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Examples

A point process is a random countable subset S of a measurable space R.
Times of arrival of a bus. R
Location of earthquakes during last year. S* (sphere).
Z¢ is a point process on R¢.
{x+Y,:2€Z Y, iid in R4}.
{x€Z?:Y, =1,Y, iid in {0,1}} Binomial or Bernoulli process.

Point processes

From the book Poisson processes by J.F.C. Kingman. Oxford Studies in Probability. Claredon Press.
1993, Reprinted 2002.

We consider a space R and a subset of P(R) of measurable sets, satisfying
1) empty set is measurable.
2) complement of measurable set is measurable
3) countable union of measurable sets is measurable
This is a o-field or o-algebra.
We want that for a point process S and for all measurable A C R,
Ns(A) =) s e A} (1)
seS

is a random variable and want that the points in R are measurable. We ask that the diagonal {(z,y) €
R x R:x =y} is measurable. This implies {x} is measurable for all x € R.

We can think Ng as a random counting measure on R.

Usually R = R? and the o-algebra as the Borel sets. The diagonal in R% x R? is closed, so measurable.
Later we consider Poisson processes of straight lines and of trajectories of random walks.

A point process is a random countable subset S of R.

1 Poisson process

Want a point process S such that for N = Ng:
(1) for disjoint Ay, As, ..., A, we have N(A4;) are independent.

(2) N(A) ~ Poisson(u(A)) where p : A — p(A) satisfying 0 < p(A) < oo is a measure on R called
mean measure.

If N satisfies (1) and (2) we have

and if A; is a partition of A with u(A;) < oo, then

S N(A) = N(4) (3)



and

D> EN(A;) = EN(A), that is, > u(A;) = u(A) (4)

so that p is a measure on R.

Joint distribution of N(A;) :é=1,...,n: Consider the family
{B=Ajn---NA;: A7 € {4, A°}} (5)
Sets in this family are disjoint. Denote By, ..., Ba» the elements of that set. Then,
Aj = Uiy, B; (6)
and

N(4;) =) N(B)) (7)

1€7;

By (2) N(B;) are Poisson(u(B;)) and since B; are disjoint, by (1), B; are independent. So we can write
the joint distribution of A;:

(N(A1),.. . N(Ap) = (3 N(B1),-.., Y N(Bn)). (8)

i€ i€vn
For instance, for n = 2, we want the joint distribution of (Ay, As):
By =A1NA;, By=A1NA5, Bs=A{NAs, Bs=AiNA;S
and
A1 =B1UBy, As=DB;UDBs. 9)

The expectation of the product is given by

E(N(A1) N(Az)) = -+ = p(A1)pu(Az) + p(Ar N Ap). (10)
And the covariance is given by

E(N(A1) N(As)) — EN(A1) EN(As) = pu(Ay N Ay). (11)

Exercise. Show that for a Poisson process the mean measure g must be nonatomic: pu({z}) = 0 for
all z.

Intensity. If p is absolutely continuous with respect to Lebesgue,
H(A) = / AMz)de (12)
A

where dz = dz; ...dz,. A : RY = Ry is called the intensity measure.

If X\ is continuous at z and A > x,
p(A) = A(z)|A| (13)

When A(z) = A € Ry, we say that the Poisson process is homogeneous.
Superposition Theorem
Theorem 1.1 (Superposition of Poisson processes).

Let S1,55,... be Poisson processes with mean measures pq, po, . .. respectively. Then S := U, S, is
a Poisson process with mean measure f := Y fin.



Proof. Let N, (A) := number of points in A for the Poisson process S, (with intensity p,). Then, by the
countably additivity theorem,

N(4) = 3 Na(4) (14)

has distribution Poisson (), tr). If 1 (A) = oo for some n, then N,(A) = N(A) = oo.

To show independence of N(A4;) for disjoint A;, it suffices to observe that de double array of variables
N, (4;) arfe independent. O

Theorem 1.2 (Restriction Theorem). Let S be a Poisson process on the space R with mean measure i
and B C R. Then Sp := S N B is a Poisson Process with mean measure pp(A) = u(AN B).

Proof. Exercise. O

Theorem 1.3 (Mapping). Let S be a Poisson process on the space R with mean measure pu. Let f : R — T
be a measurable function such that

w(B) = p(f~(B)) (15)

has no atoms. Then S* := f(S) is a Poisson process on T with mean measure j*.
Proof. Exercise. O

Example. S homogeneous Poisson process with mean measure u(A) = |A|. A: R — R, an intensity.
Take f = A~!. Then

S* = f(S) 1is a Poisson process with intensity . (16)
Projection of Poisson process Let i be a mean measure on R? with intensity A(z) and S be a
homogeneous Poisson process of intensity 1 on R? x R, . Define
S={zxeR: (z,y) €8, 0<y < \ax)} (17)
Then S is a Poisson process on R? with intensity A(-).

Proof. For bounded A C R?, let
A={(z,y) eRI xRy : 0<y < Ax)}.
Then

N(A) = N(A) (18)

Easy to check the properties now. Have to use the disjointness lemma. O

Polar coordinates Let S be a PP with constant intensity A on R2. Let

flay) = (2% + y*) 2, tan™ (y /), (19)

“*(B)://f—l(g) Adxdu://BArdrdG. (20)

Then (r, 8) form a Poisson process in the strip {(r,0) : r > 0, 0 < § < 27} with rate function \*(r, ) = Ar.
The r-projection gives a Poisson process S* in R with intensity

and

M(r) = /02” A*(r,0)d0 = 27 Ar. (21)



1.1 The Bernoulli process

Let S be a Poisson process with measure ¢ on R and condition S to have n points. What is the distribution
of those points? Let Aq,..., A, be disjoint subsets of R, then

P(Ng(A1) =ni,...,Ns(Ax) = ng | Ns(R) = n)

L5, e (u(4,)™ ()
e (u(R)) ()

e G )

where ng =n— (n1+---+ng) and A4g =R\ (A1 U--- U Ag).

Definition 1.4. A random process S on R with n points and such that

n! o "k
P(Ns(A1):m,...,Ns(Ak):nk):mwﬁ)) (/ﬁg;))) '

is called Bernoulli process with parameters n and p(A) = %.

Notice that p is a probability on R.

Construction of a Bernoulli process. Take X;,...,X,, iid random variables with values on R and
distribution p:

P(X,; € A) = p(A).

Then S := {X31,...,X,} (as a set) is a Bernoulli process with counting measure

n

Ns(4) =) 1{X; € A}. (22)

i=1

Existence theorem Let ;1 be a non-atomic measure on R that can be decomposed as
= Z Hn (23)
n

where p1,(R) < oo for all n. Define N,, and X, ;, j > 1 independent random variables with
N,, ~ Poisson(u,(R)), Xn,;~ Pn (24)

where p,(A) = Z:ggg

Theorem 1.5 (Existence Theorem). The process
S = UTL{XTL,lv - 7X"7Nn}

18 a Poisson process with mean measure .

Proof. First we prove that the process S, := {X,1,...,Xn,n, } is a Poisson process; this is a random
number of points on R with distribution p,. Observe that, given N,, = m, the process is Bernoulli:

P(N,(A1) =mq,...,Ny(Ar) = mg | N, = m)

m! ™o Mk
_ pn (Ao) pin (Ak)
= mol...mk!(”"(m) () (25)

where mo =m — (my + -+ +my) and Ag = R\ (A1 U---U Ag). Multiplying both terms by P(N,(R) =
m) = e () (1, (R))™/m! and summing over m, we get

P(Nn(Al) = MmMi,... 7Nn(Ak) = mk)



et B (p, ()™ ml — (,un(Ao)>m0 . (un(Ak)>m’“

m)! m()! . Hn(R) fin(R)
m>0
_ e (A0 (1 (A0))™0 e #m AV (i (A))™ e MUK (y (Ag)) ™
=2 e oy e
m>0
e mn(AD) () (Ay))™ e Hn(AR) (1, (Ag))™k
- m1! e mk'
Hence, the process S,, := {X,1,..., X, n, } is a Poisson process. Since S,, are independent, the super-
position Theorem implies that S is a Poisson process with mean measure . O

1.2 Campbell Theorem

Want to study variables of the form
D= f(s) (26)
seS

Examples. (a) Radioactiviry. Suppose each point of S C R produces an effect that decays exponentially.
The cumulated effect for a site z € R can be computed with ¥ with the function f,(s) = exp(z — s)1{s <

(b) The gravitational field in R3: assuming all stars s € S have the same mass, f,(s) =

llz—sll*

Theorem 1.6 (Campbell Theorem). Let S be a Poisson process on R with mean measure p. Let
f: R — R be measurable. Then, the sum

5= f(s) (27)

seS

1s absolutely convergent with probability one if and only if
[ min(r@), D) < . (28)
R
Under this condition,

E(e%%) = exp{/R (eef(””) - l)u(dx)}. (29)

for any 0 complex when the integral on the right converges or for purely imaginary 6. Moreover,

By = /R f(@)u(dz) (30)

meaning that the expectation exists if and only if the integral converges, in which case they are equal. If
(30) converges, then

V= [ (f(@) o) (31)
R
where V' is variance.

Proof. We prove first for simple functions, that is, a function that takes only a finite number of values
and vanishes outside a set of finite u measure. Let Ay, ..., A be disjoint measurable subsets of R with
m; = p(A;) < oo and let f(x) = a; for x € Aj, with f(z) = 0 if 2 ¢ U;A;. We have then that
N; := Ng(A,) are independent with law Poisson(m;) and

S=> flz)=> a;N;. (32)
€S J
Since we know the characteristic function of the Poisson random variable, for real or complex 6 we have

Ee?® = Bef X5 ailNi = H Ee%Ni  (independence of PP)
J



= Hexp (e(eajfl)mj) (characteristic of Poisson rv)
J

= exp(%: /Aj(e9f(a:) - 1)u(dx)>

- exp( /R (@) 1) u(dx)) (33)

If f(x) > 0, it is better to consider § = —u for real u > 0. In this case,

Be " = exp(/R(e*“f(””) - 1)u(dx))

We know that any non-negative function f can be expressed as the limit f = lim; f; where f; is an
increasing family of simple functions, that is, f; < f;+1. Taking § = —u for real u > 0, and setting
Y = s fi(s), we have

B(eF) = h]mE(efuzj)
= ]ijrrlexp(/l%(efufj(x) - 1)M(d3«”)>)

- exp( /R (ef@) — 1)u(da:)). (34)

by monotone convergence theorem. Under condition (28) the integral above converges and goes to zero as
u — 0. This implies ¥ is a random variable; otherwise, if ¥ = oo with positive probability, E(e~"%) = 1.

Expanding (33) and denoting pf := [ f(z)u(dz), we get

92
/R(eef(x) ~ Dpu(de) = Ouf + G+ ...

taking the exponential of both sides and expanding again,

92
exp( [ (¢!~ )u(de)) = 1+ 0uf + 5 ((f P + s + . (35)
R .
On the other hand,
92
Ee’* =1+ 0EY + 5Ez? +... (36)
We conclude then
EX =puf, VI =nuf’ (37)
This proves the formula for positive f. We leave as an exercise to prove for all f. O

1.3 Slivnyak-Mecke Theorem

Theorem 1.7 (Slivnyak-Mecke). Let S be a Poisson process with intensity A(-) on R = R%. Let h :
(1,...,xn; X) = h(x1,...,2n; X) €R, where X is a denumerable set of R. Then

E( Z h(sl,...,sn;S\{Sh-.-,Sn}))

S1ye-y8n ES
= / . / Eh(z1,...,2n; )M 21) ... AMap) doy .. . day,.
R R
where the sum is over distinct s1,...,Sy,.

See Mgller-Waagpetersen [17], Theorem 3.3. for a proof.



1.4 The characteristic functional

Taking Campbell formula for f > 0 and 6 = —1 we get
Ee %1 = exp{—/(l - e_f(”’)),u(dx)} (38)
R

where ¥y :=>" ¢ f(s).

Proposition 1.8 (Characterizing functional characterizes process). If S satisfies (38) for f non-negative
and simple, then S is a Poisson process.

Proof. Let Ay,..., A disjoint with m; := p(A;) < oco. Let f(s) = > ,a;1{s € A;}. Then ¥y =
Zj ajN(Aj) and

Ee %1 = exp{— (1- e_“f)mj} (39)

j=1

k
Hence, taking z; := e~ we have
E(Z{V(Al) .. zéV(Ak)) = H e (2 =1 (40)
J
but this is the product of the moment generation functions of Poisson(m;) random variables calculated

at arbitray points z; € (0,1). This implies that N(A;) are independent Poisson(m;) random variables,
which in turn implies S is a PP(u). O

1.5 Avoidance functions characterize point processes

Given a point process S define the avoidance function o : F — [0,1] by
a(A):=P(SNA=0) (41)

Clearly, if S is a PP(u), we have a(A) = e #*(4). Avoidance function are sometimes called void probabil-
ities.
For any a < b € RY, define the rectangle (a,b] C R? by
(a,b] == {(x1,...,24) € R?: a; < 2; < by, for all i}

Theorem 1.9 (Rényi Theorem). Let p be a non-atomic measure on R® with u(A) < oo if A is bounded.
Let S be a point process on RY such that for any finite union of rectangles A,

P(SNA=0)=e "D (42)

Then S is a Poisson process with mean measure L.

Two ways of using the theorem. (1) if one knows that for finite union of rectangles A, Ng(A) is
Poisson(u(A)), we have (42) and the theorem implies S is PP(u). Notice that here we have not assumed
independence.

(2) if one knows that a(A) > 0 for bounded A and we know that {SN A =0} and {SN B = (0} are
independent for disjoint A, B, then

a(AUB)=P{SNA=0}n{SNB=0}) =a(4)a(B) (43)

so that u(A) := —loga(A) is finitely additive and non-atomic and the Theorem implies that S is a
Poisson process with mean measure pu. Here we have not assumed Poisson distribution for N(A).

Sketch proof. A k-cube is a cube with a; = 2,27%, b; = (2; + 1)27F for integers z;. For each k, k-cubes
are a partition of R?. For k-cubes C1,...,C, we have

P(N{SNC, =0})=P(SNU,C, =0)



— ¢ #UUrC) by hipothesis

= e~ 2-1C) (C, disjoint and p measure)

= [[e . (44)

Let G be open bounded set and

Ni(G) := #{k-cubes C contained in G with SN C, # 0}
=) (1-1YSnC =0} (45)

ccG

where the sum is over k-cubes. We have
N(G) = li]£n Ni(G) (46)

By (44), the events {S N C, = 0} are independent, hence the generating function of the variable Ny (G)
is product of generating functions of Bernoulli:

E(zN (@) = H (e7HO) 4 (1 — e 1) 2)
cca

in |z| < 1, where the product is over k-cubes. Last expression equals

= H (24 (1= 2)e ) H o—(1=2)u(C)
cca cca
_ (1= S ul€) _ = (1-2)u(G) (47)

where the = is a bit technical, see Kingman. It is motivated by the expansion of the exponentials:

z+(1—2)e " =24+ 1 —2)1—p+p?/24+...)
=1-(1—-2)u+0—-2)p?/2+...
em=2 — 1 (1 —2)p+ (1 —2)w)?/2+ ... (48)

Identity (47) shows that N(G) is a Poisson(u(G)) random variable. The same argument works to show
independence of N(G1), ..., N(Gy) for mutually disjoint G, ..., Gj. This shows that S is Poisson process
with mean measure pu. O

An alternative proof can be obtained via coupling. See Section 5 of Chapter 1 of Thorisson.

Coupling Let U Uniform|0, 1],

X=1HU2>e*} (49)

This is a coupling between those variables. That is, a vector (X,Y") defined in the space where U is
defined and with marginals

X ~ Bernoulli(e™*) and Y ~ Poisson(u).

We have
PX=0)=PY=0)=PU<e™)
P(le):P(U611UIQUI3U...)
PY=1)=PUc€cl) (51)
Hence

2
P(X#Y):P(Uefgufgu...)g%.



Proof of Ni,(G) converges to Poisson(j(G)) via coupling.
For each k-cube C' define
X¢ := {Ns(C) # 0} and Y ~Poisson(u(C)).

X = ZXC, Y = ZYC (53)
c c
where the sum is over k-cubes. By the coupling,
1 2
P(X#Y)< Y P(Xo#Yo) <5 p(C) (54)
cca c

If u(C) = [ocqMa)de y AMxz) < M, using |C| = 2~
douleP <My |CP =M a2, (55)

ccaG ccaG
where the sum is over k-cubes. This implies P(X #Y, i.v.) = 0. O

2 Poisson processes on R

S process on R with mean measure p(A) = A|A|. Homogeneous Poisson process with rate A. In d = 1
the intensity is called rate. We enumerate the points of S as follows: S = {X, : i € Z} with

< X o< X 1< Xg<0< X1 < X< (56)
X; are random variables, depending on N. For instance,
{Xn <2} = {N(0,z) = n}. (57)
Notice that (X7, Xs,...) has the same law as (=X, —X_1,...).
Theorem 2.1 (Interval theorem). Let S = {X; : i € Z} be a PP()\). The random variables Y1 = X,

Y, = X,, — X,,—1 are independent with exponential(\) distribution.

Proof. Consider the process
SI = {XQ—Xl,X3—X1,X4—X1,...} (58)

We want to show that X is independent of S’ and that S’ is PP()). It suffices to show that for some f,
the characteristic functionals

L= f(Xn), ¥ =) f(Xa- X)) (59)
n>2 n>2

have the same distribution.

Denote &, = 27%[2¥X] the least integer multiple of 27% greater than X;. Then &, is a random
variable converging to Xi: & \y X1. We have

Z/ — 1 k k = _
¥t Sh= ) (X — &), (60)
n>2
Now for any z, x,
P(SF <z Xy <a)=) P(E" <z Xy <, &=127%), (61)

L

When &, = 2%, the points X,, in (le™*, 00) form a Poisson process and are independent of {X; < [27F}.
Hence

k= Z f(X,, —127%) has the same law as ¥ (62)

n>2



and
PEF<2, X1 <2, 6 =127 =P <2)P(X, <z, & =125 (63)
Substituting in (63),
P(XF <2 X, <2)=P(X<2)P(X, <z)=P(X<2)P(N0,z] > 1) (64)

Letting k — oo, ©F converges almost surely to ¥’ and we are done.

Applying induction, we prove that Y7,...,Y,, are independent and independent of S™ = {X,,+1 —
Xy Xmvo — Xy - 1 O

Waiting time paradox We saw that X;,1 — X;, ¢ > 1 are iid exponential (\). However X; — X has
distribution Gamma(2, A). The density function of X; — Xg is ¢go(z) = Azg(x), where g is the density of
the “typical” interval. This is a general result for stationary point processes.

2.1 Law of large numbers

From the interval theorem, the distribution of X,, is Gamma(n, A); indeed it is the sum of n exponential(\):

X, =Y +---4Y,. (65)
Y; iid exponential(\).
Theorem 2.2 (law of large numbers).
X 1
lim —"* = -, 66
L (66)

Proof. EY,, = 1 and VY, = {5, hence by the lln for iid with finite mean and variance, we get (66). [

As a corollary we get a lln for N(0,¢]. Since

N(Oa t] —t 0, (67)
it follows that
XNy 1
L 68
TN, T A (68)
and since
XN, <t < Xn,+1 (69)
we get
t 1
1 = —. 70
TN, T A (70)
We conclude
N(0,¢
lim (t, I _ A a.s (71)

We give another proof of (71) without using the interval theorem.
Theorem 2.3. Let S be a PP(\) on (0,00). Then

N(0,t
li{n # =\ a.s. (72)

10



Proof. First proof. Using Chevichev:

1 A
P(|-N — < —
(N1 =M > ) < (73)
taking tp, = k2:
1 , A
ZP(\ﬁN(O,k]f)\t|>s)§Zw<oo (74)
k k
Hence, by Borel Cantelli,
1 2
h}lgn ﬁN(O’ k] =X, as. (75)
Taking k = k(t) = [V1],
N(0,k% < N(0,] < N(0, (k + 1) (76)
which dividing by (k + 1)2 >t > k? implies
N(O,F] _ N©,#] _ N(O,(k+1)
< < 7
k+1)2— ¢t k2 (77)
Since k?/(k + 1)? converges to 1, we get the result.
Second proof. It suffices to see that Ny := N(k, k + 1] are iid and that
Lt]
N@O,t] = Np+ N([t],t — [t]] (78)
i=0
and use the lln for iid. O

This extends to Poisson processes in general spaces. For instance, for homogeneous Poisson processes
in R%, we can use the same proof to show that if B(0, k) is the ball of center at the origin and radious k,
we have

N(B(0,k))

RO )
2.2 Non homogeneous processes in R
Let S be a PP(u) in R and define M (0) = 0 and for r < ¢,

M(t) — M(r) = p(r, ). (80)

1 is non-atomic if and only if M is continuous. We have seen that
S:={M(s):seS} (81)
is a homogeneous PP(1) on the interval (M (—o0), M (c0)).

Notice that the inter-point distances X1 — X are not independent.

Let S be a homogeneous PP()) in R? and let S = {||s|| : s € So} C R4, the set of distances to the
origin of the points in S5. Then S is a Poisson process of density A(z) = 2w \z, so that

M(z) = mhz?. (82)

and S = M(S) is a Poisson process of rate 1 on Ry. So that if S = {X;, Xp,...} with X; < Xj;1, then
S ={X,,Xo,...} with X; = 7AX? is a PP(1).

11



Export law of large numbers Let S = {X; : i € Z} be a non-homogeneous process with cu-
mulated density M(x). We know that S = {M(X;) : i € Z} is a homogeneous Poisson Process in
(=M (—00), M (o)) and that if M(c0) = oo, then

X, . N(0,1]

lirrln = 1; hgn . 1 (83)
Using
N(0, M (t)] = N(0,1] (84)
we get
. N(O,M(t)] .. N(0,1]
1 h{n O] hgn M) (85)

3 Marked Poisson processes

Theorem 3.1 (Coloring Theorem). Let S be a PP(u). To each point of S give a color chosen randomly
between colors {1,...,k} with probability p; to choose color i. Let S; be the set of points with color i.
Then S1,...,Sk are independent Poisson processes with mean measure p; := p; i, respectively.

Proof. Exercise. It comes from the conditional distribution of colors given N(A) = n. O

In general. Let S be a PP(p) in R and for some space M, let (ms, s € S) be a family of independent
random variables in M satisfying that ms may depend on s but it is independent of S\ {s}. Consider
the random set

S* ={(s,ms) : s € S} (86)

To construct S* we start with S and then we have a family of distributions p(zx,-) on M, so that for each
s € S we choose mg independently of S\ s with law p(s, -).

Theorem 3.2 (Marking theorem). S* is a Poisson process on S x M with mean measure

(dz) p(z,dm), CcCSxM. (87)
=] Jn

Proof. Characteristic functional. f: 8 x M — R. ¥* := Z(S mayes J(8,ms).
72] ‘S H E smS) )

seS
—H/ —Fm) (s, dm)
seS
Call f*:= —log fM e~ 5m) p(s,dm) and use Campbell formula to get

E(e ™) = exp(f /R(l - e*f*)du)
—exp(= [ [ (1= u(da) s am)

:exp(—/RXM(l—e_f)dﬂ*). O

Corollaries:

The points {ms : s € S} form a Poisson process on M with mean measure p,, given by
B) := / / p(dx) p(z, dm), B cC M. (88)
RJB

If m takes only k values, the point process S; with é-marks is PP (u;), where

/mm=AMMM@wm> (89)

and S; are independent. This allow the color distribution to depend on the position of the point x.

12



Rain It rains over R = R?. Drops are in the space-time R x M, where M = R corresponds to the time
(= distance) a given drop will touch the pavement R. The point process S* is a Poisson process with
mean measure A\dzdt. The points ((s,ts) € S* : t; < t) form a Poisson process S; with mean measure
Atdz, if the rain is uniform.

Wetting. Each fallen drop s has a random radious rs; > 0 and we consider the Poisson process with
points (s, ts, rs); that is, the marks have 2 coordinates.

A typical problem in percolation is to give a distribution to r; with some finite mean p and compute
the probability of wetting in function of A, ¢ and p. Here wetting is the set of configurations defined by
“the origin belongs to an infinite connected wet component”.

Theorem 3.3 (Boolean percolation; Penrose, Peter Hall, Georgii). For fized p, there are 0 < A\j < Ag <
oo such that

P(wetting) >0 if A> Ao,
P(wetting) =0 if A< Aq. (90)

Galaxies Galaxies are points of a Poisson process S with masses ms with density p(s,m) in m > 0.
S* ={(s,ms)} is a Poisson process with density

A (xz,m) = A(z)p(x, m). (91)
The above means p*(d(xz, m)) = A(z) dz p(z, m) dm.

The gravitatory field of a the origin 0 € R3 is the vector (Fy, F, F3) given by

Gmygs;
P=y j (92)

o (sT+ 85+ s3)3/2

where G is the gravitational constant. The characteristic functional of S* applied to t1 Fy + toFs + t3F3
gives

3 0o
Bt ititaFatitsFsy — o </ / (eiGmt'w(w) — D A(z)p(xz,m) dx,dm) (93)
R Jo
where
vj(x) = (2 + a3 +a3) " (94)
and ¢ - 9 is the scalar product. This holds if (by Campbell Theorem)
3
| mi@IA@) oo, m) da,dim < o (95)
R
If we denote the expected mass of a galaxy at = by
m(zx) = /mp(m, m)dm (96)

(95) is equivalent to

? mly(a)[A(@)

dr < 97
PR R o7

Under (96) we would have the joint distribution of F, Fy, Fs.

The problem is that in an uniform universe, where m(z) and A(x) are constant, then (97) does not
hold.

4 Cox Processes

A Cox process is a “Poisson process with a random mean measure p”.
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Assume p is random in the space of mean measures. For instance,

A(+) is a random density. Example: P(A(-) = A;) = p; (a random constant density).

Cox process is a process that conditioned to A = X is a Poisson process with density A:

P(SNA=0|A=)\) =e Jarz)dz, (99)

Compute the second moment:
E(N(A))? = E[BE(N(A)?|n)
= E(u(A) + u(A)%)
= Eu(A) + (Bp(A))? + Var(u(A)) (100)

so that Var(N(A)) > EN(A). The identity only holds if ;(A) concentrates on a point (degenerate). Cox
processes are “over dispersed”. N(A) has greater variance than a Poisson random variable with the same
mean.

Void probabilities, characteristic functional, correlations The void probabilities of a Cox process
are given by

a(A) = P(SNA=0)
= E[P(SNA=0[A)]

:Eexp(—/AA(x)dx) (101)

this is the expectation of a function of the random density A.

The generating functional is given by

E~% = Eexp(—/ (1- e_f(x))A(x)dx) (102)
R
The intensity function is given by
p(z) = EA(x). (103)
and the n-point correlation function for distinct z1, ..., z,:
Y(z1,. . xn) = E(A(z1) ... A(zn)) (104)
so that, for mutually disjoint Aq,..., A,
BE(N(Ay)...N(4,)) = E(/ - / A@1).. . Alzn)dar ... dxn). (105)
A Ap

Ecology The members of a population form a non-homogeneous PP(A(+)) denoted S. If we consider A
as a realization of a random density A, we have a Cox process.

For instance, take ¢(z) as the mean number of daughters of an individual at site z and g(z,-), the
density of the continuous distribution of the position of each daughter.

The daughters of a plant at = are a Poisson process S, with intensity A, (y) = ¢(z)g(z,y — x).

Given S, the superposition theorem says that the set of daughters S’ is a Poisson process of rate
N(y) = 2ses 0(s) g(s,y — s).
When ¢ and g are independent of z, the set of daughters is a Cox process with random intensity
Ns(@)=¢) gz —s) (106)
ses

Exercise. Show that if EA(z) = A, then EA’(z) = A¢. In particular, if ¢ = 1 we have the same density
in each generation.

14



Neyman-Scott processes These are special cases of the ecology models of previous paragraph.

Let C be a stationary Poisson Process on R? with intensity x > 0. Conditioned on C, let X, be
independent Poisson processes on R? with intensity function

pe() = ak(z =)

where the kernel k(-) is a density function; that is, k(z) > 0 and [k = 1.

Then X = U.ccXc is a Neyman-Scott process with cluster centres C' and clusters X.. More general
Neyman-Scott processes do not ask C' to be Poisson.

X is a Cox process with (random) intensity

Alx) = Z ak(x — ¢). (107)

ceC

5 Stochastic geometry

5.1 Line processes
R set of infinite, undirected straight lines in R%. A countable random subset of R is called line process.
If it is a Poisson process, it will be called Poisson line process.

We need a mean measure 4 on R.

For each line ¢ there is a unique line £+ containing the origin perpendicular to £. Let L := £ N ¢+ the
intersection point of these lines. Let p be the distance ||L||Sign(Lz), using the notation L = (L, Ls). Let
6 be the angle that ¢ makes with the positive z-axis, 0 < 6 < 7.

Any measure on R induces a measure on
R::{(p,e):—oo<p<oo,0§9<7r} (108)

and vice-versa. We do not distinguish these two measures, called p.

If B(0,7) = {(z,y) : 22 +y* < r}, then ¢ intersects B(0,r) iff [p| < r. A locally finite set A C R maps
into a subset A C R which is “locally finite” in the sense that only a finite number of lines in A intersect
any bounded set. The existence theorem shows that there is a Poisson process with mean measure p on
R and R.

5.2 Uniform Poisson line process

Approach and pictures taken from slides Poisson line process, by Cristian Lentuejuol, see also [13].

When p) is Lebesgue measure on R of constant intensity A, the corresponding Poisson process is
called uniform Poisson line process with intensity A.

Line parametrization

J ) .
p/// .
/\ o
0 I n
L(ap)
Equation of a line:
xcosa+ysina=p (109)

Poisson line process:
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A Poisson line process with intensity A is parametrized by a Poisson point process with intensity A on

[0,7) x R.
The number of lines hitting the disk B(0,r) follows a Poisson distribution with mean A x 7w x 2r =

A Perimeter(B(0,7)):
A

N —
N

Distribution of lines hitting a convex domain FEach Poisson line hitting a convex domain D C R?

comes from a point uniformly located on a set D C R.

The mean number of lines crossing a convex is

/7r w(a)da = Perimeter(D), (110)
0

see Chapter 3 in Santalo [18]. Exercise: find an elementary proof of this fact.

D

/ o (o) /
/

The direction of a line hitting D is not uniform. The rate of a line crossing D with angle « is the
diameter of D w(«) in the direction «, see figure. Hence, the probability density for a line of angle « hit
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D is

= = 111
Jo w(a)da  Perimeter(D) (111)

Uniform line hitting a convex domain. Let D’ C D convex domains. Then, given that a line crossed
D, the conditional probability thatit also crossed D’ is given by

Perimeter(D’)

P(EWD/#Q)MQD#@):M

(112)

Directions of Poisson lines hitting a fixed line

Even if the Poisson line network is isotropic, the distribution of the angles between Poisson lines and
a fixed line is not uniform on [0, 7).

— Lo
The directions of the Poisson lines hitting L has distribution
/s - . 7
7r81n.(|a0 al _ sin(|ag cv|’ O<a<n (113)
Jo €sin(Jag — af 2

Exercise. Show that the uniform Poisson line process in R? is translation, rotation and reflection
invariant.

Alternative construction Consider a Poisson process S in R? x [0,1] x [0, 7) with Lebesgue intensity
dz dudf (114)

This is a marked Poisson process in R? with two marks, a uniform random variable in [0, 1) and a uniform
random variable in [0,7): § € S has 3 components:

5= (s(5),u(3),0(5)) € R* x [0,1] x [0, 7).

Let A = {A1, As,...} be a partition of R? with bounded elements. Let R4 be the set of lines that
intersect A.

Let £(5) be the line containing the point s(5) with angle 0(5) with the positive z-axis. Let |[£ N A| be
the length of the intersection of ¢ and A. Define

Sa = {0(3):5(3) € A, u@3) <|UBE)NA, €8} (115)
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Define
S = Ur>1 [SAk\(RAl U"'URAkfl)}. (116)

Conjecture 5.1 (Line process via size debiasing). The process S defined in (116) is the uniform Poisson
line process.

Proof. Under consideration. O

More on line processes in Stoyan, Kendall and Mecke [4].

6 Gibbsian point processes

This section is based on the paper [11] by Georgii.

6.1 Discrete setting

The set of spin configurations is £ = (§;);eze, where & belongs to a finite set S. £ = SZ% is the
configuration space, provided of the product topology and the Borel sigma-algebra F. We are interested
in probability measures on the space (2, F). Lattice systems. For ¢ € Q and A C Z¢ denote &5 = (& )ien;
same notation as the projection of £ on S™*.

Specifications Prescribe the probability of a finite set of spins when the other spins are fixed. That
is, we look for probability measures P on (2, F) with conditional probabilities

Ga(6alénc) (117)

for finite A.
Examples: 1) Markovian case. (117) depends only on the spins in the boundary of A defined by
OAN:={i¢ A:|i—j|=1for some j € A}, that is,

Ga(éaléac) = Galéaléon) (118)

2) Gibbsian case. Hamiltonian Hj and Boltzmann-Gibbs formula

Galéaléne) = Zye,. exp[—Ha ()], (119)

where ZX\lgAc = Zg,f;\:&\ exp[—Ha(€')]. (119) are the DLR equations.

See the book of Georgii [10] for a exhaustive account of this matter

Definition 6.1 (Gibbs measures). A probability measure P on (2, F) is a Gibbs measure for G =
(GA)Aﬂnite Zf

P(&p occurs in A|Exe occurs off A) = Ga(€aléae) (120)

for P-almost all ¢ and all finite A C Z°.

Gibbs measures do not exist automatically. However, in the present case of a finite state space S,
Gibbs measures do exist whenever G is Markovian in the sense of (2), or almost Markovian in the sense
that the conditional probabilities (1) are continuous functions of the outer configuration £xc. In this case
one can show that any weak limit of G5 (-|¢x¢) for fixed ¢ A 7 Z? is a Gibbs measure.

A basic observation is that the Gibbs measures for a given consistent family G of conditional proba-
bilities form a convex set G. Therefore one is interested in its extremal points, which are characterized
in the next theorem.

Let FA be the sigma algebra generated by {{Ez =k}:ieNk € S’} and T := Np;|a|<ooFAc, the tail
sigma algebra —generated by sets not depending on the values of any finite set of spins.
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Theorem 6.2 (Extremal Gibbs measures). The following statements hold:

(a) A Gibbs measure P € G is extremal in G if and only if P is trivial on T, i.e., if and only if any
tail measurable real function is P-almost surely constant.

(b) Distinct extremal Gibbs measures are mutually singular on T .

(c) Any non-extremal Gibbs measure is the barycenter of a unique probability weight on the set of
extremal Gibbs measures. (Convex combination of extremal measures).

A proof can be found in Georgii [10], Theorems (7.7) and (7.26).

(a) means that the extremal Gibbs measures are macroscopically deterministic: on the macroscopic
level all randomness disappears, and an experimenter will get non-fluctuating measurements of macro-
scopic quantities like magnetization or energy per lattice site.

(b) asserts that distinct extremal Gibbs measures show different macroscopic behavior. So, they can
be distinguished by looking at typical realizations of the spin configuration through macroscopic glasses.

(c) implies that any realization which is typical for a non-extremal Gibbs measure is in fact typical for
a suitable extremal Gibbs measure. In physical terms: any configuration which can be seen in nature is
governed by an extremal Gibbs measure, and the non-extremal Gibbs measures can only be interpreted
in a Bayesian way as measures describing the uncertainty of the experimenter. These observations lead
us to the following definition.

Definition 6.3 (Phase transition). Any extremal Gibbs measure is called a phase of the corresponding
physical system. If distinct phases ezist, one says that a phase transition occurs.

So, in terms of this definition the existence of phase transition is equivalent to the nonuniqueness of
the Gibbs measure.

One mechanism related to phase transition is the formation of infinite clusters in suitably defined
random graphs. Such infinite clusters serve as a link between the local and global behavior of spins, and
make visible how the individual spins unite to form a specific collective behavior.

6.1.1 Holley inequality

Suppose the state space S is a subset of R and thus linearly ordered. Then the configuration space €2 has
a natural partial order given by & < &' if and only if &; < & for all 4, and we can speak of increasing real
functions f: Q — R.

Let P, P’ be two probability measures on 2. We say that P is stochastically smaller than P’, denoted
P < P if [ fdP < [ fdP' for all measurable bounded increasing f on . This is equivalent to have a

coupling P on Q2 with marginals P and P’ such that P(¢ < ¢') = 1.

A sufficient condition for stochastic monotonicity is given in the proposition below. Although this
condition refers to the case of finite products (for which stochastic monotonicity is similarly defined), it
is also useful in the case of infinite product spaces. This is because (by the very definition) the relation
< is preserved under weak limits.

Proposition 6.4 (Holley inequality). Let A be a finite index set, and u, ' two probability measures on
{0,1}A giving positive weight to each element of {0,1}*. Suppose the single-site conditional probabilities
at any i € A satisfy

(& = Uea\iy) < W& = 1gh\(iy) for <€,

then p < p'.
Proof. Let

P, Ea\ i) = 1(€(7) = 1|\ qiy occurs off ) (121)

the conditional probability that the site i takes value 1 given the configuration {,\ () in the other sites.
Then when &; = 1 we have

(&) = p(i, Ean iy ) (Ean£4y) (122)
1(€) = (1= p(i,€aay) ) (€ fiy) (123)
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where (€); =& if j # 45 (£9); = 1 — &, a configuration differing from ¢ only at site i. In the above case
€)i=0
Define analogously p'(i,&a\(;}). By hypothesis, we have

p(i,éa\giy) < p(i, €y 4y) Whenever § < ¢'. (124)

Consider a pure jump Markov process £(t) on {0,1}* with the following evolution. At rate 1 each
site 4 is updated with a Bernoulli distribution with parameter p(i, {a\ 13 (t—))-
The positive entries of the matrix are

iy _ i Engay) if& =0 195
Q&) {1 —p(i,énqy) if&=1 (125)

The measure p is reversible for the process £(¢). Indeed, (122)-(123) imply

1) Q&€ = n(E) QE &) (126)

Let Pi(&,¢) = P(&(t) = €|€(0) = &) the semigroup associated to Q. Then, the ergodic theorem for finite
jump Markov processes says

Jim P(6.0) = p(0). (127)

Let N = (N; : i € A) be a collection of independent marked Poisson processes in R x [0, 1] with intensity
dt du.

We construct the process as a function of N, £(t) = (£(¢))¢>0[N], as follows. Fix an initial configuration
£(0) and assume we know £(s) up to time t— and (¢,u) € N;. Then at time ¢ update & as follows:

§i(t) = Hu < p(i, Eav gy (1)) } (128)

The updating does not depend on the value of &;(t—). The process so defined has transition matrix Q.
Indeed if £; = 1 we have

Pt +06) = £'¢(t) =€)
= P(N; N ([t,t +6) x [p(i,€a\(iy (£),1) = 1) + P(other things)
=6(1 = p(i,&a\(y)) + 0(9). (129)

and analogously when & = 0,
P(E(t+6) = €'1€(t) = €) = p(i, Ea\(3y) + 0(9). (130)

Define @’ and P/ analogously with p’.
Take £(0) < ¢'(0) and consider the coupling

((€()e=0[N], (€' (1)) e=0[N]) (131)

Both marginals use the same marked Poisson processes N.

If (t,u) € N; and the configurations are ordered at time t—, we have

&i(t) = u < p(i,&a\ iy (1))} < Hu < p(i, &) i3 (8-))} = €i(D)

where the inequality comes from (124). Hence, { < & implies (£(¢)):>0[N] < (§'(t))e>0[N] for all ¢. In
turn, this implies that their distributions satisfy P;(¢, ) < P/(&’,-). Use (127) to conclude that p < p/. O

6.1.2 Bernoulli percolation

Consider Z4, d > 2 as a graph with vertex set Z? and edge set E(Z9) = {e = {i,j} C Z¢: |i — j| = 1}.
Parameters 0 < ps, pp < 1, site and bond probabilities.

Random subgraph I' = (X, E) of (Z%, E(Z4)), where X = {i € Z¢ : ¢, =1} ,E={e € E(X) : 5. = 1}
, where E(X) = {e € E(Z%) : e C X} is the set of edges between the sites of X, and (¢; : i € Z%),
(e : e € E(Z%)) are independent Bernoulli variables with P(&; = 1) = ps, P(. = 1) = pp.
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This is Bernoulli mized site-bond percolation. Setting p, = 1 we obtain pure site percolation, and
ps = 1 corresponds to pure bond percolation.

Let {0 <> co} denote the event that I contains an infinite path starting from 0, and 6(ps, py; Z%) =
P(0 <» c0) be its probability.

By Kolmogorov’s zero-one law, we have 0(ps, pp; Z?) > 0 if and only if I' contains an infinite connected
component —called cluster— with probability 1. In this case one says that percolation occurs.

The following proposition asserts that this happens in a non-trivial region of the parameter square,
which is separated by the so-called critical line from the region where all clusters of I are almost surely
finite. The change of behavior at the critical line is the simplest example of a critical phenomenon.

Proposition 6.5 (Bernoulli percolation). The function 0(ps, py; Z2) is increasing in ps, py and d. More-
over,

(1) 0(ps, pp; Z%) = 0 when pypy is small enough;
(2) 0(ps, pp; Z%) > 0 when d > 2 and pspy is sufficiently close to 1.

Proof. The monotonicity in ps; and p, follows from coupling by defining the 7.(U.) = H{U, < pp} and
N (Uz) = YU, < ps}, where U, U, are iid Uniform|[0, 1] or using Holley inequality; the monotonicity in d
follows by noticing that an infinite percolation cluster in Z? is contained in an infinite percolation cluster
in Z4 for d > 3.

The following arguments are taken from Grimmett [12].

(1) A self avoiding walk (SAW) is a path that visit no vertex more than once. Let o, be the number
of SAW starting at the origin with length n. Let IV,, be the set of those walks having all edges and sites
open (open SAW). Then

0 = P(N, > 1 foralln>1).

This is because the cluster of the origing has infinitely many points if and only if there are open SAW
starting at the origin of all lenghts. The above expresion equals

lim P(N, >1)

n—oo

Now
P(Nn > 1) < EN, = (pspb)nan

An upperbound for o, is
on < (2d)(2d — 1) n>1

because the first step of a SAW can be performed in 2d different ways and each subsequent step can be
performed at most in 2d — 1 different ways (since the walk is self avoiding, it cannot come back).

Hence
0 < lim (2d)(2d — 1)" " (psps)"

n—oo

But this is 0 if pspy < (2d — 1)L, This gives

PsPy < 50 — 1 implies 6 = 0.

(2) Planar duality. Given the graph Z? with edges E(Z?), construct a dual graph I'* = (V*, E(V*)
with vertices V* = Z% + (1, 3) and edges E(V*) = {{z,y} C V* : |z —y| = 1}. This is the graph

[ = (Z?, E(Z?%)) translated by (%, 1). See Fig. 1

202
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Figure 1: The dual graph.

Each edge e = {x,y} of the graph T is crossed by an edge e* of the dual graph I'*. We construct a
percolation model in I'* by declaring

e* open if and only if e = {z,y} open and x open.

The Peierls argument dominates the probability of {0 ¢ oo} by the probability of the existence of a
closed circuit in the dual graph containing the origin. In fact, if there exists a closed circuit in the dual
graph containing the origin, there cannot be an infinite open path containing the origin, that is,

{0 ¢4 0o} C {there is a closed circuit of the dual graph T'"*}.

Let M,, be the number of closed circuits of the dual graph of lenght n sorrounding the origin. Then
1-0=P(0 % ) :P(ZMn > 1)) < E(ZMn>
n>4 n>4
where we used that the shorter circuit sorrounding the origin has lenght 4. The above expression equals
> EM, <) (nd")(1 - paps)"
n>4 n>4

In fact, the number of circuits of lenght n sorrounding the origin in the dual graph must cross in at
least one point the semiline [0,00). The leftmost point the circuit intersects this semiline can take at
most n values: {%, %, coo,n+ %} Starting the circuit from this point, at each step it can take at most 4
different values. Hence the the number of circuits of lenght n sorrounding the origin in the dual graph is
dominated by n4™. This circuit is closed if all bonds are closed, hence the probability that it is closed is
dominated by (1 — pspp)™. It is possible to take £ > 0 such that

Zns” <1
n>4

Then pgpy, > 1 — € implies 6 > 0. O

6.2 Continuum percolation

Poisson points connected by Bernoulli edges.
Let X = countable subsets X of R<.

o-algebra generated by the counting variables N (B) := #(X N B) for bounded Borel sets B C R%;
(XAZ:%erA)

& = locally finite subsets of E[RY) = {{z,y} < RY = =z # y}
& = possible edge configurations with an analogous o-algebra.
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For X € X let BE(X) = {e € E(R?) : e C X} = possible edges between the points of X, and
E(X)={F €& :FECE(X)} = edge configurations between the points of X.

Random graph I' = (X, E) in R? as follows.

e Pick a random point configuration X € ¥ according to the Poisson point process 7% on R¢ with
intensity z > 0.

e For given X € X, pick a random edge configuration F € £(X) according to the Bernoulli measure
w5 on EX for which the events {E > e}, e = {z,y} € F(X), are independent with probability p% (E >
e) = p(x — y); here p : R — [0,1] is a given even measurable function.

The distribution of the random graph I' on X x E is
P*P(dX,dE) = 7*(dX) % (dE) (132)
It is called the Poisson random-edge model, or Poisson random-connection model, Penrose
(1991) Meester and Roy (1996).
Boolean model: p(x —y) = |z — y| < 2r} for some r > 0.

x and y are connected if and only if B(z,r) and B(x,r) overlap. Same as random set Z = U e x B(z, 1),
for random X with distribution 7*.

Percolation probability of a typical point: Writing = <+ oo when x belongs to an infinite cluster

of T = (X, E),
oz pirt) = [ HEE e > pe(ax, dF)

for an arbitrary bounded box A with volume |A|. By translation invariance, 6(z, p; R?) does not depend
on A. In terms of the Palm measure, §(z,p; R%) = P*P(0 <+ 00) .

Theorem [Penrose, 1991] 6(z, p; R?) is increasing as function of z and p(-). Moreover, (z,p; R%) = 0
when z [ p(z)dz is sufficiently small, while (z,p; R?) > 0 when z [ p(x)dx is large enough.

Sketch proof. The monotonicity follows from an obvious stochastic comparison argument. Since z [ p(z)dz
is the expected number of edges emanating from a given point, a branching argument shows that
0(z,p; R?) = 0 when 2 [ p(z)dz < 1.

It remains to show that 6(z,p;R?) > 0 when z [ p(z)dx is large enough. For simplicity assume
[p(z)dz =1 and p(x —y) > § > 0 whenever |z — y| < 2r. The following is taken from Georgii and
Haggstrom (1996).

Divide R? into cubic cells A(i),i € Z%, with diameter at most 7 an pick a sufficiently large number n.

e Call a cell A(i) good if it contains at least n points which form a connected set relative to the edges
of I' in between them. This does not depend on the other cells and

P(A(i) is good) > 7% (N; > n)[1 — (n — 1)(1 — 6*)" %] =: p, (133)

where N; is the number of points in A(7), and the second term is an estimate for the probability that one
of the n points is not connected to the first point by a sequence of two edges. ps is arbitrarily close
to 1 when n and z are large enough.

e Call two adjacent cells A(i), A(j) linked if there exists an edge from some point in A(4) to some
point in A(j). Conditionally on the event that A(:i) and A(j) are good, this has probability at least

1-(1- 5)”2 =: py, which is also close to 1 when n is large enough.
We have a site-bond percolation model in Z¢ with p, and py coupled to our original continuum

percolation model with parameters z and p.

{there exists an infinite cluster of linked good cells}

C {there exists an infinite cluster in the Poisson random-edge model}.

Hence

n

|A(0)]

0(z, p; RY) > 0(ps, py; Z%) (134)



where 0(ps, pp; Z9) is the probability that the origin is connected to infinity in the discrete model. The
right hand side dominates from below the average number of points of X in A(0) connected to infinity
divided by the volume of A(0).

Hence 6(z,p; R?) > 0 when z is large enough. O

Stochastic comparison Refer to §6.1.1 for the definition of stochastic domination.

A simple point process P on a bounded Borel subset A of R? (a probability measure on X5 = {X €
X : X C A}) has Papangelou (conditional) intensity v : A x X, — [0, o[ if P satisfies

[Pax) Y fax\{ah) = [ do [ P@x)6l)f )
z€X
for any measurable function f: A x Xp — [0, c0[.

(x| X)dx “conditional probability” for the existence of a particle in dx when the remaining configu-
ration is X.

The Poisson process 75 on A has Papangelou intensity v(z|X) = z.

Holley Preston inequality Consider the partial order induced by the inclusion relation on X4.

Proposition 6.6 (Holley-Preston inequality). Let A C R? be a bounded Borel set and p, ' two probability
measures on X with Papangelou intensities v resp. . Suppose v(z|X) < /(x| X’) whenever X C X'
and x ¢ X'\ X. Then p < .

Proof postponed to the next section.

6.3 The continuum Ising model

Point particles in R? of two different types, plus and minus.
A configuration is a pair £ = (X, X 7).
Configuration space: ) = X2.

Repulsive interspecies interaction pair potential of finite range, given by an even function J : R? —
[0, 0] with bounded support.

The Hamiltonian in a bounded Borel set A C R? of a configuration ¢ = (X*, X ™) is given by
Ha(6) = > J(@—y). (135)
zeXt yeX —:{z,y}NA#D

Example: classical Widom-Rowlinson model (1970) with a hard-core interspecies repulsion: J(z—y) = oo
when |z — y| < 2r and J(x — y) = 0 otherwise.

Assumption:

There exist 6,7 > 0 such that J(z —y) > 4 if | — y| < 2r. (136)

Gibbs distribution in A with activity z > 0 and boundary condition xc = (XIJ{C,XXC) € X3, is
GA(dénléns) = Zye,. exp[—HA(E)] m3 (dX) 7} (dX})
Def. Gibbs measures G = G(z) are the measures having G, as conditional probabilities, for all A
bounded Borel set in R®.

Existence of Gibbs measures. G4 (+|€ac) has Papangelou intensity

zexp[— Y ex- J(x—y)] ifzeAt }<z.

(@ XF,X7) = { zexp[— Y cy+ J(x—y)] ifxeA”

Holley-Preston implies that G (-[€ac) < 7} x 7%. Compactness theorems for point processes show that
for each ¢ € X2, Gp(-|¢ac) has an accumulation point P as A~ R%.

It is easy to see that P € G.

24



Uniqueness and phase transition We will show that the Gibbs measure is unique when z is small,
whereas a phase transition (non-uniqueness) occurs when z is large.

It remains open problem whether there is a sharp activity threshold separating intervals of unique-
ness and non-uniqueness. That is, a z. such that for z > z. there are more than one extremal Gibbs
measure and for z < z. there is only one Gibbs measure.

Proposition For the continuum Ising model we have #G(z) = 1 when z is sufficiently small.

Proof. Let P, P' € G(z). We will show that P = P’ when z is small enough.
Let R be the range of J, i.e., J(z) = 0 when |z| > R.
Divide R? into cubic cells A(i), i € Z¢, of linear size R.

Let p’ be the Bernoulli site percolation threshold of the graph with vertex set Z?¢ and edges between
all points having distance 1 in the max-norm.

Consider the Poisson measure Q% = 7% x 7% on ) = ¥2.

Let £ ,¢' be two independent realizations of %, and suppose z is so small that Q% x Q*(N; + N/ >
1) < p! , where N; and N are the numbers of particles (plus or minus) in £ NA(%), respectively & NA(3).

Then for any finite union A of cells we have Q* x Q*(A JESN o0) = 0, where {A LN oo} denotes the
event that a cell in A belongs to an infinite connected set of cells A(i) containing at least one particle in
either € or &'.

Holley-Preston imply that P x P’ < Q% x Q*. Hence P x P'(A JEAR o0) = 0.

In other words, given two independent realizations £ and ¢ of P and P’ there exists a random
corridor of width R around A which is completely free of particles.

Given A D A, denote K (A) the set of (£,¢) such that “there is an empty corridor of width R in A
around A and there is no A’ C A with this property”.

Now, suppose that for any local set B depending on A and boundary conditions £ and £, we have

Ga X Ga(Bx XN EKA(A)|(&,E)ae)
=Ga X GA(X x BN KA(A)|(&,E)ac) (137)

then, integrate with respect to P x P’ to obtain
(Px P)(BxXNK)(A))=(PxP)XxBnNKxA)) (138)

Summing over all choices of Kj(A), we get P(B) = P/(B), for any bounded measurable B in €. This
implies P = P'.

It remains to show (137).

If A does not contain a corridor of width R around A free of £ and &’ particles, then both sides of
(137) are 0.

If A does contain such corridor, the boundary conditions (£,&')ac have the same effect as the empty
boundary conditions. Hence, we can replace £ and £ by empty configurations. Since the event K (A)
and the specifications (Ga x Ga)(+|0) x @)are invariant under the map (&,¢") — (&', &), the equation (137)
holds. O

Existence of phase transition Follows from percolation in a suitable random-cluster model.

Gibbs distribution with + boundary conditions.
Gi = [ 7o (@Y Ga LY 0) (139)

This is the specificarion with a Poisson boundary condition of plus-particles and no minus-particle off A.

Random-cluster model: Fix the activity z. Define the probability measure x3 on X x £ describing
random graphs (Y, E) in R%:

XAldY.dE) = Z, 2" ¥ (dY) i (dE).
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where k(Y E) is the number of clusters of the graph (Y, E);
Zlyye = / VB w2 (dyy) b (dE).

is the normalization factor and ,u’;/’A is the probability measure on E for which the edges e = {z,y} C Y
are drawn independently with probability

[ 1-e@ ife={z,y) ¢ Yae
plx—y) = { 1 otherwise. o

XA is called the continuum random-cluster distribution in A with connection probability function p
and wired boundary condition. This means that all points connected to Yx- belong to the same cluster.

If we eliminate the factor 2¢(¥>E) we have just the continuum percolation model with a unique cluster
containing Yje.

In the Widom-Rowlinson case of a hard-core interspecies repulsion the randomness of the edges
disappears, indeed, if for z,y € Y,we have ||z — y|| < r then {z,y} € E. In this case x5 describes a
dependent Boolean percolation model. The dependency comes from the factor 255,

Coupling between the random-cluster model and the continuum Ising model Let Py be the
product distribution on X x X x £ given by

Py(dXt,dX ™ ,dE) = 7*(dX ) 75 (dX ") u’)’(’ﬁux, (dE)
with p given by (140) with Y = X+t U X .
Define the set of configurations with no connections between particles of different sign:
Ay ={(XT, X" ,E)eXxXx&E:Ec&XTUX)

and E Z {z,y} forr € X7,y X~}

Define Q)5 as the conditioned measure
Qa = Pp([A4n)

Proposition 6.7. For any bounded box A in R?, let (X, X, E) be distributed with Qx. Then

1. The (X, X ™) marginal of Qa has distribution G} .
2. The random graph (X U X ~, E) has distribution x3.

3. The conditioned law of (XT U X, E) given £ = (Xt,X7) is the following. Independently for all
e={z,y} € E(Y) let e € E with probability

1—e /@Y jfec Xt orec X~ andenA#0
pax+x-(€) = 1 if e C AS,
0 otherwise.

4. The conditional distribution of (X+, X ™) given (Y, E), denoted Qa(dXT,dX (Y, E)), is the fol-
lowing. For each finite cluster C of (Y, E) let C C X or C C X~ according to independent flips
of a fair coin; the unique infinite cluster of (Y, E) containing Ye is included into X .

Proof. 1.
Qa(dXT,dX ™)
= 1 z +\,.z — A
= PA(AA)TF (dX )R (dX )/E:(X+’X’E)€AA MX+UX_(dE)
= PA(]AA)WZ(dX-i_)ﬂ-ZZ\(dX_) H (1 —pa{z,y})
zeXt yeX -
1
= et dXJr A(dX ™ <o(—J B
PA(AA) ( ) A( )wexgex_e p( (.’E y))
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- = (ZA)WZ(dxﬂng(dX*)exp(_HA(XﬂX*))

- GH(XT,X") (141)

2. Let f: X x £ be a test function. Then

f(X+ UX—7E)QA(dx+7dX_adE)

Xx&
! - Z z =P
~ Pa(An) Ja, fXTUXT, By (dX )mi (dXT )RS - (dE)
1
- m XXEf(KE)
< > PAX T, X7, E) € Ar|(Y, E))) 75 (dY )k (dE)

(Xt,x—):xtux—=Y
(X+,X7,E)€AA

where 7+ is a PP in R with intensity z5(z) = z(1+1{z € A}). Observe that 724 (dY) = £2#¥27*(dY),
where Z is the normalization.

1 \#Y) P,
T ZPy(Ay) xxé(Y’E)Q#Y( > (3) )W (dY) iy (dE)

(X+,x—):xtux—=v
(XJr,X’,E)EAA

where we used that the probability that a set of points Y gets partitioned into fixed X and X~ is 27#Y,
because each point has probability 1/2 to belong X (or to X ™).
Using that the cardinality of {(X, X~ F) € Ay : Xt U X~ =Y} is 28(VF) we get:

1
- - Y,E Qk(YtE) 2(dY p,A dE
ZPA(AA) ExE f( ) T ( ),LLY ( )

/ (Y, B) i (dY, dE). (142)

The normalization comes for free because we started with a probability.

3. Fix E and denote p(z,y) = Qa({z,y} € E|XT,X7). Since (X, X, F) € Ax, we have that
p(z,y) =0ifz € XT and y € X, so that F does not contain vertices with different sign. The other edges
intersecting A may take any value while those contained in A° must be 1. Hence p(x,y) = pa x+ x- (2, ¥)
and

oXTux B xtx )= ] p@vw (143)
{z,y}€FE
4.
B 1 1\ k(Y,E)
wxtxtive) = I 5-(G) - O

¢ cluster of (v,E)

Percolation and phase transition

The random-cluster representation gives the following key identity: For any finite box A C A,
/[#XI — # X )GLAXT,dX ) = /#{x EYa: x> Yaetxa(dY,dE);

where z <> Ypc means that  is connected to a point of Y. in the graph (Y, F). This is because the finite
clusters have the same probability to belong to X and to X~ and the points connected to the infinite
cluster belong to X ™.

The difference between the mean number of plus- and minus-particles in A corresponds to
the percolation probability in yj.
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The percolation probability in y, is positive for large z.

Denote v, the point marginal distribution of x . It satisfies

vpaf ::/f(Y)XA(dY,dE), (144)

for test functions f : X — R.

Then, item 4 of Proposition 6.7 implies
XAa(dY,dE) = vaA(dY)pa v (dE)

with

1
A

Proposition 6.8 (Edge domination). @a y is stochastically larger than the Bernoulli edge measure M;
for which edges are drawn independently between points x, y € Y with probability

1—e?
1—e %)+ 2e

ﬁ(m - y) = ( -5 fO’f‘ |£L’ - y| < 2T7 (145)

and with probability 0 otherwise, where § and r are as in assumption (136).

Proof. We fix Y ~ v and consider edges distributed with p(dE) := ¢ v (dE) on one hand and with
W' (dE)py, on the other hand. In order to apply Holley inequality compute

p(e) == p(nle) = 1ner){e})
P(%y)Qk(Y’E(nl))Mfo(ﬂE(Y)\{x,y})
[p(a, y) 2R EGD) 4 (1 — p(a,y)) 26 EONT 18 (npeyry f2,4})

where E(n) = {e € E(Y) : n(e) =1} and

' ({z,y}) =1 and ' (e) = n(e) for e # {z,y},
n°({z,y}) = 0 and n"(e) = n(e) for e # {z,y} (146)

The numerator is the probability under x4, of the configuration 7gy (e} off € and n(e) = 1. In the
denominator we have the marginal distribution of gy )\ e} under the same measure.

We have
k(Y,E(n°) < k(Y,E(n")) + 1, (147)

because connecting = and y decreases at most by one the number of clusters. Hence,

p(x’y) 1-e”’
POV 2 S+ 20— pley)) = (o) 4200

if |x — y| > 2r, by hypothesis. Apply Holley inequality to conclude. O

= f)(xvy)

Proposition 6.9 (Point domination). There exists o > 0 such that the point marginal va of xa dominates
a Poisson process of rate az:

v > 7%, (148)
Proof. The point marginal v, has Papangelou intensity
Z/zk(YUI,E)gbA,Yux(dE)
/2k(Y,E)¢Avy(dE)

To get a lower estimate for v(x|Y") one has to compare the effect on the number of clusters in (Y, E') when
a particle at  and corresponding edges are added. In principle, this procedure could connect a large
number of distinct clusters lying close to z, so that k(Y U x,-) was much smaller than k(Y -). However,
one can show that this occurs only with small probability, so that

V(@Y) =

v(z|Y) > az for some o > 0. O
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Conclusion: The previous propositions imply that y, is stochastically larger than the Poisson
random-edge measure P, ; defined in (11).

Hence,
/#{x EYa :x e Yae} xa(dY,dE) > U(A) O(az, p; RY)

Finally, since G} < % x 7% by (17), the Gibbs distributions G} have a cluster point P* € G(z), a Gibbs
measure satisfying

J XL - #XZIPH@XFdX7) 2 Olaz ).

By spatial averaging one can achieve that P* is in addition translation invariant. Together with the
continuum percolation Theorem, saying 6(z, p; R?) > 0 for sufficiently large zp, this leads to the following
theorem.

Theorem For the continuum Ising model on R%, d > 2, with Hamiltonian (135) and sufficiently large
activity z there exist two translation invariant Gibbs measures PT and P~ having a majority of plus-
resp. minus-particles and related to each other by the plus-minus interchange.

This result is due to Georgii and Haggstrom (1996). In the special case of the Widom-Rowlinson
model it has been derived independently in the same way by Chayes, Chayes, and Kotecky (1995). The
first proof of phase transition in the Widom-Rowlinson model was found by Ruelle in 1971, and for a soft
but strong repulsion by Lebowitz and Lieb in 1972. Gruber and Griffiths (1986) used a direct comparison
with the lattice Ising model in the case of a species-independent background hard core.

As a matter of fact, one can make further use of stochastic monotonicity. (In contrast to the preceding
theorem, this only works in the present case of two particle types.) Introduce a partial order ‘< ’ on
Q = X2 by writing (X*,X7) < (Y*,Y") when XT C Y+ and X~ D Y. (21). A straightforward
extension of Holley-Preston then shows that the measures GX decrease stochastically relative to this
order when A increases. (This can be also deduced from the couplings obtained by perfect simulation,
see the paper of Georgii, Section 4.4.) It follows that PT is in fact the limit of these measures, and is
in particular translation invariant. Moreover, one can see that PT is stochastically maximal in G in this
order.

Corollary For the continuum Ising model with any activity z > 0, a phase transition occurs if and
only if

/P+(dX+, dX Yy x+ (0 5 00) > 0;
here Pt is the Palm measure of Pt, and the relation 0 Y% o0 means that the origin belongs to an

infinite cluster in the graph with vertex set X and random edges drawn according to the probability
functionp=1—e7 .

It is not known whether P* and P~ are the only extremal elements of G(z) when d = 2, as it is the
case in the lattice Ising model. However, using a technique known in physics as the Mermin—Wagner
theorem one can show the following.

Theorem If .J is twice continuously differentiable then each P € G(z) is translation invariant.

A proof can be found in Georgii (1999). The existence of non-translation invariant Gibbs measures
in dimensions d > 3 is an open problem.

7 Perfect simulation of Markov jump processes

Cadenas de Markov a tiempo continuo

Vamos a considerar procesos Markovianos de salto en un conjunto finito S con tiempo ¢ € R*. Decimos
que un proceso X; es un proceso Markoviano de saltos si

PXyn=yl|Xi =2, Xy =24, 0<s<t)=hq(z,y) + o(h). (149)

q(z,y) es la tasa de salto de x a y # x.
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Ejemplo, proceso de Poisson S de intensidad A induce un proceso Markoviano de salto. Defina
N(t) :=5nN]o,t].

P(N(t+h)=x2+1)|N({t)==x)=P(N(,t+h]=1)
= Ahe M 4 P(otras cosas),

Como el evento “otras cosas” estd contenido en el evento “hay 2 o méas puntos del proceso de Poisson en
el intervalo de tiempo [t,t + h)” y la probabilidad de ese evento es o(h), tenemos que g(z,x +1) = Ay
el resto de las tasas es 0.

Construccién usando procesos de Markov bi-dimensionales Queremos construir un proceso X
con tasas g(x,y), es decir, que satisfaga (149). La tasa de salida del estado z se denota

Aw = Zq('ray)v

Consideremos un proceso de Poisson bi-dimensional M (-). Para cada estado 2 consideramos una particién
del intervalo I, = [0, A\;] en Borelianos B(z,y) de medida ¢(z,y), y # =:

I, = UyES\{»L}B(‘Ta y)a B(JE,y) N B(xay/) = @, for Y 7é y/'
|B(z,y)| = q(z,y), z=#y. (150)
Fijemos Yy = g, un estado arbitrario y Ty = 0. Sea T} la primera coordenada del primer evento del
proceso M (-) en la banda [0, 00) x I,:
Ty = inf{t > 0: M([0,¢] x Iy,) > 0}.

Defina (T1,U;) € M, el tinico punto que realiza el {nfimo, con U; € Iy,. Como (B(Yy,y) : y € S) es una
particién de Iy,, hay un dnico Y; € S tal que U; € B(Yp, Y1).

Iterativamente, asumimos que T,,_1 y Y, _1 estdn determinados y definimos

T, =inf{t > T,_1 : M((Iy,

n—1

X Tn—hﬂ > O}

Defina (T},,U,,) € M, el tinico punto que realiza el {nfimo, con U,, € Iy, _,. Como (B(Y,—1,y) :y € 5) es
una particién de Iy, ,, hay un unico Y;, € S tal que U,, € B(Y,,—1,Y,).

Definition 7.1. Defina
X =Yy, site[T,,Th+1), parate [0,00) (151)

Asi, para cada realizacion del proceso de Poisson bidimensional M, construimos una realizacién del
proceso (X : t € [0,00)). T, es el n-ésimo instante de salto; Y, es el n-ésimo estado visitado por el
proceso.

Proposition 7.2. El proceso (X; : t € [0,Tx)) definido en (151) satisface (149).
Proof. Por definicién,

P(Xt4n =y| X¢ = x) (152)
=P{M((t,t + h] x B(z,y)) = 1} + P(otras cosas), (153)

donde el evento {otras cosas} estd contenido en el evento
{M((t,t + h] x [0, Az]) > 2},

el proceso de Poisson M contiene dos o mds puntos en el rectangulo [0, A,] x (¢,¢ + h]. Por definicién de
M(-), tenemos

P(M((t,t + h] x [0,\z]) > 2) =o(h) and (154)
P(M((t,t+ h] x B(z,y) = 1) = hq(z,y) + o(h). (155)
Esto demuestra la proposicién. O
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Example 7.3. Fila con un servidor y espacio limitado de espera. Espacio de estados G = {0,1,2}. X,
es el nimero de clientes en el sistema en el instante ¢. Los clientes llegan a tasa A y los servicios son
exponenciales a tasa p. Las tasas son:

q(0,1) =¢(1,2) = A (156)
Q(]-v 0) = Q(2a ]-) = 2u (157)
q(x,y) =0, en los otros casos. (158)

Los intervalos usados en la construccién son los siguientes:

B(0,1) = B(1,2) = [0,] (159)
B(1,0) = [\ A+ pu]; B(2,1) =10,2pu]. (160)

Todas las tasas estdn acotadas por max{\ + u, 2u}.

Nacimiento puro X en {0,1,2,...} con tasas

g(z,z+1) =Xz (161)
q(z,y) =0, en los otros casos. (162)

La tasa de llegadas en el instante ¢ es proporcional al nimero de llegadas hasta ese instante. Los intervalos
son

B(z,z+1) = [0, \z) (163)

Kolmogorov equations It is useful to use the following matrix notation. Let @) be the matrix with
entries

q(z,y) sex #y (164)
q(z,z) ==X = — Zq(x,y). (165)

y#

and P, be the matrix with entries
pe(zy) = P(Xy =y| Xo = 2).
Con esta notacién, las ecuaciones de Chapman-Kolmogorov dicen
Piis = PPs. (166)
for all s,£ > 0. To see it compute
Pys(r,y) = P(Xeps =y | Xo = 2)
= P(X,=2|Xo=2)P(Xpys =y | X, = 2)
= pa(,2)pi(z,y)- (167)

This is the (z, z) entry of P, P.

Proposition 7.4 (Kolmogorov equations). The following identities hold
P/ =QP, (Kolmogorov Backward equations)
P/ = P,Q (Kolmogorov Forward equations)

for allt > 0, where P/ is the matriz having as entries pi(x,y) the derivatives of the entries of the matriz
P,.

Proof. Backward equations. Using Chapman-Kolmogorov,

prin(r,y) — pe(,y) = Y pale, 2)pi(z,y) — pul, y)

z
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= (pn(x,2) = Vpe(2,9)) + Y o, 2)pi(2,)-
z#x

Dividing by h and taking h to zero we obtain pi(z,y) in the left hand side. To compute the right hand
side, observe that

pr(z,x) =1— A h+ o(h).
Hence
hirln# = —X; = q(z, x).
Analogously, for x # y
ph<xa y) = q(m, y)h + O(h)

and

1ih Py _ (fo y) q(z,y).

This shows the Kolmogorov Backward equations. The forward equations are proven analogously. To
start, use Chapman-Komogorov to write

pt+h Zpt z,z Ph 7y) O

Las ecuaciones backward dicen P/ = QP;. Si P; fuera un ntimero, tendriamos
Pt = th

Formalmente podemos definir la matriz

y diferenciar para obtener
D Ia

A pesar que en general el producto no es conmutativo, tenemos que QP; = P;(). Para verlo de otra
manera,

n— n—1
SR I ! 5 = 9P,

n>1

tnl tnl

QP = ZQQ“ => Q" 1( -Q = RQ.

n>0 ) n>0 )

Invariant measures

Definition 7.5. We say that 7 is an stationary distribution for (X;) if

Z m(x)pe(z,y) = 7(y) DBalance equations (168)

x

> w(w) =1 (169)

x

that is, if the distribution of the initial state is given by 7, then the distribution of the process at time ¢
is also given by 7 for any ¢ > 0.

Theorem 7.6. A distribution 7 is stationary for a process with rates q(x,y) if and only if

> w(@)qlzy) =) Y aly,2). (170)

x z
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Condition (170) can be interpreted as a flux condition: the entrance rate under 7 to state y is the
same as the exit rate from y. For this reason the equations (170) are called balance equations.

Proof. Assume 7 stationary, then (168) read
7TPt = T.

Differentiating we get

0:2()pt(wy Z Zptzz Y)
_ ZZ Q) = I

z

where we have applied the forward equations. This proves (170). Reciprocally, equations (170) say
7@ = 0.
Applying Kolmogorov backwards equations we get
(nP) =P/ =7nQP, = 0;

In other words, if the initial state of a process is chosen accordingly to the law 7, the law of the process
at any future time ¢ is still 7. This is because P, is the identity matrix and 7Py = . O

Proceso clima Hay 3 estados: sol, nublado, lluvia. El tiempo que estd en sol es exponencial 1/3 de
donde pasa a nublado, queda un tiempo exponencial 1/4 cuando empieza a llover y llueve un tiempo
exponencial 1, cuando vuelve a sol. La matriz de tasas es

-1/3 1/3 0
0 —-1/4 1/4
1 0 -1
m(Q) = 7 equivale a las ecuaciones
—1m(1) +7(3) =0
37 (1) im(2) =

1

im(2)  —7(3) =0
La solucién es m = ( g, g, 8) Podriamos haber obtenido esto con procesos de renovacion con recompensa.
La fraccion de tiempo que estamos en cada estado es el conciente entre el tiempo medio en el estado y el
tiempo medio del ciclo.

Recurrencia de Harris y convergencia exponencial al equilibrio FEn el siguiente teorema probamos
simultaneamente la existencia y la convergencia a velocidad exponencial bajo una condicién que es cono-
cida como recurrencia de Harris. Defina

y(z) ==minQ(z,2), Q) =) ¥(2) (171)

Theorem 7.7. Sea X; un proceso de Markov con tasas Q. Si~y > 0, entonces (X;) tiene una tnica
distribucion estacionaria w. Ademds, el proceso converge a w en variacion total, a velocidad exponencial
con coeficiente y:

sup Z|7r — Py(z,2)| <e .

Proof. Primero vamos a demostrar que si hay una distribucién estacionaria 7, entonces vale la conver-
gencia en variacion total. Después demostraremos la existencia y unicidad de 7.

Sin pérdida de generalidad asumimos que el espacio de estados es {1,..., K} C N, para algin K > 0.

Convergencia. Construiremos dos cadenas con estados iniciales distintos con saltos governados por
los puntos del mismo proceso de Poisson bidimensional M y la misma particién B(z.y), elegida de manera
de controlar el tiempo de encuentro de las marginales.
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Construya una familia de intervalos sucesivos J(z) disjuntos de tamaifio
|7 (2)] = ~(2).
La longitud del intervalo U,J(z) es igual a .
A continuacién, para cada estado = construya disjuntos sucesivos I(z, z) de tamaifio
(@, 2)] = a(@, 2) = 4(2);
localizados a la derecha de los intervalos J(z).
Finalmente defina
B(z,z) =J(z)UI(z,2)

Como B(z, z) tiene medida ¢(z, z), la construccién de X; usando el proceso de Poisson bidimensional M
se puede hacer con estas particiones.

Vamos a realizar (X, X]) con estado inicial (X, X{)) = (z0, 2() y cada marginal es governada por los
puntos de M y la particién B recién construida.

Si el proceso en el instante t— se encuentra en el estado (z,j) y M contiene al punto (¢,u), con u en
el intervalo

U=J(2) = [0,),
entonces ambos procesos coalescen. Mds precisamente, hay tres casos:
(a) u € J(z) para z ¢ {x,2'}, en ese caso ambas marginales saltan a z;
(b) u € J(x), en ese caso la segunda marginal salta a x y la primera marginal se queda en z;
(¢) u € J(a'), en ese caso la primera marginal salta a 2’ y la segunda marginal se queda en .
Esto se puede hacer porque por debajo de v la particién B(z, z) no depende de z:
B(z,2)N[0,7) = B(z',2) N [0,7), para todo z,z,z’.
El instante de coalescencia se denota 7:
7 =1inf{t > 0: M([0,¢] x [0,7)) > 0}.
Por lo tanto,
t>7 implica X;=Xj, (172)
ademas
T ~ Exponencial(y) : P(1 >t) =e . (173)

Para concluir, escribimos
Z |P;(y, 2) — Py(x,2)| = Z |P(Xy = z) — P(X{ = z)|
=Y IB{X, = 2} - YX, = 2})|
< B(Y (X = 2} - 1x; = 2}))
= 2B X, # X/} = 2P(X, # X))

< 2P(1 >t) = 2¢ 7", usando (172) y (173).

Si el estado inicial X|) es aleatorio con distribucién estacionaria ,

> 17(=) = P, )l = Y| Y 7 0) Py, 2) = Y w(w) Pl 2)|
<> 7)) Y|Py, 2) — Pi(w,2)|
< Zﬂ'(y)Qe_'yt =2

Esto demuestra la convergencia a velocidad exponencial a la distribucién estacionaria, cuando ¢t — co.
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Existencia de la distribucién estacionaria. Simulacién perfecta

Denote X [i 4 el proceso que tiene una condicién inicial x5 = x en el instante s y utiliza los puntos de
M en la banda [s,t] x [0,00). Esa construccién es invariante por traslaciones:

(X[5 544t = 0) tiene la misma distribucién que (X 4,¢ > 0)

Vamos a sacar el limite cuando s se va a menos infinito. Sea
7(t) :=sup{s < t: M([s,t] x [0,7)) > 0}

En el instante 7(t), el proceso asume un valor aleatorio Z con distribucién

independiente del pasado y desde ahf evoluciona de acuerdo a los puntos de M en [7(¢),t] x R*:

X[”i;,,t] = Xy, = Z HZ = z}X[ZT(t)ﬂ, para todo x, s < 7(t).

z

Si definimos
Zt = X[T(t),t]? t e R (174)

tenemos que Z; es Markov con tasas @) y es estacionaria: P(Z; = z) no depende de ¢t. Por lo tanto,
llamando 7 a la distribucién de Z;, vale que 7 es invariante para Q. O

Ejemplo. Estados {1, 2, 3}.

-3 1 2
Q= 4 -5 1 (175)
2 3 -5

(7(2)) = (27 L, 1) v =4.

(J(2)) = ([0,2),[2,3),[3,4))

Qi 2) —(2)) =

SN ¥
N *x O
* O =

* ) [4,5)
I(i,5) = | [4,6) * )
0 [4,6) *

La existencia de una unica distribucién estacionaria y convergencia bajo la hipdtesis de recurren-
cia positiva se demuestra como en el caso discreto. La diferencia es que no existe el problema de la
periodicidad.

Theorem 7.8. Si el proceso Markoviano de salto (Xy) es irreducible y tiene una distribucion estacionaria
T, entonces

limp, (2, y) = m(y).

Proof. Como p(i,j) > 0, tenemos que para todo h > 0 la cadena discreta con matriz de transicién
pr(x,y) es recurrente positiva y aperiddica y tiene distribucién estacionaria 7. Por lo tanto

lim prp (i, j) = 7(5). O
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8 Perfect simulation of low density Gibbsian point processes

This section is based on [7]. Here we propose a perfect simulation algorithm and construction of measures
locally absolutely continuous with respect to a Poisson process. They will be invariant measures of
interacting birth-and-death processes. Perfect samples of finite windows of the infinite-volume measure

Background. Propp and Wilson’s Coupling from the Past (CFTP). Fill’'s Interruptible Algorithm see
http://dimacs.rutgers.edu/~dbwilson/exact. Spatial processes: Kendall and Moeller. All the above
apply for finite state space or finite regions (coupling with finite coalescence time)

Basic example: seed + grain exclusion process

Consider a Poisson process S C R% x Rt with intensity measure
MNdz h(r)dr; z € RY r € RT,

with [ h(r)dr = 1. Call i the law of ¢S.
If § = (z,r) € S, we interpret that there is a seed at s with radious 7.
Let v(x,r) = B(x,r): ball centered at x with radious r.

Let S be the set of seeds plus grains and define the set of configuration without grain intersections
Ay =1{SC G:y(z,r)ny(',r") =0, for all (x,7),(z',r") € S, x,2’ € A}.
Let
pn = fi(-] Ap) (176)
By Holley-Preston, this measure is dominated by [i (exercise), and hence there is a Gibbs measure for

the specifications induced by pa, by taking limit along subsequences.

We want to construct (perfect simulate) a Gibbs measure with respect to the specifications induced
by pa-
pr= (| Aga)”.

The right hand side is not really defined.

Usually one does this as a limit of finite-box measures (thermodynamic limit), as we did for the
continuum Ising.

Here we will construct directly an infinite volume configuration coupled with configurations in A,
simultaneously for all A, and then show that the infinite volume configuration is indeed the almost sure
thermodynamic limit. This will work for low density.

The idea is the basis of MCMC (Markov chain Monte Carlo): find a Markov process in the set of
point configurations having p as invariant measure and then perfectly simulate this Markov process as
we did with pure jump Markov processes in finite sets.

The Markov process will be a birth and death process of grains, with constant death rate and birth
rate given by the Papangelou intensity induced by p. This is a somehow local interaction.

We start defining a free birth and death process (that means no interactions).

8.1 Free birth and death spatial process:

Let G be a measurable set and consider an intensity measure w on G.

In the case of seed-grain process, G = {B(z,r) : x € R? r € R*} and for v = B(x,r), we have
w(dy) = Ndx h(r)dr.

We want a process (1;)ter with
birth rate w(dy) and
death rate of each v € n: 1.
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Harris graphical construction of the free process

We construct a birth and death point process (1;):ecr, where 7; C G is a countable subset of G for
each t.

Let C be a Poisson process on the space G x R x Rt with intensity
w(dy)dte %ds (177)

An element of C is a triplet C = (v,T,S5), with v € G, T € R, S € RT. We identify the point
C = (v,T,S) with the space-time cilinder

C=vyx[T,T+5) (abusing notation) (178)

and interpret « as the basis, T as the birth-time, S as the life-time and T + S as the death-time of a the
basis v of the cylinder C.

We say that C' € C is alive at time t if T' <t < T + S. Define the process
T = {Basis(C’) : C e C, C alive at t} (179)

(this maybe a multiset). Call (7};);cr the stationary free birth death process.

Semigroup and generator For a function f: G — R, we define
Sef(n) = E(f(ie)lilo = n)). (180)

S, is a semigroup. Define

Define the generator of the process by

Lf(n) =Y_[fn\v) - f()] + /G w(dy)[f(nU{v}) = f(n)]

YEN

It satisfies the Kolmogorov equations

d ~ -~
%Stf(n) = LS:f(n) Backward equations

d ~ ~ o~
%St fn) =S:Lf(n) Forward equations

Stationary measure: law of 7; is i (Poisson).

The process in finite time intervals We define the free process for positive times in [0, 00) with
initial configuration 1y = n C G by including initial cylinders

Cy = {('%0757) 1y € 77}
where S, are independent exp(1) variables. The sets of cylinders of C born at positive times are denoted

by
C* :={C € C : Birth(C) > 0}

Define
ny =: {Basis(C’) : C € CTUC,, C alive at time t}

Then (7;)¢>0 has initial configuration 1 and generator L.

8.2 Birth and death spatial process with exclusions:

We now want to construct a birth and death process 7; with rate of birth of ~:

w(d7y) x 1{~ does not intersect present balls}, (181)
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is the Papangelou intensity for pu = ji(-|Aga).
Rate of death of ~: 1.

General principle If [ is reversible for the (free) process without exclusions, then p is reversible for
the process with exclusions.

This is clear for finite systems: If we have a process with rate matrix ) and p is reversible for @), that
is,

w(@)Q(x,y) = n(y)Qy, ) (182)
and we construct a new matrix ) 4 where the jumps outside a given set of states A vanish, that is,

then the measure p(-|A) is reversible for @ 4.

Hence, to simulate a random variable with distribution p(-]A) one can use the Markov process with
rate matrix @ 4.

Heat bath dynamics Want to construct 7; € {0, 1}G with generator:
Lf(n) =Y _[fm\~) = f()] + /G w(dy)M(y|n) [fF(nU{r}) = f(0)]
Y€
where M (v |n) := 1{~ does not intersects balls in n}; this is the Papangelou intensity of pu.

The measure p is reversible for this dynamics. The proof is based on the following heuristic micro-
scopics:

= (weight of nU~y) x (rate of nU~y — n)
(weight of n) x (rate of n = nU~)

which gives
w(nU~y) x 1 =mw(n) x M(v[n)

assuming that 7 is a Poisson process with intensity w(y).

Graphical construction. Finite-volume, finite time Consider 7’s contained in finite space-region
A and a finite time interval [0, ¢]

1. Run free process starting from 7.

2. Deaths as before.

3. Assume the first (attempted) birth is by the cylinder (v, ¢, s):

e If no intersections then
N M- Uy

o Otherwise
77t1 — 'I’]tI,

4. Tterate

In terms of cylinders we can see this as a two-sweep scheme:

first sweep: generate free cylinders born from 0 to t,

second sweep: iteratively erase cylinders (v, ¢, s) with M (y|n.—) = 0.
Kio,(A,m0) the resultant set of kept cylinders

m 1= {Basis(C) : C € Kjp (A, o), C alive at t} .
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Finite-volume, double infinite time (time-stationary construction)

Random times {7;(C) € R : j € Z}, such that
(a) 7; = oo for j — +oo and
(b) (U[T;, T; + Si]) N (Ui{r;}) = 0.
At each 7; no cylinder is alive.
Kept cylinders obtained independently in each [r;, 7;41).
K(A) := the (time stationary random) set of kept cylinders.

Law of
n = {Basis(C) : C e K(A), C alive at t}

is exactly the (unique) invariant measure pix.

Infinite-volume construction

The problem here is that there is no first mark in time and there are alive cylinders at all times.

The first generation of ancestors of a cylinder C is defined as the set of cylinders C’ born before C'
and alive at the birth-time of C' whose basis intersect the basis of C.

AY': First generation of ancestors of C.

A%: n-th generation of ancestors of C' := union of first generation of ancestors of the cylinders
belonging to the (n — 1)-th generation of C:

c c’
AC = Uprcac A (184)
Notice that a cylinder C' may belong to more than a generation of ancestors of C.

Clan of ancestors of C: AC := UnzlAg

The construction of the set K of kept cylinders works if the clan of ancestors of C' is finite. In
this case we can apply the cleaning algorithm as follows. Pick a cylinder C' and its clan of ancestors. Use
the exclusion from younger to older cylinders in the clan which cylinders are kept or erased.

Result: K C C set of kept cylinders; Cjo4 cylinders born in [0,t]; Ko 4 kept cylinders born in [0, ]
Theorem 8.1. (i) If A°N Cio,q is almost surely finite for all C' alive at time t, then

n = {Basis(C’) : C € Kjoyy(no), C alive at t}

has generator L.

(ii) If A€ is almost surely finite for all C, then
N = {Basis(C) : C e K, C alive at t} .

is stationary with generator L.

Furthermore, the measure u given by the (Marginal) law of ny is the unique stationary measure for
the process.

Conditions allowing such a construction

Theorem 8.2 (Conditions guaranteeing the finiteness of the clan of branching ancestors). Define
1
a = sup —/ 1011{0 N~y # O}w(dh).
v 1l Je

(i) If a < oo then A° N Cjgy is almost surely finite for all C alive at time t.
(i) If a < 1, then A€ is almost surely finite for all C.

Proof. This works by dominating the n-th generation of a fixed cylinder C' by a multitype branching
process with mean “size type” a. O
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Oriented percolation

The backwards oriented percolation model of cylinders is defined by the oriented bonds C' — C’
if ¢’ is an ancestor of C, that is, if the basis of C' and C’ intersect and C’ is alive when C' is born.

Let m(7, #) be the mean number of cylinders of basis 6 in the first generation of a cylinder of basis ~.
These are cylinders born at negative times —t and have a lifetime at least ¢, so they survive to intersect
the grain born at time zero. Its average number is, therefore,

m(y,0) = w()I(v,6) [ 1 OOO dt /t h dse*S] = w(®)I(7,0) - 1. (185)

Define m™ (7, 8) as the mean number of cylinders of basis € incompatible with a cylinder of basis « in the
n-th generation of ancestors, m™ is the matrix-product of m by itself n times.

We will show that a sufficient condition for absence of oriented percolation is

>N mt(v,0) < oo, for all 7. (186)

n>1 0

Let ¢ : G — R™ be the area of the grain, and assume inf, g(y) > 1, (see Lemma 5.15 of Ferndndez,
Ferrari and Garcia (2001)). Denote

1

g = SUp s XQ:Q(G) m(y,6), (187)
we have
> om (7,0) < apq(v). (188)
6

In our case g(7) is the area of the circle centered at ~.

Domination by branching process We introduce a multitype branching process B,,, in the set of
cylinders, which will dominate A,,. We look “backwards in time” and let “ancestors” play the role of
“branches”. Births in the original marked Poisson process correspond to dissapearance of branches. We
reserve the words “birth” and “death” for the original forward-time Poisson process.

Proposition 8.3 (Domination by branching). For any given set of cylinders {Cy,...,Cy}, there exist
independent random sets BS" with the same marginal distribution as AS", such that

k k
Ay cJBr (189)
=1 =1

Proof. Denote C' < C" if and only if Birth(C') < Birth(C”).
For a finite set of cylinders {C4,...,Cy} such that C; < Ciy1,i=1,...,k — 1, define

j—1
AT = AS\ (U Afﬁ) . (190)
=1
This ensures that Afﬂ are independent sets and
k ko
Jay =JA. (191)
i=1 i=1

On the other hand, for any C, ;&10 is stochastically dominated by A{ [that is, there exists a joint
realization (A{, A{) such that P(A{ C A{) = 1]. From this observation and (191) we get (189). O

The procedure defined by B naturally induces a multitype branching process in the space of cylinders.
We define the n-th generation of the branching process by

BC = (B : ¢’ e BY_,} (192)
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where for all C’, B?/ has the same distribution as Alcl and are independent random sets depending only
on C’. Inductively,

A¢ c BY. (193)
Indeed,
A= |J A= |J A (194)
C’eAl C'eAS |

where in the definition of ;&?/ we use {C1,...,Cy} = Uf;olAiC. Hence, the inductive hypothesis AlC C
BC, fori=1,...,n— 1, yields (193).

In consistence with our previous notation, we denote
B“=JBY; B™=JBy; BY=[JB", (195)
n>0 n>0 zeY

the branching clans of C, (x,t) and Y (at time 0) respectively. By (193),

A cBY A% cB*'; AY cBY. (196)

Definition: the space-witdth is the volume occuppied by the projection of the bases of the cylinders
in the family. The time-lenght is the lenght of the time interval between ¢ and the first birth in the
family of ancestors of (x,t).

We have the following dominations, by (196),
TL(A%) < TL(BY) ; TL(A®!) < TL(B®!); TL(AY) < TL(B"), (197)

and similarly for the respective space widths.

Multitype branching of 4’s The (multitype) branching process B,, induces naturally a multitype
branching process in the set of contours. For a cylinder C' with basis v and birth-time 0, define b} € N
as the number of cylinders in the nth generation of ancestors of C' with basis 6:

bl () = Hc € BC : Basis(C') = 9}‘ . (198)

This process will be useful in estimating the space properties of the clans of ancestors. We have the
following relationship:

> bl(0) = [Bg. (199)
0
The process b, is a multitype branching process whose offspring distributions are Poisson with means
m,0) = Ay #6) o) [ et
0

— a0y [ et
= 1y £ 01u(0). (200)

To see this, notice that the cylinders C’ with basis 6 that are potential ancestors of C' (with basis )
form a Poisson process of rate 1{y ¢ 0} w(#). Each of those cylinders is an ancestor of C' if its lifetime
is bigger than the difference between the birth-time of C' and C’. The lifetimes of different cylinders are
independent exponentially distributed random variables of rate 1. The probability that the lifetime of
any given cylinder is bigger than ¢ is given by e~f. Hence, the birth-times of the ancestors of C' with
basis § form a (non homogeneous) Poisson process of rate depending on ¢ given by 1{y « 0} w(0) e~ .
The mean number of births is therefore given by (200).

Lemma 8.4. The means (200) satisfy. Here q(vy) = |7].

dom(7.8) < Y l6m"(7.6) < hla, (201)
6

0

where « is defined in (187).
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Proof.
> _l61m"(,6)
= Z w(n) Z w(yz)... Z 0] w(0)

Y1y1AY Y2:y2471 0:0%vn—1
M V2l 0
bl ¥ Bt ¥ Pt 3w
Y11y " Y2721 ! 0:0%vn—1 n-l

<hl(sw ¥ '9'w<9>) O (202)

T 9oy 1]

This Lemma shows, in particular, that the branching process b, is subcritical if a < 1.

8.3 Continuous-time branching process

Let C be a cylinder with basis v and birth-time 0. Combing backwards continuously in time the branching
clan B we define a continuous-time multitype branching process 1, (#) = number of contours of type 6
present at time ¢ (of this process) whose initial configuration is 6. Each C’ € B is a branch, that is,
belongs to the first generation of ancestors of a unique cylinder U(C”) in B®. In the branching process
1y all the branches (ancestors) of U(C") appear simultaneously at the birth of U(C"), that is when U(C")
dissapears if we look backwards in time. Therefore the part of C’ in the interval [Birth(U(C")), Death(C")]
is ignored. Formally,

b2 (0) = HC’ € B : Basis(C") = 0, Birth(C") < —t < Birth(U(C")), Life(C") > t}’ (203)

In the process v, each contour vy lives a mean-one exponential time after which it dies and gives birth
to kg contours 0, 0 € G, with probability

em('yﬂ) m(’y, 6>k9

. (204)

0

for kg > 0. These are independent Poisson distributions of mean m(+y,6). The infinitesimal generator of
the process is given by

W))m 7 g)n(
= Zw Z H (W +n—06y)— f(¥)] (205)

veG neYo () :n(0)>1 77

where ¢,n € Vo = {¢p € N Y ,9(0) < oo} and Vo(y) = {¢ € Vo;¢(0) > 1 implies § £ v} and
f : yo — N.

The branching process 1; allows us to estimate the time-length of a clan, due to the obvious fact:

> 47 (0) =0 implies TL (BY) <t. (206)
Let M;(,0) be the mean number of contours of type 6 in ¢y and Ry(y) its sum over 6:

My(y,0) =E7(0) ;  Ri(y) =Y Mi(7,0) . (207)
6

The bound we need is given in the next Lemma.

Lemma 8.5. The mean number of branches, R:(vy) satisfies

P(3_07(0) > 0) < Ruly) < Jpfele), (208)
0
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Proof. The first inequality is immediate because _, 1/ () assumes non-negative integer values and Ry ()
is its mean value.

To show the second inequality we first use the generator given by (205) to get the Kolmogorov
backwards equations for R;(7):

d
i) = Y my ) Re() = Rel)- (209)
,Y/
Since Ro(7') = 1, the solution is

R =Y [exp[t<m - I)]] (17) (210)

,Y/

where m is the matrix with entries m(v,~’) and I is the identity matrix. This can be rewritten as

RG) = et Lm0 (211)

n>0 !
< ety ~ Iy a™ (212)
= ol Y )
n>0
where the last bound is just the leftmost inequality in (201). O

8.4 Time length and space width

We are now ready to provide bounds for the time length and space width of the percolation clan.

Theorem 8.6. If § > 5* (i.e. a(8) < 1), then

(i) The probability of backward oriented percolation is zero.

(i) For any positive b,
]P’(TL (A% > bt) < qge— (1ot (213)

(iii)

E(SW(AN)) < 101025()6) (214)
(iv)
E(exp[aSW(Az’t)]) < % (215)
(v) _
IP’(SW(A“)EE) < 1%%@—(5—5)4 (216)

for any B € (8%, 5).

Proof (i) We follow an idea of Hall (1985). For each C € C we use the domination (193) and the
identity (199). Therefore, to prove that there is no backward oriented percolation it is enough to prove
that, for fixed

]P’(Z b} (6) # 0 for infinitely many n> =0. (217)
0
Since b} (f) assumes non negative integer values, by Borel-Cantelli Lemma, a sufficient condition for
(217) is
Z z m"(7,0) < co. (218)
n 60

But this follows from Lemma 8.4.
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(ii) By (206) and (197) for each z € vy and s <t

> 47 (0) =0 implies TL(A™°) <t. (219)
Hence,
P(TL (A™°) > 1) < > P(p(y) = 1) Ri(7)
Yoz
< Y w() Ri(y) < age T (220)
Yoz

by the rightmost inequality in (208).

(iii) We find upperbounds for the space diameter of the backwards percolation clan through upper-
bounds for the total number of occupied points by the multitype branching process b,, defined by (198).

In fact,
SW (A0 <Y “no(7) D> 161b7(6). (221)
n 0

Yoz
By (??), Eno(y) < w(), hence by (201)

E(Y m Y 01b30) < D w) Y 10im"(3,0)
n 0

vy n 0 Yoz

ag Y ™. (222)

IN

IN

(iv) Write

E(e®SW) = Z e P(SW = /)

<Z et Y {|71U"'U7k|=€}

k Y1k
X P(’Yl 50,b] (y2) > 1,..., b7 () > 1) -

(223)
By the Markovian property of b,, we get
P(’YI > OabYI (72) > 17 v 7b’]Tk71( k) > 1)
= P(71 2 0)P(b]"(72) > 1) -+ P(b{* () > 1)
k
< Ym0 A e 17%}]'[ (224)
Substituting this in (223) and using that
k
¢ 1{|71 U Uyl = E} < 1{\71 U Uyl = K} exp(az |%|> (225)
i=1
we get
k
E(e™WV) < Z Z 1{71 30,7 %2, Ve—1 W’k} exp(—(ﬁ - G)Z |%|>
ko 71,07k i=1
- Z Z Il e—(ﬂ—a)l% o Z Iyale~ B=all . . 1 | Z o~ (B=a) |7l
k 130 Y2471 Tt s
< ap(B-a)) a(f- a)k. (226)
k>0

(v) It suffices to use (iv) and the exponential Chevichev inequality and to notice that a must be less
than f — 8* to avoid a zero in the denominator of (215). O

44



Remarks. 1. Part (ii) can in fact be proven by a more elementary argument not requiring the
continuous-time construction of Section 8.3. The argument gives the same rate of decay as in (213) but
a worse leading constant. Let us sketch it.

]P(TL (A7) > t)
Z Z 20,7 #y2e e Vhe—1 X Wy P(S1+ -+ Sk > 1) (227)
where S; are independent mean one exponentially distributed random variables and independent of

~;. The time S; represents the period between the birth of +; and 7;41. As the sum of independent
exponentials is a gamma distribution with parameters k and 1,

P(Si+-+ S >t) = e > = (228)

Therefore (227) is bounded by

*tZZ,Zwaw Y helee) e Y wlw)

k—1
i=0  k>im>30 'y 29671 h | VYR —1
_ t' _
t Z v 2040 k1
7!
i=0 " k>i

&0} —(1—a)t 29
ali—a) e . (229)

2. In Ferndndez, Ferrari and Garcia (1998) we offered an alternative proof of part (iii), based on a
the computation of the exponential moment of the total population of a subcritical single-type branching
process, which dominates the space width. However this proof works in a smaller range of 3.

Perfect simulation of invariant measures of infinite volume exclusion birth-and-death pro-
cesses in finite window A:

Two steps

1. Construction of AM0: cylinders alive at time 0 and their clans of ancestors. (Contact process of
cylinders.)

Under our conditions, it contains only a finite number of cylinders.

2. Cleaning algorithm: Decide, using the exclusion rule, from younger to older cylinders which cylin-
ders are kept or erased.

Result: KM0 set of kept cylinders.

Define
nN A :={Basis(C) : C € KM% C alive at time 0}

for « intersecting A.

This configuration has the marginal distribution of the infinite-volume measure p on the set Gy =

{(0eG:0NA£0}

8.5 Construction of Gibbs measures

If the measure is locally absolutely continuous with respect to g when restricted to a finite region:

1 o
pldn) = — e NDji(dn)

that is, the Hamiltonian acts only in the points inside some region A. We are interested in Gibbs measures
with respect to these specifications, which are absolutely continuous with respect to a Poisson process fi.
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We propose a dynamics with rate of birth:

eiH(nU’Y)

w(dry) x To—Hm)
which is the Papangelou intensity measure for u, and rate of death 1.
The generator is now

e—H(nUY)

Lf(n) =Z[f(77\7)—f(77)]+/Gw(dv)m[f(nu{v})—f(n)]

€N
and the semigroup

Sef(n) = E(f(ne)lno = m))-
We say that u is reversible for (1) if for any test function f, g, we have

[dnasis = [aussig

Under suitable conditions, the next identity implies u reversible.

/dugLf=/dqug

These equations are consequence of the following heuristic microscopics:
= (weight of nU~) x (rate of nU~y — 7).
(weight of i) x (rate of n — nU~)
which gives:

e—H(nuv)

—H(nuv) — e HMm
e xl=e X HW

(230)

We construct the dynamics in function of a Poisson process C on G x R x Rt x [0, 1] with intensity

w(dy) dte™?* ds du.
A point of this Poisson process is a flagged cylinder
C=(T5U)

where T' = birth(C) € R
S =life(C') ~ exponential(1)
U =flag(C) ~ Uniform[0, 1]

We perform the same construction as before but now we include C(v, T, S,U) in K if

U< M(ylnr-)

where

e—HnU)

M(vln) = To—Hm)

9 The free Bose gas

This section is based on Armendariz, Ferrari and Yuhjtman [1].

Feynman 1953: Partition function of the free Bose Gas:

1 2
— E —a X lmi—za il
ZA’NiN! /N e (4) d.’ﬂl...dCEN,

ogESN

a > 0 temperature. Sy := set of permutations of {1,..., N}. A := bounded subset of R?.
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Finite-volume spatial random permutation:

Configuration space:
(z,0) € AN x Sy

Canonical measure G n:

1 1
GaNg = 7 o NI Z / glz,0)e ™ il ”"(m_m"/“Qdm ... dxn. (236)
AN " oeSn AN
Za, n = normalization (partition function), z = (z1,...,2nN).

g test function

Infinite-volume spatial random permutations

We want to to construct a random spatial permutation
(x, o) with law denoted 1,

where x is a point process and o : x — x is a permutation, that is, a bijection.

We ask u, to be translation-invariant, with point density p and to be Gibbs for the specifications
induced by G n.

Loops and spatial permutations We say that v = [z1,..., 2] meaning [za, ..., 2k, 1] = [21,..., 2Tk
is an unrooted loop of size k. The support of « is denoted by {7} := {x1,...,2r}. We consider vy as a
permutation of {v}, by setting v(z;) = x;11. In particular, v is a spatial permutation.

Observe that there is a bijection spatial permutation < loop configuration given by
(x,0) =T,

where v € T if v is an unrooted root satisfying {y} C x and v(x) = o(z) for all z € {~}. Reciprocally,
I' — (x, o), the spatial permutation defined by x = Uyer{v}; o(z) = y(x) for z € {r}, v € I

Loop factorization of the spatial random permutation density. Take x finite and observe that
the weight of a spatial random permutation (y, o) is the product of the weights of the corresponding
loops of length 1:

—a Y ey lo(@)—2|® _ —ay, Iy (z)—a||?
e €x = H’yeo e e{~}

This has been observed by Stté [19] and suggest that a spatial random permutation can be seen as a
point process, where the points are loops. Our approach is based on this somehow obvious observation.

w7

Loops induced by a spatial random permutation in a box. An arrow from z to y means y = o(z). An
isolated dot at  means @ = o(x), that is, a loop of length 1.

We will propose a Poisson point process of loops and then will show that its distribution is a Gibbs
measure for the specifications induced by G n.

Gaussian loop soup in R<.

Space of unrooted loops: D := (Ukzl(Rd)k) [rs

where the equivalence relation ~ is defined by (z1,...,2zx) ~ (22,..., 2z, x1); the class of equivalence of
a vector (x1,...,x) is denoted [z1,...,zk].
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Fix an activity parameter A € (0,1] and define the loop soup intensity measure on D:

B(dwr,. .. ap]) = A (@) P e o T e @)l gy - day,

The denominator £ compensates the fact that each rooted k-loop is counted k times.

Given a Borel set A C R? and an unrooted loop v € Dy, with support {y} = {zo,...,2Zx_1}, consider
the cardinality of the set AN {v}

k—

Ju

1a(xy). (237)
J=0

If the set has finite Lebesgue measure |A| < 0o, the mean density of points belonging to k-loops in A is
defined as

1
prA(A) = Al na(y) Qra(dy). (238)
Al Jp,
where Qi (dv) = 1{y € Dy} Q(dv).
Proposition 9.1. For any compact set A C R¢,
a\d/2 )k
Prx = pra(A) = (;) 5z (239)

Proof. Denote
a2
p(x,y) = (%) eXp(—aHx—Z/HQ).

the density of a Gaussian random variable in R? with mean z and covariance matrix (2/a)Id, where Id
here is the identity matrix.

We have
Ak k—1 k—1
pk,)\(A) = M (ziye (Z 1A(l’j)) H p(aci, £L'7;+1) d(EO e d{L‘k,1
J=0 i=0
k—1
kIA\ Z Joo? e 1A0) 1L Pl i) deo - das
i=0
d/2
1 dx:
k|A\ Z /Rd Al j
)\k [0 d/2 0% /2 Ak‘
k|A| (7‘(]{5) k4| (ﬂ) Ld/2 O

We call pg » the point density of the measure Q,». The density of @y is defined by

=Y pa (210)
k>1
We have
d/2 d<2and 0 <A <1, or
- - ’ 241
A ( ) de/ﬂ {d23and0§)\§1. (241)

Define the critical density p. by
)\ 4/2 1
E>1

The function p : [0, 1] — [0, p.] is invertible; let A(p) be its inverse.
If A and d satisfy (241), so that p(\) < oo, define the Gaussian loop soup intensity measure Q% on D

=) Qe (243)

E>1

as

This measure has point density p(A).
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Proposition 9.2. Let d and X\ be as in (241). Then QY is o-finite.

Proof. Need to show that there is a countable partition of D in sets with finite Q¥ measure.

We start by showing that Qy » is o-finite. Let B; C R be the ball of radius j in R?, and define
Trj={veDy:{n}NB; #0} C Dy.

Then Uj Tk,j = Dk, and
Qi (Tk,j) < |Bjl pea(Bj) = |Bjlpk,n < oo,

by (238) and Proposition 9.1. Letting Y; := [y, T,j, we have (J;5; T; = D and

SO <D Qra(Thy) <O IBjloka = plBj| < 00, by (241). O

k>1
Definition 9.3. Let d and A satisfy (241). Define the loop-soup by

Flf := Poisson process on D with intensity QIAS,

p = Law of T}.

Analogous to Brownian loop soup. Lawler and Werner 2004, Lawler and Trujillo Ferreras 2007, Le Jan
2017.

A sample T of a Gaussian loop soup is a countable collection of unrooted Gaussian loops in R?, with
the property that any compact set contains finitely many points in the supports of these loops.
The density of the loop soup Let X be the set of locally finite loop soup configurations,
X={I'CD:3 rH{ry}NAl<oo, for all compact A C R4} (244)
Given Y C D and I' € X let

Xy ={leX: T CT} (245)

Assume Q% (T) < oo, then, by definition of Poisson process, for measurable, bounded g : Xy — R,

—-Q¥ 1 s s

g = EO Y 0 [ [ g(fn ) Qi) . Qk(an) (246)

einf(’r) Is
- Zi// g({f}/h...,’}/@}) I ({71,...,75}) dyy - .. dye, (247)

4 r Jr
>0
where

;\s({’Yh cee a’yZ}) = Hle UJA(%‘)7 (248)
wx ([0, - .., zp—1]) = AF Hf;olp(ffi7$i+1) with z, = o, (249)

and where for any bounded measurable h : T — R,
1
h(y) dy = f// h([zo,...,zr_1]) dxg...dz_1, (250)
ot S [ foten oyt

if the right hand side is well defined. Taking () = h1(v) wa(7)1{ e} for some bounded by : T — R and
recalling the assumption Q% () < oo, we conclude that (250) is well defined for this h and it is bounded

by [l @F(T).

The function e*Q&S(T)f/l\S is the density of the Gaussian loop soup at fugacity A in the set Y; in
particular, if g = 1 we have ul/\sg =1.
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9.1 Finite-volume loop soup and spatial permutations

We show that the Gaussian loop soup in a compact set A C R? conditioned to have n points has the
same law as the spatial random permutation with density (236).

Recall that there is a bijection between X and the set
{(x,0) : x locally finite and o contains only finite cycles} (251)

the space of finite cycle permutations with locally finite supports.

The set of loops with supports contained in A and the space of loop-soup configurations contained in
A with exactly n points are denoted by

Da:={yeD:{y}CA}, (252)
Xa:=2Xp,, (253)
Xan={l€Xa:) crhl=n}. (254)

Canonical measures The Gaussian loop soup restricted to loops contained in A is defined by

MLSL)\ := Poisson process on X4 with intensity 1p, () Q% (d~). (255)
We now show that u!5 | conditioned to have n points in A equals the spatial random permutation with
density G4,y defined i in (236)

Proposition 9.4. For any measurable, bounded test function g : X4, — R, we have

1

IR /3€ 9(T) w3 (D) = Gang (256)
AN n A,n

Proof. Since there is a bijection between the supports of these probability measures, it suffices to verify
that the weights assigned by their densities to any given configuration satisfy a fixed ratio. Let (x, o) be
a spatial permutation such that y C A and |x| = n. Let T be the cycle decomposition of (x, o); clearly
I' € X4,,. Then, by the definition of Poisson process, the loop soup conditioned density of I' € X 4 ,, is

e —QX(Da)

lb xAn

ne—QX(Da)

[[ontn = 2e 2 R [Twr( (257)

WEF ~yel

N(TXa0) =

where wy was defined in (249).

On the other hand, the density of the canonical measure G4, can be written as a function of the
cycle decomposition of o by

1

—aH(x,0) _
ZA,ne v - H W1 -

An YE(x,0)

ZAann(Xa )*

Grand-canonical measures The grand-canonical spatial random permutation at fugacity A < 1 as-
sociated to the canonical density (236) is defined by

d/2>\
HANG = ! Z((a/w Z/ (z,0)e “H @) 4y (258)

ZA’A n>0 oeS,
where z = (21,...,2,), H(z,0) := > 1 [|#; — 20| and
ofm d/Q)\
Zar=3 ((a/m)¥2X)" / 3 / o—oH(z.0) ]

n>0 o€Sy

Proposition 9.5. Let A < 1. The Gaussian loop soup at fugacity X restricted to A defined in (255) and
the grand-canonical measure (258) at the same fugacity are equivalent:

5 = Ha (259)
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Proof. We look at both measures as point processes in D 4. To prove the proposition it suffices to show
that the measures have the same Laplace functionals. Given ¢ : Dy — R, define g : X4 — R as

9(T) 1= exp( =L ert(7) ).

By Campbell’s theorem,
1A A9 = / px(dD)e” 2oer Y0 = exp (/
Xa

Dy
1s 1
- (5 )
E>1

(70 —1)QK(d))

where, using the definition of Q4 and denoting X := (a/m)%/2\,
ap = N (k — 1)!/ day ... day e @Hnak]) =¥, o))
Ak
=)\F Z / dzy ... dxy e~ @H@) g=v(z7)
YECK A¥

where Cy, is the set of cycles of size k with elements {1,...,k}, z = (z1,...,2,), and (z,7) = [T1, Ty (1), - -, Typ-1(1)]5
notice that Cy, has cardinality (k — 1)!. By Lemma 9.6 below we have

s = SO0 S T

n>0 ~ PEP,IEP

— ¢~ QX(Da) & —aH([zy,2 1)) g=¥([@1, 7 1)])
=e r\TA Zn' Z H Z /Amdasl...dxme ! e ! 11

n>0  PeP, IEP~EC

_ ,—Q%(Da) & / d d —aH (z,7) ,— % (z,7)
e Zn| Z H e Ty ... xwe e

n>0 = o€S, YECT

AR —aH(z.0) TT e~ ((eic{r}))
= @xlPa Zn' Z Andxl...dxnea £ He TS

n>0 = oESn yEo

= HANG,

where (z, 0) is the spatial permutation that maps z; to 2,(;) and {7} is the set of indices that appear in
the cycle ~. O

Lemma 9.6 (Combinatorial lemma). Let (a,),>1 € CN be such that D>t Llan| < 0o. Then

exp(Z%an)=1+Z% S T ams (260)

n>1 n>1"" PeP, IcP
where Py, is the set of partitions of {1,...,n} into non-empty sets,
P = {P partition of {1,...,n}: 0 ¢ P}, (261)

and |I| stands for the cardinality of the set I.

Proof. By the series expansion of the exponential function

o (o) =X (T o)

n>1 j>0 >1

1 ; ai].
:1+Zﬁ 3> %—'

3=

p>1
1 a; i
=14+ E — E E iz v
4! ) ‘ 1! i;!
j217 n>1 d1+-+ij=n
ie>1
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1 1
=1+ZﬁZa > (zlnz) i - 0

J>17 " n>1 g eetig=n
ip>1

The change of the order of summation in the fifth line above is justified by the absolute convergence of
D1 % - u

Point correlations of the loop soop Define

o\ 4/2 «
(o) =3 (o) Ao Bl (262)
k>1

Proposition 9.7 (Point correlations). The n-point correlation density of V¥ is given by

Is

X (X1, Tn) = perm(KA(xi,xj))ijl,

(263)

where perm(A) is the permanent of the matriz A € R™*",

Sketch of the proof. We compute the 3-point correlation density. To simplify notation, in this proof
we will denote p = ,ulf, Q = Qlf and K, = K)(z,y). Given pairwise disjoint bounded Borel sets
A, B,C C R%, the third moment measure for the point marginal V}\s over A x B x C is given by

/ nA(T) np(T) no(T) p(dr) (264)
— [ erna0) e () ep nelr”) )
— [(Sernat)nat)nct)

+ 2erna(¥) Xer, 2y (V) ne () (265)
+ X ernB() Xyer, 4y a(Y ) ne ()
+ 2erne() Xyer, yrpy na(Y ) np(y)
360 14 Eoper g MB(Y) Sorery gy (7)) (dT)
=Q(nanpnc) +Q(na)Q(npnc) (266)
+ Q(np) Q(nanp) + Q(nc) Q(nang) + Q(na) Q(np) Q(nc).

To go from (265) to (266) we use that u is a Poisson process of loops, then

(a) the expectation of the product of functions of different loops factorize (Theorem 3.2 in [17]), and

(b) [ 2 er 9(mu(dl) = [, 9(7)Q(dy), denoted Q(g), by Campbell’s theorem.
Define

(a1...ak) = {7 € D : ~ goes through aq,...,a, in this order} (267)
and compute
Q(TLA np nC) = / Zae,YlA(a) Zbe'le (b) Zce’ylc(c) Q(d’y) (268)
- / Y L) + Laery(7)) QL) (269)
{ab,c}Cc{~}

a€A,beEB,ceC
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:///(KabecKca+KacchKba)dCdbda, (270)
AJBJC

where (269) follows from partitioning the set of cycles that go through a, b, ¢ according to the order in
which they visit the points, and (270) can be proved using the argument applied to compute the density
p-

Using the same argument to compute the other terms in (266), we conclude that the third moment
measure (264) is absolutely continuous with respect to Lebesgue measure in (R?)? with Radon-Nikodym
derivative

@l)\s(xv Y, Z) = K:E:vaszz + Ka:a:Kyszy + sznyKzz

which proves (263) for n = 3; see Fig. 2. We leave the proof of the general case to the reader. O

G% QO | Oy

Kq:meyK:z KT.rKyszy KLyKlezz

QO o

KavyKyszx Ka‘zKyszy szKnyzz

Figure 2: Gaussian loop soup 3-point correlations. A directed lace between two points means that the
loop goes through the points in the indicated order. Point x is blue, y is red and z is green.

9.2 Gaussian interlacements

We work now in d > 3.

Space of Doubly infinite trajectories:
— . d ; _
Wi={w:Z—-R ,nhrjrtl [w(n)|| = oo}

Define X,,(w) := w(n), the position of the walk at time n.

Denote P* := distribution of a double infinite random walk with Normal(0, ild) increments, starting
at .

Intensity via capacity (Sznitman): Define the entrance time of w in a compact set A by:
Ta(w) :=inf {n € Z, X, (w) € A} € (—00,].
For a test function g : W — R, define

Q%G9 :=/AE””[91{TA:0}]dx.

The measure e4(z) := P*[T4 = 0] is called equilibrium measure and its integral [, e(x)dx is called
Capacity of A.

Intensity via visit debiasing: Denote the number of visits to A by

na(w) =Y 14(X,(w))

nez

53



Define:
QYifg .= / E* {g} dx.
A

nA

Under this measure, the weight of a trajectory intersectig A is inversely proportional to the number of
visits to A.

Define the time shift  on W by [fw](k) := w(k + 1); the time shift acts on functions by (0g)(w) :=
g(fw). Since the Lebesgue measure is reversible for the random walk, we have

/ E%[g] dx = / E®[0'g)dx, for any i € Z, (271)
Re R4

for any bounded measurable test function g : W — R.

Proposition 9.8. For any bounded set A C R and measurable bounded function g : W — R invariant
under time shifts, g = 0g, we have

QYg = Q%" g. (272)
Proof. Write

uni x g
QA fg = /Ade {M Zigo ]‘{TA_i}:l

= Z/ dx E* [IA(XO)]{TA_i} g:| by Fubini
R4 na

i<0
: (g
= 11 ; —_n 0" = 1
;/}Rd dv E [ A(Xi)Lza=0y 0 (nA)} by (271)
T g : if 9 g
= Lo S 14(X Jdy_ 9
/Ade {]{TA_O} i > >0 A(Xl)] since 6 (HA> -~
= /AdIE‘T (Lr,—0y 9] = Q%" O
We also have that the measures Q5* and QU are finite:
QUM (W) = Q4P (W) = cap(A) < |A]. (273)

Lemma 9.9. Let A C B be bounded sets of R?, and let g be a test function that is invariant under time
shifts, g = 0g. Then

QE 9L, <0y = Q%"g (compatibility) (274)
Qp'9= Q% 9+ QR0 9L {Ts=00} (additivity), (275)

The same holds for Q™f,
Proof. Writing 1{7, <cc} = D _;c7 Ly1,—i} We have

QB 9L, <00y = Z/dl‘Ex[]{TB:O}]{TA:i}g]

i>0

= Z/deEl [91(]{TB:72'}1{TA:O} 9)}
i>0
Jj<0

= /d.’L‘ E® []{TA:O} gzigo ]{TB:Z'}] = quapga
since 1{7,—0} Zigo Lr,—iy = L7,—0y. This proves (274). To get (275) write

Q?pg = Q?pg(l{TA<oo} + 1{TA:OO})
= Q4 9+ Q5 9 Tu=00} = Q479 + Qa9 Ta=ox}-

Since 917, <00} = (911, <00} ), 9 = 09 and glir, —ooy = 0(91{1, =00} ), Proposition 9.8 implies that (274)
and (275) hold for Q"™ as well. O
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Now let us identify trajectories that differ by time shift: given two doubly-infinite trajectories w, w’ €
W, we say that w ~ w’ if there exists k € Z such that w’ = 6*w. Let

Wi=W/~ (276)

be the space of trajectories modulo time shift, 7 : W — W the projection, and W the push-forward
o-algebra on W.

Given A C R? let
Wai={weW:Ts(w) < oo}, trajectories intersecting A

Wy = m(Wy), classes of trajectories intersecting A

If g : W — R is shift invariant then it can be extended to §: W — R by g(w) = g(w), for any choice of
representative w € 7 (w).

Proposition 9.10. There exists a unique o-finite measure Q™ on (W,W) such that for each bounded
set A C R?

157, Q" = QTP = mQYY, (277)
where T,Q%" and . QW denote the push-forward measures defined by

(m.Q%")g = QY (gom) (278)

Proof. Let g : W — R and define g: W — R by g=gon (composition). Then g = g and

unif ~

Q3P = Q3 gom = Q4 g = Qg = Qg om = m.QYMg,
by Proposition 9.8. This proves the second equality in (277).

Let {An}n>1 be an increasing sequence of bounded Borel sets in R? such that A, /‘n_,oo R?. Then
W= U1 WA and uniqueness of the measure satisfying (277) follows. Define Q"' on WA by

1y, Q"= mQL. (279)
Let A be a bounded set and take n sufficiently large such that A,, D A. Then
15,1 Wa, (”*Qcap) = Iy, (W*Qcap) = T lw, fff =mQ%", (280)

where the last identity follows from (274). When A = A,,, for some m < n, (280) proves that the definition
(279) is consistent and that the measure Q" defined in (279) satisfies (277). By (277), Q"(Wa,)

cap

A (W) = cap(A,) < oo, which proves the o-finite property. O

Gaussian interlacements Let d > 3 and § > 0. The Gaussian random interlacements process at
point density p is

Poisson process on W with intensity pQ™,
Law of F;i.

/n/’
/

i,
Fp.

i,
My

/./(

<

Like Sznitman 2010 Brownian interlacements.
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Construction of a random interlacement at density p

1. Sample a Poisson process xg of parameter p.

2. Take a bounded box A

3. To each point in xg N A sample a double-infinity Gaussian walk.

4. Accept the walk with probability 1 over number of visits to A.

4> (Alternative to item (4).Accept the walk if Th(w) = 0.

5. The accepted walks will be a sample of the random interlacement intersecting A.
6. To sample in R?, consider a partition (A;);>1 of R? with A; bounded.

7. Perform the procedure (1) to (5) in each Ay, Ag, ... successively.

8. Reject walks with starting point in A; that have points in previous visited boxes.

Gaussian permutation at density p > 0 Define
. )t i
(X 0)p = F;(p/\pc) U FFP—pJ*
This is a superposition of independent realizations of:

e Gaussian loup soup at density min{p, p.}

e Gaussian interlacement at density (p — p.)™.

)

v/
-

The Gaussian random permutation is Markov and Gibbs A C R? and a spatial permutation
I'=((r) X,

IxC :=(NA, red points

OpC :=(NAS, purple and yellow points
UrC :={u e (NA°:k(u) € A}, yellow

Va¢ i={vec¢nA®:xt(v) €A}, yellow

and the maps

Ink : INCUUAC — IAnCU VR, Ink(xz) = k(z) red arrows,

Ok : OAC\UAC = OAC\ VA, Opk(z) = k(xz) purple arrows.

Define the inside and outside projections (with respect to A) by

IA(C, k) = (A, IaK), OA(C, k) := (OAG, Opk).
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Decomposition of a loop soup intersecting A

L

Klj 5
B R

Inside = red; outside = purple + yellow

Markov property

Proposition 9.11. The Gaussian random permutation p, is Markov:

tip (dIx(T)| OA(T) occurs outside A)
= 1, (dIA(T)| (Un, Vi) occur outside A).

Proof in the subcritical case (for the Loop soup) Conditioning on purple and yellow, the law
of red points and arrows depends only on the labeled yellow points. Conditioned on labeled yellow points,
purple points and arrows are independent of red points and arrows.

Recall the notation Dy := {y € D : {y} C A}, and denote D4 := (D4 U DAC)C. Note that the
restricted Gaussian loop soups
TN D4 (loops contained in A),
N Dy (loops contained in A°), (281)
I'"NaD4 (loops intersecting A and A°)
are independent Poisson processes with intensity measures Qlflp s Qlflp aes Qlfla D, Tespectively, and
form a partition of Flf.

Due to the independence of the partition (281), the inside and outside components of I‘lf are parti-
tioned into independent pieces as follows,

La(TX) = (TX N Da) UOLA(TY), (282)
0a(T}) = (T¥ N Dac) UAOA(TY), (283)

where

OI,(T) := {n = (U, L1, .., Tyy), V) -

we UaD), z; = k() € A, v = k' DT (u) € V4 (D)}, (284)
aOA(F) = {TII = (vala s Yen')s u) :
v € Vo), yi = K'(v) € A°, u = k'TDH(y) € Uy(I)}, (285)

where £(n) = min{f > 1 : kT (u) € V4([')} and £(') = min{¢ > 0 : k**(v) € Us(T')}. These numbers
count the number of points visited by the associated path, excluding the endpoints u and v.

In the figure, an element of 9I4(T") is given by a red path linking two yellow points with labels v and
v respectively, while an element of 90 4(T") is a purple path that links two yellow points v and u. Each
path in the inside boundary 0I4(T") contains at least one point in A, so that ¢(n) > 1, while the outside
boundary 004 (T") might contain a path (v,u) with v € V4 , u € Ua; £(1') = 0 in this case. There is no
path when u =v € Ug N Vj4.

Given n = (u,x1,...,2¢,v) € 0I4(T) and ' = (v,y1,...,ys,u) € 004(T), consider the weights
-1
w(n) :== plu, 1) p(xe, v) Hp(xi,xi_H) 0>1, (286)
i=1
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w(n') == p(v,y1) p(ye;w) [ i isa) 0> 1, (287)
i=1
w(v,u) := p(v,u) £=0, (288)
where p the Brownian transition density at time % By (249), the weight of a cycle v = [xg,...,Zp—_1] is
given by
n—1
wa(y) = A" H p(@i, Tip1), Wwith z, = xo. (289)
i=0

If v intersects both A and A€, this weight factorizes as
wx(M =" I «m JI w6 (290)
n€La(y) 1n'€004(7)
Replacing (290) in (248) we obtain

(0N 9D ) = e~ @X(@D) \[Ua(DULVa(D)]

H { H w(n) A H w(n’)V(”/)]

~ETNOD 4 nedla(y) n'€004(y)

_ o~ QK(0DA) \[UADUVA(D))

[1 X@em) T Xwl). (291)

nedIA(T) n' €804 (T")

In view of the partition into independent processes (281) and the representation (291) above, we conclude
that

1
1y (dI4(T)|0a(T)) = — (0N Da)dwy ... dzena

Z
H Ny () da? ... da:g(n), (292)
nedIA(T)

where Z is a normalizing constant Z (o, A, A, U4 ('), Va(T')). Identity (292) above implies that the con-
ditioned measure on the left only depends on the sets U (T") and V4(T'), proving the Markov property in
the critical and subcritical cases p < pe.

Supercritical case o °

7
) U\)—)Ou

In this case one cuts the part of the infinite trajectories that are outside A and not directly connected
to A and proceeds in the same way as in the loop-soup.

An important remark is that the intensity A = 1 in this case makes equally distributed the pieces n
in the inside of A for both loops and infinite trajectories.

Lol
.

b I . a d
e
S —

Gaussian random permutation is Gibbs

A
SRR
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A-compatibility between infinite volume random permutations:

(X7 U) ~A (C’ ’%)

if they have same yellow points and purple points and arrows.

. \‘//O

b
u\-l /f

Conditioned Hamiltonian: For (x, o) ~a (¢, k)
Hx((x; 0)l(¢, K)) = > lz — o ()]
z€[xNAJU[k~1(CNA)\A]
Fix yellow and purple and sum over red points and arrows.

Specifications G A (+|(¢, k)) := law of red points and arrows.

Gaussian random permutation on R? is Gibbs

Theorem 9.12 (AFY 2019). Ford > 3 and A <1 the loop soup measure

uk is Gibbs for the specifications (Ga,x : A compact):

ieg = /du #)Garlgl(C.5)  DLR

For all p > p. the measure

it * i, is Gibbs for the specifications (Gay : A compact).

Corollary 9.13 (AFY 2019). Point and permutation marginals can be computed explicitely.

9.3 Point marginal of Gaussian interlacements

Correlations

v, = Point marginal of Gaussian interlacements

Correlations:

@;Ji(l‘h...,itn) = Z H Z Vp(xc(il)""’xg(i‘”))'

PeP, IEP oS

P, := partitions of {1,...,n} with nonempty sets,
Sy := permutations of I,
(41,...,47) arbitrary order of I and

Vo(z1,. . 20) == pKgy ay - - Kay | 2,
(Here A =1 and K,y = Ki(z,y))

o (@, y,2) = p° + 20" Koy + 20° K. + 20° K,

20Ky Ky, + 20K Koy + 20K, Kyy.
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P3 QpQKI;y 2'02](1/3 2/02[(.%2
QpKﬂ/KUZ QpK;szy QPKZ;L‘Kl'y

Thermodynamic limit of Point marginal
Theorem 9.14 (Shirai-Takahashi, Tamura-Ito). Fiz density p > 0.
Gf’\o‘ixtlp := law of point-marginal with |A|p points.

Subcritical p < pe or d < 2 Fichtner 1991; Tamura-Ito 2006.

int
Gii)ll/ri‘p = V;H as A SR

Supercritical p > p. and d > 3 Tamura-Ito 2007.

point point __ . TI o]
Ghlalp = Vo = Vp ¥VpZp,

Theorem 9.15 (AFY). Point marginal of Gaussian random permutation coincide with thermodynamic
limit above:

V;)FI = V}\S(p), point marginal of loop soup at fugacity A(p).
vy = V;i, point marginal of Gaussian interlacements at p.

Partial “Thermodynamic limit” of permutation marginal

permut | .
GMAIP := o-marginal of G |z,

t . L, .
G = VR for cycle-size distribution.
,

Macroscopic cycles: cycles with size bigger than e|A].
Subcritical case. p < p.ord=1,2
The expected fraction of points in macroscopic cycles is zero. BU 2011
Supercritical case. d > 3 and p > p.
(a) expected fraction of points in macroscopic cycles is %.

(b) Rescaled macroscopic cycles have random lenght:
Benfatto, Cassandro, Merola Presutti 2005.

Poisson-Dirichlet distribution (as uniform permut): Betz-Ueltschi 2011.

Current problems Thermodynamic limit of canonical measure. That is, the Gaussian random per-
mutation in a box A should converge to the infinite volume GRP constructed here.

Extensions: Poisson process on Z¢
Other interactions besides Gaussian.

Quantum case, when the Brownian trajectories from x to y interact. (BCMP 2005 treated the mean
field case).
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10 Branching process

Proceso de ramificacién 7, = tamano de una poblacién en el instante n. Cada individuo tiene un
numero aleatorio de hijos distribuidos como una variable aleatoria £ > 0 con media F{ = p < ooy
distribucién P(§ = j) = p;. Sean &, x,n, k > 1 iid con la misma distribucién de {. Aqui §, i es el numero
de hijos que tiene el k-ésimo individuo vivo en el instante n. Definimos Zy = 1 y para n > 1,

Zn—1

Zn = Z gmk
k=1

Condicionando a Z,_1,

EZ, = E(E(Zy|Zn-1)) = pEZp_y = p>EZy,_o = p™.

Teorema subcritico Si ;x < 1 entonces

P(Z, > 1, paratodon >0)=0

Proof. Por la desigualdad de Markov

PZ,>1)<EZ,=p" — 0, sip <.
n—oo

Como {Z,, > 1} /{Z, > 0, para todo n > 0}, podemos concluir.

Teorema critico Si p =1y P(§ = 1) < 1, entonces

P(Z, > 1, para todon >0) =0

Teorema supercritico Si p > 1, entonces

P(Z, > 1, para todon >0) >0
Defina la funcién ¢ : [0, 1] — [0, 1] por ¢(0) = po y para s € (0, 1],

¢(s) = s'p;

=0

@ es continua en [0,1] y si pg+p1 < 1 (que asumimos, si no, se trata de un paseo aleatorio que ya vimos),
para s € (0,1),
¢'(s)=> s’ 'p; >0
Jj=1
¢"(s)=2_i(i—1)s'?p; >0
Jj=2

O sea que ¢ es estrictamente creciente y estrictamente convexa en el intervalo (0,1). Ademds lim, ~ ¢'(s) =
L

Defina 6,, = P(Z,, = 0|Zy = 1). Como {Z,, = 0} C {Z,+1 = 0}, tenemos 0,, < 6,,+1. Ademds 0y =0,
0, < 1. Por lo tanto 6,, /0, < 1.

Condicionando a la primera generacién,

On = > P(Z, =012y = j)P(Zy = j|Zy = 1)

7=>0

=" (P(Zuor = 0120 = 1)) p;
7>0

= ¢(9n—1)-
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La segunda igualdad se explica asi: la probabilidad que el proceso se extinga en el instante n dado
que hay j individuos en el instante 1 es igual a la probabilidad que cada una de las familias de los j
individuos vivos en el instante 1 se haya extinguido en el instante n. Para concluir observe que las j
familias evolucionan independientemente, y hay n — 1 generaciones entre el instante 1 y el n.

Sacando limites, vemos que 0o, = ¢(f ), un punto fijo de ¢.
Si p es un punto fijo,

p=_p*pr > p’po = P(X1 =0) =0,
k>0

Como 6 < py si b, < p entonces 0,11 = ¢(0,) < ¢(p) = p, tenemos que 6,, < p para todo n. Es decir
que 6,, converge al menor de los puntos fijos.

Dem del teorema critico Si ¢/(1) =pu =1y p; <1, como ¢ es estrictamente convexa ¢(s) > s
para s € (0,1) y ¢ tiene 1 como tnico punto fijo. Por lo tanto 6, — 1. O

Dem del teorema supercritico. Si ¢'(1) = p > 1, entonces hay un tinico p < 1 tal que ¢(p) = p. Para ver
esto, observe que ¢(0) =po >0, (1) =1y ¢'(1) = p > 0, lo que implica que hay un unico punto fijo p
menor que 1. Unicidad es consecuencia de la estricta convexidad de ¢. Por lo tanto 6,, / p < 1. O

Distinguimos dos casos: A la izquierda ¢(s) > s para todo s € (0,1) y a la derecha ¢(s) = s para

1,1
1, 1)

¢ {s)
¢ (s)

algin s € (0,1). En la figura de la izquierda ¢’(1) <1 y en la de la derecha ¢'(1) > 1.
Ejemplo. Considere que la distribucién del nimero de hijos es Poisson con pardametro A. Es decir
e AN

4!

p; =

La generadora de momentos es
¢(s) = exp(A(s — 1))

Por lo que la ecuacién para el punto fijo es

p=exp(A(p — 1))
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