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Abstract

Let g1, . . . , gs ∈ R[X1, . . . , Xn, Y ] and S = {(x̄, y) ∈ Rn+1 | g1(x̄, y) ≥ 0, . . . , gs(x̄, y) ≥ 0}
be a non-empty, possibly unbounded, subset of a cylinder in Rn+1. Let f ∈ R[X1, . . . , Xn, Y ]
be a polynomial which is positive on S. We prove that, under certain additional assumptions,
for any non-constant polynomial q ∈ R[Y ] which is positive on R, there is a certificate of the
non-negativity of f on S given by a rational function having as numerator a polynomial in
the quadratic module generated by g1, . . . , gs and as denominator a power of q.
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1 Introduction

Certificates of positivity and non-negativity by means of sums of squares is a topic whose roots go
back to Hilbert’s 17-th problem and its celebrated solution by Artin ([1]). Another milestone in
the development of this theory is the Positivstellensatz by Krivine ([4]) and Stengle ([22]) which
provides rational certificates for a multivariate polynomial f that is positive or non-negative on
a basic closed semialgebraic set S ⊂ Rn.

More recently, the famous works by Schmüdgen ([17]) and Putinar ([12]) led to a renewed inter-
est in these certificates. Schmüdgen’s Positivstellensatz ensures the existence of a polynomial
certificate of non-negativity for a polynomial f which is positive on a compact set S. Under a
stronger assumption which implies compactness of S, Putinar’s Positivstellensatz establishes the
existence of a simpler polynomial certificate. Several subsequent works extended the previous
theorems in different directions including non-compact situations. We refer the reader to the
survey by Scheiderer ([16]) and to the books by Marshall ([7]) and by Powers ([10]) for a com-
prehensive treatment of the subject; see also [20] for a specific reference on the moment problem
and its connections with certificates of non-negativity.

∗Partially supported by Universidad de Buenos Aires (UBACYT 20020190100116BA), CONICET (PIP 2021-
2023 GI 11220200101015CO) and Agencia Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2018–02315),
Argentina.
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In this paper, we address the problem of the existence of certificates of non-negativity in the
following setting. Let g1, . . . , gs ∈ R[X̄, Y ] = R[X1, . . . , Xn, Y ] and

S = {(x̄, y) ∈ Rn+1 | g1(x̄, y) ≥ 0, . . . , gs(x̄, y) ≥ 0}

be a non-empty, possibly unbounded, subset of a cylinder in Rn+1. Let f ∈ R[X̄, Y ] be a
polynomial which is positive on S. Under certain additional assumptions, we prove that, for
any non-constant polynomial q ∈ R[Y ] which is positive on R, there is a certificate of the non-
negativity of f on S given by a rational function having as numerator a polynomial in the
quadratic module generated by g1, . . . , gs and as denominator a power of q (see Theorem 1).

Variants of this problem have been considered previously. In [9] and in [3], Schmüdgen’s Pos-
itivstellensatz and Putinar’s Positivstellensatz are extended to cylinders with compact cross-
section, under some additional assumptions on the polynomial f . In [5] and [6], among other
results concerning non-negativity of polynomials on non-compact sets, the authors analyze the
more general case of S being a subset of a cylinder and they prove the existence of a polynomial
certificate for a small suitable perturbation of f provided that the polynomials defining S satisfy
certain assumptions.

On the other hand, the existence of rational certificates having as a denominator a power of a
fixed particular polynomial has been studied before in different frameworks. In [15], it is proved
that a polynomial f which is positive on Rn is a sum of squares of rational functions having as
denominators powers of 1+

∑
X2
j . Then in [13] and [14] this result is generalized to basic closed

semialgebraic sets, under additional assumptions to control the behavior of the polynomial f at
infinity.

Going back to Schmüdgen’s and Putinar’s Positivstellensatz, in [21] and [8] the authors develop
a constructive approach in order to obtain bounds for the degrees of every term involved in these
certificates. In this work, the main idea to prove Theorem 1 is, as in [9] and [3], to produce for
each y ∈ R a certificate on the slice of S cut by the equation Y = y, in a parametric way such
that all these certificates can be glued together in a single one. The procedure we follow on each
slice is indeed an adaptation of the one in [21] and [8] using [11].

This slicing method is somehow complementary to the one in [6] where, instead, in order to
deal with subsets of cylinders the fibres with respect to the projection on the variables X̄ are
considered to reduce the problem to the univariate case, and finally a clever glueing process
is designed. Furthermore, this approach is related to the fibre theorem proved by Schmüdgen
in [18] (see also its generalization in [19]), which reduces the moment problem for a closed
(possibly unbounded) basic semialgebraic set to the moment problem for its fibres with respect
to a polynomial map with bounded image.

The rest of the paper is organized in two sections. In Section 2 we introduce our assumptions
and notation and state the main result, and then in Section 3 we prove it.

2 Assumptions and main result

We introduce the notation we will use throughout the paper.

Let g1, . . . , gs ∈ R[X̄, Y ]. We consider the quadratic module generated by g := (g1, . . . , gs):

M(g) =
{
σ0 + σ1g1 + · · ·+ σsgs | σ0, σ1, . . . , σs ∈

∑
R[X̄, Y ]2

}
,

that is, the smallest quadratic module in R[X̄, Y ] that contains g1, . . . , gs. As in [6, Section 5]
(also [3]), we make an assumption on M(g) which is weaker than Archimedianity but captures
a similar idea on the variables X̄.
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Assumption 1 There exists N ∈ R>0 such that

N −
∑

1≤j≤n
X2
j ∈M(g).

Note that under this assumption, the set S is included in the cylinder with compact cross section
B× R, where

B := {x̄ ∈ Rn |
∑

1≤j≤n
x2
j ≤ N}.

For i = 1, . . . , s, if

gi(X̄, Y ) =
∑

0≤k≤mi

gik(X̄)Y k ∈ R[X̄, Y ]

with gimi(X̄) 6= 0, we write

g̃i(X̄, Y, Z) := Zmigi(X̄, Y/Z) =
∑

0≤k≤mi

gik(X̄)Y kZmi−k ∈ R[X̄, Y, Z]

for the homogenization of gi with respect to the variable Y . We make the following further
assumptions on the polynomials g1, . . . , gs and the set S they describe.

Assumption 2

1. S 6= ∅.

2. For i = 1, . . . , s, mi = degY (gi) is even.

3. S∞ := {x̄ ∈ Rn | g1m1(x̄) ≥ 0, . . . , gsms(x̄) ≥ 0} ⊂ B.

Indeed, once Assumption 1 is made, the third condition in Assumption 2 could be replaced
by the condition that S∞ is bounded, since it is always possible to increase N if necessary.
Nevertheless, for simplicity we assume that N is big enough. On the other hand, the following
example shows that the third condition in Assumption 2 does not follow from Assumption 1 and
the first two conditions in Assumption 2.

Example 1 For n = 2, consider g1 = X1Y
2 + (1−X2

1 −X2
2 ) and g2 = −X1Y

2 + 1. Then

2−X2
1 −X2

2 = g1 + g1 ∈M(g),

so Assumption 1 is satisfied. In addition S 6= ∅ (moreover, it is not bounded) since (0, 0, y) ∈ S
for every y ∈ R. However

S∞ = {(x1, x2) ∈ R2 | x1 = 0}

is not a bounded set.

Let q ∈ R[Y ] be a non-constant polynomial which is positive on R (and therefore, a sum of
squares in R[Y ]),

q(Y ) =
∑

0≤k≤m0

qkY
k

with m0 > 0 and qm0 6= 0. The assumption of q being positive on R implies m0 is even and
qm0 > 0. We write

q̃(Y, Z) := Zm0q(Y/Z) =
∑

0≤k≤m0

qkY
kZm0−k.
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Note that q̃(Y, Z) is a sum of squares in R[Y, Z], q̃ is non-negative in R2 and it only vanishes at
the origin.

Let
C := {(y, z) ∈ R2 | q̃(y, z) = 1, z ≥ 0}

and
S̃ := {(x̄, y, z) ∈ Rn+2 | g̃1(x̄, y, z) ≥ 0, . . . , g̃s(x̄, y, z) ≥ 0, (y, z) ∈ C}.

For θ ∈ [0, π] and ρ ∈ R, we have that

q̃(ρ cos(θ), ρ sin(θ)) = ρm0 q̃(cos(θ), sin(θ)).

Therefore, for any such θ, there exists a unique ρ(θ) ∈ [0,+∞) such that (ρ(θ) cos(θ), ρ(θ) sin(θ)) ∈
C, which is

ρ(θ) = q̃(cos(θ), sin(θ))−1/m0

and satisfies ρ(θ) > 0. Since the function ρ : [0, π]→ R is continuous,

C = {(ρ(θ) cos(θ), ρ(θ) sin(θ)) | θ ∈ [0, π]}

is a compact set. Moreover, the set S̃ ∩{z 6= 0} is in bijection with S. This bijection is given by

S̃ ∩ {z 6= 0} S

(x̄, y, z) 7→ (x̄, y/z)(
x̄, ρ(arccot(y)) y√

y2+1
, ρ(arccot(y)) 1√

y2+1

)
7→ (x̄, y)

Y

Z

C

(y, 1)

θ = arccot(y)

(ρ(θ) cos(θ), ρ(θ) sin(θ))

This implies
S̃ ∩ {z 6= 0} ⊂ B×C.

On the other hand, Assumption 2 implies

S̃ ∩ {z = 0} = (S∞ × {(−ρ(π), 0)}) ∪ (S∞ × {(ρ(0), 0)}) ⊂ B×C.

We conclude that S̃ ⊂ B×C and therefore S̃ is compact.

Similarly, for a polynomial

f(X̄, Y ) =
∑

0≤k≤m
fk(X̄)Y k ∈ R[X̄, Y ]
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with fm(X̄) 6= 0, we write

f̃(X̄, Y, Z) := Zmf(X̄, Y/Z) =
∑

0≤k≤m
fk(X̄)Y kZm−k ∈ R[X̄, Y, Z]

for its homogenization with respect to the variable Y .

It is easy to see that f is positive on S if and only if f̃ is positive on S̃ ∩ {z 6= 0}. We make the
following assumptions on the polynomial f (cf. [13, Theorem 4.2], [9, Definition 3], [3, Definition
3]).

Assumption 3

1. m = degY (f) is even.

2. fm(x̄) > 0 on S∞.

Under Assumptions 2 and 3, we have that f̃ > 0 on S̃ ∩ {z = 0}.

We are ready now to state our main result, using the notation we introduced above.

Theorem 1 Let g := g1, . . . , gs and f be polynomials in R[X̄, Y ] such that f > 0 on S and
Assumptions 1, 2 and 3 hold. Let q ∈ R[Y ] be a non-constant polynomial which is positive on
R. Then, there exists M ∈ Z≥0 such that qMf ∈M(g).

Note that, since q ∈ R[Y ] is a sum of squares, multiplying on both sides by q if necessary, we
may assume that M is even. If qMf = σ0 + σ1g1 + · · ·+ σsgs with σ0, σ1, . . . , σs ∈

∑
R[X̄, Y ]2,

then the identity

f =
σ0 + σ1g1 + · · ·+ σsgs

qM

is a rational certificate of non-negativity for f on S. For each y ∈ R, this identity can be
evaluated to express f(X̄, y) as en explicit element of the quadratic module generated by
g1(X̄, y), . . . , gs(X̄, y) in R[X̄], thus obtaining a certificate of non negativity on the slices of
S cut by the equations Y = y in a parametric way.

The following example ([3, Example 8]) shows that the second condition in Assumption 3 is
necessary for the result to hold.

Example 2 For n = 1 consider g1 = (1−X2)3 ∈ R[X,Y ]. Then S = [−1, 1]× R ⊂ R2 and

4

3
−X2 =

4

3
X2
(
X2 − 3

2

)2
+

4

3

(
1−X2

)3
∈M(g1)

(see also [7, Theorem 7.1.2]). Take f(X,Y ) = (1−X2)Y 2 + 1 ∈ R[X,Y ]. It is clear that f > 0,
however it is not the case that f2 = 1−X2 is positive on S∞ = [−1, 1].

For any q(Y ) ∈ R[Y ] which is positive on R, if we have an identity

q(Y )M ((1−X2)Y 2 + 1) =
∑
j

(∑
i

pji(X)Y i
)2

+
∑
j

(∑
i

qji(X)Y i
)2(

1−X2
)3
,

every term on the right hand side has degree in Y bounded by 2m′ = m0M + 2 (where m0 =
deg(q)), and then looking at the terms of degree 2m′ in Y , we have

qMm0
(1−X2) =

∑
j

pjm′(X)2 +
∑
j

qjm′(X)2
(
1−X2

)3
.

This implies that 1−X2 belongs to the quadratic module generated by (1−X2)3 in R[X], which
is false since it is the well-known example from [23, Example].
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3 Proof of the main result

As mentioned in the Introduction, the main idea to prove Theorem 1 is to produce in a parametric
way, for each y ∈ R a certificate on the slice of S cut by the equation Y = y. To this end, we
adapt the techniques in [21] and [8] using [11]. We keep the notation from the previous section.

Let ∆ ⊂ Rn be the following simplex containing B:

∆ = {x̄ ∈ Rn | xj ≥ −
√
N for j = 1, . . . , n,

∑
1≤j≤n

xj ≤
√
nN}. (1)

∆

−
√
N

−
√
N

Since C is compact and 0 6∈ C, there exist positive ρ1, ρ2 ∈ R which are respectively the minimum
and maximum value of ‖(y, z)‖ for (y, z) ∈ C. Taking this into account, the following lemma
can be proved similarly as [8, Lemma 11].

Lemma 2 Let f ∈ R[X̄, Y ]. There is a constant K > 0 such that, for every ξ1, ξ2 ∈ ∆×C,

|f̃(ξ1)− f̃(ξ2)| ≤ K ‖ξ1 − ξ2‖.

Moreover, the constant K can be computed in terms of n, the degrees in X̄ and Y of f , the size
of the coefficients of f , N and ρ2.

As explained in the previous section, if f is positive on S and Assumptions 1, 2 and 3 are
satisfied, then f̃ is positive on

S̃ ⊂ B×C ⊂ ∆×C.

We denote
f• := min{f̃(x̄, y, z) | (x̄, y, z) ∈ S̃} > 0.

Our first aim is to construct an auxiliary polynomial h ∈ R[X̄, Y, Z] such that

• h(x̄, y, z) is positive on ∆×C,

• h(x̄, y, 1) = q(y)Mf(x̄, y)− p(x̄, y), for a polynomial p ∈M(g).

Let r be the remainder of m = degY (f) in the division by m0 = deg(q) > 0 and, for i = 1, . . . , s,
let ei ∈ Z be the minimum non-negative number such that m0 divides mi + ei. We have then
that r, e1, . . . , es are even and 0 ≤ r, e1, . . . , es ≤ m0 − 2.
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Proposition 3 With our previous notation and assumptions, there exist λ, α1, . . . , αs ∈ R>0,
k ∈ Z≥0 and M,M1, . . . ,Ms ∈ Z≥0 such that the polynomial

h(X̄, Y, Z) = q̃(Y, Z)M f̃(X̄, Y, Z) −

−λ(Y 2+Z2)
r
2

∑
1≤i≤s

αi(Y
2+Z2)

ei
2 g̃i(X̄, Y, Z)(αi(Y

2+Z2)
ei
2 g̃i(X̄, Y, Z)−q̃(Y, Z)

mi+ei
m0 )2kq̃(Y,Z)Mi ,

is homogeneous in (Y,Z) of degree max{m; r + (2k + 1)(mi + ei), i = 1, . . . , s}, and satisfies

h(x̄, y, z) >
f•

2

for all (x̄, y, z) ∈ ∆×C.

Note that for i = 1, . . . , s, the degree in (Y,Z) of

(Y 2 + Z2)
r+ei

2 g̃i(X̄, Y, Z)(αi(Y
2 + Z2)

ei
2 g̃i(X̄, Y, Z)− q̃(Y,Z)

mi+ei
m0 )2k

has remainder r in the division by m0. This ensures that, once k is fixed, there exist unique
M,M1, . . . ,Ms so that the degree and homogeneity conditions on (Y,Z) are satisfied.

Proof of Proposition 3: Since ∆×C is compact, for i = 1, . . . , s, we define

βi = sup
∆×C

∣∣∣(y2 + z2)
ei
2 g̃i(x̄, y, z)

∣∣∣, αi =
1

βi + 1

and
Gi(X̄, Y, Z) = αi(Y

2 + Z2)
ei
2 g̃i(X̄, Y, Z).

Then, for i = 1, . . . , s we have

sup
∆×C

∣∣∣Gi(x̄, y, z)∣∣∣ < 1.

The polynomial h in the statement of the proposition can be rewritten as

h(X̄, Y, Z) = q̃(Y,Z)M f̃(X̄, Y, Z) −

−λ(Y 2 + Z2)
r
2

∑
1≤i≤s

Gi(X̄, Y, Z)(Gi(X̄, Y, Z)− q̃(Y,Z)
mi+ei
m0 )2kq̃(Y, Z)Mi .

For every (x̄, y, z) ∈ ∆×C, we have that q̃(y, z) = 1; then,

h(x̄, y, z) = f̃(x̄, y, z)− λ(y2 + z2)
r
2

∑
1≤i≤s

Gi(x̄, y, z) (Gi(x̄, y, z)− 1)2k .

For i = 1, . . . , s, if Gi(x̄, y, z) ≥ 0, then 0 ≤ Gi(x̄, y, z) < 1. Now, it is not difficult to see that,

for every t ∈ [0, 1], the inequality t(t− 1)2k <
1

2ek
holds; therefore,

Gi(x̄, y, z)(Gi(x̄, y, z)− 1)2k <
1

2ek
. (2)

Consider the set

A =

{
(x̄, y, z) ∈ ∆×C | f̃(x̄, y, z) ≤ 3

4
f•
}
.
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Note that A ∩ S̃ = ∅, since f̃(x̄, y, z) ≥ f• for every (x̄, y, z) ∈ S̃.

For (x̄, y, z) ∈ (∆×C)−A,

h(x̄, y, z) ≥ f̃(x̄, y, z)− λρr2
∑

1≤i≤s,
Gi(x̄,y,z)≥0

Gi(x̄, y, z) (Gi(x̄, y, z)− 1)2k

and, as a consequence,

h(x̄, y, z) >
3

4
f• − λρr2s

2ek
.

Therefore, if we take k ≥ 2λρr2s

ef•
, we have

h(x̄, y, z) >
f•

2
.

For ξ̄ = (x̄, y, z) ∈ ∆ ×C, we define H(ξ̄) = dist(ξ̄, S̃) and F (ξ̄) = −min{0, G1(ξ̄), . . . , Gs(ξ̄)}.
Note that

F−1(0) = {ξ̄ ∈ ∆×C | G1(ξ̄) ≥ 0, . . . , Gs(ξ̄) ≥ 0} =

= {ξ̄ ∈ ∆×C | g̃1(ξ̄) ≥ 0, . . . , g̃s(ξ̄) ≥ 0} = S̃ = H−1(0).

By the  Lojasiewicz inequality (see [2, Corollary 2.6.7]), there exist positive constants L and c
such that, for all ξ̄ ∈ ∆×C,

dist(ξ̄, S̃)L ≤ c F (ξ̄).

Since A ∩ S̃ = ∅, for ξ̄ ∈ A, F (ξ̄) > 0. Let i0, with 1 ≤ i0 ≤ s, be such that F (ξ̄) = −Gi0(ξ̄);
then,

Gi0(ξ̄) ≤ −1

c
dist(ξ̄, S̃)L.

Let ξ̄0 ∈ S̃ be a point where the distance from ξ̄ to S̃ is attained, namely, dist(ξ̄, S̃) = ‖ξ̄ − ξ̄0‖.
As f•

4 ≤ f̃(ξ̄0)− f̃(ξ̄) ≤ K‖ξ̄0 − ξ̄‖, where K is the positive constant from Lemma 2, we deduce
that

dist(ξ̄, S̃) = ‖ξ̄0 − ξ̄‖ ≥
f•

4K

and, as a consequence,

Gi0(ξ̄) ≤ −1

c

(
f•

4K

)L
.

Together with inequality (2), this implies that

h(ξ̄) ≥ f̃(ξ̄) +
λρr1
c

(
f•

4K

)L
− λρr2(s− 1)

2ek

=

(
f̃(ξ̄)− f• +

λρr1
c

(
f•

4K

)L)
+

(
f• − λρr2(s− 1)

2ek

)

Let ξ̄• ∈ S̃ be a point where the minimum f• of f̃ is attained in S̃, that is, f̃(ξ̄•) = f•. By
Lemma 2, we have

|f̃(ξ̄)− f•| = |f̃(ξ̄)− f̃(ξ̄•)| ≤ K‖ξ̄ − ξ̄•‖

and so, if D := diam(∆×C),
|f̃(ξ̄)− f•| ≤ KD.
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Therefore, for λ ≥ KD c

ρr1

(
4K

f•

)L
, we have that

f̃(ξ̄)− f• +
λρr1
c

(
f•

4K

)L
≥ 0. (3)

On the other hand, for k ≥ 2λρr2s

ef•
, the inequalities

λρr2(s− 1)

2ek
≤ f•

4

(s− 1)

s
<
f•

4

hold and so,

f• − λρr2(s− 1)

2ek
>

3

4
f•. (4)

From (3) and (4), we conclude that

h(ξ̄) >
3

4
f•.

Summarizing, for λ ≥ KD
c

ρr1

(
4K

f•

)L
and k ≥ 2λρr2s

ef•
, we have that h(x̄, y, z) >

f•

2
for every

(x̄, y, z) ∈ ∆×C. �

Remark 4 From the proof of Proposition 3, it follows that, once the polynomials g1, . . . , gs and
q are fixed, for every f positive on S satisfying Assumptions 1, 2 and 3, an explicit bound for
M in terms of deg(f), the size of the coefficients of f and f• can be computed similarly as in
[8] or [3].

In order to prove our main result, we will apply the following effective version of Polya’s theorem
for a simplex (see [11, Theorem 3]).

Lemma 5 Let P ⊂ Rn be an n-dimensional simplex with vertices v0, . . . , vn, and let ¯̀ =
{`0, . . . , `n} be the set of barycentric coordinates on P , i.e., `i ∈ R[X̄] is linear (affine) for
i = 0, . . . , n,

X̄ =
∑

0≤i≤n
`i(X̄)vi, 1 =

∑
0≤i≤n

`i(X̄), and `i(vj) = δij for 0 ≤ i, j ≤ n.

Let h ∈ R[X̄] be a polynomial that is strictly positive on P . Then, for κ� 0, h has a represen-
tation of the form

h =
∑
|β|≤κ

bβ ¯̀β with bβ > 0.

Moreover, for each β, bβ ∈ R is a linear combination of the coefficients of h, and an explicit
bound for κ can be given in terms of the degree of h, the size of the coefficients of h, the minimum
value of h in P and the vertices v0, . . . , vn.

Lemma 6 For N ∈ R>0, let `0(X̄) :=
√
nN −

∑
1≤j≤nXj and, for i = 1, . . . , n, `i(X̄) :=

Xi +
√
N . Then, for i = 0, . . . , n, we have that `i ∈M(N − ‖X̄‖2), where ‖X̄‖2 =

∑
1≤j≤nX

2
j .
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Proof: By an explicit computation, we see that

√
nN −

∑
1≤j≤n

Xj =
1

2
√
nN

(
(
√
nN −

∑
1≤j≤n

Xj)
2 +

∑
1≤j<j′≤n

(Xj −Xj′)
2
)

+

√
n

2
√
N

(N −
∑

1≤j≤n
X2
j ).

Also, for i = 1, . . . , n:

Xi +
√
N =

1

2
√
N

(
(Xi +

√
N)2 +

∑
j 6=i

X2
j

)
+

1

2
√
N

(
N −

∑
1≤j≤n

X2
j

)
.

This shows that `0, `1, . . . , `n ∈M(N − ‖X̄‖2). �

We are now able to prove the main result of the paper.

Proof of Theorem 1: We continue to use the notation introduced before.

Let h ∈ R[X̄, Y, Z] be as in Proposition 3. We will apply Pólya’s theorem, as stated in Lemma
5, to the polynomials h(y,z)(X̄) := h(X̄, y, z) for (y, z) ∈ C and the simplex ∆ defined in (1).

The vertices of ∆ are

v0 := (−
√
N, . . . ,−

√
N),

vi := v0 + (0, . . . , (n+
√
n)
√
N︸ ︷︷ ︸

i−th coord.

, . . . , 0) for i = 1, . . . , n,

and its barycentric coordinates are given by

`0(X̄) :=
1

(n+
√
n)
√
N

(
√
nN −

∑
1≤j≤n

Xj),

`i(X̄) :=
1

(n+
√
n)
√
N

(Xi +
√
N) for i = 1, . . . , n.

For each fixed (y, z) ∈ C, the polynomial h(y,z)(X̄) satisfies

h(y,z)(x̄) >
f•

2
> 0 for every x̄ ∈ ∆.

Since the size of the coefficients of h(y,z) as polynomials in X̄ and their minimum values on ∆
are uniformly bounded for (y, z) ∈ C, by Lemma 5, there exists κ� 0 such that

h(X̄, Y, Z) =
∑
|β|≤κ

bβ(Y, Z)¯̀(X̄)β

with bβ ∈ R[Y,Z] and bβ(y, z) > 0 for every (y, z) ∈ C. In addition, for each β, since h
is homogeneous in (Y, Z) and bβ is a linear combination of the coefficients of h (seen as a
polynomial in X̄), then bβ is a homogeneous polynomial. This implies that bβ(y, z) > 0 for
every (y, z) ∈ R×R≥0 \ {0}; in particular, bβ(y, 1) > 0 for every y ∈ R and therefore bβ(Y, 1) is
a sum of squares in R[Y ].

Finally, from the equality
h(X̄, Y, 1) = q(Y )M f(X̄, Y ) −

−λ
∑

1≤i≤s
αi(Y

2 + 1)
r+ei

2 gi(X̄, Y )(αi(Y
2 + 1)

ei
2 gi(X̄, Y )− q(Y )

mi+ei
m0 )2kq(Y )Mi

10



we have:

q(Y )M f(X̄, Y ) = λ
∑

1≤i≤s
αi(Y

2 + 1)
r+ei

2 (αi(Y
2 + 1)

ei
2 gi(X̄, Y )− q(Y )

mi+ei
m0 )2kq(Y )Migi(X̄, Y )

+
∑
|β|≤κ

bβ(Y, 1)¯̀(X̄)β.

It is clear that for i = 1, . . . , s,

αi(Y
2 + 1)

r+ei
2 (αi(Y

2 + 1)
ei
2 gi(X̄, Y )− q(Y )

mi+ei
m0 )2kq(Y )Migi(X̄, Y ) ∈M(g).

On the other hand, by Lemma 6,

`0(X̄), . . . , `n(X̄) ∈M(N − ‖X̄‖2)

and, taking into account that M(N −‖X̄‖2) is closed under multiplication (since it is generated
by a single polynomial), the same holds for all the products ¯̀(X̄)β = `0(X̄)β0 · · · `n(X̄)βn . By
the assumption N − ‖X̄‖2 ∈ M(g), we deduce that bβ(Y, 1)¯̀(X̄)β ∈ M(g) for every β with
|β| ≤ κ. We conclude that q(Y )M f(X̄, Y ) ∈M(g). �

Remark 7 The value of M in Theorem 1 is the same as in Proposition 3, therefore it can be
bounded as mentioned in Remark 4.

References

[1] E. Artin, Uber die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem. Hamburg
5 (1927), no. 1, 100–115.

[2] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry. Ergebnisse der Mathematik und
ihrer Grenzgebiete 36, Springer, Berlin, 1998.

[3] P. Escorcielo, D. Perrucci, A version of Putinar’s Positivstellensatz for cylinders. J. Pure
Appl. Algebra 224 (2020), no. 12, 106448.

[4] J.-L. Krivine, Anneaux préordonnés. Journal d’analyse mathématique 12 (1964), 307–326.
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