Lista de ejercicios número 1 (Marzo de 2011)

ESPACIOS DE SOBOLEV

- 1. Espacios de Sobolev en dimensión n=1 Sean I=(a,b) un intervalo de la recta y $1 \le p < \infty$,
 - i) Probar que si $u \in W^{1,p}(I)$ entonces u coincide en casi todo punto con una función absolutamente continua y que u' (que existe en sentido clásico en c.t.p.) coincide con la derivada débil en c.t.p.
 - ii) Muestre que si $u \in W^{1,p}(0,1)$, entonces se tiene la estimación

$$|u(x) - u(y)| \le |x - y|^{\alpha} \Big(\int_a^b |u'|^p dt \Big)^{1/p},$$

para casi todo $x,y\in[0,1]$, donde $\alpha=1-\frac{1}{p}$, de modo que se tiene una inmersión $W^{1,p}(I)\subset C^{\alpha}(\overline{I})$.

- iii) Deducir que se tiene una inmersión compacta $W^{1,p} \subset C(\overline{I})$. [La compacidad de la inmersión significa que si (u_n) es una sucesión acotada en $W^{1,p}(I)$, existe una subsucesión (u_{n_k}) convergente en $C(\overline{I})$]
- 2. Muestre que $\chi_{B_1(0)}(x)$ no está en $W^{1,p}(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Más aún, muestre que dicha función no tiene derivada débil (en $L^1_{loc}(\mathbb{R}^n)$).
- 3. a) ¿Para qué valores de $\alpha > 0$ vale que $u(x) := |x|^{-\alpha}$ pertenece a $W^{1,p}(B_1(0))$?
 - b) Para n > p, construya una función de $W^{1,p}(B_1(0))$ que no es acotada en ningún subconjunto abierto de $B_1(0)$.
- 4. Sea $U \subset \mathbb{R}^n$ un abierto. Pruebe que $W^{k,p}(U)$ es un espacio de Banach, y que si $p < \infty$ es separable.
- 5. i) Muestre que $C_c(0,1)$ no es denso en $W^{1,p}(0,1)$.
 - ii) Sea $U = \{(x, y) \in \mathbb{R}^2 : 0 < |x| < 1, 0 < y < 1\}$ y consideramos

$$u(x,y) = \begin{cases} 1 & \text{si } x > 0 \\ 0 & \text{si } x < 0 \end{cases}$$

Probar que $u \in W^{1,p}(U)$ pero que sin embargo u no puede aproximarse en la norma de dicho espacio por funciones en $C^1(\overline{U})$. ¿Porqué no se aplica el teorema de densidad visto en clase?

6. Pruebe la siguiente fórmula (utilizada en la prueba del teorema de aproximación local):

$$D^{\alpha}u^{\epsilon} = \rho_{\epsilon} * D^{\alpha}u,$$

donde $u \in W^{k,p}(U)$, $|\alpha| \le k$, $\rho_{\epsilon}(x) = \epsilon^{-n} \rho(x/\epsilon)$ y $\rho \in C_c^{\infty}(\mathbb{R}^n)$.

- 7. Mostrar que el teorema de extensión visto en clase para $W^{1,p}(U)$ provee un operador de extensión para $W^{2,p}(U)$ también, si $\partial U \in C^2$.
- 8. Sea $F:\mathbb{R}\to\mathbb{R}$ de clase C^1 con F' acotada. Sean $U\subset\mathbb{R}^n$ abierto acotado y $u\in W^{1,p}(U)$ con $1< p<\infty$. Pruebe que

$$F(u) \in W^{1,p}(U)$$
 y $F(u)_{x_i} = F'(u)u_{x_i} \ (i = 1, ..., n).$

- 9. Sean $1 y <math>U \subset \mathbb{R}^n$ un abierto acotado.
 - a) Pruebe que si $u \in W^{1,p}(U)$, entonces $|u| \in W^{1,p}(U)$.
 - b) Pruebe que si $u \in W^{1,p}(U)$, entonces $u^+, u^- \in W^{1,p}(U)$ y

$$Du^{+} = \begin{cases} Du & \text{en c.t.p. donde} \{u > 0\} \\ 0 & \text{en c.t.p. donde} \{u \le 0\} \end{cases}, \qquad Du^{-} = \begin{cases} 0 & \text{en c.t.p. donde} \{u \le 0\} \\ Du & \text{en c.t.p. donde} \{u > 0\} \end{cases}.$$

- c) Pruebe que si $u \in W^{1,p}(U)$, entonces Du = 0 en c.t.p. donde $\{u = 0\}$.
- 10. Pruebe la siguiente desigualdad de interpolación:

$$\int_{U} |Du|^2 \, dx \leq C \Big(\int_{U} u^2 \, dx \Big)^{1/2} \Big(\int_{U} |D^2u|^2 \, dx \Big)^{1/2},$$

para toda $u \in H^2(U) \cap H^1_0(U)$ con C independiente de u.

- 11. Muestre que si $U \subset \mathbb{R}^n$ es un abierto conexo y $u \in W^{1,p}(U)$ verifica que Du = 0 c.t.p. U, entonces u es constante c.t.p. U.
- 12. Pruebe la siguiente desigualdad de Poincaré:

$$||u - (u)_U||_{L^p(U)} \le C||Du||_{L^p(U)},$$

para toda $u \in W^{1,p}(U)$, $1 \le p \le \infty$, donde $U \subset \mathbb{R}^n$ es abierto, acotado con frontera de clase C^1 , C = C(n, p, U) y

$$(u)_U := \frac{1}{|U|} \int_U u \, dx$$

es el promedio de u sobre U.

13. En el intervalo $I=(0,2\pi)$ consideramos los espacios de Sobolev fraccionarios definidos por medio de series de Fourier para $s\in\mathbb{R}_{\geq 0}$ del siguiente modo: si $u\in L^2$ consideramos su serie de Fourier

$$u = \sum_{n \in \mathbb{Z}} c_n e^{inx}$$

siendo

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} u(x)e^{-inx} dx$$

(la serie converge en $L^2(I)$), y definimos el espacio $H^s(I)$ por

$$H^{s}(I) = \left\{ u \in L^{2}(I) : \sum_{n \in \mathbb{Z}} (1 + |n|)^{2s} |c_{n}|^{2} < +\infty \right\}$$

con la norma

$$||u||_{H^s} = \left\{ \sum_{n \in \mathbb{Z}} (1 + |n|)^{2s} |c_n|^2 \right\}^{1/2}$$

- a) Probar que $H^s(I)$ es un espacio de Hilbert (definiendo para ello, un producto interno adecuado).
- b) Probar que si $s \in \mathbb{N}_0$, $H^s(I)$ coincide con $W^{s,2}(I)$.
- c) Probar que si s > 1/2 se tiene la inmersión

$$H^s(I) \subset C(\overline{I})$$

y que dicha inmersión es compacta.