Pure jump processes

1. Prove that the process X_t in Definition 7.1 in the notes satisfy

$$\mathbb{P}(X_{t+h} = y | X_t = x) = hq(x, y) + o(h).$$

and it is Markov.

2. Define

$$P_t(x,y) = \mathbb{P}(X_t = y \mid X_0 = x).$$

and show the Kolmogorov equations

 $P'_t = QP_t$ (Kolmogorov Backward equations) $P'_t = P_t Q$ (Kolmogorov Forward equations)

for all $t \ge 0$, where P'_t is the matrix having as entries $p'_t(x, y)$ the derivatives of the entries of the matrix P_t .

3. We say that π is an stationary distribution for (X_t) if $\sum_x \pi(x) = 1$ and it satisfies the balance equations:

$$\sum_{x} \pi(x) p_t(x, y) = \pi(y)$$

Prove that a distribution π is stationary for a process with rates q(x, y) if and only if

$$\sum_{x} \pi(x)q(x,y) = \pi(y)\sum_{z} q(y,z).$$
 (1)

- 4. Prove that if $\pi(x)q(x,y) = \pi(y)q(y,x)$ then π is reversible for the process and π is invariant.
- 5. Consider a queuing system with 1 server and bounded waiting place. The state space is $\{0, 1, 2\}$ and X_t is the number of customers in the system at time t. Customers arrive at rate λ and services are exponential at rate μ :

$$q(0,1) = q(1,2) = \lambda$$
 (2)

- $q(1,0) = \mu; \quad q(2,1) = 2\mu$ (3)
- q(x,y) = 0, otherwise. (4)

Compute the invariant measure for this process and decide if it is reversible.

Perfect simulation

6. Let

$$Z_t := X_{[\tau(t),t]}, \quad t \in \mathbb{R}$$

Prove that Z_t is jump Markov with rates Q and it is stationary: $P(Z_t = z)$ does not depend on t.

7. Construct a stationary version of $(X_t)_{t \in \mathbb{R}}$ for the process of exercise 5 using a Poisson process in \mathbb{R}^2 .