GΛ =
{θ ∈ G : θ ∩ Λ 6= ∅}.

8.5 Construction of Gibbs measures

If the measure is locally absolutely continuous with respect to µ̃ when restricted to a finite region:

µ(dη) =
1

Z
e−HΛ(η)µ̃(dη)

that is, the Hamiltonian acts only in the points inside some region Λ. We are interested in Gibbs measures
with respect to these specifications, which are absolutely continuous with respect to a Poisson process µ̃.
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We propose a dynamics with rate of birth:

w(dγ)× e−H(η∪γ)

e−H(η)

which is the Papangelou intensity measure for µ, and rate of death 1.

The generator is now

Lf(η) =
∑
γ∈η

[f(η \ γ)− f(η)] +

∫
G

w(dγ)
e−H(η∪γ)

e−H(η)
[f(η ∪ {γ})− f(η)]

and the semigroup

Stf(η) := E(f(ηt)|η0 = η)). (230)

We say that µ is reversible for (ηt) if for any test function f, g, we have∫
dµ g Stf =

∫
dµ f Stg

Under suitable conditions, the next identity implies µ reversible.∫
dµ g Lf =

∫
dµ f Lg

These equations are consequence of the following heuristic microscopics:

= (weight of η ∪ γ)× (rate of η ∪ γ → η).

(weight of η)× (rate of η → η ∪ γ)

which gives:

e−H(η∪γ) × 1 = e−H(η) × e−H(η∪γ)

e−H(η)

We construct the dynamics in function of a Poisson process C on G× R× R+ × [0, 1] with intensity

w(dγ) dt e−s ds du. (231)

A point of this Poisson process is a flagged cylinder

C = (γ, T, S, U) (232)

where T = birth(C) ∈ R
S =life(C) ∼ exponential(1)
U =flag(C) ∼ Uniform[0, 1]

We perform the same construction as before but now we include C(γ, T, S, U) in K if

U ≤M(γ|ηT−) (233)

where

M(γ|η) =
e−H(η∪γ)

e−H(η)
. (234)

9 The free Bose gas

This section is based on Armendáriz, Ferrari and Yuhjtman [1].

Feynman 1953: Partition function of the free Bose Gas:

ZΛ,N =
1

N !

∑
σ∈SN

∫
ΛN

e−α
∑
i ‖xi−xσ(i)‖2 dx1 . . . dxN , (235)

α > 0 temperature. SN := set of permutations of {1, . . . , N}. Λ := bounded subset of Rd.
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Finite-volume spatial random permutation:

Configuration space:
(x, σ) ∈ ΛN × SN

Canonical measure GΛ,N :

GΛ,Ng :=
1

ZΛ,N

1

N !

∑
σ∈SN

∫
ΛN

g(x, σ) e−α
∑N
i=1 ‖σ(xi)−xi‖2dx1 . . . dxN . (236)

ZΛ,N = normalization (partition function), x = (x1, . . . , xN ).

g test function

Infinite-volume spatial random permutations

We want to to construct a random spatial permutation

(χ, σ) with law denoted µρ

where χ is a point process and σ : χ→ χ is a permutation, that is, a bijection.

We ask µρ to be translation-invariant, with point density ρ and to be Gibbs for the specifications
induced by GΛ,N .

Loops and spatial permutations We say that γ = [x1, . . . , xk] meaning [x2, . . . , xk, x1] = [x1, . . . , xk]
is an unrooted loop of size k. The support of γ is denoted by {γ} := {x1, . . . , xk}. We consider γ as a
permutation of {γ}, by setting γ(xi) = xi+1. In particular, γ is a spatial permutation.

Observe that there is a bijection spatial permutation ↔ loop configuration given by

(χ, σ) 7→ Γ,

where γ ∈ Γ if γ is an unrooted root satisfying {γ} ⊂ χ and γ(x) = σ(x) for all x ∈ {γ}. Reciprocally,
Γ 7→ (χ, σ), the spatial permutation defined by χ = ∪γ∈Γ{γ}; σ(x) = γ(x) for x ∈ {γ}, γ ∈ Γ.

Loop factorization of the spatial random permutation density. Take χ finite and observe that
the weight of a spatial random permutation (χ, σ) is the product of the weights of the corresponding
loops of length 1:

e−α
∑
x∈χ ‖σ(x)−x‖2 =

∏
γ∈σ e

−α
∑
x∈{γ} ‖γ(x)−x‖2

This has been observed by Sütő [19] and suggest that a spatial random permutation can be seen as a
point process, where the points are loops. Our approach is based on this somehow obvious observation.

Loops induced by a spatial random permutation in a box. An arrow from x to y means y = σ(x). An
isolated dot at x means x = σ(x), that is, a loop of length 1.

We will propose a Poisson point process of loops and then will show that its distribution is a Gibbs
measure for the specifications induced by GΛ,N .

Gaussian loop soup in Rd.

Space of unrooted loops: D :=
(
∪k≥1(Rd)k

)
/∼,

where the equivalence relation ∼ is defined by (x1, . . . , xk) ∼ (x2, . . . , xk, x1); the class of equivalence of
a vector (x1, . . . , xk) is denoted [x1, . . . , xk].
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Fix an activity parameter λ ∈ (0, 1] and define the loop soup intensity measure on D:

Qls
λ (d[x1, . . . , xk]) := λk

k

(
α
π

)kd/2
e−α

∑k−1
i=0 ‖xi−γ(xi)‖2 dx1 . . . dxk,

The denominator k compensates the fact that each rooted k-loop is counted k times.

Given a Borel set A ⊂ Rd and an unrooted loop γ ∈ Dk with support {γ} = {x0, . . . , xk−1}, consider
the cardinality of the set A ∩ {γ}

nA(γ) :=

k−1∑
j=0

1A(xj). (237)

If the set has finite Lebesgue measure |A| < ∞, the mean density of points belonging to k-loops in A is
defined as

ρk,λ(A) :=
1

|A|

∫
Dk

nA(γ)Qk,λ(dγ) . (238)

where Qk(dγ) = 1{γ ∈ Dk}Q(dγ).

Proposition 9.1. For any compact set A ⊂ Rd,

ρk,λ = ρk,λ(A) =
(α
π

)d/2 λk

kd/2
. (239)

Proof. Denote

p(x, y) :=
(α
π

)d/2
exp

(
− α‖x− y‖2

)
.

the density of a Gaussian random variable in Rd with mean x and covariance matrix (2/α)Id, where Id
here is the identity matrix.

We have

ρk,λ(A) =
λk

k|A|

∫
(Rd)k

( k−1∑
j=0

1A(xj)
) k−1∏
i=0

p(xi, xi+1) dx0 . . . dxk−1

=
λk

k|A|

k−1∑
j=0

∫
(Rd)k

1A(xj)

k−1∏
i=0

p(xi, xi+1) dx0 . . . dxk−1

=
λk

k|A|

k−1∑
j=0

∫
Rd

1A(xj)
( α
πk

)d/2
dxj

=
λk

k|A|

( α
πk

)d/2
k|A| =

(α
π

)d/2 λk

kd/2
.

We call ρk,λ the point density of the measure Qk,λ. The density of Qλ is defined by

ρ(λ) :=
∑
k≥1

ρk,λ . (240)

We have

ρ(λ) =
(α
π

)d/2∑
k≥1

λk

kd/2
<∞ ⇐⇒

{
d ≤ 2 and 0 ≤ λ < 1, or

d ≥ 3 and 0 ≤ λ ≤ 1 .
(241)

Define the critical density ρc by

ρc :=
(α
π

)d/2∑
k≥1

1

kd/2
. (242)

The function ρ : [0, 1]→ [0, ρc] is invertible; let λ(ρ) be its inverse.

If λ and d satisfy (241), so that ρ(λ) <∞, define the Gaussian loop soup intensity measure Qls
λ on D

as
Qls
λ :=

∑
k≥1

Qk,λ . (243)

This measure has point density ρ(λ).
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Proposition 9.2. Let d and λ be as in (241). Then Qls
λ is σ-finite.

Proof. Need to show that there is a countable partition of D in sets with finite Qls
λ measure.

We start by showing that Qk,λ is σ-finite. Let Bj ⊂ Rd be the ball of radius j in Rd, and define

Υk,j :=
{
γ ∈ Dk : {γ} ∩Bj 6= ∅

}
⊂ Dk .

Then
⋃
j Υk,j = Dk, and

Qk,λ(Υk,j) ≤ |Bj | ρk,λ(Bj) = |Bj |ρk,λ <∞,

by (238) and Proposition 9.1. Letting Υj :=
⋃
k≥1 Υk,j , we have

⋃
j≥1 Υj = D and

Qls
λ (Υj) ≤

∑
k≥1

Qk,λ(Υk,j) ≤
∑
|Bj |ρk,λ = ρ|Bj | <∞, by (241).

Definition 9.3. Let d and λ satisfy (241). Define the loop-soup by

Γls
λ := Poisson process on D with intensity Qls

λ ,

µls
λ := Law of Γls

λ .

Analogous to Brownian loop soup. Lawler and Werner 2004, Lawler and Trujillo Ferreras 2007, Le Jan
2017.

A sample Γ of a Gaussian loop soup is a countable collection of unrooted Gaussian loops in Rd, with
the property that any compact set contains finitely many points in the supports of these loops.

The density of the loop soup Let X be the set of locally finite loop soup configurations,

X := {Γ ⊂ D :
∑
γ∈Γ|{γ} ∩A| <∞, for all compact A ⊂ Rd}. (244)

Given Υ ⊂ D and Γ ∈ X let

XΥ :=
{

Γ ∈ X : Γ ⊆ Υ
}
. (245)

Assume Qls
λ (Υ) <∞, then, by definition of Poisson process, for measurable, bounded g : XΥ → R,

µls
λg = e−Q

ls
λ (Υ)

∑
`≥0

1

`!

∫
Υ

· · ·
∫

Υ

g
(
{γ1, . . . , γ`}

)
Qls
λ (dγ1) . . . Qls

λ (dγ`) (246)

=
∑
`≥0

e−Q
ls
λ (Υ)

`!

∫
Υ

· · ·
∫

Υ

g
(
{γ1, . . . , γ`}

)
f ls
λ

(
{γ1, . . . , γ`}

)
dγ1 . . . dγ`, (247)

where

f ls
λ

(
{γ1, . . . , γ`}

)
:=
∏`
i=1 ωλ(γi), (248)

ωλ
(
[x0, . . . , xk−1]

)
:= λk

∏k−1
i=0 p(xi, xi+1) with xk = x0, (249)

and where for any bounded measurable h : Υ→ R,∫
D

h(γ) dγ :=
∑
k≥1

1

k

∫
Rd
· · ·
∫
Rd
h
(
[x0, . . . , xk−1]

)
dx0 . . . dxk−1, (250)

if the right hand side is well defined. Taking h(γ) = h1(γ)ωλ(γ)1{γ∈Υ} for some bounded h1 : Υ→ R and

recalling the assumption Qls
λ (Υ) <∞, we conclude that (250) is well defined for this h and it is bounded

by ‖h1‖∞Qls
λ (Υ).

The function e−Q
ls
λ (Υ)f ls

λ is the density of the Gaussian loop soup at fugacity λ in the set Υ; in
particular, if g ≡ 1 we have µls

λg = 1.
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9.1 Finite-volume loop soup and spatial permutations

We show that the Gaussian loop soup in a compact set A ⊂ Rd conditioned to have n points has the
same law as the spatial random permutation with density (236).

Recall that there is a bijection between X and the set

{(χ, σ) : χ locally finite and σ contains only finite cycles} (251)

the space of finite cycle permutations with locally finite supports.

The set of loops with supports contained in A and the space of loop-soup configurations contained in
A with exactly n points are denoted by

DA := {γ ∈ D :
{
γ} ⊂ A

}
, (252)

XA := XDA , (253)

XA,n :=
{

Γ ∈ XA :
∑
γ∈Γ|γ| = n

}
. (254)

Canonical measures The Gaussian loop soup restricted to loops contained in A is defined by

µls
A,λ := Poisson process on XA with intensity 1DA(γ)Qls

λ (dγ). (255)

We now show that µls
A,λ conditioned to have n points in A equals the spatial random permutation with

density GA,n defined in (236).

Proposition 9.4. For any measurable, bounded test function g : XA,n → R, we have

1

µls
A,λ(XA,n)

∫
XA,n

g(Γ)µls
A,λ(dΓ) = GA,ng (256)

Proof. Since there is a bijection between the supports of these probability measures, it suffices to verify
that the weights assigned by their densities to any given configuration satisfy a fixed ratio. Let (χ, σ) be
a spatial permutation such that χ ⊂ A and |χ| = n. Let Γ be the cycle decomposition of (χ, σ); clearly
Γ ∈ XA,n. Then, by the definition of Poisson process, the loop soup conditioned density of Γ ∈ XA,n is

f ls
λ (Γ|XA,n) =

e−Q
ls
λ (DA)

µls
λ (XA,n)

∏
γ∈Γ

ωλ(γ) =
λne−Q

ls
λ (DA)

µls
λ (XA,n)

∏
γ∈Γ

ω1(γ), (257)

where ωλ was defined in (249).

On the other hand, the density of the canonical measure GA,n can be written as a function of the
cycle decomposition of σ by

1

ZA,n
fA,n(χ, σ) =

1

ZA,n
e−αH(χ,σ) =

1

ZA,n

∏
γ∈(χ,σ)

ω1(γ).

Grand-canonical measures The grand-canonical spatial random permutation at fugacity λ ≤ 1 as-
sociated to the canonical density (236) is defined by

µA,λ g :=
1

ZA,λ

∑
n≥0

(
(α/π)d/2λ

)n
n!

∑
σ∈Sn

∫
An

g(x, σ)e−αH(x,σ)dx, (258)

where x = (x1, . . . , xn), H(x, σ) :=
∑n
i=1 ‖xi − xσ(i)‖2 and

ZA,λ :=
∑
n≥0

(
(α/π)d/2λ

)n
n!

∑
σ∈Sn

∫
An

e−αH(x,σ)dx.

Proposition 9.5. Let λ ≤ 1. The Gaussian loop soup at fugacity λ restricted to A defined in (255) and
the grand-canonical measure (258) at the same fugacity are equivalent:

µls
A,λ = µA,λ. (259)
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Proof. We look at both measures as point processes in DA. To prove the proposition it suffices to show
that the measures have the same Laplace functionals. Given ψ : DA → R+, define g : XA → R as

g(Γ) := exp
(
−
∑
γ∈Γψ(γ)

)
.

By Campbell’s theorem,

µls
A,λg =

∫
XA

µls
λ (dΓ)e−

∑
γ∈Γ ψ(γ) = exp

(∫
DA

(e−ψ(γ) − 1)Qls
λ (dγ)

)
= e−Q

ls
λ (DA) exp

(∑
k≥1

1

k!
ak

)
,

where, using the definition of Qk,λ and denoting λ̃ := (α/π)d/2λ,

ak := λ̃k(k − 1)!

∫
Ak
dx1 . . . dxk e

−αH([x1,...,xk]) e−ψ([x1,...,xk])

= λ̃k
∑
γ∈Ck

∫
Ak
dx1 . . . dxk e

−αH(x,γ) e−ψ(x,γ)

where Ck is the set of cycles of size k with elements {1, . . . , k}, x = (x1, . . . , xn), and (x, γ) := [x1, xγ(1), . . . , xγk−1(1)];
notice that Ck has cardinality (k − 1)!. By Lemma 9.6 below we have

µls
A,λg = e−Q

ls
λ (DA)

∑
n≥0

1

n!

∑
P∈Pn

∏
I∈P

a|I|

= e−Q
ls
λ (DA)

∑
n≥0

λ̃n

n!

∑
P∈Pn

∏
I∈P

∑
γ∈C|I|

∫
A|I|

dx1 . . . dx|I|e
−αH([x1,...,x|I|]) e−ψ([x1,...,x|I|])

= e−Q
ls
λ (DA)

∑
n≥0

λ̃n

n!

∑
σ∈Sn

∏
γ∈σ

∫
A|γ|

dx1 . . . dx|γ| e
−αH(x,γ)e−ψ(x,γ)

= e−Q
ls
λ (DA)

∑
n≥0

λ̃n

n!

∑
σ∈Sn

∫
An

dx1 . . . dxn e
−αH(x,σ)

∏
γ∈σ

e−ψ((xi:i∈{γ}),γ)

= µA,λg,

where (x, σ) is the spatial permutation that maps xi to xσ(i) and {γ} is the set of indices that appear in
the cycle γ.

Lemma 9.6 (Combinatorial lemma). Let (an)n≥1 ∈ CN be such that
∑
n≥1

1
n! |an| <∞. Then

exp
(∑
n≥1

1

n!
an

)
= 1 +

∑
n≥1

1

n!

∑
P∈Pn

∏
I∈P

a|I|, (260)

where Pn is the set of partitions of {1, . . . , n} into non-empty sets,

Pn =
{
P partition of {1, . . . , n} : ∅ /∈ P

}
, (261)

and |I| stands for the cardinality of the set I.

Proof. By the series expansion of the exponential function

exp
(∑
n≥1

1

n!
an

)
=
∑
j≥0

1

j!

(∑
`≥1

1

`!
al

)j
= 1 +

∑
j≥1

1

j!

∑
i1,...,ij
i`≥1

ai1
i1!

. . .
aij
ij !

= 1 +
∑
j≥1

1

j!

∑
n≥1

∑
i1+···+ij=n

i`≥1

ai1
i1!

. . .
aij
ij !
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= 1 +
∑
j≥1

1

j!

∑
n≥1

1

n!

∑
i1+···+ij=n

i`≥1

(
n

i1 . . . ij

)
ai1 . . . aij

= 1 +
∑
n≥1

1

n!

∑
j≥1

1

j!

∑
i1+···+ij=n

i`≥1

(
n

i1 . . . ij

)
ai1 . . . aij

= 1 +
∑
n≥1

1

n!

∑
j≥1

∑
P={I1,...,Ij}∈Pn

a|I1| . . . a|Ij |

= 1 +
∑
n≥1

1

n!

∑
P∈Pn

∏
I∈P

a|I|.

The change of the order of summation in the fifth line above is justified by the absolute convergence of∑
n≥1

1
n! an.

Point correlations of the loop soop Define

Kλ(x, y) :=
∑
k≥1

( α
πk

)d/2
λk e−

α
k ‖x−y‖

2

. (262)

Proposition 9.7 (Point correlations). The n-point correlation density of νls
λ is given by

ϕls
λ (x1, . . . , xn) = perm

(
Kλ(xi, xj)

)n
i, j=1

, (263)

where perm(A) is the permanent of the matrix A ∈ Rn×n.

Sketch of the proof. We compute the 3-point correlation density. To simplify notation, in this proof
we will denote µ = µls

λ , Q = Qls
λ and Kxy = Kλ(x, y). Given pairwise disjoint bounded Borel sets

A,B,C ⊂ Rd, the third moment measure for the point marginal νls
λ over A×B × C is given by∫

nA(Γ)nB(Γ)nC(Γ)µ(dΓ) (264)

=

∫ ∑
γ∈Γ nA(γ)

∑
γ′∈Γ nB(γ′)

∑
γ′′∈Γ nC(γ′′)µ(dΓ)

=

∫ (∑
γ∈Γ nA(γ)nB(γ)nC(γ)

+
∑
γ∈Γ nA(γ)

∑
γ′∈Γ, γ′ 6=γ nB(γ′)nC(γ′) (265)

+
∑
γ∈Γ nB(γ)

∑
γ′∈Γ, γ′ 6=γ nA(γ′)nC(γ′)

+
∑
γ∈Γ nC(γ)

∑
γ′∈Γ, γ′ 6=γ nA(γ′)nB(γ′)

+
∑
γ∈Γ nA(γ)

∑
γ′∈Γ, γ′ 6=γ nB(γ′)

∑
γ′′∈Γ\{γ,γ′} nC(γ′′)

)
µ(dΓ)

= Q(nA nB nC) +Q(nA)Q(nB nC) (266)

+Q(nB)Q(nA nB) +Q(nC)Q(nA nB) +Q(nA)Q(nB)Q(nC).

To go from (265) to (266) we use that µ is a Poisson process of loops, then

(a) the expectation of the product of functions of different loops factorize (Theorem 3.2 in [17]), and

(b)
∫ ∑

γ∈Γ g(γ)µ(dΓ) =
∫
D
g(γ)Q(dγ), denoted Q(g), by Campbell’s theorem.

Define

〈a1 . . . ak〉 :=
{
γ ∈ D : γ goes through a1, . . . , ak in this order

}
(267)

and compute

Q(nA nB nC) =

∫ ∑
a∈γ1A(a)

∑
b∈γ1B(b)

∑
c∈γ1C(c)Q(dγ) (268)

=

∫ ∑
{a,b,c}⊂{γ}
a∈A,b∈B,c∈C

(
1〈abc〉(γ) + 1〈acb〉(γ)

)
Q(dγ) (269)
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=

∫
A

∫
B

∫
C

(KabKbcKca +KacKcbKba) dc db da, (270)

where (269) follows from partitioning the set of cycles that go through a, b, c according to the order in
which they visit the points, and (270) can be proved using the argument applied to compute the density
ρ.

Using the same argument to compute the other terms in (266), we conclude that the third moment
measure (264) is absolutely continuous with respect to Lebesgue measure in (Rd)3 with Radon-Nikodym
derivative

ϕls
λ (x, y, z) = KxxKyyKzz +KxxKyzKzy +KxyKyxKzz

+KxyKyzKzx +KxzKyxKzy +KxzKyyKzx,

which proves (263) for n = 3; see Fig. 2. We leave the proof of the general case to the reader.

KxxKyyKzz

KxzKyyKzxKxzKyxKzyKxyKyzKzx

KxyKyxKzzKxxKyzKzy

Figure 2: Gaussian loop soup 3-point correlations. A directed lace between two points means that the
loop goes through the points in the indicated order. Point x is blue, y is red and z is green.

9.2 Gaussian interlacements

We work now in d ≥ 3.

Space of Doubly infinite trajectories:

W :=
{
w : Z→ Rd, lim

n→±∞
‖w(n)‖ =∞

}
Define Xn(w) := w(n), the position of the walk at time n.

Denote P x := distribution of a double infinite random walk with Normal(0, 1
2α Id) increments, starting

at x.

Intensity via capacity (Sznitman): Define the entrance time of w in a compact set A by:

TA(w) := inf
{
n ∈ Z, Xn(w) ∈ A

}
∈ (−∞,∞].

For a test function g : W → R, define

Qcap
A g :=

∫
A

Ex
[
g 1{TA=0}

]
dx.

The measure eA(x) := P x[TA = 0] is called equilibrium measure and its integral
∫
A
eA(x) dx is called

Capacity of A.

Intensity via visit debiasing: Denote the number of visits to A by

nA(w) :=
∑
n∈Z

1A(Xn(w))
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Define:

Qunif
A g :=

∫
A

Ex
[
g

nA

]
dx.

Under this measure, the weight of a trajectory intersectig A is inversely proportional to the number of
visits to A.

Define the time shift θ on W by [θw](k) := w(k + 1); the time shift acts on functions by (θg)(w) :=
g(θw). Since the Lebesgue measure is reversible for the random walk, we have∫

Rd
Ex[g] dx =

∫
Rd
Ex[θig] dx, for any i ∈ Z, (271)

for any bounded measurable test function g : W → R.

Proposition 9.8. For any bounded set A ⊂ Rd and measurable bounded function g : W → R invariant
under time shifts, g = θg, we have

Qunif
A g = Qcap

A g. (272)

Proof. Write

Qunif
A g =

∫
A

dxEx
[
g

nA

∑
i≤0 1{TA=i}

]
=
∑
i≤0

∫
Rd
dxEx

[
1A(X0)1{TA=i}

g

nA

]
by Fubini

=
∑
i≥0

∫
Rd
dxEx

[
1A(Xi)1{TA=0} θ

i
( g

nA

)]
by (271)

=

∫
A

dxEx
[
1{TA=0}

g

nA

∑
i≥0 1A(Xi)

]
since θi

( g

nA

)
=

g

nA

=

∫
A

dxEx
[
1{TA=0} g

]
= Qcap

A g.

We also have that the measures Qcap
A and Qunif

A are finite:

Qunif
A (W ) = Qcap

A (W ) = cap(A) ≤ |A|. (273)

Lemma 9.9. Let A ⊂ B be bounded sets of Rd, and let g be a test function that is invariant under time
shifts, g = θg. Then

Qcap
B g1{TA<∞} = Qcap

A g (compatibility) (274)

Qcap
B g = Qcap

A g +Qcap
B\A g1{TA=∞} (additivity), (275)

The same holds for Qunif.

Proof. Writing 1{TA<∞} =
∑
i∈Z 1{TA=i} we have

Qcap
B g1{TA<∞} =

∑
i≥0

∫
dxEx

[
1{TB=0}1{TA=i} g

]
=
∑
i≥0

∫
dxEx

[
θi
(
1{TB=−i}1{TA=0} g

)]
=
∑
j≤0

∫
dxEx

[
1{TB=j}1{TA=0} g

]
=

∫
dxEx

[
1{TA=0} g

∑
i≤0 1{TB=i}

]
= Qcap

A g,

since 1{TA=0}
∑
i≤0 1{TB=i} = 1{TA=0}. This proves (274). To get (275) write

Qcap
B g = Qcap

B g(1{TA<∞} + 1{TA=∞})

= Qcap
A g +Qcap

B g1{TA=∞} = Qcap
A g +Qcap

B\Ag1{TA=∞}.

Since g1{TA<∞} = θ(g1{TA<∞}), g = θg and g1{TA=∞} = θ(g1{TA=∞}), Proposition 9.8 implies that (274)

and (275) hold for Qunif as well.
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Now let us identify trajectories that differ by time shift: given two doubly-infinite trajectories w, w′ ∈
W , we say that w ∼ w′ if there exists k ∈ Z such that w′ = θkw. Let

W̃ := W/ ∼ (276)

be the space of trajectories modulo time shift, π : W → W̃ the projection, and W̃ the push-forward
σ-algebra on W̃ .

Given A ⊂ Rd let

WA := {w ∈W : TA(w) <∞}, trajectories intersecting A

W̃A := π(WA), classes of trajectories intersecting A

If g : W → R is shift invariant then it can be extended to g̃ : W̃ → R by g(w̃) = g(w), for any choice of
representative w ∈ π−1(w̃).

Proposition 9.10. There exists a unique σ-finite measure Qri on (W̃ , W̃) such that for each bounded
set A ⊂ Rd

1
W̃A

Qri = π∗Q
cap
A = π∗Q

unif
A , (277)

where π∗Q
cap
A and π∗Q

unif
A denote the push-forward measures defined by

(π∗Q
cap
A )g̃ := Qcap

A (g̃ ◦ π) (278)

Proof. Let g̃ : W̃ → R and define g : W → R by g = g̃ ◦ π (composition). Then θg = g and

π∗Q
cap
A g̃ = Qcap

A g̃ ◦ π = Qcap
A g = Qunif

A g = Qunif
A g̃ ◦ π = π∗Q

unif
A g̃,

by Proposition 9.8. This proves the second equality in (277).

Let {An}n≥1 be an increasing sequence of bounded Borel sets in Rd such that An ↗n→∞ Rd. Then

W̃ =
⋃
n≥1 W̃An and uniqueness of the measure satisfying (277) follows. Define Qri on W̃An by

1
W̃An

Qri := π∗Q
cap
An
. (279)

Let A be a bounded set and take n sufficiently large such that An ⊃ A. Then

1̃
WA

1̃
WAn

(
π∗Q

cap
An

)
= 1̃

WA

(
π∗Q

cap
An

)
= π∗1WA

Qcap
An

= π∗Q
cap
A , (280)

where the last identity follows from (274). When A = Am for some m < n, (280) proves that the definition

(279) is consistent and that the measure Qri defined in (279) satisfies (277). By (277), Qri(W̃An) =
Qcap
An

(W ) = cap(An) <∞, which proves the σ-finite property.

Gaussian interlacements Let d ≥ 3 and β > 0. The Gaussian random interlacements process at
point density ρ is

Γri
ρ := Poisson process on W̃ with intensity ρQri,

µri
ρ := Law of Γri

ρ .

Like Sznitman 2010 Brownian interlacements.
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Construction of a random interlacement at density ρ

1. Sample a Poisson process χ0 of parameter ρ.

2. Take a bounded box Λ

3. To each point in χ0 ∩ Λ sample a double-infinity Gaussian walk.

4. Accept the walk with probability 1 over number of visits to Λ.

4’ (Alternative to item (4).Accept the walk if TΛ(w) = 0.

5. The accepted walks will be a sample of the random interlacement intersecting Λ.

6. To sample in Rd, consider a partition (Λj)j≥1 of Rd with Λj bounded.

7. Perform the procedure (1) to (5) in each Λ1,Λ2, . . . successively.

8. Reject walks with starting point in Λj that have points in previous visited boxes.

Gaussian permutation at density ρ > 0 Define

(χ, σ)ρ := Γls
λ(ρ∧ρc) ∪ Γri

(ρ−ρc)+

This is a superposition of independent realizations of:

• Gaussian loup soup at density min{ρ, ρc}

• Gaussian interlacement at density (ρ− ρc)+.

The Gaussian random permutation is Markov and Gibbs Λ ⊂ Rd and a spatial permutation
Γ = (ζ, κ) ∈ X,

IΛζ := ζ ∩ Λ, red points

OΛζ := ζ ∩ Λc, purple and yellow points

UΛζ := {u ∈ ζ ∩ Λc : κ(u) ∈ Λ}, yellow

VΛζ := {v ∈ ζ ∩ Λc : κ−1(v) ∈ Λ}, yellow

and the maps

IΛκ : IΛζ ∪ UΛζ → IΛζ ∪ VΛζ, IΛκ(x) = κ(x) red arrows,

OΛκ : OΛζ \ UΛζ → OΛζ \ VΛζ, OΛκ(x) = κ(x) purple arrows.

Define the inside and outside projections (with respect to Λ) by

IΛ(ζ, κ) := (IΛζ, IΛκ), OΛ(ζ, κ) := (OΛζ,OΛκ).
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Decomposition of a loop soup intersecting Λ

v
u

v

v

u

u

v

Λ

u

u

v

Inside = red; outside = purple + yellow

Markov property

Proposition 9.11. The Gaussian random permutation µρ is Markov:

µρ
(
dIΛ(Γ)

∣∣OΛ(Γ) occurs outside Λ
)

= µρ
(
dIΛ(Γ)

∣∣ (UΛ, VΛ

)
occur outside Λ).

Proof in the subcritical case (for the Loop soup) Conditioning on purple and yellow, the law
of red points and arrows depends only on the labeled yellow points. Conditioned on labeled yellow points,
purple points and arrows are independent of red points and arrows.

Recall the notation DA := {γ ∈ D : {γ} ⊂ A}, and denote ∂DA :=
(
DA ∪ DAc

)c
. Note that the

restricted Gaussian loop soups

Γls
λ ∩DA (loops contained in A),

Γls
λ ∩DAc (loops contained in Ac), (281)

Γls
λ ∩ ∂DA (loops intersecting A and Ac)

are independent Poisson processes with intensity measures Qls
λ1DA , Qls

λ1DAc , Qls
λ1∂DA , respectively, and

form a partition of Γls
λ .

Due to the independence of the partition (281), the inside and outside components of Γls
λ are parti-

tioned into independent pieces as follows,

IA(Γls
λ ) =

(
Γls
λ ∩DA

)
∪̇ ∂IA(Γls

λ ), (282)

OA(Γls
λ ) =

(
Γls
λ ∩DAc

)
∪̇ ∂OA(Γls

λ ), (283)

where

∂IA(Γ) :=
{
η = (u, x1, . . . , x`(η), v) :

u ∈ UA(Γ), xi = κi(u) ∈ A, v = κ`(η)+1(u) ∈ VA(Γ)}, (284)

∂OA(Γ) :=
{
η′ = (v, y1, . . . , y`(η′), u) :

v ∈ VA(Γ), yi = κi(v) ∈ Ac, u = κ`(η
′)+1(v) ∈ UA(Γ)}, (285)

where `(η) = min{` ≥ 1 : κ`+1(u) ∈ VA(Γ)} and `(η′) = min{` ≥ 0 : κ`+1(v) ∈ UA(Γ)}. These numbers
count the number of points visited by the associated path, excluding the endpoints u and v.

In the figure, an element of ∂IA(Γ) is given by a red path linking two yellow points with labels u and
v respectively, while an element of ∂OA(Γ) is a purple path that links two yellow points v and u. Each
path in the inside boundary ∂IA(Γ) contains at least one point in A, so that `(η) ≥ 1, while the outside
boundary ∂OA(Γ) might contain a path (v, u) with v ∈ VA , u ∈ UA; `(η′) = 0 in this case. There is no
path when u = v ∈ UA ∩ VA.

Given η = (u, x1, . . . , x`, v) ∈ ∂IA(Γ) and η′ = (v, y1, . . . , y`, u) ∈ ∂OA(Γ), consider the weights

ω(η) := p(u, x1) p(x`, v)

`−1∏
i=1

p(xi, xi+1) ` ≥ 1, (286)
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ω(η′) := p(v, y1) p(y`, u)

`−1∏
i=1

p(yi, yi+1) ` ≥ 1, (287)

ω(v, u) := p(v, u) ` = 0, (288)

where p the Brownian transition density at time 2
α . By (249), the weight of a cycle γ = [x0, . . . , xn−1] is

given by

ωλ(γ) = λn
n−1∏
i=0

p(xi, xi+1), with xn = x0. (289)

If γ intersects both A and Ac, this weight factorizes as

ωλ(γ) = λn
∏

η∈∂IA(γ)

ω(η)
∏

η′∈∂OA(γ)

ω(η′). (290)

Replacing (290) in (248) we obtain

f ls
λ (Γ ∩ ∂DA) = e−Q

ls
λ (∂DA) λ|UA(Γ)∪VA(Γ)|∏

γ∈Γ∩∂DA

[ ∏
η∈∂IA(γ)

ω(η)λ`(η)
∏

η′∈∂OA(γ)

ω(η′)λ`(η
′)
]

= e−Q
ls
λ (∂DA) λ|UA(Γ)∪VA(Γ)|∏

η∈∂IA(Γ)

λ`(η)ω(η)
∏

η′∈∂OA(Γ)

λ`(η
′)ω(η′) . (291)

In view of the partition into independent processes (281) and the representation (291) above, we conclude
that

µρ
(
dIA(Γ)

∣∣OA(Γ)
)

=
1

Z
f lsλ (Γ ∩DA) dx1 . . . dx|ζ∩A|∏
η∈∂IA(Γ)

λ`(η)ω(η) dxη1 . . . dx
η
`(η), (292)

where Z is a normalizing constant Z
(
α, λ,A, UA(Γ), VA(Γ)

)
. Identity (292) above implies that the con-

ditioned measure on the left only depends on the sets UA(Γ) and VA(Γ), proving the Markov property in
the critical and subcritical cases ρ ≤ ρc.

Supercritical case

vu

v

v

u

u

v

Λ

u

u

v

In this case one cuts the part of the infinite trajectories that are outside Λ and not directly connected
to Λ and proceeds in the same way as in the loop-soup.

An important remark is that the intensity λ = 1 in this case makes equally distributed the pieces η
in the inside of Λ for both loops and infinite trajectories.

vu

t

v

u

s

v
u

u

v

Gaussian random permutation is Gibbs
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Λ-compatibility between infinite volume random permutations:

(χ, σ) ∼Λ (ζ, κ)

if they have same yellow points and purple points and arrows.

v
u

v

v

u

u

v

Λ

u

u

v

Conditioned Hamiltonian: For (χ, σ) ∼Λ (ζ, κ)

HΛ((χ, σ)|(ζ, κ)) :=
∑

x∈[χ∩Λ]∪[κ−1(ζ∩Λ)\Λ]

‖x− σ(x)‖2.

Fix yellow and purple and sum over red points and arrows.

Specifications GΛ,λ(·|(ζ, κ)) := law of red points and arrows.

Gaussian random permutation on Rd is Gibbs

Theorem 9.12 (AFY 2019). For d ≥ 3 and λ ≤ 1 the loop soup measure

µls
λ is Gibbs for the specifications (GΛ,λ : Λ compact):

µls
λg =

∫
dµls

λ (ζ, κ)GΛ,λ(g|(ζ, κ)) DLR

For all ρ ≥ ρc the measure

µls
1 ∗ µri

ρ−ρc is Gibbs for the specifications (GΛ,1 : Λ compact).

Corollary 9.13 (AFY 2019). Point and permutation marginals can be computed explicitely.

9.3 Point marginal of Gaussian interlacements

Correlations

νri
ρ := Point marginal of Gaussian interlacements µri

ρ

Correlations:

ϕri
ρ (x1, . . . , xn) =

∑
P∈Pn

∏
I∈P

∑
σ∈SI

Vρ(xσ(i1), . . . , xσ(i|I|)). (293)

Pn := partitions of {1, . . . , n} with nonempty sets,
SI := permutations of I,
(i1, . . . , i|I|) arbitrary order of I and

Vρ(x1, . . . , x`) := ρKx1,x2
. . .Kx`−1,x`

(Here λ = 1 and Kxy = K1(x, y))

ϕri
ρ (x, y, z) = ρ3 + 2ρ2Kxy + 2ρ2Kyz + 2ρ2Kxz

+2ρKxyKyz + 2ρKxzKzy + 2ρKzxKxy.
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ρ3

2ρKxzKzy2ρKxyKyz

2ρ2Kxz2ρ2Kyz2ρ2Kxy

2ρKzxKxy

Thermodynamic limit of Point marginal

Theorem 9.14 (Shirai-Takahashi, Tamura-Ito). Fix density ρ > 0.

Gpoint
Λ,|Λ|ρ := law of point-marginal with |Λ|ρ points.

Subcritical ρ ≤ ρc or d ≤ 2 Fichtner 1991; Tamura-Ito 2006.

Gpoint
Λ,|Λ|ρ ⇒ νTI

ρ as Λ↗ Rd.

Supercritical ρ > ρc and d ≥ 3 Tamura-Ito 2007.

Gpoint
Λ,|Λ|ρ ⇒ νpointρ = νTI

ρc ∗ ν
∞
ρ−ρc .

Theorem 9.15 (AFY). Point marginal of Gaussian random permutation coincide with thermodynamic
limit above:

νTI
ρ = νls

λ(ρ), point marginal of loop soup at fugacity λ(ρ).

ν∞ρ = νri
ρ , point marginal of Gaussian interlacements at ρ.

Partial “Thermodynamic limit” of permutation marginal

Gpermut
Λ,|Λ|ρ := σ-marginal of GΛ,|Λ|ρ

Gpermut
Λ,ρ ⇒ νpermut

ρ for cycle-size distribution.

Macroscopic cycles: cycles with size bigger than ε|Λ|.

Subcritical case. ρ ≤ ρc or d = 1, 2

The expected fraction of points in macroscopic cycles is zero. BU 2011

Supercritical case. d ≥ 3 and ρ > ρc

(a) expected fraction of points in macroscopic cycles is ρ−ρc
ρ .

(b) Rescaled macroscopic cycles have random lenght:
Benfatto, Cassandro, Merola Presutti 2005.

Poisson-Dirichlet distribution (as uniform permut): Betz-Ueltschi 2011.

Current problems Thermodynamic limit of canonical measure. That is, the Gaussian random per-
mutation in a box Λ should converge to the infinite volume GRP constructed here.

Extensions: Poisson process on Zd

Other interactions besides Gaussian.

Quantum case, when the Brownian trajectories from x to y interact. (BCMP 2005 treated the mean
field case).
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10 Branching process

Proceso de ramificación Zn = tamaño de una población en el instante n. Cada individuo tiene un
número aleatorio de hijos distribuidos como una variable aleatoria ξ ≥ 0 con media Eξ = µ < ∞ y
distribución P (ξ = j) = pj . Sean ξn,k, n, k ≥ 1 iid con la misma distribución de ξ. Aqúı ξn,k es el número
de hijos que tiene el k-ésimo individuo vivo en el instante n. Definimos Z0 = 1 y para n ≥ 1,

Zn =

Zn−1∑
k=1

ξn,k

Condicionando a Zn−1,

EZn = E(E(Zn|Zn−1)) = µEZn−1 = µ2EZn−2 = µn.

Teorema subcŕıtico Si µ < 1 entonces

P (Zn ≥ 1, para todo n ≥ 0) = 0

Proof. Por la desigualdad de Markov

P (Zn ≥ 1) ≤ EZn = µn −→
n→∞

0, si µ < 1.

Como {Zn ≥ 1} ↗ {Zn > 0, para todo n ≥ 0}, podemos concluir.

Teorema cŕıtico Si µ = 1 y P (ξ = 1) < 1, entonces

P (Zn ≥ 1, para todo n ≥ 0) = 0

Teorema supercŕıtico Si µ > 1, entonces

P (Zn ≥ 1, para todo n ≥ 0) > 0

Defina la función φ : [0, 1]→ [0, 1] por φ(0) = p0 y para s ∈ (0, 1],

φ(s) =
∑
j≥0

sjpj

φ es continua en [0, 1] y si p0 +p1 < 1 (que asumimos, si no, se trata de un paseo aleatorio que ya vimos),
para s ∈ (0, 1),

φ′(s) =
∑
j≥1

jsj−1pj > 0

φ′′(s) =
∑
j≥2

j(j − 1)sj−2pj > 0

O sea que φ es estrictamente creciente y estrictamente convexa en el intervalo (0, 1). Además lims↗1 φ
′(s) =

µ.

Defina θn = P (Zn = 0|Z0 = 1). Como {Zn = 0} ⊂ {Zn+1 = 0}, tenemos θn ≤ θn+1. Además θ0 = 0,
θn ≤ 1. Por lo tanto θn ↗ θ∞ ≤ 1.

Condicionando a la primera generación,

θn =
∑
j≥0

P (Zn = 0|Z1 = j)P (Z1 = j|Z0 = 1)

=
∑
j≥0

(
P (Zn−1 = 0|Z0 = 1)

)j
pj

= φ(θn−1).
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La segunda igualdad se explica aśı: la probabilidad que el proceso se extinga en el instante n dado
que hay j individuos en el instante 1 es igual a la probabilidad que cada una de las familias de los j
individuos vivos en el instante 1 se haya extinguido en el instante n. Para concluir observe que las j
familias evolucionan independientemente, y hay n− 1 generaciones entre el instante 1 y el n.

Sacando ĺımites, vemos que θ∞ = φ(θ∞), un punto fijo de φ.

Si ρ es un punto fijo,

ρ =
∑
k≥0

ρkpk ≥ ρ0p0 = P (X1 = 0) = θ1.

Como θ1 ≤ ρ y si θn ≤ ρ entonces θn+1 = φ(θn) ≤ φ(ρ) = ρ, tenemos que θn ≤ ρ para todo n. Es decir
que θn converge al menor de los puntos fijos.

Dem del teorema cŕıtico Si φ′(1) = µ = 1 y p1 < 1, como φ es estrictamente convexa φ(s) > s
para s ∈ (0, 1) y φ tiene 1 como único punto fijo. Por lo tanto θn → 1.

Dem del teorema supercŕıtico. Si φ′(1) = µ > 1, entonces hay un único ρ < 1 tal que φ(ρ) = ρ. Para ver
esto, observe que φ(0) = p0 ≥ 0, φ(1) = 1 y φ′(1) = µ > 0, lo que implica que hay un único punto fijo ρ
menor que 1. Unicidad es consecuencia de la estricta convexidad de φ. Por lo tanto θn ↗ ρ < 1.

Distinguimos dos casos: A la izquierda φ(s) > s para todo s ∈ (0, 1) y a la derecha φ(s) = s para

algún s ∈ (0, 1). En la figura de la izquierda φ′(1) ≤ 1 y en la de la derecha φ′(1) > 1.

Ejemplo. Considere que la distribución del número de hijos es Poisson con parámetro λ. Es decir

pj =
e−λλj

j!

La generadora de momentos es
φ(s) = exp(λ(s− 1))

Por lo que la ecuación para el punto fijo es

ρ = exp(λ(ρ− 1))

References
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