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INVARIANCE PRINCIPLE FOR REVERSIBLE MARKOV PROCESSES WITH APPLICATION TO
DIFFUSION IN THE PERCOLATION REGIME

A. De Masil, P.A. Ferrariz, S. Goldstein3 and W.D. Wick4

ABSTRACT. We present an invariance principle for antisymmetric functionals
of a reversible Markov process which immediately 1mp11es convergence to
Brownian motion for a wide class of random motion in random environments.
We here apply it to establish convergence to Brownian motion for a walker
moving in the infinite cluster of the two dimensional bond percolatlon
model.

1. INTRODUCTION.

Recently there has been considerable interest, stlmulated by physical
applications, in the study of the asymptotlc motion of a tagged particle in a
random (static or dynamic) environment. In symmetric cases one
expects the motion to be asymptotically Brownian, with a finite diffusion matrix,
which one would like to compute as explicitly as possible. In this note we
discuss an invariance principle applicable when the process of the enviromnment
as seen from the tagged particle is reversible in time. The main theorems —
which are useful in other contexts as well - are parsimonious in hypotheses;
in particular, there are no mixing properties or spectral conditions assumed on
the variables which might be difficult to check in practice. As a result we are
able to improve upon several results in the literature, and give short proofs

of many other results. Details will appear in [2].

Before discﬁssing the abstract theorems we mention in passing a typical
example to which our methods apply (to be discussed more fully below). On the
integer lattice Zd let there be given rates (or conductivities) a, (x) >0 for

the bond (x,x+e) , x EZ , e ezd le] = 1. Let Xt be the p051t10n of a
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particle started at t =0 at x = 0 and performing a random walk with these
rates. Assume in addition that the ae(x) are chosen from a translation-inva-
riant, ergodic distribution (random bond conductivities). Then, with only moment
conditions on the rates, we prove that X -2 tends, in distribution as

€ >0 , to a Brownian motion with a finite} non-degenerate diffusion matrix.
(Compare [ 1], [7], [8], in which 0 < b

even treat the case when P[ae(x) >0} =p< 1, assuming that p > P (perco-

1 < ae(x) < b2 < o is assumed). We can
lation threshold) and conditioning on the percolation cluster containing the ori-
gin. 1In other words, we prove an invariance principle for a random walk on an

infinite percolation cluster.

2. ABSTRACT THEOREMS. Invariance principles for anti-symmetric functionals

of reversible Markov processes.

Let & t €Z on R (discrete or continuous time) be a time-reversible

t b
Markov chain with state space X . We are interested in proving an invariance

principle for a functional X of paths of the process (depending on ET ,

[o,t]
0<1T<t) , which has a certain symmetry property. Let Rt/2 be reflection
in the midpoint of the interval, defined by (RE)T = 5t~1 . We call X[O,t]
ant i-symmetric if

Xro,e1 ° Res2 = X0, 2.1
with a similar definition for a general closed interval I = [a,b] .

Anti-symmetric variables arise naturally in many contexts. For instance,
let X[o,t] be the increment made, in the interval [0,t] , by one component
of a multi-component process. Altermnatively, let gt be a jump process on X ,
let x and y be points in X and let X[O,t] be the "current" from x to
y s i.e. the number of jumps from x to y minus the number from y to x .

In an infinite particle system X might be the current across a bond.

[o,t]
We first present the discrete time version of our theorem whose only as-
sumptions concern symmetry and square integrability and in which the antisymme-

try appears in simplest form.

THEOREM 2.1. Let £ > i=0,1,2,... be an ergodic reversible Markov
process with state space X and initial distribution p , Y : X x X +R be

antisymmetric : Y(&,n) = ~Y¥(n,&) , let Y, = Y(gi_l,gi) be square integrable.

Define

n
X = I Y. (2.2)
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X, = eX
t [e Zt]
Let ED be the expectation with respect to the Brownian motion WD start-
ing at the origin with variance Dt and let E_ be the expectation with respect

£

to the Markov process Ei starting at £ . Then for all bounded continuous
function F on D®R,R)

. D

E_(FGX%)) — E_(F) _ ' (2.3)
E >0 .

in p-measure, where D 1is given by

D =E(x7i) - 2<0(1-1) " Lo> R ' (2.4)

with @(g) = EE(XI) and where T 1is the {(time one) transition operator.

In particular, as ¢ > 0 the process x© converges (in distribution)

weakly to WD(-) . =

(2.5) We call the convergence given in (2.3) convergence in distribution in

u  probability.

The continuous time version of our invariance principle applies to a family
X indexed by closed intervals I = [a,b] ""and taking‘valuéé'in IRd , which
in addition to being antisymmetric (i.e. each XI is antisymmetric). satisfies
certain additional natural properties (except for A.l, automatically satisfied

in practice) which we 1list below.

(A.1) XI ‘is square-integrable for each I

(A.2) The family XI is covariant

X[a,b] ° eT = X[a+T,b+T]

where BT denotes the time-shift operator, defined by (eTE)t = €t+r

(A.3) The family Xy is additive :

+ =
Xp * X5 = Xy

o -] o
a.s. if INI'=@¢ . (I is the interior of 1I) .
We also require that X, = X[O t] has a version with paths in DGR;Rd) .
s
THEOREM 2.2. Let gt" t €R, be an ergodic reversible Markov process

with initial measure y . Let XI be an anti-symmetric family of R@—valued

random variables satisfying (A.1)-(A.3) . Assume in addition that the mean for-
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ward drift velocity exists and is square-integrable, more precisely, that

. -1 _
§i§+ s Eu[X[O,G]/Fo] =@ (2.6)

exists weakly in Ll(p) and @ € Lz(p) (¢ 1is vector-valued). Then the fol-
lowing hold :

(i) The velocity auto-correlation function is integrable, that is, for each
i,j]
<o

jo|<(piTt(pj>|dt <@

where Tt is the Markov semigroup determined by the process Et , and <> is
the expectation w.r.t. p , where 9, =e,.0 , with e » i=1,...,d an

orthonormal basis on R@ .

(ii) Let X% = ex . Then as € > 0
t -2
[0, “t]
x5 >0 () (2.7)

in distribution in p-probability, where WD(-) is a d-dimensional Brownian

motion starting at zero with covariance matrix Dt and where

(iii) D is given by

o«
T cij -2 jo <(pi'rt<pj> dt (2.82)
-1
=cC.. - . . 2.8b)
ij (‘iJ 2<(plL q)J) (

where € = (cij) is determined by

eT.E.e = lim 6—1 E (e.X[ )2 (2.9)
(S"O+ M 015]

and -L 1is the generator of the semigroup Tt : Lz(u) - Lz(u) .

€ is positive definite and finite.

(iv) Let Xt = X[O,t] . Then
E& D)
1im —t2 - p. . o
0 ii

REMARKS. (1) Ergodicity is required only for part (ii) of the theorem.
(2) D degenerate is not excluded. We call the limiting Brownian motion non-
degenerate if all the eigenvalues of D are positive. (3) By averaging with

respect to p it is immediate from (2.7) (see eq. (2.3)) that
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xF -+ WD(') in distribution (under the law P” of the process ' &, starting
‘g0

from the stationary distribution p ).

The proof of the theorem (2.1) builds on earlier work [6], [ 3]. The gist

of the proof is to write €X -, as the sum of a square-integrable martingale
te
and a small remainder, and then to apply the martingale Central limit theorem

[ 4]. The first step in the proof is, roughly speaking, to establish (2.8),
simultaneously proving the integrability of the velocity-autocorrelation funct~
ion, which is (equivalent to) the main assumption in earlier work. (Familiérity
with Spohn's Green-Kubo formulas for interacting particle systems [12] lead us

to this formula).

More precisely we first derive the equation obtained from (2.8) by ‘
lim ]E“(Xt iXt j) , which we later identify with Dij . Assume, for motational
Eonveniencé, tﬁat X € R . The key obsgrvation is that from the easily obtained
decompostion X, = st+Mt where St = [ w(Es)ds and M is a square integrable
martingale with stationary increments, ® it follows that Ep(Mi) = E“(xi)+mp(si),
since the cross term 2 E“(tht) vanishes by symmetry. Here we use the fact
that the measure Ep is symmetric under time reversal Rt/Z (i.e. p 1is re-
versible) while St is manifestly symmetric, and by assumption Xt is anti-

symmetric.

We turn next to the problem of obtaining bounds on the diffusion matrix
(in particular a positive lower bound). Note that from eq. (2.8.b) and writing

D for Dii s ¢ for @, and C for C,. , an upper bound is immediate :

ii
since L is non-negative, D < C . For a lower bound one can often exploit the
following situation. Suppose L = L1+L2 , with —Li , 1= 1,2 generators of

reversible Markov processes. Then operator monotonicity of the inverse function

suggests the lower bound :

-1
D >C-2(gL; @) (2.10)

which is often useful in practice and frequently has an interesting probabilis-
tic meaning. We mention several : (i) For reversible infinite particle systems
e.g. interacting Brownian particles [11], [10], [13] (2.10) can be used to
prove that the diffusion constant for a particle moving in a random, moving en-
vironment is greater than that for the same particle in a "frozen" environment.
(ii) When -L generates a multi-dimensional process and ~L, sgenerates a pro-
cess in fewer dimensions, (2.10) implies that D 1is an increasing function of

dimension.
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3. RANDOM WALK IN THE PERCOLATION CLUSTER.

In this section we use the theorem 2.2 to establish the diffusive behavior
of a random walker on an inhomogeneous lattice, i.e. the invariance principle
with non degenerate D . The model is the following. In the two dimensional
lattice Zd with each bond (x,x+e) , x,e 622, |e| = 1 associate random rates
ae(x) > 0 (sometimes we write ai(x) instead of ae.(x)) . A configuration of
rates is called an environment and the space of envirbnments we denote by

X = {a :Zz X {el,ez} » [0,=)} .
Let p a measure on X satisfying
C.1. ai(x) are identically distributed and mutually independent.

Given a configuration a € X , put a particle at the origin and let it
move to its nearest neighbours with rates given by a . That is, define the jump
: . 2 .
process X(a,t) , t € R as the Markov process with state space Z and transi-

tion probabilities determined by

P(X(a,t+h) = x + e / X(a,t) = x) = ae(x)h + 0(h) (3.1

P(X(a,t+h) = x / X(a,t) = x) =1 - I ae(x)h + 0(h)

e|=l
We are interested in establishing the convergence to Brownian Motion of

the rescaled process eX(a,s_zt) ag € +0 .

Given a € X, let

W(x,a) = connected cluster of x in W(a) = : {bonds (x,x+e)

with a_(x) > 0) (3.2)

It is clear that for configurations a € X for which |[W(0,a)]| < = (|A]
is the cardinality of the set A ), the position X(a,t) of the particle will
be bounded for all t . So |W(0,a)| = = is the minimal condition for convergence

to Brownian Motion.

It is well known [ 5] that if

c.2. ulay(® >0} =p>+ (3.3)
then p{|W(0,a)| = =} = ep >0 . Define
po= p{-/|W0,a)| = =} . (3.4)

Consider also the following conditions on u , whick will be discussed

later :
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c.3. u{al(O) >b} =0 for some b >0 .
C.4. p(al(O)_I/al(O) >0) >0 .
The main result of this section is the following

THEOREM 3.1. Let u a measure on the space of environments X satisfying
conditions C.1-4 above, and let X(a,t) be the jump Markov process with state

space 122 , X(a,0) £ 0 and transition probabilities given by eq. (3.1) above.
Then
(A) as £ -0, EX(a,E-Z.) + W._(-) in distribution in p-probability (see

. D
Def. 2.5), where 4 = p(./|W(0,.)| =») and W.(t) is two dimensional Brownian

. . . : D
motion with covariance matrix D , where

-~ -~

(B) D =DI, where I is the identity matrix, and
8D =D=:2u(a;(0)) = 2fdt pl(a (0) - a;(-e))) .

° (3.5)
. Ea(al(X(a,t)) - al(X(a,t) - el))]

REMARKS.

1) Convergence to (non degenerate) Brownian Motion of the process X(a,t) was
established by [1], [ 7], [ 8] for any ergodic translation invariant p such
that

0 < b1 < ai(x) < b2 < o for all x € Zz , 1=1,2 .

In [ 2] the result is extended up to b1 =0 and b2 = ® with only the condi-
tions that p(ai(o)) < o  and u(ai(O)_l) < © , This is done by introducing a
related discrete time process and invoking Theorem 2.1, but we prefer not to

introduce this approach here and so we require that b2 < ® and apply Thm. 2.2

directly. We also need. b2 < @ as a technical requirement for proving that

D >0 (see Lemma 3.1 below).

2) The condition that p is a product measure is needed in two parts : first

to prove that the induced process a(t) (the enviromment as seen from X(a,f)j

is ergodic with respect to I . Second to establish the positivity of D . Here
we use strong results of percolation theory, namely we relate D to the electric

current flowing through the environment a when a potential gradient is applied.
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The condition p(al(O)-\‘1 / al(O) > 0) < » is needed only to establish the posi-

tivity of D, since it appears as a divisor in the Kesten's iower bound for the

lim inf of the current.

3) For the case ai(x) > 0 , the result of convergence to Brownian Motion is
independent of the dimension if 0 < ai(x) and u[ai(x)]< o , In[2] the in-
equalities p(al(O))_l <D 5_p(a1(0)) (known in special case) are derived
generally for rotation (by n/2 ) invariant p , while if the measure is not
rotation invariant similar equalities are proven for each of the coefficients. It
is also proven there that the diffusion coefficient(s) D (Di) is a non decreas-—

ing function of the dimension.

Proof. (A) We place the problem within the framework of Theorem 2.2. The
role of the Markov process £, is played by the process a(t) € X defined by

a(0)

Hil

a

(3.6)

a(t) = "%(a,t)?

where Ty is the translation by x on X . a(t) 1is clearly reversible for

both p and p .

Moreover, X(a,t) 1is an adapted (to a(t)) antisyﬁmetric process. Since
the rates are bounded, the function 0, = ai(O)—ai(~ei) is well defined and
Xt is square integrable. So, the only hypothesis of Theorem 2.2 left to check
is the ergodicity of u with respect to the process a(t) . This follows from
the fact that in two dimensions there exists only ome infinite cluster pu a.s.,

and the ergodicity of the random environment under translations (see [2]) a

(B) The fact that D 1is a multiple of the identity is an easy consequence of

the rotation invariance of p .

The equation epﬁ = D can be obtained as follows : in view of (2.8), by
decomposing u into its ergodic components (for the process a(t)) we obtain
from the definition, eq. (3.5), of D, its ergodic decomposition D = Iv(dB)DB.
Since the only ergodic component of p with positive diffusion constant is p ,

the equation follows (see [ 2] for details). o

The idea of the proof of (C) is the following. We consider periodic configu-
rations with period 2N and call D, the diffusion coefficient (i.e.

N
E(X‘z)

lim ) for the corresponding random walk. Since with positive probability

all the rates are strictly positive one expects that DN > 0 , which can, in

fact, be easily shown. The problem left is to see if (a) as N increases DN
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remains bounded away from O and b) DN and D are suitably related.

The relaticnship between DN and D 1is easily established by looking at
the "explicit" formula for D in eq. (3.5). In that formula the integrand of
the second term is positive and involves E (X(t)) . For each t fixed the
expectation EN(w(X(t)) related to the periodic configurations converges to
E(@(X(t)). So we can use Fatou's lemma to obtain the inequality.

D > lim D

N

The positivity of 1im D is not so clear : here deep percolation problems

N
enter. We solve this problem without really solving it ! In fact we prove that

1, -
_2-]) = g (3.7)

where 9N is the current flowing in a box of size N when a unit potential
difference is established, which is better thought of as the effective conducti-
vity. Then we observe that Kesten (and also Grimmet and Kesten) solved our pro-

blem : they proved that lim o >0 . [51, [9].

Thus to prove (C) we define the periodic random walk, its diffusion coeffi-

cient DN ; we establish that D > lim D, and then define the conductivity o

N N

and determine its.relationship with DN .

DEFINITION. The periodic random walk.

Let BN CZZ be the box

2
By = {x = (x,x,)) €27 : -N<x

N <N , -N<x

< N-1}

1 2

Civen a configuration a € X of rates, let 2 be the periodic rate con-
figuration, with period 2N , (on bonds linking nearest neighbours points) in the

strip

= 2-_ —
iy = {(xp,x)) €27 1 -N < %, < §-1}

2

which agrees with a on the box BN , except that the vertical bonds on

X = N are given infinite rates (this is required to obtain a simple relation-
hi t .
ship between DN and oy )
Since bonds leading out of ZN on X, = N-1 and on X, = -N do not
exist for a , ZN has "reflecting boundary conditions” on top and bottom. In

order to construct a random walk on XN with rate 2 , it is necessary to iden-




80 DE MASI ET AL

tify the points of X = ~N , and similarly for the points of X = N,3N,-3N,...
but as long as we consider only functions which agree on equivalent points, this
may safely be ignored, provided we bear in mind that from all points on e.g.

x; = N, the rates 2 to the points (N+1,x2) [(N-1,x,)] are now

1 1 ) LN N .
N al( lez) [fﬁ al(N 1,A2)] . Denote by Xa(x,t) (or simply X (t)h,lf no
confusion is likely) the Markov process on ZN defined by the rates a; start-

ing from x , and let XN(t) be the xl—combonent of iN(t) . Denote by
Yi(x,t) (or simply YN(t)) the Markov process iN(t)ﬁv , where

- = = - _ N
(Xl’XZ) ~ (xl,xz) ®x;7x; =0 mod 2N and X, =%, . Y (t) may be regarded

as a Markov process with state space B, , the box BN with the left side iden-
tified with the right (i.e., (-N,xz) identified with (N,xz)) - Let my be the

uniform distribution on B, . Then with respect to m (t) 1is clearly a re-

N > My o
versible Markov process, in terms of which XN(t) and hence XN(t) , can be

realized. Under this realization

XN(t) = number of jumps of YN(s) in the positive horizontal
direction minus number of jumps of YN(s) in the (3.8)
negative horizontal direction during the time interval

[o,t] .

(In the above definition the jump from N-1 to -N = N [respectively to N-1
from N = -N] , is considered as a unit positive resp. negative jump). Note that
this is well defined if N > 2 which we will assume. We now need some notation.
The rates are most naturally regarded as bond functions (x,y) = b > a(b) the
rate for going from x to y . (Though the original a(b) was~symmetric, this
may no longer be the case for 2 , because of the redefinition of the rates for
leaving X, = «e.5=N,N,3N,... necessitated by granting infinite "conductivities
(i.e. rates) to the vertical bonds on these lines : e.g. :((N’Xz)’(N+1’xé)) =

= Z((N+1,xé),(N,x2)) may fail). For any bond b = (x,y) , let be = f(y)-f(x).

Let Bx = {(x,y)} be the set of bonds emanating from x .

Then the generator of the process EZ(x,t) is given by

LI = & A(b)VE ' (3.9)
bEB
} x
while the generator for the process Yg(x,t) may be identified with the restrict-
ion of La to periodic functions. Here, and from now, “"periodic" means periodic

with period 2N (in the ~direction).

*
N
Let wa = Lax1 , and note that
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(x ~ e,) (3.10)

G = (a)® =ax -a )

1
for x € BN }x1| #N .
N N N . .
Denote by P_ [resp P } the law of the process Y (t) with starting
s
measure my [resp. 6x] .

Let

Dy(a) = 2my(a, () -2 f ds my(@} E) 03" ()

2m (a; (1)) + 2m (OL Job) RN

REMARKS. It follows easily from Theorem 2.2 and the Remark (1) which
follows it, with YN(:) playing the role of the Markov process &(t) , me the

role of p and XN(t) "the role of the antisymmetric functional X[0 t] that
i i)
the process XN(t) converges to a mixture of Brownian motion with (average) dif-

fusion constant DN(a) , but we don't need this fact.

LEMMA 3.1. Let u be a translation invariant probability measure on X

such that p{ai(x) >b} =0 for some b <« for all i =1,...,d .Then the fol-
lowing hold o

(i) For any t > 0 fixed

Lin ulm (@) Ey @) (1" ()] = ulo,(2) B0, (a(t)]
Nooo ?

where wN is defined in eq. (3.10) and @.(a) = a.(0)-a,(-e.)
a i i it i
(ii) D > Tim u(DN(a))
N>
where the "diffusion coefficient"” D for the infinite system is defined in

eq. (3.5) and DN , the one for the finite system in eq. (3.11). =1

Proof. Part (ii) follows from (i). In fact, if (i) holds we have
. 7 . N_N N, N
jo dt u[mﬁa) anl(a(t))] = Io dt ;i: u[mN(w Ea,fp x (M)

2 N
<lim [ dt u[my(e By 001
(o]

oo
. N N
= Lim p[f dt me(p Eg L]
N->oo 0 ?

where the inequality follows by Fatou's lemma from the fact that the integrand
on the right hand side is positive, since my 'is reversible. Furthermore by

translation invariance of u ,.
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u[mN(al(X) )l = Zu[,al(O) ]
Now, by the formulas for D and DN :

D = 2ula, (@] -2 [dt ulo (@) E o (a(t)] >

3mqm~%zmgwgﬂﬁn=ﬂm%m

Part (i) follows easily from the fact that until the boundary of BN is
reached the periodic random walk and the original random walk agree (provided

they start from the same place in the same immediate environment). a

DEFINITION, The effective conductivity.

Let a € X be fixed. The effective conductivity GN(a) is the current
established across BN by a unit potential difference. Let V be the correspond-
ing potential. It satisfies

LaV(x) =0 ~N < x; <N (3.12a)

V(-N,xz) =1 V(N ,xz) =0 , =N< X, < N-1 (3.12b)

Equation (3.12a) merely expresses current balance at x (see eq. 3.13 below).
The solution of (3.12) is not unique, but all solutions give rise to the same

current

N-1
o) = = al(xl,xz)(V;V)(xl,xz) (3.13)

x2=~N

where

(V) = Vx + e;) = ¥(x)

This expression is independent of X s provided (3.12a) is satisfied, and thus

we have
oy(a) = 28 mN(aIVIV) (3.14)

Let V be the natural extension of V to all of ZN » not the periodic exten-

sion but one producing periodic current :
v = . v = v - .
(x) = V(x) for x¢€ By Vix, + 2N,%,) = Vixp,x,) =1

Because the left and right boundaries of BN have been made "superconducting",
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¥ satisfies
LV =0 all. x€zI_,
a N

since all this is now required at e.g. X = -N 1is that the current into this
line, from the left, equals the current out, into the right, which is already
guaranteed by the fact that the expression (3.13) for GN(a) is independent of

X - The relationship between DN(a) and oN(a) now follows easily:

Proposition 3.1. For any a €X
DN(a) = ZGN(a)

where DN is defined in eq. (3.11) and GN in eq. (3.13).

Proof. Consider the function £ = x1+2N§LN on I (where the constant

=z

-N 1is added so that, for convenience £ =0 on X = +N ). Since ¢§ = Lax1 ,

it follows that f is a periodic function satisfying

Thus

=)
4
~~
)
Nt
[l

- N.-1 N
sz(al) + ZmN(cpaL ama)

]

2m (a)) + 2m (OF)
= 2m(a)) + 2my((Vjaf) .

"Integrating'by parts, and using the translation invariance of My s (i.e.,

periodicity ) we obtain that

Dy(a) = 2my(a;) - sz(alv;f)

2my(a;) - 2my(a, (1 + 2NVIV)

+
2-2NmN(aIV1V) = 20N(a) . o

Proof of Thm. 3.1 (C) . It follows from Lemma 3.1 (ii), Proposition 3.1

and Fatou's lemma that

D _>_TNE n(dy(a) = %—f}g ulog(a) > u(xlqim oy(a)
Moreover it has been proven in [ 5] and [ 9] that there exist constaats

0 < ¢y < cy { = such that
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¢y < lim cN(a) < lim ON(a) f_cz (3.15)
p a.s. Thus D Z_Cl >0 a
REMARKS.

1) Independence is required only for eq. (3.15).

2) For boxes other than squares, and for higher dimensions, it remains true that
DN(a) = ZON(a) = m(alviv), where V(x_) = 2N, V(x+) = 0 and the box extends
from x; =X to X; =X, and x -x_ = 2N . Thus .ON(a) is the effective local

conductivity : the current per unit cross section per unit average electric field.

CLARIFICATION. Contrary to what was announced in the 1984 Conference on-
The Mathematics of Phase Transitions (Bowdoin College, June 1984), the problem

of the existence of the limit of the expected current, i.e. 1lim < cN(a)>
. N0
remains open in the percolation case.
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