El binomio de Newton: Una prueba por inducción

Pablo L. De Nápoli

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Álgebra I - Primer cuatrimestre de 2020

Introducción

En este video, explicaremos el binomio de Newton y haremos una demostración por inducción (diferente a la que está en el apunte).

Recordamos que los números combinatorios $\binom{n}{k}$ cuentan cuántos subconjuntos de k elementos podemos formar a partir de uno de n elementos.

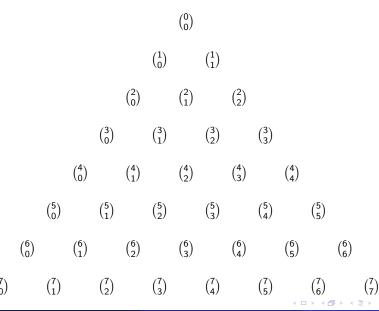
En particular, vamos a usar en esta clase la definición recursiva de los números combinatorios

$$\binom{n}{0} = \binom{n}{n} = 1 \quad \forall n \in \mathbb{N}_0$$

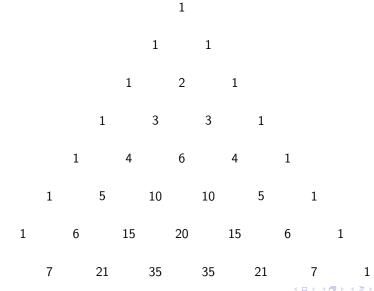
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \quad \forall n \in \mathbb{N}_0, 1 \le k \le n-1$$

[ver la proposición 3.3.3 en el apunte de la profesora Krick]

El Triangulo de Pascal



El Triangulo de Pascal (2)



El binomio de Newton: casos n = 2 y n = 3

El binomio de Newton es una fórmula para calcular una potencia de una suma de dos términos (binomio).

$$(x+y)^n$$

Empecemos con los primeros valore de n:

$$(x+y)^1 = x+y$$

$$(x+y)^2 = (x+y) \cdot (x+y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y = x^2 + 2xy + y^2$$

$$(x+y)^3 = (x+y)^2 \cdot (x+y) = (x^2 + 2xy + y^2) \cdot (x+y)$$

= $x^3 + 2x^2y + xy^2 + x^2y + 2xy^2 + y^3 = x^3 + 3x^2y + 3xy^2 + y^3$

Bonus track: ¿Y en general? ...

Este proceso puede continuar para los siguientes valores de n. Pero vamos a hacerlo mediante un programa usando la librería Simpy para manipulaciones simbólicas en Python

Programita para generar las potencias del binomio en Python 3

```
from sympy import *
x=symbols("x")
y=symbols("y")
b=x+y
Newton = 1
for n in range(1,8):
  Newton= expand(Newton * b)
  print("(x+y)^"+str(n)+"=",Newton)
```

Ver la documentación en https://www.sympy.org/

¿Y en general? ...

Salida del programa

```
(x+y)^1= x + y

(x+y)^2= x**2 + 2*x*y + y**2

(x+y)^3= x**3 + 3*x**2*y + 3*x*y**2 + y**3

(x+y)^4= x**4 + 4*x**3*y + 6*x**2*y**2 + 4*x*y**3 + y**4

(x+y)^5= x**5 + 5*x**4*y + 10*x**3*y**2 + 10*x**2*y**3

+ 5*x*y**4 + y**5

(x+y)^6= x**6 + 6*x**5*y + 15*x**4*y**2 + 20*x**3*y**3

+ 15*x**2*y**4 + 6*x*y**5 + y**6

(x+y)^7= x**7 + 7*x**6*y + 21*x**5*y**2 + 35*x**4*y**3

+ 35*x**3*y**4 + 21*x**2*y**5 + 7*x*y**6 + y**7
```

vemos que ¡aparecen como coeficientes los números combinatorios!

El teorema del binomio de Newton

Teorema

Para todo $n \in \mathbb{N}$, $y \times y$ números reales (o complejos)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Debido a este teorema, los números combinatorios se llaman también coeficientes binomiales.

Aunque es común atribuir a este teorema de Newton, ya aparece en los trabajos del matemático persa Al-Karaji del siglo 10 (vean https://en.wikipedia.org/wiki/Binomial_theorem#History).

Haremos una demostración por inducción en n.

Llamamos P(n) a la afirmación que queremos demostrar.

El caso base P(1)

$$(x+y)^{1} = {1 \choose 0} x^{0} y^{1} + {1 \choose 1} x^{1} y^{0}$$
$${1 \choose 0} = {1 \choose 1} = 1$$
$$(x+y)^{1} = x+y$$

Paso inductivo: $P(n) \Rightarrow P(n+1)$

$$(x+y)^{n+1} = (x+y)^n \cdot (x+y) = \left[\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}\right] \cdot (x+y)$$
$$= \sum_{k=0}^n \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k}$$

$$= \sum_{k=0}^{n-1} \binom{n}{k} x^{k+1} y^{n-k} + \binom{n}{n} x^{n+1} y^0 + \binom{n}{0} x^0 y^{n+1} + \sum_{k=1}^{n} \binom{n}{k} x^k y^{n+1-k}$$

Recordamos que

$$\binom{n}{0} = 1, \binom{n}{n} = 1$$

Paso inductivo (2):Un cambio de índice

En la primera suma hacemos el cambio de índice k = j - 1, o sea j = k + 1

$$\sum_{k=0}^{n-1} \binom{n}{k} x^{k+1} y^{n-k} = \sum_{j=1}^{n} \binom{n}{j-1} x^j y^{n-(j-1)}$$

Lo que también podemos escribir como

$$\sum_{k=0}^{n-1} \binom{n}{k} x^{k+1} y^{n-k} = \sum_{k=1}^{n} \binom{n}{k-1} x^k y^{n+1-k}$$

ya que la segunda suma es la misma si a la variable la volvemos a llamar k en lugar de j.

Paso inductivo (3):Juntamos las sumas

Sustituyendo nos queda:

$$(x+y)^{n+1} = \sum_{k=1}^{n} \binom{n}{k-1} x^k y^{n+1-k} + \binom{n}{n} x^{n+1} y^0 + \binom{n}{0} x^0 y^{n+1} + \sum_{k=1}^{n} \binom{n}{k} x^k y^{n+1-k}$$

Pero ¡ahora podemos juntar las dos sumatorias en una!

$$(x+y)^{n+1} = \binom{n}{0} x^0 y^{n+1} + \sum_{k=1}^n \left[\binom{n}{k-1} + \binom{n}{k} \right] x^k y^{n+1-k} + \binom{n}{n} x^{n+1} y^0$$

Paso inductivo (4): Conclusión

Usamos entonces la recurrencia par los números combinatorios, nos queda:

$$(x+y)^{n+1} = \binom{n}{0} x^0 y^{n+1} + \sum_{k=1}^n \binom{n+1}{k} x^k y^{n+1-k} + \binom{n}{n} x^{n+1} y^0$$

Pero como

$$\binom{n}{0} = \binom{n+1}{0} = 1 \quad \land \quad \binom{n}{n} = \binom{n+1}{n+1} = 1$$

Podemos escribir todo en una sumatoria:

$$(x+y)^{n+1} = \sum_{k=0}^{n+1} {n+1 \choose k} x^k y^{n+1-k}$$

y esto es exactamente la afirmación P(n+1). Por el principio de inducción matemática, esto demuestra la afirmación P(n), para todo n natural.

Bonus track 2: ¿Y entonces Newton qué hizo? ...

En los cursos de análisis, se ve el (verdadero) teorema del binomio de Newton, donde el exponente puede ser un número real cualquiera.

Teorema

Para todo α real, y x real con |x| < 1,

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = \lim_{n \to \infty} \sum_{k=0}^{n} {\alpha \choose k} x^k$$

donde los coeficientes binomiales generalidados se definen por

$$\binom{\alpha}{k} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!}$$

Para más información (y ejemplos), pueden ver

https://en.wikipedia.org/wiki/Binomial_series.

Bonus track 3: Otra fórmula donde aparecen los combinatorios

Como ejercicio, pueden intentar escribir una prueba por inducción del siguiente teorema (imitando la que hicimos):

Fórmula de Leibniz para la derivada n-ésima de un producto

Para todo $n \in \mathbb{N}$, si $f, g : \mathbb{R} \to \mathbb{R}$ son funciones n veces derivables en un entorno de $x_0 \in \mathbb{R}$ entonces:

$$(f \cdot g)^{(n)}(x_0) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) g^{(n-k)}(x_0)$$