Gibbs point processes

- 1. Consider the free birth and death process $(\tilde{\eta}_t)_{t \in \mathbb{R}}$ constructed as a function of the Poisson process **C**. Show that the marginal distribution of η_t is a Poisson process in **G** with intensity $w(d\gamma)$.
- 2. Consider the birth and death process $(\tilde{\eta}_t^{\eta})_{t \in \mathbb{R}^+}$ with $\eta_0 = \eta$, a fixed locally finite configuration, constructed with cylinders $\mathbf{C} \cup \mathbf{C}_0^{\eta}$, see notation in the notes. Show that the distribution of $\tilde{\eta}_t^{\eta}$ converges to the Poisson process of the previous exercise.
- 3. Describe the specifications of the seed+grain process.
- 4. Consider the birth and death process in \mathbb{R}^d with rates $M(\gamma|\eta)$ of birth and rate 1 of death. Take $M(\gamma|\eta) = \mathbf{1}\{\eta \cup \{\gamma\} \in A_\Lambda\}$, where

$$A_{\Lambda} = \{\eta : \|x - y\| > 2, \text{ for all } x, y \in \eta \cap \Lambda\}$$

$$\tag{1}$$

Show that $\mu_{\Lambda} := \tilde{\mu}(\cdot | A_{\Lambda})$ is reversible for the dynamics.

- 5. Show that if $T \sim \text{Exponential}(\lambda)$, then $P(T \in [t, t+h)|T > t) = \lambda h + o(h)$.
- 6. Let $\tilde{\eta}_t$ be the free birth and death process with parameter λ and let Λ be a bounded region. For $t \in \mathbb{R}$ define $\tau(t) = \sup\{s \leq t : \tilde{\eta}_s \cap \Lambda = \emptyset\}$; this is a function of $(\tilde{\eta}_t)_{t \in \mathbb{R}}$. Show that $\tilde{\mu}(\eta : \tau(t) > -\infty) = 1$.
- 7. Use the graphical construction to show that if the clan of ancestors of a given cylinder is finite with probability one, then the thermodynamic limit follows. That is,

$$\lim_{\Lambda \nearrow \mathbb{R}^d} \mu_\Lambda = \mu,\tag{2}$$

where μ is the distribution of η_t obtained from the graphical construction.