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Abstract

Let g1,...,9s € R[X1,..., X, Y] and S = {(z,y) € R"" | g1(z,y) > 0,...,95(Z,y) > 0}
be a non-empty, possibly unbounded, subset of a cylinder in R* 1. Let f € R[X1,..., X,,Y]
be a polynomial which is positive on S. We prove that, under certain additional assumptions,
for any non-constant polynomial ¢ € R[Y] which is positive on R, there is a certificate of the
non-negativity of f on S given by a rational function having as numerator a polynomial in
the quadratic module generated by g1, ..., gs and as denominator a power of g.
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1 Introduction

Certificates of positivity and non-negativity by means of sums of squares is a topic whose roots go
back to Hilbert’s 17-th problem and its celebrated solution by Artin ([I]). Another milestone in
the development of this theory is the Positivstellensatz by Krivine ([4]) and Stengle ([22]) which
provides rational certificates for a multivariate polynomial f that is positive or non-negative on
a basic closed semialgebraic set S C R".

More recently, the famous works by Schmiidgen ([17]) and Putinar ([I2]) led to a renewed inter-
est in these certificates. Schmiidgen’s Positivstellensatz ensures the existence of a polynomial
certificate of non-negativity for a polynomial f which is positive on a compact set .S. Under a
stronger assumption which implies compactness of .S, Putinar’s Positivstellensatz establishes the
existence of a simpler polynomial certificate. Several subsequent works extended the previous
theorems in different directions including non-compact situations. We refer the reader to the
survey by Scheiderer ([I6]) and to the books by Marshall ([7]) and by Powers ([10]) for a com-
prehensive treatment of the subject; see also [20] for a specific reference on the moment problem
and its connections with certificates of non-negativity.

*Partially supported by Universidad de Buenos Aires (UBACYT 20020190100116BA), CONICET (PIP 2021-
2023 GI 11220200101015CO) and Agencia Nacional de Promocién Cientifica y Tecnoldgica (PICT 2018-02315),
Argentina.



In this paper, we address the problem of the existence of certificates of non-negativity in the
following setting. Let g1,...,9s € R[X,Y] =R[Xy,...,X,,Y] and

S={(z,y) e R"™ | g1(z,y) > 0,...,95(Z,y) > 0}

be a non-empty, possibly unbounded, subset of a cylinder in R"*1. Let f € R[X,Y] be a
polynomial which is positive on S. Under certain additional assumptions, we prove that, for
any non-constant polynomial ¢ € R[Y] which is positive on R, there is a certificate of the non-
negativity of f on S given by a rational function having as numerator a polynomial in the
quadratic module generated by g1, ..., gs and as denominator a power of ¢ (see Theorem .

Variants of this problem have been considered previously. In [9] and in [3], Schmiidgen’s Pos-
itivstellensatz and Putinar’s Positivstellensatz are extended to cylinders with compact cross-
section, under some additional assumptions on the polynomial f. In [5] and [6], among other
results concerning non-negativity of polynomials on non-compact sets, the authors analyze the
more general case of S being a subset of a cylinder and they prove the existence of a polynomial
certificate for a small suitable perturbation of f provided that the polynomials defining S satisfy
certain assumptions.

On the other hand, the existence of rational certificates having as a denominator a power of a
fixed particular polynomial has been studied before in different frameworks. In [15], it is proved
that a polynomial f which is positive on R" is a sum of squares of rational functions having as
denominators powers of 1+ XJZ. Then in [13] and [I4] this result is generalized to basic closed
semialgebraic sets, under additional assumptions to control the behavior of the polynomial f at
infinity.

Going back to Schmiidgen’s and Putinar’s Positivstellensatz, in [21] and [§] the authors develop
a constructive approach in order to obtain bounds for the degrees of every term involved in these
certificates. In this work, the main idea to prove Theorem [1]is, as in [9] and [3], to produce for
each y € R a certificate on the slice of S cut by the equation Y = y, in a parametric way such
that all these certificates can be glued together in a single one. The procedure we follow on each
slice is indeed an adaptation of the one in [21] and [8] using [I1].

This slicing method is somehow complementary to the one in [6] where, instead, in order to
deal with subsets of cylinders the fibres with respect to the projection on the variables X are
considered to reduce the problem to the univariate case, and finally a clever glueing process
is designed. Furthermore, this approach is related to the fibre theorem proved by Schmiidgen
in [I8] (see also its generalization in [19]), which reduces the moment problem for a closed
(possibly unbounded) basic semialgebraic set to the moment problem for its fibres with respect
to a polynomial map with bounded image.

The rest of the paper is organized in two sections. In Section 2] we introduce our assumptions
and notation and state the main result, and then in Section [3| we prove it.

2 Assumptions and main result

We introduce the notation we will use throughout the paper.

Let g1,...,9s € R[X,Y]. We consider the quadratic module generated by g := (g1,...,gs):
M(g) = {(70+0191 + 40595 | 00,01,...,04 € ZR[X,Y]Q},

that is, the smallest quadratic module in R[X,Y] that contains gi,...,gs. As in [6, Section 5]
(also [3]), we make an assumption on M (g) which is weaker than Archimedianity but captures
a similar idea on the variables X.



Assumption 1 There exists N € Rsg such that

N- > XjeMg).

1<j<n

Note that under this assumption, the set .S is included in the cylinder with compact cross section
B x R, where

B:={zcR"| Y <N}

1<j<n

Fori=1,...,s,if

with gim, (X) # 0, we write

Gi(X,Y,Z) = Z2"g(X,Y/Z) = Y gn(X)Y'Z™F eR[X,Y, 2]
0<k<m;

for the homogenization of g; with respect to the variable Y. We make the following further
assumptions on the polynomials g1,...,gs and the set S they describe.

Assumption 2

1.8 40.
2. Fori=1,...,s, mj = degy(g;) is even.

3. S0 :={Z €R" | g1y, (T) > 0,...,9sm.(T) >0} C B.

Indeed, once Assumption 1 is made, the third condition in Assumption [2| could be replaced
by the condition that S, is bounded, since it is always possible to increase N if necessary.
Nevertheless, for simplicity we assume that N is big enough. On the other hand, the following
example shows that the third condition in Assumption [2]does not follow from Assumption [I]and
the first two conditions in Assumption

Example 1 Forn =2, consider g1 = X1Y?+ (1 — X{ — X3) and go = —X1Y? + 1. Then
2— X7 - X5 = g1+ € M(g),

so Assumption[] is satisfied. In addition S # 0 (moreover, it is not bounded) since (0,0,y) € S
for every y € R. However
Soo = {(xl,xg) < RQ ‘ xr1 = 0}

1s not a bounded set.

Let ¢ € R[Y] be a non-constant polynomial which is positive on R (and therefore, a sum of
squares in R[Y]),
qV)= > qY*
0<k<mg
with mg > 0 and ¢y,, # 0. The assumption of ¢ being positive on R implies my is even and
Gmo > 0. We write
Y, 2):=2mq(Y/Z)= > qYrzmok

0<k<mg



Note that ¢(Y, Z) is a sum of squares in R[Y, Z], § is non-negative in R? and it only vanishes at
the origin.

Let
C:={(y,2) eR* | g(y,2) = 1,2 >0}

and

S:={(Z,y,2) ER™?| Gi(Z,9,2) 20,...,55(T,9,2) > 0, (y,2) € C}.
For 6 € [0, 7] and p € R, we have that
q(pcos(), psin(0)) = p™°q(cos(f), sin(0)).
Therefore, for any such 6, there exists a unique p(6) € [0, 4+00) such that (p() cos(0), p(8) sin(0)) €

C, which is
p(0) = G(cos(),sin(@)) /™o

and satisfies p(6) > 0. Since the function p : [0, 7] — R is continuous,

C = {(p(8) cos(9), p(8) sin(6)) | 6 € [0,7]}

is a compact set. Moreover, the set SN {z # 0} is in bijection with S. This bijection is given by

Sn{z#0} S
(Z,y,2) = (Z,y/2)

(wptareeot(s) 2 plarccot) 7 ) 0 @)

6 = arccot(y)

This implies _
SNn{z#0}CcBxC.

On the other hand, Assumption [2 implies
SN {z =0} = (Soo x {(=p(m),0)}) U (S x {(p(0),0)}) ¢ B x C.
We conclude that S € B x C and therefore S is compact.

Similarly, for a polynomial

f(X,Y) = Z fk(X)Yk € R[X7Y]

0<k<m



with f,,(X) # 0, we write
FXY,2):=2"f(X,Y/Z)= Y fX)YFz"FeR[X,Y, 2]
0<k<m
for its homogenization with respect to the variable Y.

It is easy to see that f is positive on S if and only if fis positive on SN {z # 0}. We make the
following assumptions on the polynomial f (cf. [I3| Theorem 4.2], [9, Definition 3], [3 Definition

3]).
Assumption 3

1. m = degy (f) is even.

2. fm(Z) >0 on Se

Under Assumptions [2| and [3, we have that f >0 on SN {z = 0}.

We are ready now to state our main result, using the notation we introduced above.

Theorem 1 Let g := g1,...,9s and f be polynomials in R[X,Y] such that f > 0 on S and
Assumptions @ (md@ hold. Let q € R[Y] be a non-constant polynomial which is positive on
R. Then, there exists M € Z>o such that ¢™ f € M(g).

Note that, since ¢ € R[Y] is a sum of squares, multiplying on both sides by ¢ if necessary, we
may assume that M is even. If ¢M f = 09 4+ 0191 + - - - + 0595 With 0g,01,...,0, € S R[X,Y]?,
then the identity
00+ 0191 + -+ 0sGs

f= Wi

q

is a rational certificate of non-negativity for f on S. For each y € R, this identity can be
evaluated to express f(X,y) as en explicit element of the quadratic module generated by
91(X,y),...,9s(X,y) in R[X], thus obtaining a certificate of non negativity on the slices of
S cut by the equations Y = y in a parametric way.

The following example ([3l, Example 8]) shows that the second condition in Assumption 3] is
necessary for the result to hold.

Example 2 Forn =1 consider g1 = (1 — X?)? € RIX,Y]. Then S =[-1,1] x R C R? and

4 4 3\2 4 3

——X2:—X2<X2——> —(1—X2) eM

3 3 2) T3 (6)
(see also [, Theorem 7.1.2]). Take f(X,Y) = (1—-X?)Y?+1 € R[X,Y]. It is clear that f > 0,
however it is not the case that fo = 1 — X? is positive on So = [—1,1].

For any q(Y) € R[Y] which is positive on R, if we have an identity
i z‘ 3
AP (1= XY 1) = Z(Zpﬂ ) +Z(Zqﬂ i) - X,

every term on the right hand side has degree in Y bounded by 2m' = moM + 2 (where mg =
deg(q)), and then looking at the terms of degree 2m' in'Y', we have

ot (1= X2 =" pjr(X)? + Z Gy (X)? (1= X2,
J

This implies that 1 — X? belongs to the quadratic module generated by (1 — X?)3 in R[X], which
is false since it is the well-known example from [23, Example].



3 Proof of the main result

As mentioned in the Introduction, the main idea to prove Theorem[I]is to produce in a parametric
way, for each y € R a certificate on the slice of S cut by the equation Y = y. To this end, we
adapt the techniques in [2I] and [8] using [11]. We keep the notation from the previous section.

Let A C R™ be the following simplex containing B:

A={zecR"|z;>—VNforj=1,...,n, ijg\/nN}. (1)

1<j<n

VN A

Since C is compact and 0 ¢ C, there exist positive p1, po € R which are respectively the minimum
and maximum value of [|(y, z)|| for (y,z) € C. Taking this into account, the following lemma
can be proved similarly as [8, Lemma 11].

Lemma 2 Let f € R[X,Y]. There is a constant K > 0 such that, for every &1, € A x C,

|f(&1) — f(&)| < K|[& — &

Moreover, the constant K can be computed in terms of n, the degrees in X andY of f, the size
of the coefficients of f, N and ps.

As explained in the previous section, if f is positive on S and Assumptions and |3| are
satisfied, then f is positive on N
S Cc BxC c AxC.

We denote B B
f*=min{f(z,y,2) | (Z,y,2) € S} > 0.

Our first aim is to construct an auxiliary polynomial h € R[X,Y, Z] such that
e h(Z,y,z) is positive on A x C,
o h(z,y,1) = qy)™ f(z,y) — p(&,y), for a polynomial p € M(g).

Let r be the remainder of m = degy-(f) in the division by mo = deg(q) > 0 and, fori =1,...,s,
let e; € Z be the minimum non-negative number such that mg divides m; + e¢;. We have then
that r,e;,...,es are even and 0 < r,eq,...,es < mg — 2.



Proposition 3 With our previous notation and assumptions, there exist A\, aq,...,as € Rsg,
k€ Z>o and M, M, ..., My € Z>o such that the polynomial

r i i mitei o
SAYEEZY)E Y (V2422 3K, Y, 2) (i (V2420 3 (X, Y, 2) (Y, Z) 0 )PRg(y, 2)M
1<i<s
is homogeneous in (Y, Z) of degree max{m;r + (2k + 1)(m; +€;),i = 1,...,s}, and satisfies
f.

h(:B,y, Z) > ?

for all (z,y,z) € A x C.

Note that for i = 1,...,s, the degree in (Y, Z) of

m;+e;

XY D) (Y + 23 G(X. Y. Z) - gV, Z) o )

(Y2 4+ 7%

has remainder r in the division by mg. This ensures that, once k is fixed, there exist unique
M, M, ..., M so that the degree and homogeneity conditions on (Y, Z) are satisfied.

Proof of Proposition[3: Since A x C is compact, for i = 1,...,s, we define
e; 1
2, G~ o
i = su +2%)29:(%,y, z)|, o =
pi=sw |02+ ) FG(E ), = g
and B . B
Gi(X,Y,Z) = a;(Y* + Z°)2 (X, Y, Z).

Then, for i =1,...,s we have

< 1.

sup ‘Gl(jv Y, Z)
AXC

The polynomial h in the statement of the proposition can be rewritten as
WX,Y,Z) = qV.2)" f(X,Y,2) -
m;te;
AYZ+ 222 Y G Gi(X,Y,Z) —q(Y,Z) ™o 2kq(y, Z)M
1<i<s

For every (Z,y,z) € A x C, we have that ¢(y, z) = 1; then,

W@y, 2) = f(@,y,2) = My* + 292 D Gil@,y,2) (Gi(@,y,2) — 1)*

1<i<s

Fori=1,...,s,if Gi(Z,y,z) > 0, then 0 < G;(Z,y,2) < 1. Now, it is not difficult to see that,
1

for every t € [0, 1], the inequality #(t — 1)%¥ < 5ok holds; therefore,
e

Gi(jayaz)(Gi(Evyvz) - 1)2k (2)

< —.
2ek

Consider the set

e~ w

A:{(E,y,z)GAXC | f(z,y,2) <

)

7



Note that AN S = (), since f(i,y,z) > f* for every (Z,y,2) € S.
For (Z,y,2) € (A x C) — A,

h(l‘ Y,z ) f(.T Y,z ) )\,05 Z Gi(j7y’ Z) (Gz(fa Y, Z) - 1)2k

1<i<s,

G;(%,y,2)>0
and, as a consequence,
_ 3 Aphs
h > —f* — :
2M\ph
Therefore, if we take k > Jefs, we have
e
hMz,y,z) > f?

For £ = (Z,y,2) € A x C, we define H(£) = dist(£, S) and F(§) = —min{0, G1(£), ..., G (E)}.
Note that
F‘I(O):{EeAxC|G1() 0,...,Gs(6) >0} =

—{{eAXC | 51(§) 20,...,5,() > 0} = S = H1(0).

By the Lojasiewicz inequality (see [2, Corollary 2.6.7]), there exist positive constants L and ¢
such that, for all £ € A x C, s -
dist(€,5)F < cF(€).

Since ANS =0, for € € A, F(§) > 0. Let ig, with 1 < iy < s, be such that F(§) = —Gj, (€);
then,
_ 1 .
Gig(§) < —— dist(&, 5)*.
Let & € S be a point where the distance from & to S is attained, namely, dist (€, §i: 1€ — &
2

s fT. < f(&) — f(€) < K||& — €|, where K is the positive constant from Lemma [2, we deduce
that

_4K

Giy(€) < —% <4];)L

Together with inequality , this implies that

r o\ L T(g —
n© 2 FO+ 2 (o) - MY

_ (f@_ L <4fK>L> (- 2o 20

Let £* € S be a point where the minimum f* of f is attained in S, that is, f(é’) = f*. By
Lemma [2] we have

dist(&, 5) = [|& — €]l =

and, as a consequence,

F© = 111 =17©) - FE) < KIg - €]
and so, if D := diam(A x C), o
(&) = f*l < KD.



¢ (4K\*
Therefore, for A > KD— , we have that

P\ e
Fo e M (SN
— > 0.
o -+ (1) 20 ©
2M\phs . -,
On the other hand, for k£ > =, the inequalities

e

Mi(s 1) _ [t (s=1) _f*

2ek — 4 S 4
hold and so,
o Ap3(s—1) 3.,
f oo 2l (4)
From and , we conclude that
~ 3
h — [ ]
©>
4K\ * 2Aph .
Summarizing, for A > KD% < T > and k > )‘;28’ we have that h(z,y,z) > f? for every
P1 €
(Z,y,2) € AxC. O

Remark 4 From the proof of Proposition[3, it follows that, once the polynomials g1,...,gs and
q are fized, for every f positive on S satisfying Assumptions (1], [q and[3, an ezxplicit bound for
M in terms of deg(f), the size of the coefficients of f and f® can be computed similarly as in

[-8/ or [3/.

In order to prove our main result, we will apply the following effective version of Polya’s theorem
for a simplex (see [11, Theorem 3]).

Lemma 5 Let P C R" be an n-dimensional simplex with vertices vg,...,vn, and let { =

{lo, ..., Ly} be the set of barycentric coordinates on P, i.e., {; € R[X] is linear (affine) for
1=0,...,n,

X = Z Gi(X)vi, 1= Z (X)), and Ci(vj) =6; for0<i,j<n.
0<i<n 0<i<n

Let h € R[X] be a polynomial that is strictly positive on P. Then, for k> 0, h has a represen-
tation of the form

h=Y bsgl’  with bg>0.
18]<r
Moreover, for each B, bg € R is a linear combination of the coefficients of h, and an explicit

bound for k can be given in terms of the degree of h, the size of the coefficients of h, the minimum
value of h in P and the vertices vy, . .., Up.-

Lemma 6 For N € Ryq, let {o(X) := vV/nN — Z1§j§an and, fori = 1,...,n, £;(X) =
X; +VN. Then, fori=0,...,n, we have that {; € M(N — || X||?), where | X|]? = > 1<i<n ij.



Proof: By an explicit computation, we see that

- Y K=y (N Y Xt Y G-+ - Y X,

1<j<n 1<j<n 1<j<j'<n 1<j<n
Also, fori=1,...,n
X+ VN = ((xi+ V)2 + X2) ( x2).
- > >
j#i 1<j<n
This shows that £o, £1,...,0, € M(N — || X||?). O

We are now able to prove the main result of the paper.

Proof of Theorem [1: We continue to use the notation introduced before.

Let h € R[X,Y, Z] be as in Propos1t10n I We will apply Pélya’s theorem, as stated in Lemma
to the polynomials h, .)(X) := h(X,y, z) for (y,z) € C and the simplex A defined in (1]).

The vertices of A are

v == (=VN,...,—VN),
v :=vg+ (0,...,(n+vn)VN,...,0) fori=1,...,n,
—_—

i—th coord.

and its barycentric coordinates are given by

. 1
b(X) = ————(VnN — Xi)s

_ 1 . n
4;(X) .ZW(XH-\/N) fori=1,...,n.

For each fixed (y, z) € C, the polynomial h, .)(X) satisfies

hy,2)(T) > 5 >0 for every T € A.

Since the size of the coefficients of h, .y as polynomials in X and their minimum values on A
are uniformly bounded for (y,z) € C, by Lemma |5], there exists x > 0 such that

WX,Y,Z) =) ba(Y,Z)0
18I<k

with bg € R[Y,Z] and bg(y,z) > 0 for every (y,z) € C. In addition, for each S, since h
is homogeneous in (Y,Z) and bg is a linear combination of the coefficients of h (seen as a
polynomial in X), then bz is a homogeneous polynomial. This implies that bs(y,z) > 0 for
every (y,z) € R x R>qg \ {0}; in particular, bg(y, 1) > 0 for every y € R and therefore bg(Y, 1) is
a sum of squares in R[Y].

Finally, from the equality B B

mi+ei

A YT (Y2 ) TF (XY )@Y+ D F (X, Y) — g(Y) e ) Hg()M

1<i<s

10



we have:

_ r+e; € _ m;te; ) _
g FXY) =2 D (V1) 2 (u(Y? + 1) 2 gi(X,Y) — (V) ™0 )*Fg(YV)Migi(X,Y)
1<i<s
+ ) ba(Y DIX).
1BI<k
It is clear that for i =1,...,s,
r+e; m;+e;

(Y2 +1) 2 (Y2 + )T gi(X,Y) = q(Y) 7m0 )¥g(Y)Migi(X,Y) € M(g).
On the other hand, by Lemma 6]
o(X), ., £a(X) € M(N — || X[)

and, taking into account that M (N — || X||?) is closed under multiplication (since it is generated
by a single polynomial), the same holds for all the products £(X)? = £o(X)% ... £,(X)P". By
the assumption N — || X||> € M(g), we deduce that bs(Y,1)((X)? € M(g) for every B with
18] < k. We conclude that ¢(Y)M f(X,Y) € M(g). O

Remark 7 The value of M in Theorem[1] is the same as in Proposition[3, therefore it can be
bounded as mentioned in Remark [{}
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