$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{2 n+1}{k} \\
& \sum_{k=0}^{m}\binom{m}{k}=\sum_{k=0}^{m}\binom{m}{k} 1^{k} 1^{n-k}=(1+1)^{m}=2^{m} \\
& m=2 n+1 \\
& \sum_{k=0}^{2 n+1}\binom{2 n+1}{k}=2^{2 n+1} \\
& \sum_{k=0}^{n}\binom{2 n+1}{k}+\sum_{k=n+1}^{2 n+1}\binom{2 n+1}{k}=2^{2 n+1} \\
& \binom{m}{k}=\binom{m}{m-k} \\
& \sum_{k=n+1}^{2 n+1}\binom{2 n+1}{k}=\sum_{k=n+1}^{2 n+1}\binom{2 n+1}{2 n+1-k} \\
& j=2 n+1-k
\end{aligned}
$$

si $k=n+1$ entonces $j=2 n+1-(n+1)=2 n-n=n$ si $k=2 n+1$ entonces $j=0$

$$
\begin{gathered}
\sum_{k=n+1}^{2 n+1}\binom{2 n+1}{2 n+1-k}=\sum_{j=n}^{0}\binom{2 n+1}{j}=\sum_{j=0}^{n}\binom{2 n+1}{j} \\
2 \sum_{k=0}^{n}\binom{2 n+1}{k}=2^{2 n+1} \\
\sum_{k=0}^{n}\binom{2 n+1}{k}=2^{2 n+1} / 2=2^{2 n}
\end{gathered}
$$

