Discrete Percolation

- 1. Prove Kolmogorov's zero-one law. Suppose that $(X_n : n \in \mathbb{N})$ is a sequence of independent random variables. Then the tail sigma-algebra \mathcal{T} of $(X_n : n \in \mathbb{N})$ contains only events of probability 0 or 1. Moreover, any \mathcal{T} -measurable random variable is almost surely constant. See Theorem 2.6.1 of the book of Norris *Probability and measure*.
- 2. Show that the event E := there is an infinite cluster is a tail event. Use the obvious extension of Kolmogorov 0-1 law to independent random variables indexed by d-dimensional integers to show that E has probability 0 or 1.
- 3. Show that $\theta > 0$ if and only if P(there is an infinite cluster) = 1. See Theorem 1.11, pag. 19 in the book of Grimmett, *Percolation*.
- 4. Show that the number of sites in the cluster of the origin can be dominated by the total population of a branching process. Use this to show that if the branching process is subcritical, there is no percolation.

Continuum Percolation

- 5. Show that $\theta(z, p, \mathbb{R}^d)$ is increasing as function of z and $p(\cdot)$.
- 6. Describe the branching argument in the continuum percolation case. Use that to show that $\theta(z, p; \mathbb{R}^d) = 0$ when $z \int p(x) dx < 1$.
- 7. Show that there is percolation in \mathbb{R}^d as a corollary of percolation in \mathbb{R}^2 (proven in the notes).

Domination

- 8. Let P, P' be two probability measures on \mathcal{X} . We say that P is stochastically smaller than P', denoted $P \leq P'$, if $\int f dP \leq \int f dP'$ for all measurable bounded increasing f on Ω . Prove that this is equivalent to have a coupling \hat{P} on Ω^2 with marginals P and P' such that $\hat{P}(\xi \leq \xi') = 1$.
- 9. Show that if P_{λ} is the distribution of a Poisson process of density $\lambda(\cdot)$, then $\lambda(x) \leq \lambda_1(x)$ for all x implies $P_{\lambda} \leq P_{\lambda_1}$, stochastically.

Continuum Ising model

- 10. (a) Give an algorithm to construct a sample of the measure P_{Λ} . (b) Give an algorithm to construct a sample of the measure Q_{Λ} .
- 11. Take a configuration $(X^+, X^-, E) \sim Q_{\Lambda}$. Consider the marginals (X^+, X^-) and $(X^+ \cup X^-, E)$. Show that for $\Delta \subset \Lambda$,

$$\int [\#X_{\Delta}^+ - \#X_{\Delta}^-] Q_{\Lambda}(dX^+, dX^-, dE) = \int \#\{x \in (X_{\Delta}^+ \cup X_{\Delta}^- : x \leftrightarrow X_{\Lambda^c}^+\} Q_{\Lambda}(dX^+, dX^-, dE).$$

12. Let $\pi^{z_{\Lambda}}$ be a PP in \mathbb{R}^d with intensity $z_{\Lambda}(x) = z(1 + \mathbf{1}\{x \in \Lambda\})$. Prove that $\pi^{z_{\Lambda}}(dY) = \frac{1}{Z} 2^{\#Y_{\Lambda}} \pi^z(dY)$, where Z is the normalization. Compute Z.

13. Let

$$\varphi_{\Lambda,Y}(dE) = \frac{1}{Z_{\Lambda}} 2^{k(E)} \mu_Y^{p,\Lambda}(dE) \tag{1}$$

Prove that $\varphi_{\Lambda,Y} \ge \mu_Y^{\tilde{p}}$, for some positive \tilde{p} .

14. Denote ν_{Λ} the point marginal distribution of χ_{Λ} , that is, for test functions $f: \mathfrak{X} \to \mathbb{R}$,

$$\nu_{\Lambda}f := \int f(Y) \,\chi_{\Lambda}(dY, dE). \tag{2}$$

Give a sketch proof of the domination $\nu_{\Lambda} \ge \pi^{\alpha z}$ for some $\alpha > 0$.

- 15. Introduce a partial order \leq on \mathfrak{X}^2 by writing $(X^+, X^-) \leq (Y^+, Y^-)$ when $X^+ \subset Y^+$ and $X^- \supset Y^-$. Show that the measures G^+_{Λ} decrease stochastically relative to this order when Λ increases.
- 16. Use the previous exercise to show that as $\Lambda \nearrow \mathbb{R}^d$, G^+_{Λ} converges to $P^+ \in \mathcal{G}$.